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Abstract. There are very few existence results for fracture evolution, outside of globally
minimizing quasi-static evolutions. Dynamic evolutions are particularly problematic, due

to the difficulty of showing energy balance, as well as of showing that solutions obey a

maximal dissipation condition, or some similar condition that prevents stationary cracks
from always being solutions. Here we introduce a new weak maximal dissipation condition

and show that it is compatible with cracks constrained to grow smoothly on a smooth

curve. In particular, we show existence of dynamic fracture evolutions satisfying this
maximal dissipation condition, subject to the above smoothness constraints, and exhibit

explicit examples to show that this maximal dissipation principle can indeed rule out

stationary cracks as solutions.
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1. Introduction

In this paper, we formulate and study a model for dynamic Griffith fracture with pre-
scribed crack path, but unknown crack speed, and with antiplane displacement. In partic-
ular, we consider a domain Ω ⊂ R2 and a smooth curve Γ ⊂ Ω that contains the crack at
all times. As described in detail below, the crack evolutions we are considering are charac-
terized by their length s(t) at time t . Given such a (sufficiently regular) function s , and
appropriate initial and boundary data, one can find the corresponding displacement u by
solving the scalar wave equation off the corresponding crack set, with zero Neumann condi-
tion on the crack (see [4] and [7]). We note that, due to the uniqueness proved in [7], this
displacement is determined by s .

There are other conditions on s that need to be satisfied in order to have a reasonable
model for crack evolution. First, energy balance: the energy of the displacement-crack pair
at time t (including the energy dissipated by the crack, which in the Griffith theory is
proportional to its length) is equal to the initial energy, plus the total work done between
time zero and time t (see, e.g., [11]). Second, since a stationary crack will always satisfy the
above criteria, one needs to add a principle requiring that, in certain situations, the crack
must grow. Such a principle, termed maximal dissipation, was formulated in [13], in a weak
sense that does not require regularity of the crack.

Existence of crack-displacement pairs satisfying the above criteria is completely open, and
the goal of this paper is to make progress in this direction. Below, after a short overview
of recent mathematical progress in fracture evolution, we will formulate an even weaker,
but we believe natural, maximal dissipation condition. We then consider a class of crack
evolutions with uniform bounds on certain derivatives. Restricted to this class, we will
prove existence of an evolution satisfying the wave equation, energy balance, and our weak
maximal dissipation condition.

Preprint SISSA 58/2015/MATE.

1



2 GIANNI DAL MASO, CHRISTOPHER J. LARSEN, AND RODICA TOADER

Recent progress on the mathematical analysis of fracture evolution was initiated by [10],
who formulated a precise mathematical model for quasi-static Griffith fracture evolution,
with no regularity restriction on possible cracks. This led to a seqence of papers analyzing
variants of that model, among them [8], [9], [3], [12], [5].

Despite these successes, dynamic fracture evolution (i.e., the inclusion of inertial effects)
remains an outstanding challenge. Indeed, the assumption in quasi-static models of negligible
inertia is invalid, even with slowly varying loads or boundary conditions, if the initial state
is not a global minimizer, or if the crack speed is not negligible. However, formulating a
mathematically precise model, which makes no assumption on crack regularity, is difficult.
As already described, one needs a principle that rules out a stationary crack always being
a solution. In the context of quasi-static evolution, such a principle is minimality, but
minimality is not a useful principle when the displacement is following elastodynamics,
instead of minimization. An exception to this is given by phase-field models, which were
formulated and studied in [2, 14]. These papers led to the maximal dissipation approach
proposed in [13].

A first step in proving existence of dynamic fracture evolutions is to show that there is
no regularity restriction required on the crack set in order to solve for the corresponding
elastodynamics. That is, given any arbitrary and possibly growing family of crack sets
(Γ(t) : t ∈ [0, T ]) , with HN−1(Γ(T )) finite, can one solve, in an appropriate weak sense, a
wave equation “off” of the crack set, with zero Neumann condition on it? This was answered
in the affirmative in [4], though no uniqueness was shown without an additional dissipation
term. However, in [6], it was shown that with sufficient regularity of t 7→ Γ(t), there is
uniqueness and, critically, continuous dependence on the data. We will use these latter
results extensively below.

The spirit of this maximal dissipation condition is simply that the crack must run as fast
as possible, consistent with energy balance. Below we give a precise and equivalent version
of that condition, which suggests the weaker form we study here. First, we define a class of
admissible evolutions, namely, those evolutions such that, together with the corresponding
displacement, energy balance is satisfied. An admissible evolution s is said to satisfy max-
imal dissipation on [0, T ] if, for all η > 0 and all τ ∈ [0, T − η] , there is no admissible σ
such that σ = s on [0, τ ] , σ ≥ s on [τ, τ + η] , and τ = inf{σ > s} .

Up to additional regularity assumptions on s and its competitors σ , our weaker ver-
sion depends on the above η : An admissible evolution s is said to satisfy our η -maximal
dissipation condition on [0, T ] if the above is satisfied with respect to this specified value
of η .

Our main result, in Section 3, is the existence of an η -maximal dissipation solution, for
any prescribed boundary and initial conditions. Furthermore, in Section 4, we give some
explicit examples to show that this maximal dissipation condition is meaningful, in that if
the elastic singularity of the initial data is large enough, it is possible to grow the crack
while balancing energy. In particular, this shows that a stationary crack does not always
satisfy η -maximal dissipation, and therefore it does not always satisfy maximal dissipation.

2. Notation and preliminary results

Let Ω be a bounded open set in R2 with Lipschitz boundary. We assume that the crack
evolves along a prescribed simple curve Γ of class C2,1 contained in Ω except for its end-
points, which belong to ∂Ω. We also assume that Γ divides Ω into two subsets Ω+ and
Ω− , both having a Lipschitz boundary. Let us fix a (possibly empty) Borel subset ∂DΩ
of ∂Ω, where we will prescribe a time dependent boundary condition. On the complement
∂NΩ := ∂Ω\∂DΩ we will prescribe the natural Neumann homogeneous boundary condition.

Let γ : [a, b]→ Ω be an arc-length parametrization of Γ with a < 0 < b and γ(a), γ(b) ∈
∂Ω. For every s ∈ [a, b] we set Γs = γ([a, s]) , Ωs := Ω \ Γs , and H1

D(Ωs) = {u ∈ H1(Ωs) :
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u = 0 H1-a.e. on ∂DΩ} , where H1 denotes the one-dimensional Hausdorff measure and the
values of u on ∂DΩ are defined using the trace operator from H1(Ωs) to L2(∂Ω).

Given a function u ∈ H1(Ωs) for some s ∈ [a, b] , it is convenient to regard its gradient
∇u as an element of L2(Ω;R2), by extending it to 0 on Γs . To underline the fact that this

extension is not the distributional gradient of any extension of u , we shall denote it by ∇̂u .
Let us fix T > 0. The external loading f satisfies

f ∈ L2((0, T );L2(Ω)) . (2.1)

The Dirichlet boundary condition is prescribed using a function w , which, in order to use
the results of [6], needs the regularity assumptions

w ∈ L2((0, T );H2(Ω0)) ∩H1((0, T );H1(Ω0)) ∩H2((0, T );L2(Ω0)) . (2.2)

The initial conditions u0 and u1 for the displacement and for its velocity satisfy

u0 − w(0) ∈ H1
D(Ω0) and u1 ∈ L2(Ω) . (2.3)

In order to use the results of [6], throughout the paper we fix two parameters δ,M with
0 < δ < 1 and M > 0. The uniform regularity assumptions on the length of the cracks are
prescribed in the following definition.

Definition 2.1. For every interval [t1, t2] ⊂ [0, T ] , the class Cδ,M ([t1, t2]) is composed of
all functions satisfying the following conditions:

s ∈ C1,1([t1, t2]; [0, b]) (2.4)

0 ≤ ṡ(t) ≤ 1−δ, for every t ∈ [t1, t2] (2.5)

|s̈(t)| ≤M for a.e. t ∈ [t1, t2] (2.6)

sup
φ∈C1

c ((t1,t2)),‖φ‖∞<1

∫ t2

t1

s̈(t)φ̇(t)dt ≤M . (2.7)

Inequality (2.7) is equivalent to saying that the third derivative of s in the sense of
distributions is a bounded Radon measure on (t1, t2) and that its total variation on (t1, t2)
is bounded by M .

Given a function s ∈ Cδ,M ([0, T ]) , we consider the corresponding displacement u , that
satisfies the wave equation

ü(t, x)−∆u(t, x) = f(t, x) for t ∈ (0, T ) and x ∈ Ωs(t) , (2.8)

with Dirichlet boundary condition on ∂DΩ

u(t, x) = w(t, x) for t ∈ (0, T ) and x ∈ ∂DΩ , (2.9)

Neumann boundary condition

∂νu(t, x) = 0 for t ∈ (0, T ) and x ∈ ∂NΩ ∪ Γs(t) , (2.10)

and initial conditions

u(0, x) = u0(x) and u̇(0, x) = u1(x) for x ∈ Ωs(0) . (2.11)

In the following definition we introduce the notion of weak solution of this problem.

Definition 2.2. Assume that f, w, u0, u1 satisfy (2.1)-(2.3) and let s ∈ Cδ,M ([0, T ]) . We
say that u is a weak solution of the wave equation (2.8) with boundary and initial conditions
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(2.9)-(2.11) on the time-dependent cracking domains t 7→ Ωs(t) , if

u ∈ C1([0, T ];L2(Ω)) (2.12)

u(t)− w(t) ∈ H1
D(Ωs(t)) for every t ∈ [0, T ] (2.13)

∇̂u ∈ C0([0, T ];L2(Ω;R2)) (2.14)

u̇ ∈ AC([t, T ];H−1
D (Ωs(t))) for every t ∈ [0, T ) (2.15)

1
h (u̇(t+ h)− u̇(t)) ⇀ ü(t) weakly in H−1

D (Ωs(t)) , as h→ 0 , for a.e. t ∈ [0, T ] (2.16)

t 7→ ‖ü(t)‖H−1
D (Ωs(t))

is integrable on (0, T ) , (2.17)

u(0) = u0 and u̇(0) = u1 in L2(Ω) , (2.18)

and for a.e. t ∈ [0, T ]

〈ü(t), ϕ〉+ 〈∇̂u(t), ∇̂ϕ〉 = 〈f(t), ϕ〉 for every ϕ ∈ H1
D(Ωs(t)) . (2.19)

Here and in the rest of the paper 〈·, ·〉 denotes a duality product between spaces that
are clear from the context. For instance, its first occurrence in (2.19) refers to the duality
between H−1

D (Ωs(t)) and H1
D(Ωs(t)), its second occurrence refers to the duality between

L2(Ω;R2) and L2(Ω;R2), and its third occurrence refers to the duality between L2(Ω) and
L2(Ω).

Definition 2.2 is a more regular version of the definition introduced in [4]. The following
existence and uniqueness result is proved in [6, Example 1.14 and Corollary 2.3].

Theorem 2.3. Under the assumptions of Definition 2.2 there exists a unique weak solution
of problem (2.8)-(2.11) on the time-dependent cracking domains t 7→ Ωs(t) .

The following continuous dependence result is proved in [6, Theorem 3.1 and Example 3.3].

Theorem 2.4. Assume sk ∈ Cδ,M ([0, T ]) converges uniformly to some s ∈ Cδ,M ([0, T ]) .
For every k , let uk be the weak solution of problem (2.8)-(2.11) on the cracking domain
t 7→ Ωsk(t) and let u be the weak solution of problem (2.8)-(2.11) on the cracking domain
t 7→ Ωs(t) . Then

uk(t, ·)→ u(t, ·) strongly in L2(Ω) , (2.20)

∇̂uk(t, ·)→ ∇̂u(t, ·) strongly in L2(Ω;R2) , (2.21)

u̇k(t, ·)→ u̇(t, ·) strongly in L2(Ω) , (2.22)

for every t ∈ [0, T ] .

Besides the class Cδ,M ([0, T ]) , we can consider the class Cpiec
δ,M ([0, T ]) defined in the follow-

ing way: s ∈ Cpiec
δ,M ([0, T ]) if and only if s ∈ C0([0, T ]) and there exists a finite subdivision

0 = T0 < T1 < · · · < Tk = T such that

s|[Tj−1,Tj ] ∈ Cδ,M ([Tj−1, Tj ]) for every j = 1, . . . , k .

If f, w, u0, u1 satisfy (2.1)-(2.3) and s ∈ Cpiec
δ,M ([0, T ]) , then Definition 2.2 still provides a

notion of weak solution of the wave equation (2.8) with boundary and initial conditions (2.9)-
(2.11) on the time-dependent cracking domains t 7→ Ωs(t) . The existence and uniqueness of
such a solution is a direct consequence of Theorem 2.3, applied to each interval [Tj−1, Tj ]
of the subdivision.

3. Energy balance and maximal dissipation

We start by discussing the issue of the energy balance for weak solutions of (2.8) with

f, w, u0, u1 satisfying (2.1)-(2.3) and with a general s ∈ Cpiec
δ,M ([0, T ]) . The sum of the elastic

and kinetic energies of a solution u at time t is given by E(∇̂u(t), u̇(t)), where

E(Ψ, v) :=
1

2
‖Ψ‖2 +

1

2
‖v‖2 (3.1)
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for every Ψ ∈ L2(Ω;R2) and every v ∈ L2(Ω). Here and in the rest of the paper ‖ · ‖ refers
to the L2 norm on sets that are clear from the context.

The work of the external forces on the solution u over a time interval [t1, t2] ⊂ [0, T ] is
given by

Wload(u; t1, t2) :=

∫ t2

t1

〈f(t), u̇(t)〉dt , (3.2)

which is well defined by (2.1) and (2.12). One would expect that the work on the solution
u due to the varying boundary conditions w over a time interval [t1, t2] ⊂ [0, T ] is given by

Wbdry(u; t1, t2) =

∫ t2

t1

〈∂νu(t), ẇ(t)〉∂DΩdt , (3.3)

where 〈·, ·〉∂DΩ is the duality pairing between L2(∂DΩ) and L2(∂DΩ). Since ẇ(t) ∈ H1(Ω0)
by (2.2), its trace on ∂DΩ belongs to L2(∂DΩ).

Unfortunately, under the assumptions (2.12)-(2.19) the trace of the normal derivative
∂νu(t) cannot be defined, not even in a weaker sense, because ∆u(t), in general, does not
belong to L2(Ωs(t)). This difficulty is solved by the following result.

Proposition 3.1. Assume that there exists an open neighborhood U of the closure of
∂DΩ such that u ∈ L2((t1, t2);H2(U ∩ Ω \ Γ)) ∩ H2((t1, t2);L2(U ∩ Ω)) . Then ∂νu ∈
L2((t1, t2);L2(∂DΩ)) and

Wbdry(u; t1, t2) = 〈u̇(t2), ẇ(t2)〉 − 〈u̇(t1), ẇ(t1)〉

−
∫ t2

t1

〈ẅ(t), u̇(t)〉dt−
∫ t2

t1

〈f(t), ẇ(t)〉dt+

∫ t2

t1

〈∇̂u(t),∇ẇ(t)〉dt .
(3.4)

Since the right-hand side of (3.4) is well defined under the weaker assumptions (2.12)-
(2.18), when u is an arbitrary weak solution of (2.8) we consider (3.4) as the weak definition
of the work Wbdry(u; t1, t2) due to the varying boundary conditions w .

Proof of Proposition 3.1. Since u ∈ L2((t1, t2);H2(U ∩ Ω±), and U is a neighborhood of
∂DΩ, by the continuity of the trace operator we have ∂νu ∈ L2((t1, t2);L2(∂DΩ)). Moreover
our assumptions, together with (2.19), imply that

ü(t)−∆u(t) = f(t) in L2(U ∩ Ω \ Γ) (3.5)

for a.e. t ∈ (t1, t2). Let us fix ϕ ∈ C1
c (R2) with suppϕ ⊂ U and ϕ = 1 on ∂DΩ. Integrating

by parts with respect to space and using (3.5), we obtain

〈∂νu(t), ẇ(t)〉∂DΩ = 〈∂νu(t), ϕẇ(t)〉∂DΩ = 〈∆u(t), ϕẇ(t)〉+ 〈∇̂u(t),∇(ϕẇ(t))〉

= 〈ü(t), ϕẇ(t)〉 − 〈f(t), ϕẇ(t)〉+ 〈∇̂u(t),∇(ϕẇ(t))〉 .
(3.6)

Since (1− ϕ)ẇ(t) ∈ H1
D(Ωs(t)) for a.e. t ∈ (0, T ), from (2.19) we get

〈ü(t), (1− ϕ)ẇ(t)〉+ 〈∇̂u(t),∇((1− ϕ)ẇ(t))〉 − 〈f(t), (1− ϕ)ẇ(t)〉 = 0 (3.7)

for a.e. t ∈ (0, T ). Adding the left-hand side of (3.7) to the right-hand side of (3.6), from
(3.3) we deduce that

Wbdry(u; t1, t2) =

∫ t2

t1

〈ü(t), ẇ(t)〉dt−
∫ t2

t1

〈f(t), ẇ(t)〉dt+

∫ t2

t1

〈∇̂u(t),∇ẇ(t)〉dt

Integrating by parts with respect to time we finally obtain (3.4). �

The total work on the solution u over a time interval [t1, t2] ⊂ [0, T ] is defined by

W(u; t1, t2) :=Wload(u; t1, t2) +Wbdry(u; t1, t2) ,

where Wload is defined by (3.2) and Wbdry is defined by (3.4).
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Remark 3.2. If s(·) is constant in the interval [t1, t2] ⊂ [0, T ] , then every solution u of
the wave equation (2.8) according to Definition 2.2, satisfies the energy equality

E(∇̂u(t2), u̇(t2))− E(∇̂u(t1), u̇(t1)) =W(u; t1, t2) .

This result is well known for the wave equation in a sufficiently smooth domain. For an
arbitrary bounded open set one can follow the lines of the proof of [7, Lemma 1]. An
alternative way is to perturb the wave equation with a small damping term and use the fact
that the energy balance always holds for the damped wave equation (see [4, Theorem 3.2]).

We now introduce the class of admissible functions s which satisfy the energy-dissipation
balance.

Definition 3.3. Assume that f, w, u0, u1 satisfy (2.1)-(2.3) and let s0 ∈ [0, b] . The class

S is composed of all functions s ∈ Cpiecδ,M ([0, T ]) , with s(0) = s0 , such that the unique weak

solution u of (2.8)-(2.11) on the time-dependent cracking domains t 7→ Ωs(t) satisfies the
energy-dissipation balance

E(∇̂u(t2), u̇(t2))− E(∇̂u(t1)), u̇(t1)) + s(t2)− s(t1) =W(u; t1, t2) (3.8)

for every interval [t1, t2] ⊂ [0, T ] .

The meaning of (3.8) is conservation of energy: The work done on the system is balanced

by the change in mechanical energy E(∇̂u(t2), u̇(t2))− E(∇̂u(t1)), u̇(t1)) and by the energy
dissipated in the process of crack production in the same time interval [t1, t2] , which is
assumed to be given by s(t2)− s(t1), consistent with the Griffith theory.

Remark 3.4. Note that the class S is not empty: by Remark 3.2 it contains at least the
constant function s(t) = s0 for all t ∈ [0, T ] . We shall see in Section 4 that there are
examples where S contains nonconstant functions.

To define the notion of η -maximal dissipation solution of the dynamic crack evolution, for
every s ∈ S , η ∈ [0, T ] , and τ ∈ [0, T−η] we introduce the class A(s, η, τ) of admissible com-
parison functions, defined as the set of σ ∈ S with σ|[0,τ ] = s|[0,τ ] , σ|[τ,τ+η] ∈ Cδ,M ([τ, τ+η]) ,
and σ̇(τ+) = ṡ(τ+), where τ+ denotes the limit from the right.

Definition 3.5. Assume that f, w, u0, u1 satisfy (2.1)-(2.3) and let s0 ∈ [0, b] and η ∈ [0, T ] .
We say that s is an η -maximal dissipation solution of the dynamic crack evolution problem
corresponding to these data if s ∈ S and for every τ ∈ [0, T − η] there is no σ ∈ A(s, η, τ)
such that

σ(t) ≥ s(t) for every t ∈ [τ, τ + η] and τ = inf{t ∈ [0, T ] : σ(t) > s(t)} . (3.9)

Theorem 3.6. Given f , w , u0 , u1 , s0 , and η as in Definition 3.5, there exists an η -
maximal dissipation solution of the dynamic crack evolution problem corresponding to these
data.

Proof. Let us fix a finite subdivision 0 = T0 < T1 < · · · < Tk = T such that Tj−Tj−1 ≤ η for
every j = 1, . . . , k . The solution will be constructed recursively in the intervals [Tj−1, Tj ] .
Let S1 be the set of all functions s ∈ Cδ,M ([T0, T1]) , with s(T0) = s0 , such that the
unique weak solution u of (2.8)-(2.11) on the time-dependent cracking domains t 7→ Ωs(t) ,
t ∈ [T0, T1] , satisfies the energy-dissipation balance (3.8) for every interval [t1, t2] ⊂ [T0, T1] .
In Lemma 3.7 below we shall prove that there exists s1 ∈ S1 such that∫ T1

T0

s1(t) dt = max
s∈S1

∫ T1

T0

s(t) dt .

Finally, we define u1 to be the unique weak solution u of (2.8)-(2.11) on the time-dependent
cracking domains t 7→ Ωs1(t) , t ∈ [T0, T1] .
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Suppose now that sj ∈ Cδ,M ([Tj−1, Tj ]) and uj ∈ C1([Tj−1, Tj ];L
2(Ω)) are defined for

some 1 ≤ j < k . Then we define Sj+1 as the set of all functions s ∈ Cδ,M ([Tj , Tj+1]) ,
with s(Tj) = sj(Tj), such that the unique weak solution u of (2.8)-(2.11), with u0 and u1

replaced by uj(Tj) and u̇j(Tj), on the time-dependent cracking domains t 7→ Ωs(t) , t ∈
[Tj , Tj+1] , satisfies the energy-dissipation balance (3.8) for every interval [t1, t2] ⊂ [Tj , Tj+1] .
As above, there exists sj+1 ∈ Sj+1 such that∫ Tj+1

Tj

sj+1(t) dt = max
s∈Sj+1

∫ Tj+1

Tj

s(t) dt . (3.10)

Finally, we define uj+1 to be the unique weak solution u of (2.8)-(2.11), with u0 and u1

replaced by uj(Tj) and u̇j(Tj), on the time-dependent cracking domains t 7→ Ωsj+1(t) ,
t ∈ [Tj , Tj+1] .

After k steps we have constructed sj and uj on each interval [Tj−1, Tj ] , j = 1, . . . , k ,
in such a way that sj(Tj) = sj+1(Tj), uj(Tj) = uj+1(Tj), and u̇j(Tj) = u̇j+1(Tj) for
j = 1, . . . , k−1. Moreover s1(0) = s0 , u1(0) = u0 , and u̇1(0) = u1 . We now set s(t) := sj(t)
and u(t) := uj(t) for t ∈ [Tj−1, Tj ] , j = 1, . . . , k . The previous remark shows that s ∈ S
and that u is the unique weak solution of (2.8)-(2.11) on the time-dependent cracking
domains t 7→ Ωs(t) , t ∈ [0, T ] .

To show that s satisfies the maximality property in Definition 3.5, we assume by con-
tradiction that there exists τ ∈ [0, T − η] and σ ∈ A(s, η, τ) which satisfy (3.9). Let
j ∈ {0, . . . , k − 1} be such that τ ∈ [Tj , Tj+1). Since Tj+1 − Tj ≤ η , we have Tj+1 ≤
τ + η . Using the definition of A(s, η, τ) given before Definition 3.5 it is easy to see
that σ ∈ Cδ,M ([Tj , τ + η]) . This implies, in particular, that σ ∈ Cδ,M ([Tj , Tj+1]) . Since
σ|[0,τ ] = s|[0,τ ] , by the uniqueness of the solution to the wave equation we deduce that
uσ(Tj) = u(Tj) = uj(Tj) and u̇σ(Tj) = u̇(Tj) = u̇j(Tj), where uσ and u denote the unique
solutions to the wave equation on [0, T ] in the cracking domains corresponding to σ and s ,
respectively. This implies that σ|[Tj ,Tj+1] ∈ Sj+1 , hence (3.10) gives∫ Tj+1

Tj

s(t) dt =

∫ Tj+1

Tj

sj+1(t) dt ≥
∫ Tj+1

Tj

σ(t) dt .

Since σ(t) ≥ s(t) for every t ∈ [Tj , Tj+1] , and both functions are continuous in [Tj , Tj+1] ,
we conclude that σ(t) = s(t) for every t ∈ [Tj , Tj+1] , which contradicts the second property
in (3.9). �

To conclude the proof of Theorem 3.6 we need the following lemma.

Lemma 3.7. For every j = 1, . . . , k there exists sj ∈ Sj such that∫ Tj

Tj−1

sj(t) dt = max
s∈Sj

∫ Tj

Tj−1

s(t) dt . (3.11)

Proof. Fix j = 1, . . . , k and set Imax := sup
s∈Sj

∫ Tj

Tj−1

s(t)dt and, for every n ∈ N , let sn ∈ Sj

be such that ∫ T

0

sn(t)dt ≥ Imax −
1

n
. (3.12)

By the compactness of Cδ,M ([Tj−1, Tj ]) there exists a subsequence of sn , not relabeled, and
a function s ∈ Cδ,M ([Tj−1, Tj ]) such that sn → s in C1([Tj−1, Tj ]) .

Since sn ∈ Sj , the weak solutions un to the wave equation corresponding to sn and
to the data f , w , uj−1(Tj−1), and u̇j−1(Tj−1) (u0 and u1 if j = 1), satisfy the energy
equality

E(∇̂un(t2), u̇n(t2))− E(∇̂un(t1), u̇n(t1)) + sn(t2)− sn(t1) =W(un; t1, t2)
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for every interval [t1, t2] ⊂ [Tj−1, Tj ] . Let u be the solution to the wave equation corre-
sponding to s and to the same data f, w, u0, u1 . Passing to the limit thanks to Theorem 2.4,
by (2.20)-(2.22), we obtain (3.8), so that s ∈ Sj . On the other hand, from (3.12) we get∫ T

0

s(t)dt = Imax , which gives (3.11). �

4. An Example

In this section we present an example in which the crack length increases in time and
the energy-dissipation balance is satisfied. In this example 0 ∈ Ω, ∂DΩ = ∂Ω, Γ is the
intersection of Ω with the x1 -axis, and the parametrization is given by γ(s) = (s, 0) ∈ Ω
for every s ∈ (a, b), so that Ωs = Ω \ {(x1, 0) : x1 ≤ s} . We also assume that the crack tip
moves with constant speed 0 < c < 1, with cT < b , hence s(t) = ct for every t ∈ [0, T ] .
Finally, we assume that there is no external loading, so f = 0.

Let us consider the function ψ : R2 \ {(x1, 0) : x1 ≤ 0} → R defined by

ψ(x) := Im(
√
x1 + ix2) =

√
ρ sin(θ/2) , (4.1)

where Im denotes the imaginary part and ρ , θ are the polar coordinates of x = (x1, x2),
with −π < θ < π . Since ∆ψ = 0 in R2 \ {(x1, 0) : x1 ≤ 0} , and ∂νψ = 0 on {(x1, 0) : x1 <
0} , it is easy to check that for every κ ∈ R the function

uκ(t, x) := κψ

(
x1 − ct√

1− c2
, x2

)
, (4.2)

defined for t ∈ [0, T ] and x ∈ Ωct , satisfies (2.8) and (2.10). Since ψ ∈ H1(B \ {(x1, 0) :
x1 ≤ 0}) for every bounded open set B ⊂ R2 , we conclude that uκ satisfies (2.12), (2.14),
(2.15), (2.16), (2.17), and (2.19).

Let us fix an open neighborhood U of ∂Ω, such that U \ Γ ⊂ Ωs for every s ∈ [0, cT ] ,
and a function ϕ ∈ C∞c (R2), with suppϕ ∈ U and ϕ = 1 on ∂Ω. Then the function

wκ(t, x) := ϕ(x)uκ(t, x)

belongs to C∞([0, T ]×R2) and uκ satisfies (2.9) and (2.13).
We want to determine κ so that the energy-dissipation balance (3.8) be satisfied for every

interval [t1, t2] ⊂ [0, T ] . Taking into account Proposition 3.1, the energy-dissipation balance
becomes

1

2
‖∇̂uκ(t)‖2 +

1

2
‖u̇κ(t)‖2 + ct =

1

2
‖∇̂uκ(0)‖2 +

1

2
‖u̇κ(0)‖2 +

∫ t

0

〈∂νuκ(τ), u̇κ(τ)〉∂Ω dτ (4.3)

for every t ∈ [0, T ] .
Let

Ωct := Ω \ {(x1, 0) : x1 ≤ ct} and Ωεct = Ωct \ Eεct ,
where

Eεct = {x = (x1, x2) ∈ R2 :
(x1 − ct)2

1− c2
+ x2

2 ≤ ε2} .

On Ωεct we multiply both terms of equation (2.8) by u̇κ(t), which is smooth in this set.
Integrating by parts we obtain

1

2

∫
Ωε

ct

d

dt
|u̇κ(t)|2dx+

1

2

∫
Ωε

ct

d

dt
|∇̂uκ(t)|2dx =

∫
∂Ω

∂νuκ(t) u̇κ(t) dH1 −
∫
∂Eε

ct

∂νuκ(t) u̇κ(t) dH1,

where ν is the outer unit normal to Ω and to Eεct . On the other hand, using the identity

d

dt

∫
Ωε

ct

v dx = −c
∫
∂Eε

ct

vν1 dH1 ,
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we obtain

d

dt

(
1

2

∫
Ωε

ct

|u̇κ(t)|2dx+
1

2

∫
Ωε

ct

|∇̂uκ(t)|2dx

)

=
1

2

∫
Ωε

ct

d

dt
|u̇κ(t)|2dx+

1

2

∫
Ωε

ct

d

dt
|∇̂uκ(t)|2dx− c

2

∫
∂Eε

ct

|u̇κ(t)|2ν1dH1 − c

2

∫
∂Eε

ct

|∇̂uκ(t)|2ν1dH1

=

∫
∂Ω

∂νuκ(t) u̇κ(t) dH1 −
∫
∂Eε

ct

(
∂νuκ(t) u̇κ(t) +

c

2
|u̇κ(t)|2ν1 +

c

2
|∇̂uκ(t)|2ν1

)
dH1 .

Integrating on [t1, t2] ⊂ [0, T ] we get

1

2

∫
Ω\Eε

ct2

|∇̂uκ(t2)|2dx+
1

2

∫
Ω\Eε

ct2

|u̇κ(t2)|2dx− 1

2

∫
Ω\Eε

ct1

|∇̂uκ(t1)|2dx− 1

2

∫
Ω\Eε

ct1

|u̇κ(t1)|2dx

=

∫ t2

t1

∫
∂Ω

∂νuκ(t) u̇κ(t) dH1 dt−
∫ t2

t1

∫
∂Eε

ct

(
∂νuκ(t) u̇κ(t)+

c

2
|u̇κ(t)|2ν1+

c

2
|∇̂uκ(t)|2ν1

)
dH1dt .

Note that by the definition of uκ∫
Eε

ct1

(|u̇κ(t1)|2 + |∇̂uκ(t1)|2)dx =

∫
Eε

ct2

(|u̇κ(t2)|2 + |∇̂uκ(t2)|2)dx .

Adding these terms to the previous equality we obtain

1

2
‖∇̂uκ(t2)‖2 +

1

2
‖u̇κ(t2)‖2 − 1

2
‖∇̂uκ(t1)‖2 − 1

2
‖u̇κ(t1)‖2

=

∫ t2

t1

∫
∂Ω

∂νuκ(t) u̇κ(t) dH1 dt−
∫ t2

t1

∫
∂Eε

ct

(
∂νuκ(t) u̇κ(t)+

c

2
|u̇κ(t)|2ν1+

c

2
|∇̂uκ(t)|2ν1

)
dH1dt .

Therefore, the energy-dissipation balance (4.3) is satisfied provided that

c(t2 − t1) =

∫ t2

t1

∫
∂Eε

ct

(
∂νuκ(t) u̇κ(t) +

c

2
|u̇κ(t)|2ν1 +

c

2
|∇̂uκ(t)|2ν1

)
dH1 dt . (4.4)

Using (4.2), we express the integrands in terms of the function ψ defined in (4.1), and
we obtain

I :=

∫
∂Eε

ct

(
∂νuκ(t) u̇κ(t) +

c

2
|u̇κ(t)|2ν1 +

c

2
|∇̂uκ(t)|2ν1

)
dH1

= κ2

∫
∂Eε

ct

[(
1√

1−c2
∂1ψ

(x1 − ct√
1−c2

, x2

)
ν1 + ∂2ψ

(x1 − ct√
1−c2

, x2

)
ν2

)
−c√
1−c2

∂1ψ
(x1 − ct√

1−c2
, x2

)
+
c

2

(
1

1− c2
(
∂1ψ

( x1 − ct√
1− c2

, x2

))2

+
(
∂2ψ

( x1 − ct√
1− c2

, x2

))2
)
ν1

+
c

2

c2

1− c2
(
∂1ψ

( x1 − ct√
1− c2

, x2

))2

ν1

]
dH1

= cκ2

∫
∂Eε

ct

[
−1

2

(
∂1ψ

( x1 − ct√
1− c2

, x2

))2

ν1 +
1

2

(
∂2ψ

( x1 − ct√
1− c2

, x2

))2

ν1

+
−1√
1− c2

∂1ψ
( x1 − ct√

1− c2
, x2

)
∂2ψ

( x1 − ct√
1− c2

, x2

)
ν2

]
dH1

We now parametrize ∂Eεct in order to compute the integrals:

x1 − ct = ε
√

1− c2 cos θ , x2 = ε sin θ , θ ∈ (−π, π) .

Then the outer unit normal and the length element are given by

ν(x) =
(cos θ,

√
1− c2 sin θ)√

(1− c2) sin2 θ + cos2 θ
and dH1 =

√
(1− c2) sin2 θ + cos2 θ dθ .
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Hence

I = cκ2

∫ π

−π
ε

[
−1

2

(
∂1ψ(ε cos θ, ε sin θ)

)2

cos θ +
1

2

(
∂2ψ(ε cos θ, ε sin θ)

)2

cos θ

+
−1√
1− c2

∂1ψ(ε cos θ, ε sin θ)∂2ψ(ε cos θ, ε sin θ)
√

1− c2 sin θ

]
dθ

=
c

2
κ2

∫ π

−π

[
−
(
∂1ψ(cos θ, sin θ)

)2

cos θ +
(
∂2ψ(cos θ, sin θ)

)2

cos θ

−2∂1ψ(cos θ, sin θ)∂2ψ(cos θ, sin θ) sin θ
]
dθ ,

where we have used the fact that ∂1ψ and ∂2ψ are positively homogeneous of degree −1/2
by (4.1). Substituting in (4.4) we deduce that the energy-dissipation balance (4.3) is satisfied
provided that

1 =
κ2

2

∫ π

−π

[
−
(
∂1ψ(cos θ, sin θ)

)2

cos θ +
(
∂2ψ(cos θ, sin θ)

)2

cos θ

−2∂1ψ(cos θ, sin θ)∂2ψ(cos θ, sin θ) sin θ
]
dθ .

This shows that κ does not depend on the crack speed c (nor on t1 , t2 , and ε , which can
be deduced also by simpler arguments).

Using the explicit expression (4.1) of the function ψ we obtain that

∂1ψ(cos θ, sin θ) = − sign θ

2
√

2

√
1− cos θ and ∂2ψ(cos θ, sin θ) =

1

2
√

2

√
1 + cos θ .

Hence the energy-dissipation balance (4.3) is satisfied if

1 =
κ2

2

∫ π

−π

[
− 1

8
(1− cos θ) cos θ +

1

8
(1 + cos θ) cos θ +

2

8
sin2 θ

]
dθ =

κ2

2

π

2
,

and we obtain that in this case

κ2 =
4

π
. (4.5)

We remark that this result does not agree with formula (81) in [15]. The discrepancy can
be explained by the fact that we multiply equation (2.8) by u̇κ(t) and integrate by parts
only in Ωεct , i.e., far from the singularity of uκ(t), while in [15, Proof of Lemma 5.5] this is
done on Ωct , where the product ∇u̇κ(t) is not in L2 and ∇uκ(t)∇u̇κ(t) is not integrable.
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