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Abstract. Given a bounded open set Ω ⊂ Rd with Lipschitz boundary and an increasing family Γt, t ∈ [0, T ],
of closed subsets of Ω, we analyze the scalar wave equation ü − div(A∇u) = f in the time varying cracked

domains Ω\Γt. Here we assume that the sets Γt are contained into a prescribed (d−1)-manifold of class C2.

Our approach relies on a change of variables: recasting the problem on the reference configuration Ω \ Γ0,
we are led to consider a hyperbolic problem of the form v̈−div(B∇v) + a ·∇v− 2b ·∇v̇ = g in Ω \Γ0. Under

suitable assumptions on the regularity of the change of variables that transforms Ω \Γt into Ω \Γ0, we prove

existence and uniqueness of weak solutions for both formulations. Moreover, we provide an energy equality,
which gives, as a by-product, the continuous dependence of the solutions with respect to the cracks.
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Introduction

In the study of mathematical models for dynamic crack propagation, it is important to determine the
behavior of the solutions of the system of equations of elastodynamics in domains with a time-dependent
crack (see [8]). In this paper we give a contribution in this direction, by studying the existence, uniqueness,
and continuous dependence on the cracks of the solutions of the wave equation for a scalar variable in a
domain with a prescribed time-dependent crack. This corresponds to the antiplane case for elastodynamics.

We fix a bounded open set Ω ⊂ Rd, a time interval [0, T ], and a family Γt, t ∈ [0, T ], of (possibly irregular)
closed subsets of Ω, increasing with respect to inclusion and contained in a given C2 manifold Γ of dimension
d− 1. Given a tensor field A (satisfying the usual ellipticity conditions) and a forcing term f , we study the
solutions of the equation

ü(t, x)− divx(A(t, x)∇xu(t, x)) = f(t, x) , t ∈ [0, T ], x ∈ Ωt := Ω \ Γt , (0.1)

supplemented by Dirichlet and Neumann boundary conditions on prescribed parts of ∂Ω, and homogeneous
Neumann boundary conditions on the cracks Γt.

The main issue here is the fact that the domain Ωt has not a regular boundary, due to the presence of the
(d− 1)-dimensional crack Γt. When Ωt is more regular, this problem has been studied in [2, 4, 11, 12].

A notion of solution of (0.1) in a domain with a growing crack, under much weaker assumptions on the
cracks Γt, was introduced in [5] in the case of homogeneous Neumann conditions on the whole boundary of Ωt.
The existence of a solution with prescribed initial data was proved in the same paper, while the uniqueness
is still an open problem under those general assumptions.

In [10], a different approach is used, based on a suitable change of variables of class C2, which reduces the
domain {(t, x) ∈ (0, T )× Ω : x ∈ Ωt} to the cylinder (0, T )× Ω0. The transformed equation reads

v̈(t, y)− divy(B(t, y)∇yv(t, y)) + a(t, y) · ∇yv(t, y)− 2b(t, y) · ∇y v̇(t, y) = g(t, y) (0.2)

for t ∈ [0, T ] and y ∈ Ω0, with Dirichlet and Neumann conditions on some parts of ∂Ω, and homogeneous
Neumann conditions on the fixed crack Γ0. The functions B, a, b, and g depend on A, f , and on the change
of variables. In that paper an existence result is proved. As for the uniqueness, it appears in the statement
of [10, Theorem 3.1], but the proof is missing. In our opinion, uniqueness does not follow immediately
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from the arguments used in the proof of that theorem. Indeed, the existence is obtained through a viscous
approximation, which consists in solving the same problem with the additional term

εv̇(t, y)− ε∆y v̇(t, y)

in the left-hand side. The solutions vε of these problems, whose existence is classical (see, e.g., [6]), are
proved to converge, up to a subsequence, to a solution v of (0.2), but there is no argument to show that all
subsequences converge to the same solution. Moreover, the proof of [10, Theorem 3.1] does not exclude the
existence of other solutions of (0.2) obtained by different methods.

In this paper we consider the same change of variables and prove existence and uniqueness of the solution
of (0.2) with prescribed initial conditions (see Theorems 2.6 and 2.10). The proof of uniqueness is obtained
by adapting a classical technique developed in [7] to the case of coefficients which satisfy very mild regularity
assumptions with respect to time.

Moreover, we prove the energy equality

1
2
‖v̇(t)‖2L2(Ω0) +

1
2
〈B(t)∇yv(t),∇yv(t)〉L2(Ω0)

=
1
2
‖v̇(0)‖2L2(Ω0) +

1
2
〈B(0)∇yv(0),∇yv(0)〉L2(Ω0) +R(v, t) , (0.3)

where R is a continuous remainder, which can be written explicitly as an integral involving v̇ and ∇yv (cf.
Proposition 2.11). The proof is based on a regularization of v̇ with respect to time, in the spirit of [9]. The
lack of regularity of the coefficients makes the arguments rather heavy. The energy equality (0.3) is the key
point for the proof of the L2-continuity of the functions t 7→ v̇(t) and t 7→ ∇yv(t).

We also prove that the solution v of (0.2) depends continuously on the coefficients and on the data (see
Theorem 3.1): if Bn → B, an → a, bn → b, and gn → g converge in a sense made precise in the paper,
then the corresponding solutions vn of (0.2) converge strongly to v, meaning that vn → v, v̇n → v̇, and
∇yvn → ∇yv strongly in L2. The proof of the continuous dependence relies on the energy equality (0.3) and
on careful estimates of the solutions vε used in the viscous approximation of the solution v. For this reason
we reproduce the existence proof of [10], which has to be adapted to our slightly less regular situation.

Finally, we prove that the solutions of (0.1) depend continuously on the cracks Γt (see Theorem 3.1). Given
a sequence of time-dependent cracks Γnt , t ∈ [0, T ], increasing with respect to t and contained in the same
manifold Γ, we consider the corresponding solutions un of (0.1). We give some sufficient conditions on Γnt
which imply the convergence of the coefficients of the transformed equations (0.2). This leads to the strong
convergence of the solutions vn of (0.2), which, after a change of variables, yields the strong convergence of
un to u.

In general, the sufficient conditions on Γnt are expressed in terms of the diffeomorphisms used in the change
of variables. When d = 2, and Γnt are arcs contained in a curve Γ, the hypotheses on Γnt depend only on the
crack tips, i.e., on the end-points of these arcs (see Example 3.3).

We expect that this continuous dependence on the cracks will be an important tool for a precise mathe-
matical formulation of a dynamic model of crack evolution in the spirit of [8].

The paper is organized as follows. In Section 1 we fix the notation adopted throughout the paper and we
list the standing assumptions on the set Ω, on the geometry of the cracks Γt, and on the diffeomorphisms
used for the change of variables. In Definition 1.4 we specify the notion of weak solution of problem (0.1).
Then, in Theorem 1.7, we prove that its existence (and uniqueness) is equivalent to that of problem (0.2),
whose weak version is specified in Definition 1.5.

Section 2 is devoted to the study of problem (0.2). First, in Theorems 2.6 and 2.10, we obtain existence
and uniqueness of solutions in a function space larger than that of weak solutions. Eventually, in Proposition
2.11, we provide the energy equality (0.3), which ensures that the solution found is indeed a weak solution.
The energy equality gives also the continuous dependence of solutions on the data (both for problem (0.1)
and problem (0.2)), which is studied in Section 3 (see Theorem 3.1).

In the Appendix, we gather some auxiliary results and all the technical lemmas.
Explicit examples of admissible growing cracks in dimension d = 2 are presented in Examples 1.14, 2.1,

and 3.3.
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1. Notation and preliminary results

The space of m×d matrices with real entries is denoted by Rm×d; in case m = d, the subspace of symmetric
matrices is denoted by Rd×dsym. Given two vectors a, b ∈ Rd, their scalar product is denoted by a · b and their
tensor product is denoted by a⊗ b. Given two square matrices A and B in Rd×d, we write A ·B to denote
their Euclidean scalar product, namely A ·B = AijBij . Here and in the rest of the paper we adopt the
convention of summation over repeated indices. We denote by A−1 and AT the inverse and the transpose
matrices of A, by A−T the transpose of the inverse of A. We denote by I ∈ Rd×d the identity matrix, and
by id the identity function in Rm, possibly restricted to a subset.

The partial derivatives with respect to the variable xi are denoted by ∂xi or Di. Given a function F : Rd →
Rm, we denote its Jacobian matrix by DF , whose components are (DF )ij = ∂jFi. If m = d, in order to
distinguish the inverse of the Jacobian from the Jacobian of the inverse, we denote the former by (DF )−1

and latter by DF−1. For a tensor field A ∈ C1(Rd; Rd×d), by divA we mean its divergence with respect to
lines, namely (divA)i := ∂jAij .

We adopt standard notations for Lebesgue and Sobolev spaces on a bounded open set of Rd. The boundary
values of a Sobolev function are always intended in the sense of traces. The (d − 1)-dimensional Hausdorff
measure is denoted by Hd−1. Given an open set Ω with Lipschitz boundary, we denote by ν the outer unit
normal vector to ∂Ω, defined a.e. on the boundary.

Given a normed vector space X and its topological dual X∗, the norm in X is denoted by ‖ · ‖X and the
duality product between X∗ and X is denoted by 〈·, ·〉X . We adopt the same notations also for vector valued
functions in X. Given an interval I ⊂ R and a Banach space X, Lp(I;X) is the space of Lp functions from
I to X. Given u ∈ Lp(I;X), we denote by u̇ ∈ D′(I;X) its distributional derivative. The set of continuous
and absolutely continuous functions from I to X are denoted by C0(I;X) and AC(I;X), respectively. When
X = Rm, we denote the uniform norm in C0(I; Rm) by ‖ · ‖∞. Given two metric spaces Y and Z, Lip(Y ;Z)
is the space of Lipschitz functions from Y to Z.

Throughout the paper we shall assume the following hypotheses on the set Ω, on the geometry of the
cracks Γt, and on the diffeomorphisms of Ω into itself mapping Γ0 into Γt:

(H1) Ω ⊂ Rd is a bounded open set with Lipschitz boundary ∂Ω;
(H2) ∂DΩ is a (possibly empty) Borel subset of ∂Ω and ∂NΩ is its complement;
(H3) Γ is a C2 manifold of dimension d− 1 contained in Ω and with boundary ∂Γ;
(H4) Γ ∩ ∂Ω = ∂Γ and Ω \ Γ is union of two disjoint open sets Ω+ and Ω− with Lipschitz boundary;
(H5) T > 0;
(H6) Γt, t ∈ [0, T ], is a family of closed subsets of Γ, with Γs ⊂ Γt for every s ≤ t;
(H7) Φ, Ψ: [0, T ] × Ω → Ω are continuous and the partial derivatives ∂tΦ, ∂tΨ, ∂iΦ, ∂iΨ, ∂i∂jΦ, ∂i∂jΨ,

∂i∂tΦ = ∂t∂iΦ, ∂i∂tΨ = ∂t∂iΨ exist and are continuous for i, j = 1, . . . , d;
(H8) Φ(t,Ω) = Ω, Φ(t,Γ) = Γ, Φ(t,Γ0) = Γt, and Φ(t, y) = y for every t ∈ [0, T ] and every y in a

neighborhood of ∂Ω;
(H9) Ψ(t,Φ(t, y)) = y and Φ(t,Ψ(t, x)) = x for every x, y ∈ Ω;

(H10) Φ(0, y) = y for every y ∈ Ω;
(H11) ∂tΦ, ∂tΨ, ∂iΦ, ∂iΨ, ∂i∂jΦ, ∂i∂jΨ, ∂i∂tΦ, ∂i∂tΨ belong to Lip([0, T ];C0(Ω; Rd)) for i, j = 1, . . . d;
(H12) there exists L > 0 such that |∂i∂tΦ(t, x) − ∂i∂tΦ(t, y)| ≤ L|x − y| and |∂i∂tΨ(t, x) − ∂i∂tΨ(t, y)| ≤

L|x− y| for every t ∈ [0, T ], x, y ∈ Ω, and i = 1, . . . , d.

The differential operators D, ∇ and div always refer to the space variable in Ω. We often use the notation
u̇ instead of ∂tu.

Notice that from (H7) and (H9) it follows that detDΦ(t, y) 6= 0 and detDΨ(t, x) 6= 0 for every t ∈ [0, T ]
and x, y ∈ Ω. Using (H10) we conclude that both the determinants are positive. Moreover, (H4), (H7), (H8),
and (H10) imply that Φ(t,Ω±) = Ω±.

Given a point y ∈ Γ, its trajectory in time is described by the function t 7→ Φ(t, y) ∈ Γ. We infer that its
velocity is tangential to the manifold Γ at the point Φ(t, y), that is Φ̇(t, y) · ν(Φ(t, y)) = 0 , where ν(x) is the
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normal vector to Γ at x. By combining this equality with the relation between ν(Φ(t, y)) and ν(y)

ν(Φ(t, y)) =
(DΦ(t, y))−T ν(y)
|(DΦ(t, y))−T ν(y)|

for y ∈ Γ , (1.1)

we deduce that

((DΦ(t, y))−1Φ̇(t, y)) · ν(y) = 0 for y ∈ Γ , or equivalently Φ̇(t,Ψ(t, x)) · ν(x) = 0 for x ∈ Γ . (1.2)

We set
QΓ := {(t, x) ∈ (0, T )×Ω : x /∈ Γt}

and Ωt := Ω \ Γt, so that QΓ = {(t, x) : t ∈ (0, T ) , x ∈ Ωt}. We introduce the space

H1
D(Ωt) := {u ∈ H1(Ωt) : u = 0 Hd−1- a.e. on ∂DΩ} ,

where the equality on ∂DΩ refers to the trace of u on ∂Ω. The space H1
D(Ωt) is endowed with the norm

of H1(Ωt) and its dual is denoted by H−1
D (Ωt). The transpose of the natural embedding H1

D(Ωt) ↪→ L2(Ω)
induces the embedding of L2(Ω) into H−1

D (Ωt) defined by 〈g, ϕ〉H1
D(Ωt) := 〈g, ϕ〉L2(Ω) for every g ∈ L2(Ω) and

ϕ ∈ H1
D(Ωt).

Given 0 ≤ s ≤ t ≤ T let Pst : H−1
D (Ωt)→ H−1

D (Ωs) be the transpose of the natural embedding H1
D(Ωs) ↪→

H1
D(Ωt), i.e., 〈Pst(g), ϕ〉H1

D(Ωs) := 〈g, ϕ〉H1
D(Ωt) for every g ∈ H−1

D (Ωt) and ϕ ∈ H1
D(Ωs). The operator Pst is

continuous, with norm less than or equal to 1. In general it is not injective, since H1
D(Ωs) is not dense in

H1
D(Ωt). Note that Pst(g) = g for every g ∈ L2(Ω).
Let A : [0, T ]× Ω→ Rd×dsym be a time varying tensor field in Ω such that

A ∈ Lip([0, T ];C0(Ω; Rd×dsym)) , A(t, ·) ∈ Lip(Ω) , and ‖∂iA(t, ·)‖L∞(Ω) ≤ C (1.3)

for every t ∈ [0, T ], for every i = 1, . . . , d, and for some C > 0 independent of t and i. We assume that the
following ellipticity condition holds for a suitable constant cA > 0:

(A(t, x)ξ) · ξ ≥ cA|ξ|2 for every t ∈ [0, T ] , x ∈ Ω , and ξ ∈ Rd . (1.4)

Given

f ∈ L2((0, T );L2(Ω)) , u0 ∈ H1(Ω0) , u1 ∈ L2(Ω) , and wD ∈ L2((0, T );H1/2(∂Ω)) , (1.5)

we study the differential equation
ü− div(A∇u) = f in QΓ , (1.6)

with initial conditions
u(0) = u0 , u̇(0) = u1 in Ω0 , (1.7)

and boundary conditions formally written as

u(t) = wD(t) on ∂DΩ for a.e. t ∈ (0, T ) , (1.8)
(A(t)∇u(t)) · ν = 0 on Γt ∪ ∂NΩ for a.e. t ∈ (0, T ) . (1.9)

To give a precise meaning to (1.6)-(1.9), it is convenient to introduce the following notation. Given
v ∈ H1(Ωt), its gradient in the sense of distributions, denoted by ∇v, belongs to L2(Ωt; Rd). We define the
function ∇̂v ∈ L2(Ω; Rd) by setting ∇̂v = ∇v on Ωt and ∇̂v = 0 on Γt. Note that ∇̂v is not the gradient in
the sense of distributions on Ω of the function v, considered as defined almost everywhere on Ω: indeed, the
equality ∫

Ω

ω · ∇̂v dx = −
∫

Ω

v divω dx

holds for ω ∈ C1
c (Ωt; Rd), but in general not for ω ∈ C1

c (Ω; Rd).
To prove an existence and uniqueness result for (1.6)-(1.9), we assume that there exists

w ∈ L2((0, T );H2(Ω0)) ∩H1((0, T );H1(Ω0)) ∩H2((0, T );L2(Ω0)) (1.10)

such that

w(t) = wD(t) on ∂DΩ for a.e. t ∈ (0, T ) , (1.11)
(A(t)∇w(t)) · ν = 0 on Γt ∪ ∂NΩ for a.e. t ∈ (0, T ) , (1.12)
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w(0) = u0 on ∂DΩ , (1.13)

where these equalities have to be considered in the appropriate sense of traces. Note that equality (1.12) for
the conormal derivative must be satisfied also on Γt \ Γ0.

Remark 1.1. For problems in a fixed domain, the usual assumption of w is

w ∈ L2((0, T );H1(Ω0)) ∩H1((0, T );L2(Ω0)) ∩H2((0, T );H−1(Ω0)) .

We have to assume more regularity, both to respect to space and time, because our method of proof uses
the equation satisfied by u− w, which has source term g := f − ẅ + div(A∇w), and some estimates require
that g ∈ L2((0, T );L2(Ω0)).

To give a precise meaning to (1.6)-(1.9) we consider functions u which satisfy the following regularity
assumptions:

u ∈ C1([0, T ];L2(Ω)) , (1.14)
u(t)− w(t) ∈ H1

D(Ωt) for every t ∈ [0, T ] , (1.15)

∇̂u ∈ C0([0, T ];L2(Ω; Rd)) , (1.16)

u̇ ∈ AC([s, T ];H−1
D (Ωs)) for every s ∈ [0, T ) , (1.17)

1
h [u̇(t+ h)− u̇(t)] ⇀ ü(t) weakly in H−1

D (Ωt) as h→ 0 , for a.e. t ∈ (0, T ) , (1.18)
the function t 7→ ‖ü(t)‖H−1

D (Ωt)
is integrable in (0, T ) . (1.19)

The notation used for the weak limit in (1.18) is justified in the following lemma.

Lemma 1.2. Assume that u satisfies (1.14)-(1.19). Then for a.e. t ∈ (0, T ) we have
u̇(t+ h)− u̇(t)

h
→ Pst(ü(t)) strongly in H−1

D (Ωs) (1.20)

as h → 0, for every s ∈ [0, t). In particular, t 7→ Pst(ü(t)) is the distributional derivative of the function
t 7→ u̇(t) from (s, T ) to H−1

D (Ωs). Moreover,

u̇(t)− u̇(s) =
∫ t

s

Psτ (ü(τ)) dτ (1.21)

for every 0 ≤ s ≤ t ≤ T .

Proof. Let us fix a countable dense set S of (0, T ). For every s ∈ S let üs : (s, T ) → H−1
D (Ωs) be the

distributional derivative of u̇ in the space H−1
D (Ωs). By the standard theory of absolutely continuous functions

with values in a reflexive Banach space (see, e.g., [3]), there exists a negligible subset Ns of (s, T ) such that
u̇(t+ h)− u̇(t)

h
→ üs(t) strongly in H−1

D (Ωs) (1.22)

for every t ∈ (s, T ) \ Ns. Let N be a negligible subset of (0, T ) containing all Ns for s ∈ S and all the
t for which (1.18) is not satisfied. Comparing (1.18) and (1.22), we infer that Pst(ü(t)) = üs(t) for every
t ∈ (0, T ) \ N and s ∈ [0, t) ∩ S; in particular, (1.20) is satisfied for such t and s. Note that, since every
function ϕ ∈ H1

D(Ωt) can be approximated strongly in H1
D(Ωt) by functions ϕs ∈ H1

D(Ωs) with s ∈ S and
s→ t−, we obtain that ü(t) is uniquely determined by the equality Pst(ü(t)) = üs(t). In order to conclude the
proof of (1.20), we need to check its validity for t ∈ (0, T )\N and s0 ∈ [0, t)\S: taking an intermediate value
s1 ∈ (s0, t)∩S (recall that S is dense), we have the convergence (1.20) of the difference quotient to Ps1t(ü(t))
strongly in H−1

D (Ωs1); then, by applying the continuous operator Ps0s1 to both sides of such expression, we
obtain the desired strong convergence in H−1

D (Ωs0).
Finally, by the standard theory of absolutely continuous functions, formula (1.21) is an immediate conse-

quence of (1.17) . �

Remark 1.3. Properties (1.14)-(1.18) imply that the function t 7→ ‖ü(t)‖H−1
D (Ωt)

is measurable. To prove this
fact, we first observe that for every 0 ≤ s ≤ T the function (s, T ) 3 t 7→ Pst(ü(t)) is measurable with values in
H−1
D (Ωs) thanks to (1.20) and to the continuity of u̇. Therefore the function (s, T ) 3 t 7→ ‖Pst(ü(t))‖H−1

D (Ωs)

is measurable, and so is the function Gs defined by Gs(t) = 0 if t ∈ (0, s), and Gs(t) = ‖Pst(ü(t))‖H−1
D (Ωs)



6 G. DAL MASO AND I. LUCARDESI

if t ∈ (s, T ). Since every test function ϕ ∈ H1
D(Ωt) can be approximated strongly in H1

D(Ωt) by functions
ϕs ∈ H1

D(Ωs) with s→ t−, we obtain that ‖Pst(ü(t))‖H−1
D (Ωs)

→ ‖ü(t)‖H−1
D (Ωt)

as s→ t−. By monotonicity
with respect to s, given a countable dense subset S of (0, T ), we obtain that ‖ü(t)‖H−1

D (Ωt)
= sup

s∈S
Gs(t),

concluding the proof.

We are now ready to make precise the notion of solution of problem (1.6)-(1.9).

Definition 1.4. Let A, f , u0, u1, w be as in (1.3), (1.5), and (1.10)-(1.13). We say that u is a weak solution
of the wave equation (1.6) with initial conditions (1.7) and boundary conditions (1.8) and (1.9) if u satisfies
(1.14)-(1.19) and for a.e. t ∈ (0, T ) we have

〈ü(t), ϕ〉H1
D(Ωt) + 〈A(t)∇u(t),∇ϕ〉L2(Ωt) = 〈f(t), ϕ〉L2(Ωt) for every ϕ ∈ H1

D(Ωt) , (1.23)

where ü(t) is defined in Lemma 1.2.

To prove the existence and the uniqueness of a weak solution, it is useful to perform the change of variables

v(t, y) = u(t,Φ(t, y)) and u(t, x) = v(t,Ψ(t, x)) (1.24)

through the diffeomorphisms introduced in (H7)-(H12). Notice that v(t, ·) ∈ H1(Ω0) if and only if u(t, ·) ∈
H1(Ωt). Therefore, with this change of variables we work in the fixed set Ω0. This leads to consider the
problem

v̈ − div(B∇v) + a · ∇v − 2b · ∇v̇ = g in QΓ0 , (1.25)

with initial conditions
v(0) = v0 , v̇(0) = v1 in Ω0 , (1.26)

and boundary conditions formally written as

v(t) = wD(t) on ∂DΩ for a.e. t ∈ (0, T ) , (1.27)

(B(t)∇v(t)) · ν = 0 on Γ0 ∪ ∂NΩ for a.e. t ∈ (0, T ) , (1.28)

with

B(t, y) := DΨ(t,Φ(t, y))A(t,Φ(t, y))DΨ(t,Φ(t, y))T − b(t, y)⊗ b(t, y) , (1.29)

a(t, y) := −[BT (t, y)∇(detDΦ(t, y)) + ∂t(b(t, y) detDΦ(t, y))] detDΨ(t,Φ(t, y)) , (1.30)

b(t, y) := −Ψ̇(t,Φ(t, y)) , (1.31)
g(t, y) := f(t,Φ(t, y)) , (1.32)

v0 := u0 , v1 := u1 + Φ̇(0) · ∇u0 . (1.33)

To give a precise meaning to (1.25)-(1.28), we consider functions v which satisfy the following regularity
assumptions:

v ∈ C1([0, T ];L2(Ω0)) , (1.34)

v(t)− w(t) ∈ H1
D(Ω0) for every t ∈ [0, T ] , (1.35)

∇v ∈ C0([0, T ];L2(Ω0; Rd)) , (1.36)

v̇ ∈ AC([0, T ];H−1
D (Ω0)) . (1.37)

Let us specify in what sense we study problem (1.25)-(1.28).

Definition 1.5. Let A, f , u0, u1, and w be as in (1.3), (1.5), and (1.10)-(1.13), and let B, a, b, g, v0, and
v1 be defined according to (1.29)-(1.33). We say that v is a weak solution of equation (1.25) with initial
conditions (1.26) and boundary conditions (1.27) and (1.28) if v satisfies (1.34)-(1.37) and for a.e. t ∈ (0, T )
we have

〈v̈(t), ψ〉H1
D(Ω0) + 〈B(t)∇v(t),∇ψ〉L2(Ω0) + 〈a(t) · ∇v(t), ψ〉L2(Ω0) + 2〈v̇(t),div(b(t)ψ)〉L2(Ω0)

= 〈g(t), ψ〉L2(Ω0) for every ψ ∈ H1
D(Ω0) . (1.38)
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Remark 1.6. Take v satisfying (1.34)-(1.37). Let us check that the scalar products in (1.38) make sense
for a.e. t ∈ (0, T ). By (1.37), v̈(t) ∈ H−1

D (Ω0) for a.e. t, therefore it is in duality with ψ ∈ H1
D(Ω0). In

view of (1.34) and (1.36), for every t ∈ (0, T ) we have that v̇(t) and ∇v(t) belong to L2(Ω) and L2(Ω; Rd),
respectively. Thus, to ensure that the scalar products in the left-hand side of (1.38) are well defined, we need
to show that the coefficients B, a, b, and div b are essentially bounded in space for almost every time.

In view of (H7), (H11), (H12), and (1.3), it is easy to check that the tensor fields DΨ(t,Φ(t, ·)) and
A(t,Φ(t, ·)), the vector field Ψ̇(t,Φ(t, ·)), and the function div(Ψ̇(t,Φ(t, ·))) are Lipschitz continuous from
[0, T ] to L∞(Ω; Rd×dsym), L∞(Ω; Rd), and L∞(Ω), respectively. In particular, we deduce that the coefficients B
and b introduced in (1.29) and (1.31) satisfy

B ∈ Lip([0, T ];L∞(Ω; Rd×dsym)) , b ∈ Lip([0, T ];L∞(Ω; Rd)) , div b ∈ Lip([0, T ];L∞(Ω)) . (1.39)

As for the coefficient a defined in (1.30), we split it into the sum a = a1 + a2, with

a1(t, y) := −[BT (t, y)∇(detDΦ(t, y)) + b(t, y)∂t(detDΦ(t, y))] detDΨ(t,Φ(t, y)) , (1.40)

a2(t, y) := −ḃ(t, y) . (1.41)

In view of the discussion above, we infer that a1 ∈ Lip([0, T ];L∞(Ω; Rd)), while a2, being the distributional
derivative of a function in Lip([0, T ];L∞(Ω; Rd)), is an element of L∞((0, T );L2(Ω; Rd)), moreover there
exists C > 0 such that ‖a2(t, ·)‖L∞(Ω) ≤ C for a.e. t ∈ (0, T ).

Eventually, since by assumption f ∈ L2((0, T );L2(Ω)), also g defined in (1.32) is an element of
L2((0, T );L2(Ω)) and the right-hand side of (1.38) makes sense for a.e. t ∈ (0, T ).

The relation between problems (1.6)-(1.9) and (1.25)-(1.28) is given by the following theorem.

Theorem 1.7. Under the assumptions of Definition 1.5, a function u is a weak solution of problem (1.6)-(1.9)
if and only if the corresponding function v introduced in (1.24) is a weak solution of problem (1.25)-(1.28).

Before proving the theorem, in the following lemmas we investigate the regularity properties of the functions
u and v.

Lemma 1.8. Suppose that u and v are related by (1.24) and that u satisfies (1.14)-(1.19). Then v satisfies
(1.34)-(1.37).

Proof. For brevity, throughout the proof, C will denote a positive constant independent of time, whose value
may vary from line to line. The proof is divided into several steps.

Step 1. v satisfies (1.35). By (1.15) we have that for every t ∈ [0, T ] the function u(t, ·) belongs to H1(Ωt).
Moreover, by (H7)-(H9), Φ(t, ·) is a bi-Lipschitz diffeomorphism from Ω0 into Ωt. Therefore the composition
v(t, ·) = u(t,Φ(t, ·)) belongs to H1(Ω0). Eventually, since Φ(t, ·) restricted to the boundary ∂Ω is the identity,
we get v(t, ·)− w(t, ·) = u(t, ·)− w(t, ·) = 0 Hn−1-a.e. on ∂DΩ, concluding the proof of (1.35).

Step 2. v satisfies (1.36). In view of the previous step, v(t, ·) ∈ H1(Ω0) for every t ∈ [0, T ] and, by the
chain rule in Sobolev spaces, we have ∇v(t, ·) = DΦ(t, ·)T∇u(t,Φ(t, ·)) ∈ L2(Ω0; Rd). By applying Lemma
4.4 with f = ∇̂u(t, ·) and Λ = Φ, we infer that t 7→ ∇v(t, ·) is continuous from [0, T ] to L2(Ω0; Rd).

Step 3. v is Lipschitz from [0, T ] to L2(Ω0). Let 0 ≤ s ≤ t ≤ T be fixed. By the triangle inequality, we
may write

‖v(t, ·)− v(s, ·)‖L2(Ω0) ≤ ‖u(t,Φ(t, ·))− u(s,Φ(t, ·))‖L2(Ω0) + ‖u(s,Φ(t, ·))− u(s,Φ(s, ·))‖L2(Ω0) . (1.42)

Exploiting the change of variables x = Φ(t, y), the first difference in the right-hand side can be estimated as
follows:

‖u(t,Φ(t, ·))− u(s,Φ(t, ·))‖L2(Ω0) ≤ sup
τ∈[0,T ]

‖ detDΨ(τ, ·)‖1/2L∞(Ω)‖u(t, ·)− u(s, ·)‖L2(Ω) ≤ C|t− s| , (1.43)

where the last inequality follows from the C1 regularity of Ψ and from assumption (1.14) on u. By applying
Lemma 4.5 with f = u(s, ·) and Λ = Φ, and exploiting the continuity (1.16) of ∇̂u, we obtain

‖u(s,Φ(t, ·))− u(s,Φ(s, ·))‖L2(Ω0) ≤ C max
τ∈[0,T ]

‖∇̂u(τ, ·)‖L2(Ω)|t− s| ≤ C|t− s| . (1.44)

Finally, by combining (1.42)-(1.44), we conclude that v ∈ Lip([0, T ];L2(Ω0)).
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Step 4. v satisfies (1.34). Since v is Lipschitz continuous, it can be reconstructed by integrating its time
derivative, which exists almost everywhere. Therefore, to prove C1 regularity, it is enough to show that the
right derivative exists everywhere and is continuous. We claim that for every t ∈ [0, T ]

1
h

[v(t+ h, ·)− v(t, ·)]→ u̇(t,Φ(t, ·)) + ∇̂u(t,Φ(t, ·)) · Φ̇(t, ·) strongly in L2(Ω0) as h→ 0+ , (1.45)

and that the function
t 7→ u̇(t,Φ(t, ·)) + ∇̂u(t,Φ(t, ·)) · Φ̇(t, ·) (1.46)

is continuous from [0, T ] to L2(Ω0).
We start by showing (1.45). Fix t ∈ [0, T ]. By (1.24), we can write

1
h

[v(t+ h, ·)− v(t, ·)] =
1
h

[u(t+ h,Φ(t+ h, ·))− u(t,Φ(t+ h, ·))] +
1
h

[u(t,Φ(t+ h, ·))− u(t,Φ(t, ·))] . (1.47)

By (1.14) we have that (u(t+h, ·)−u(t, ·))/h→ u̇(t, ·) strongly in L2(Ω). By a change of variables, it is easy
to see that

1
h

[u(t+ h,Φ(t+ h, ·))− u(t,Φ(t+ h, ·))]− u̇(t,Φ(t+ h, ·))→ 0 strongly in L2(Ω0) as h→ 0+ ,

moreover, by applying Lemma 4.3 with f = u̇(t, ·) and Λ = Φ, we obtain u̇(t,Φ(t + h, ·)) − u̇(t,Φ(t, ·)) → 0
strongly in L2(Ω0), hence

1
h

[u(t+ h,Φ(t+ h, ·))− u(t,Φ(t+ h, ·))]→ u̇(t,Φ(t, ·)) strongly in L2(Ω0) as h→ 0+ . (1.48)

On the other hand, by Lemma 4.6 with f = u(t, ·) and Λ = Φ, we infer that

1
h

[u(t,Φ(t+ h, ·))− u(t,Φ(t, ·))]→ ∇̂u(t,Φ(t, ·)) · Φ̇(t, ·) strongly in L2(Ω0) as h→ 0+ . (1.49)

By combining (1.47) with (1.48) and (1.49) we get (1.45). Finally, Lemma 4.4 gives the desired continuity of
the function (1.46). Thus we conclude that v satisfies (1.34) and that its time derivative is given by

v̇(t, ·) = u̇(t,Φ(t, ·)) + ∇̂u(t,Φ(t, ·)) · Φ̇(t, ·) . (1.50)

Step 5. v̇ ∈ AC([0, T ];H−1
D (Ω0)). By (1.19) it is enough to prove that there exists a constant C > 0 such

that

‖v̇(s, ·)− v̇(t, ·)‖H−1
D (Ω0) ≤ C

∫ t

s

(‖ü(τ, ·)‖H−1
D (Ωτ ) + 1) dτ (1.51)

for every 0 ≤ s ≤ t ≤ T . Let ψ ∈ H1
D(Ω0) with ‖ψ‖H1

D(Ω0) ≤ 1. Then we have

〈v̇(s, ·)− v̇(t, ·), ψ〉L2(Ω0) = 〈u̇(s,Φ(s, ·))− u̇(t,Φ(s, ·)), ψ〉L2(Ω0) + 〈u̇(t,Φ(s, ·))− u̇(t,Φ(t, ·)), ψ〉L2(Ω0)

+ 〈∇̂u(s,Φ(s, ·)) · Φ̇(s, ·)− ∇̂u(s,Φ(t, ·)) · Φ̇(t, ·), ψ〉L2(Ω0)

+ 〈∇̂u(s,Φ(t, ·)) · Φ̇(t, ·)− ∇̂u(t,Φ(t, ·)) · Φ̇(t, ·), ψ〉L2(Ω0) . (1.52)

Using (1.21) after a change of variables we obtain

〈u̇(s,Φ(s, ·))− u̇(t,Φ(s, ·)), ψ〉L2(Ω0) ≤ C‖u̇(s, ·)− u̇(t, ·)‖H−1
D (Ωs)

‖ψ(Ψ(s, ·))‖H1
D(Ωs)

≤ C
∫ t

s

‖Psτ (ü(τ, ·))‖H−1
D (Ωs)

dτ ≤ C
∫ t

s

‖ü(τ, ·))‖H−1
D (Ωτ ) dτ . (1.53)

Exploiting assumption (1.14), the Lipschitz regularity of DΨ considered in (H11), and Lemma 4.5 with f = ψ
and Λ = Ψ, we get

〈u̇(t,Φ(s, ·))− u̇(t,Φ(t, ·)), ψ〉L2(Ω0) ≤ C‖u̇(t, ·)‖L2(Ω)‖ detDΨ(s, ·)− detDΨ(t, ·)‖L∞(Ω)

+ C‖u̇(t, ·)‖L2(Ω)‖ψ(Ψ(s, ·))− ψ(Ψ(t, ·))‖L2(Ω) ≤ C|t− s| . (1.54)

Similarly, by the Lipschitz regularity of Φ̇(t,Ψ(t, ·)) ensured by (H11) and by (1.16), we have

〈∇̂u(s,Φ(s, ·)) · Φ̇(s, ·)− ∇̂u(s,Φ(t, ·)) · Φ̇(t, ·), ψ〉L2(Ω0) ≤ C|t− s| . (1.55)
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Since s ≤ t, we have H1(Ωs) ⊂ H1(Ωt), in particular u(t, ·), u(s, ·), and ψ(Ψ(t, ·)) all belong to H1(Ωt),
therefore we have

〈∇̂u(s,Φ(t, ·))− ∇̂u(t,Φ(t, ·)), Φ̇(t, ·)ψ〉L2(Ω0) = 〈∇(u(s, ·)− u(t, ·)), Φ̇(t,Ψ(t, ·))ψ(Ψ(t, ·))〉L2(Ωt)

= −〈u(s, ·)− u(t, ·),div[Φ̇(t,Ψ(t, ·))ψ(Ψ(t, ·))]〉L2(Ωt)

≤ C‖u(s, ·)− u(t, ·)‖L2(Ω) ≤ C|t− s| , (1.56)

where we have used the equality Φ̇(t,Ψ(t, ·)) · ν = 0 on ∂Ωt (see (H8) and (1.2)) in the integration by parts,
and assumptions (1.14), (H11), and (H12) in the last inequality. By combining (1.52) with (1.53)-(1.56), by
the arbitrariness of the test function ψ, we obtain (1.51).

�

Lemma 1.9. Under the assumptions of Lemma 1.8, for a.e. t ∈ (0, T ) we have

〈v̈(t, ·), ψ〉H1
D(Ω0) = 〈ü(t, ·), ψ(Ψ(t, ·)) detDΨ(t, ·)〉H1

D(Ωt)

+ 〈u̇(t, ·), ∂t[ψ(Ψ(t, ·)) detDΨ(t, ·)]− div[ψ(Ψ(t, ·))Φ̇(t,Ψ(t, ·)) detDΨ(t, ·)]〉L2(Ω)

+ 〈∇̂u(t, ·), ∂t[ψ(Ψ(t, ·))Φ̇(t,Ψ(t, ·)) detDΨ(t, ·)]〉L2(Ω) (1.57)

for every ψ ∈ H1
D(Ω0).

Remark 1.10. Notice that by Lemma 4.5 with f=ψ and Λ=Ψ, we deduce that ψ(Ψ(t, ·))∈Lip([0, T ];L2(Ω));
moreover, by (H11), we have Φ̇(t,Ψ(t, ·))∈Lip([0, T ];L∞(Ω; Rd)) and detDΨ∈Lip([0, T ];L∞(Ω)). Therefore
the products ψ(Ψ(t, ·)) detDΨ(t, ·) and ψ(Ψ(t, ·))Φ̇(t,Ψ(t, ·)) detDΨ(t, ·) are elements of Lip([0, T ];L2(Ω))
and Lip([0, T ];L2(Ω; Rd)), respectively, and their distributional time derivatives belong to L∞((0, T );L2(Ω))
and L∞((0, T );L2(Ω; Rd)), respectively.

Proof of Lemma 1.9. In view of Lemma 1.8, the function v satisfies (1.34)-(1.37). By the absolute con-
tinuity (1.37) of v̇, we infer that its distributional derivative v̈ from (0, T ) to H−1

D (Ω0) is an element of
L1(0, T ;H−1

D (Ω0)); moreover, for a.e. t ∈ (0, T ), the action of v̈(t) against any test function ψ ∈ H1
D(Ω0) can

be deduced by the identity

〈v̈(t, ·), ψ〉H1
D(Ω0) = lim

h→0−

1
h
〈v̇(t+ h, ·)− v̇(t, ·), ψ〉L2(Ω) . (1.58)

Let h < 0. Exploiting (1.50) we can write

v̇(t+ h, ·)− v̇(t, ·) = [u̇(t+ h,Φ(t, ·))− u̇(t,Φ(t, ·))] + [u̇(t+ h,Φ(t+ h, ·))− u̇(t+ h,Φ(t, ·))]

+ [∇̂u(t+ h,Φ(t+ h, ·)) · Φ̇(t+ h, ·)− ∇̂u(t+ h,Φ(t, ·)) · Φ̇(t, ·)]

+ [∇̂u(t+ h,Φ(t, ·)) · Φ̇(t, ·)− ∇̂u(t,Φ(t, ·)) · Φ̇(t, ·)] . (1.59)

In view of Lemma 1.2, for a.e. t ∈ (0, T ) we get
1
h
〈u̇(t+ h,Φ(t, ·))− u̇(t,Φ(t, ·)), ψ〉L2(Ω) =

1
h
〈u̇(t+ h, ·)− u̇(t, ·), ψ(Ψ(t, ·)) detDΨ(t, ·)〉L2(Ω)

→ 〈ü(t, ·), ψ(Ψ(t, ·)) detDΨ(t, ·)〉H1
D(Ωt) as h→ 0− , (1.60)

since ψ(Ψ(t, ·)) detDΨ(t, ·) is an element of H1
D(Ωt). By assumption (1.14) and Remark 1.10, we infer that

1
h
〈u̇(t+ h,Φ(t+ h, ·))− u̇(t+ h,Φ(t, ·)), ψ〉L2(Ω)

=
1
h
〈u̇(t+ h, ·), ψ(Ψ(t+ h, ·)) detDΨ(t+ h, ·)− ψ(Ψ(t, ·)) detDΨ(t, ·)〉L2(Ω)

→ 〈u̇(t, ·), ∂t[ψ(Ψ(t, ·)) detDΨ(t, ·)]〉L2(Ω) as h→ 0− . (1.61)

Similarly, again by Remark 1.10 and by (1.16), we obtain
1
h
〈∇̂u(t+ h,Φ(t+ h, ·)) · Φ̇(t+ h, ·)− ∇̂u(t+ h,Φ(t, ·)) · Φ̇(t, ·), ψ〉L2(Ω)

=
1
h
〈∇̂u(t+ h, ·), Φ̇(t+ h,Ψ(t+ h, ·))ψ(Ψ(t+ h, ·)) detDΨ(t+ h, ·)− Φ̇(t,Ψ(t, ·))ψ(Ψ(t, ·)) detDΨ(t, ·)〉L2(Ω)
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→ 〈∇̂u(t, ·), ∂t[ψ(Ψ(t, ·))Φ̇(t,Ψ(t, ·)) detDΨ(t, ·)]〉L2(Ω) as h→ 0− . (1.62)

To treat the last term in (1.59) we need to perform an integration by parts: if h < 0 the functions u(t+h, ·),
u(t, ·), and ψ(Ψ(t, ·)) all belong to H1(Ωt), therefore we have

1
h
〈∇̂u(t+ h,Φ(t, ·)) · Φ̇(t, ·)− ∇̂u(t,Φ(t, ·)) · Φ̇(t, ·), ψ〉L2(Ω)

=
1
h
〈∇̂u(t+ h, ·)− ∇̂u(t, ), ψ(Ψ(t, ·))Φ̇(t,Ψ(t, ·)) detDΨ(t, ·)〉L2(Ωt)

→ 〈u̇(t, ·),−div[ψ(Ψ(t, ·))Φ̇(t,Ψ(t, ·)) detDΨ(t, ·)]〉L2(Ω) as h→ 0− , (1.63)

where, in the integration by parts, we have used the equality Φ̇(t,Ψ(t, ·)) · ν = 0 on ∂Ωt (see (H8) and (1.2)).
By comparing the limits found in (1.60)-(1.63) with (1.59) and (1.58), we conclude that the distributional
derivative v̈ is characterized by (1.57). �

Conversely, the regularity of u can be deduced by the regularity of v, as we state in the two following
lemmas. Both results can be readily obtained by following the same procedure adopted in the proof of
Lemmas 1.8 and 1.9, exchanging the role of u and v. Therefore we omit the proofs.

Lemma 1.11. Suppose that u and v are related by (1.24) and that v satisfies (1.34)-(1.37). Then u satisfies
(1.14)-(1.19).

Lemma 1.12. Under the assumptions of Lemma 1.11, for a.e. t ∈ (0, T ) we have

〈ü(t, ·), ϕ〉H1
D(Ωt) = 〈v̈(t, ·), ϕ(Φ(t, ·)) detDΦ(t, ·)〉H1

D(Ω0)

+ 〈v̇(t, ·), ∂t[ϕ(Φ(t, ·)) detDΦ(t, ·)]− div[ϕ(Φ(t, ·))Ψ̇(t,Φ(t, ·)) detDΦ(t, ·)]〉L2(Ω)

+ 〈∇̂v(t, ·), ∂t[ϕ(Φ(t, ·))Ψ̇(t,Φ(t, ·)) detDΦ(t, ·)]〉L2(Ω)

for every ϕ ∈ H1
D(Ωt).

We are now in a position to prove Theorem 1.7.

Proof of Theorem 1.7. First, we assume that u is a weak solution of problem (1.6)-(1.9). In view of Lemma
1.8 the function v satisfies (1.34)-(1.37). Let ψ ∈ H1

D(Ω0) be an arbitrary test function. For every t ∈ [0, T ]
the function ψ(Ψ(t, ·)) detDΨ(t, ·) belongs to H1

D(Ωt), thus, by (1.23), we have

〈ü(t, ·), ψ(Ψ(t, ·)) detDΨ(t, ·)〉H1
D(Ωt) =− 〈A(t, ·)∇̂u(t, ·),∇[ψ(Ψ(t, ·)) detDΨ(t, ·)]〉L2(Ω)

+ 〈f(t, ·), ψ(Ψ(t, ·)) detDΨ(t, ·)〉L2(Ω) .

Inserting this expression into (1.57), we get

〈v̈(t, ·), ψ〉H1
D(Ω0) = −〈A(t, ·)∇̂u(t, ·),∇[ψ(Ψ(t, ·)) detDΨ(t, ·)]〉L2(Ω)

+ 〈∇̂u(t, ·), ∂t[ψ(Ψ(t, ·))Φ̇(t,Ψ(t, ·)) detDΨ(t, ·)]〉L2(Ω)

+ 〈u̇(t, ·), ∂t[ψ(Ψ(t, ·)) detDΨ(t, ·)]− div[ψ(Ψ(t, ·))Φ̇(t,Ψ(t, ·)) detDΨ(t, ·)]〉L2(Ω)

+ 〈f(t, ·), ψ(Ψ(t, ·)) detDΨ(t, ·)〉L2(Ω) . (1.64)

In view of the relation (1.24) and formula (1.50), we can write ∇u and u̇ in terms of v as follows:

∇̂u(t, ·) = DΨT (t, ·)∇̂v(t,Ψ(t, ·)) , u̇(t, ·) = v̇(t,Ψ(t, ·)) + ∇̂v(t,Ψ(t, ·)) · Ψ̇(t, ·) . (1.65)

Inserting the expressions (1.65) into (1.64), we obtain that v satisfies (1.38). The initial conditions (1.26)
follow from the regularity property (1.34) of v and the initial conditions (1.7) satisfied by u. Finally, the
Neumann boundary condition (1.28) for v is readily verified: for every t ∈ (0, T ) and Hd−1-a.e. y ∈ Γ0 ∪∂NΩ
we have

B(t, y)∇v(t, y) · ν(y) = [A(t,Φ(t, y))∇u(t,Φ(t, y))] · [DΨT (t,Φ(t, y))ν(y)]

− [Ψ̇(t,Φ(t, y)) · ∇v(t, y)] [Ψ̇(t,Φ(t, y)) · ν(y)] .

Both terms in the last expression are zero for a.e. t and y: the first one vanishes thanks to the Neumann
boundary condition (1.9) satisfied by u, combined with the relation (1.1) between ν(y) and ν(t,Φ(t, y));
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while the second term vanishes on Γ0 in view of (1.2), and on ∂NΩ in view of (H8). In an analogous way, by
applying Lemmas 1.11 and 1.12, it is easy to show that if v is a weak solution of problem (1.25)-(1.28) then
u is a weak solution of problem (1.6)-(1.9). �

Remark 1.13. Notice that for weak solutions u of (1.6)-(1.9) the integrability condition (1.19) can be
improved. Indeed, by (1.23), by the continuity (1.16) of ∇̂u, and by the Lipschitz regularity of A, we infer
that for a.e. t ∈ (0, T )

‖ü(t)‖H−1
D (Ωt)

≤ C + ‖f(t)‖L2(Ω) (1.66)

for some constant C > 0 independent of t. Therefore, since f ∈ L2((0, T );L2(Ω)), the function t 7→
‖ü(t)‖H−1

D (Ωt)
belongs to L2(0, T ). If in addition f ∈ Lp((0, T );L2(Ω)) with p ∈ (2,+∞], then the func-

tion t 7→ ‖ü(t)‖H−1
D (Ωt)

belongs to Lp(0, T ). The same holds true for a weak solution v of (1.25)-(1.28):
indeed, taking in (1.38) an arbitrary test function ψ ∈ H1

D(Ω0) with norm 1, we obtain that if the source
term f belongs to Lp((0, T );L2(Ω)) then v̈ ∈ Lp((0, T );H−1

D (Ω0)). Here, in order to derive an estimate like
(1.66) for ‖v̈(t)‖H−1

D (Ω0), we exploit the continuity properties (1.34) and (1.36) of v̇ and ∇v, respectively, and
the regularity of the coefficients (1.29)-(1.32) discussed in Remark 1.6.

We conclude the section by presenting a possible construction of the diffeomorphisms Φ and Ψ in dimension
d = 2.

Example 1.14. Let d = 2 and assume that Γ is a C2,1 simple curve in the planar domain Ω. More
precisely, we assume that Γ is injectively parametrized by arc-length through a function γ : [0, `]→ R2, such
that γ(0), γ(`) ∈ ∂Ω, and γ(s) ∈ Ω for every s ∈ (0, `). We assume that Γ0 = γ([0, s0]) with s0 ∈ (0, `),
and that Γt = γ([0, s(t)]), where s(·) is a nondecreasing function of class C1,1([0, T ]), with s(0) = s0 and
s(T ) =: sT < `.

We claim that there exist Φ̂, Ψ̂ : [s0, sT ]× Ω→ Ω with the following properties, for i, j = 1, 2:

(i) Φ̂ and Ψ̂ are of class C1 on [s0, sT ] × Ω and the partial derivatives ∂i∂jΦ̂, ∂i∂jΨ̂, ∂i∂sΦ̂ = ∂s∂iΦ̂,
∂i∂sΨ̂ = ∂s∂iΨ̂ exist and are continuous;

(ii) for every s ∈ [s0, sT ] there hold Φ̂(s,Ω) = Ω, Φ̂(s,Γ) = Γ, Φ̂(s,Γ0) = γ([0, s]), and Φ̂(s, ·) = id in a
neighborhood of ∂Ω;

(iii) Φ̂(s0, ·) = id in Ω;
(iv) for every s ∈ [s0, sT ], Ψ̂(s, ·) is the inverse of Φ̂(s, ·) on Ω;
(v) ∂sΦ̂, ∂sΨ̂, ∂iΦ̂, ∂iΨ̂, ∂i∂jΦ̂, ∂i∂jΨ̂, ∂i∂sΦ̂, ∂i∂sΨ̂ belong to Lip([s0, sT ];C0(Ω; R2));

(vi) there exists L > 0 such that |∂i∂sΦ̂(s, x)− ∂i∂sΦ̂(s, y)| ≤ L|x− y| and |∂i∂sΨ̂(s, x)− ∂i∂sΨ̂(s, y)| ≤
L|x− y| for every s ∈ [s0, sT ] and every x, y ∈ Ω.

Once proved the claim it is easy to see that the composite functions

Φ(t, y) := Φ̂(s(t), y) and Ψ(t, y) := Ψ̂(s(t), y) (1.67)

satisfy (H7)-(H12).
We conclude by constructing Φ̂. First we consider the case of a crack growing on a straight segment:

more precisely, we assume that Γ∩Ω = (0, `)×{0} and that Ω contains a rectangular neighborhood R of the
segment (s0, sT )×{0} of the form R := (s1, s2)×(−ρ0, ρ0), for some 0≤s1<s0<sT<s2≤` and 0 < ρ0 < 1. For
ε > 0 small enough, we can construct a C∞ function λ : [s0, sT ] × [s1, s2] → [s1, s2] satisfying the following
properties:

(vii) λ(s0, z) = z for every z ∈ [s1, s2];
(viii) λ(s, z) = z for every s ∈ [s0, sT ] and z ∈ [s1, s1 + ε] ∪ [s2 − ε, s2];

(ix) λ(s, s0) = s for every s ∈ [s0, sT ];
(x) |∂sλ| ≤ 1 + ε and ∂zλ ≥ ε.

Let θ : [−ρ0, ρ0] → [0, 1] be a cut-off function which vanishes in a neighborhood of {±ρ0} and is identically
1 in a neighborhood of {0}. Finally, let F : [s0, sT ] × R → R be defined as F (s, y) := ((1 − θ(y2))y1 +
θ(y2)λ(s, y1), y2), where y1 and y2 are the coordinates of y, and let Φ̂(s, y) = F (s, y) if y ∈ R while Φ̂(s, y) = y

if y ∈ Ω \R. It is easy to verify that Φ̂, and its inverse Ψ̂, satisfy (i)-(vi).
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Let us now consider the general case. We can construct a C∞ function η : [s1, s2] → R2 such that
η(s) /∈ Tγ(s)Γ for every s ∈ [s1, s2], and we define Λ(s, ρ) := γ(s) + ρη(s), for s ∈ [s1, s2] and ρ ∈ R. It is easy
to see that the restriction of Λ to the rectangle R = (s1, s2) × (−ρ0, ρ0) defines a C2,1 diffeomorphism of R
into an open neighborhood U of γ((s0, sT )), provided that ρ0 ∈ (0, 1) is chosen small enough.

Eventually, if Λ−1 is the inverse of the restriction of Λ to R, for every s ∈ [s0, sT ] we take Φ̂(s, ·) :=
Λ◦F (s, ·)◦Λ−1 in U , and we set Φ̂(s, y) = y for y ∈ Ω\U . It is easy to see that this function, and its inverse
Ψ̂, satisfy (i)-(vi).

2. Existence and uniqueness results

In this section we prove existence and uniqueness of weak solutions, both for problem (1.6)-(1.9) and
for problem (1.25)-(1.28), under an additional assumption on the velocity Φ̇ of the diffeomorphism. More
precisely, we require that there exists a constant δ > 0 such that

(Φ̇(t, y) · ξ)2 + δ|ξ|2 ≤ (A(t,Φ(t, y))ξ) · ξ for every t ∈ [0, T ] , y ∈ Ω , and ξ ∈ Rd . (2.1)

Condition (2.1) ensures that problem (1.25) is still hyperbolic: recalling the definition (1.29) of B and
exploiting (1.4), we infer that there exists a constant cB > 0 such that

(B(t, y)ξ) · ξ ≥ cB |ξ|2 for every t ∈ [0, T ] , y ∈ Ω , and ξ ∈ Rd . (2.2)

Note that (2.1) is satisfied if

|Φ̇(t, y)|2 ≤ cA − δ for every t ∈ [0, T ] and every y ∈ Ω , (2.3)

where cA is the constant which appears in (1.4).
In dimension 2, an example of diffeomorphisms Φ and Ψ satisfying (H7)-(H12) and (2.3) can be easily

obtained as follows.

Example 2.1. Let Γ, Ω, γ, s, ρ0, λ, η, Λ, U , and Φ̂ be defined as in Example 1.14. We claim that the
composite function Φ(s, y) := Φ̂(s(t), y) introduced in (1.67) satisfies condition (2.3) provided that

|ṡ(t)|2 ≤ cA − 2δ , (2.4)

that the constant ε > 0 appearing in (vii)-(x) is sufficiently small, and that |η(s)| + |η′(s)| ≤ ε for every s.
Let us prove the claim. Exploiting condition (x) and the bound for η and η′, it is easy to show that, if ε is
small enough,

|∂sΦ̂(s, y)|2 ≤ 1 + δ/(cA − 2δ) (2.5)
for every s ∈ [s0, sT ] and every y ∈ Ω. Condition (2.3) follows by combining (1.67), (2.4), and (2.5).

In the previous section we have already shown that problems (1.6)-(1.9) and (1.25)-(1.28) are equivalent.
Here we give the complete proof of the following result.

Theorem 2.2. Let be given A, f, u0, u1 as in (1.3) and (1.5), and assume the existence of w satisfying
(1.10)-(1.13). Let B, a, b, g, v0, v1 be defined according to (1.29)-(1.33). Then problem (1.25)-(1.28) admits a
unique weak solution v.

In view of Theorem 1.7, we readily obtain from Theorem 2.2 the following result.

Corollary 2.3. Let be given A, f, u0, u1 as in (1.3) and (1.5), and assume the existence of w satisfying
(1.10)-(1.13). Then problem (1.6)-(1.9) admits a unique weak solution u.

First, in Theorems 2.6 and 2.10, we obtain existence and uniqueness of solutions to (1.38) in the larger
class of functions v ∈ L2((0, T );H1(Ω0)) such that v̇ ∈ L2((0, T );L2(Ω0)) and v̈ ∈ L2((0, T );H−1

D (Ω0)), which
is the standard space for the study of hyperbolic equations on (0, T ) × Ω0. Eventually, in Proposition 2.11,
we provide an energy equality, which ensures that the solution we have found is a weak solution of problem
(1.25)-(1.28), namely it satisfies the regularity conditions (1.34)-(1.37). The energy equality will give also the
continuous dependence on the data, which will be explored in the next section.

In order to prove the existence result, it is convenient to consider the function

z(t, y) := w(t,Φ(t, y)) , (2.6)
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where w is a function satisfying (1.10)-(1.13). The properties of z are summarized in the following lemma,
whose proof is postponed to the Appendix.

Lemma 2.4. Assume that w satisfies (1.10)-(1.13). Then the function z defined by (2.6) satisfies

z ∈ L2((0, T );H2(Ω0)) ∩H1((0, T );H1(Ω0)) ∩H2((0, T );L2(Ω0)) , (2.7)
z(t) = wD(t) on ∂DΩ for a.e. t ∈ (0, T ) , (2.8)
(B(t)∇z(t)) · ν = 0 on Γ0 ∪ ∂NΩ for a.e. t ∈ (0, T ) , (2.9)
z(0) = v0 on ∂DΩ , (2.10)

where the last three equalities are satisfied in the sense of traces.

In the following definition we introduce a notion of solution of (1.25), which is weaker that the one
considered in Definition 1.5, and is useful to obtain the existence and uniqueness results.

Definition 2.5. Let A, f , u0, u1, and w be as in (1.3), (1.5), and (1.10)-(1.13), and let B, a, b, g, v0, v1, and
z be defined according to (1.29)-(1.33) and (2.6). We say that v is a generalized solution of (1.25) with initial
data (1.26) and boundary conditions (1.27) and (1.28) if v ∈ L∞((0, T );H1(Ω0)), v−z ∈ L∞((0, T );H1

D(Ω0)),
v̇ ∈ L∞((0, T );L2(Ω0)), v̈ ∈ L2((0, T );H−1

D (Ω0)), and

〈v̈(t), ψ〉H1
D(Ω0) + 〈B(t)∇v(t),∇ψ〉L2(Ω0) + 〈a(t) · ∇v(t), ψ〉L2(Ω0) + 2〈v̇(t),div(b(t)ψ)〉L2(Ω0)

= 〈g(t), ψ〉L2(Ω0) , (2.11)

for a.e. t ∈ (0, T ) and every ψ ∈ H1
D(Ω0).

We are now in a position to state the first existence result.

Theorem 2.6 (Existence). Under the assumptions of Definition 2.5, there exists a generalized solution of
(1.25), satisfying the initial conditions (1.26) and the boundary conditions (1.27) and (1.28).

Remark 2.7. Let us clarify the meaning of the initial conditions (1.26) for generalized solutions. To this
aim, given a reflexive Banach space X we introduce the space of weakly continuous functions

Cw([0, T ];X) := {η : [0, T ]→ X : ∀x∗∈ X∗ the function t 7→ 〈x∗, η(t)〉X is continuous} .

If Y is another Banach space such that X ↪→ Y with continuous injection, then (see, e.g., [6, Chapitre XVIII,
§5, Lemme 6])

Cw([0, T ];Y ) ∩ L∞((0, T );X) ⊂ Cw([0, T ];X) .

In particular, when z = 0, by taking X = H1
D(Ω0) and Y = L2(Ω0), we may apply this property to a general-

ized solution v: since v ∈ C0([0, T ];L2(Ω0))∩L∞((0, T );H1
D(Ω0)), then it also belongs to Cw([0, T ];H1

D(Ω0)).
Therefore v(0) is an element of H1

D(Ω0). Similarly, taking now X = L2(Ω0) and Y = H−1
D (Ω0), we have that

the derivative v̇ ∈ C0([0, T ];H−1
D (Ω0)) ∩ L∞((0, T );L2(Ω0)) also belongs to Cw([0, T ];L2(Ω0)). Therefore

v̇(0) is an element of L2(Ω0). We deduce that the initial conditions (1.26) make sense if v0 ∈ H1
D(Ω0) and

v1 ∈ L2(Ω0). In general, when z 6= 0, the previous argument applies to the difference v − z. Thus, since
by (2.7) z ∈ C0([0, T ];H1(Ω0)) ∩ C1([0, T ];L2(Ω0), we conclude that also the initial position and velocity of
v = (v − z) + z are well defined in H1

D(Ω0) + z(0) and L2(Ω0), respectively.

Remark 2.8. Note that equality (2.11) can be recast in the framework of the duality between
L2((0, T );H−1

D (Ω0)) and L2((0, T );H1
D(Ω0)): indeed, by the density in L2((0, T );H1

D(Ω0)) of the vector
space generated by D(0, T )⊗H1

D(Ω0), it is easy to see that (2.11) is equivalent to∫ T

0

[
〈v̈(t), ξ(t)〉H1

D(Ω0) + 〈B(t)∇v(t),∇ξ(t)〉L2(Ω0) + 〈a(t) · ∇v(t), ξ(t)〉L2(Ω0)

]
dt

+
∫ T

0

2〈v̇(t),div(b(t)ξ(t))〉L2(Ω0) dt =
∫ T

0

〈g(t), ξ(t)〉L2(Ω0) dt

for every ξ ∈ L2((0, T );H1
D(Ω0)).
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Proof of Theorem 2.6. Without loss of generality, we may restrict ourselves to the case of homogeneous
Dirichlet-Neumann boundary conditions: indeed, if v satisfies the statement, in view of the properties (2.7)-
(2.10) of z, we infer that the difference v − z is a generalized solution of (1.25) with initial conditions
v̂0 := v0 − z(0) ∈ H1

D(Ω0) and v̂1 := v1 − ż(0) ∈ L2(Ω0), homogeneous Dirichlet-Neumann boundary
conditions on ∂DΩ and Γ0 ∪ ∂NΩ, respectively, and source term ĝ := g − h, where

h := z̈ − div(B∇z) + a · ∇z − 2b · ∇ż ∈ L2((0, T );L2(Ω0)) . (2.12)

Therefore, from now on we assume that z = 0.
The proof is based on a perturbation argument. Following the procedure adopted in [6, Chapitre XVIII,

§5], in Step 1 we study equation (2.11) with the additional terms

ε〈v̇(t), ψ〉L2(Ω0) + ε〈∇v̇(t),∇ψ〉L2(Ω0) , ε > 0 .

Then, in Step 2, we let the viscosity parameter ε tend to zero.
Step 1. The perturbed problem. Let ε > 0 be fixed. We want to show that there exists a solution

vε ∈ H1((0, T );H1
D(Ω0)), with v̈ε ∈ L2((0, T );H−1

D (Ω0)), of the equation

〈v̈ε(t), ψ〉H1
D(Ω0) + 〈B(t)∇vε(t),∇ψ〉L2(Ω0) + 〈a(t) · ∇vε(t), ψ〉L2(Ω0) − 2〈b(t) · ∇v̇ε(t), ψ〉L2(Ω0)

+ ε〈v̇ε(t), ψ〉L2(Ω0) + ε〈∇v̇ε(t),∇ψ〉L2(Ω0) = 〈g(t), ψ〉L2(Ω0) , (2.13)

for a.e. t ∈ (0, T ) and every ψ ∈ H1
D(Ω0). In order to study (2.13) we shall use a theorem, proved in

[6], which is stated under the assumption that the coefficients are more regular with respect to time. To
this aim, we regularize our coefficients by using a sequence of mollifiers ρn ∈ C∞c (R) satisfying ρn ≥ 0,
spt ρn ⊂ [−1/n, 1/n],

∫
ρn = 1, and we introduce three families of bilinear forms over H1

D(Ω0)×H1
D(Ω0) as

follows: for every η, ξ ∈ H1
D(Ω0) and every t ∈ [0, T ], we set

Bn(t; η, ξ) := 〈(B ∗ ρn)(t)∇η,∇ξ〉L2(Ω0) ,

An1 (t; η, ξ) := 〈(a ∗ ρn)(t) · ∇η, ξ〉L2(Ω0) ,

A2(t; η, ξ) := 〈b(t) · ∇η, ξ〉L2(Ω0) .

In order to define the convolutions, we have to extend B and a to a neighborhood of [0, T ]. The function B is
extended by setting B(t) = B(0) for t < 0 and B(t) = B(T ) for t > T . As for a, we consider the decomposition
a = a1 + a2, where a1, a2 are defined in (1.40) and (1.41); a1 is extended by setting a1(t) = a1(0) for t < 0
and a1(t) = a1(T ) for t > T , while a2 is set to be 0 outside [0, T ]. In view of (H7), (H11), (H12), and (2.2),
it is easy to show that Bn,An1 and A2 satisfy the conditions (i)-(viii) in the Appendix.

Therefore we are in a position to apply Theorem 4.1, with forcing term g, initial conditions v0 and v1,
and k := ε. For every n ∈ N let vnε ∈ H1((0, T );H1

D(Ω0)) be a solution to (4.1). Taking v̇nε as test function
in (4.1) and integrating over (0, t) we obtain∫ t

0

[
〈v̈nε (s), v̇nε (s)〉H1

D(Ω0) + 〈(B ∗ ρn)(s)∇vnε (s),∇v̇nε (s)〉L2(Ω0) + ε‖v̇nε (s)‖2H1(Ω0)

]
ds (2.14)

+
∫ t

0

[
〈(a ∗ ρn)(s) · ∇vnε (s), v̇nε (s)〉L2(Ω0) − 2〈b(s) · ∇v̇nε (s), v̇nε (s)〉L2(Ω0)

]
ds =

∫ t

0

〈g(s), v̇ε(s)〉L2(Ω0) ds .

Integrating by parts with respect to time, we may simplify the first two terms as follows:∫ t

0

〈v̈nε (s), v̇nε (s)〉H1
D(Ω0) ds =

1
2
‖v̇nε (t)‖2L2(Ω0) −

1
2
‖v1‖2L2(Ω0) , (2.15)∫ t

0

〈(B ∗ ρn)(s)∇vnε (s),∇v̇nε (s)〉L2(Ω0) ds =
1
2
〈(B ∗ ρn)(t)∇vnε (t),∇vnε (t)〉L2(Ω0)

− 1
2
〈(B ∗ ρn)(0)∇v0,∇v0〉L2(Ω0) −

1
2

∫ t

0

〈∂s(B ∗ ρn)(s)∇vε(s),∇vε(s)〉L2(Ω0) ds . (2.16)

Moreover, in view of (2.2), we infer that

1
2
〈(B ∗ ρn)(t)∇vnε (t),∇vnε (t)〉L2(Ω0) ds ≥

cB
2
‖∇vnε (t)‖2L2(Ω0) . (2.17)
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Let us now bound from above the remaining integral terms in (2.14) and (2.16): exploiting the properties
of the convolution and the regularity of the coefficients discussed in Remarks 1.6, we can easily prove that
there exists a constant C > 0 independent of n, ε, and t such that∫ t

0

〈(a ∗ ρn)(s) · ∇vnε (s), v̇nε (s)〉L2(Ω0) ds ≤ C
∫ t

0

[‖∇vnε (s)‖2L2(Ω0) + ‖v̇nε (s)‖2L2(Ω0)] ds ,∫ t

0

〈g(s), v̇nε (s)〉L2(Ω0) ds ≤ C‖f‖2L2(0,T ;L2(Ω0)) +
∫ t

0

‖v̇nε (s)‖2L2(Ω0) ds ,∫ t

0

〈∂s(B ∗ ρn)(s)∇vnε (s),∇vnε (s)〉L2(Ω0) ds ≤ C
∫ t

0

‖∇vnε (s)‖2L2(Ω0) ds .

Note that by (1.2) we have for every η ∈ H1
D(Ω0)

2〈b(s) · ∇η, η〉L2(Ω0) = 〈b(s),∇|η|2〉L1(Ω0) = −〈div b(s), |η|2〉L1(Ω0) , (2.18)

therefore there exists a constant C > 0 independent of n, ε, and t such that

−2
∫ t

0

〈b(s) · ∇v̇nε (s), v̇nε (s)〉L2(Ω0) ds ≤ C
∫ t

0

‖v̇nε (s)‖2L2(Ω0) ds . (2.19)

By combining (2.14)-(2.19), we conclude that

‖v̇nε (t)‖2L2(Ω0) + cB‖∇vnε (t)‖2L2(Ω0) + ε

∫ t

0

‖v̇nε (s)‖2H1
D(Ω0) ds

≤ C1 + C2

∫ t

0

[‖v̇nε (s)‖2L2(Ω0) + ‖∇vnε (s)‖2L2(Ω0)] ds ,

for some constants Ci > 0 independent of n, ε, and t.
Eventually, in view of the Gronwall’s Lemma, we infer that

∇vnε is bounded in L∞((0, T );L2(Ω0; Rd)) , (2.20)

v̇nε is bounded in L∞((0, T );L2(Ω0)) , (2.21)
√
εv̇nε is bounded in L2((0, T );H1

D(Ω0)) , (2.22)

uniformly with respect to n and ε. From these properties, using equation (4.1), we obtain also that

v̈nε is uniformly bounded in L2((0, T );H−1
D (Ω0)) . (2.23)

Moreover, the boundedness of v̇nε (t) in L2(Ω0) implies the boundedness of vnε (t) in L2(Ω0), indeed, it is
enough to remark that

vnε (t) = v0 +
∫ t

0

v̇nε (s) ds ⇒ ‖vnε (t)‖2L2(Ω0) ≤ 2‖v0‖2L2(Ω0) + 2t
∫ t

0

‖v̇nε (s)‖2L2(Ω0) ds . (2.24)

Therefore (2.20) and (2.21) imply that

vnε is bounded in L∞((0, T );H1
D(Ω0)) (2.25)

uniformly with respect to n and ε. By (2.22) and (2.25), for fixed ε > 0 a subsequence of vnε , not relabeled,
converges weakly in H1((0, T );H1

D(Ω0)) to some vε as n → +∞. Moreover, by (2.23), we infer that v̈nε
converges weakly in L2((0, T );H−1

D (Ω0)) to v̈ε.
Let ψ ∈ H1

D(Ω0) be a test function of the equation (2.13). We observe that as n→ +∞

(B ∗ ρn)(t)∇ψ → B(t)∇ψ strongly in L2(Ω; Rd) for every t ∈ (0, T ) , (2.26)

(a ∗ ρn)(t)ψ → a(t)ψ strongly in L2(Ω; Rd) for a.e. t ∈ (0, T ) . (2.27)

Passing to the limit as n → +∞ in the PDE solved by vnε , exploiting the strong convergences (2.26) and
(2.27), and the weak convergence of vnε , v̇nε , and v̈nε , we infer that the weak limit vε solves equation (2.13),
with initial conditions vε(0) = v0 and v̇ε(0) = v1.

Step 2. Vanishing viscosity. As already done in Step 1 for the sequence vnε , taking as test function in
(2.13) the velocity of vε itself, we derive the energy equality
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1
2
‖v̇ε(t)‖2L2(Ω0) +

1
2
〈B(t)∇vε(t),∇vε(t)〉L2(Ω0) + ε

∫ t

0

‖v̇ε(s)‖2H1
D(Ω0) ds

=
1
2
‖v1‖2L2(Ω0) +

1
2
〈B(0)∇v0,∇v0〉L2(Ω0) +

∫ t

0

[
1
2
〈Ḃ(s)∇vε(s),∇vε(s)〉L2(Ω0) − 〈a(s)∇vε(s), v̇ε(s)〉L2(Ω0)

]
ds

+
∫ t

0

[
2〈b(s) · ∇v̇ε(s), v̇ε(s)〉L2(Ω0) + 〈g(s), v̇ε(s)〉L2(Ω0)

]
ds , (2.28)

and, by the uniform ellipticity (2.2) of B, the estimate

‖v̇ε(t)‖2L2(Ω0) + ‖∇vε(t)‖2L2(Ω0) + ε

∫ t

0

‖v̇ε(s)‖2H1
D(Ω0) ds ≤ C1 + C2

∫ t

0

[‖v̇ε(s)‖2L2(Ω0) + ‖∇vε(s)‖2L2(Ω0)] ds ,

(2.29)
for some constants Ci > 0 independent of ε and t. Thus, by applying Gronwall’s Lemma, we conclude that
for every t ∈ [0, T ]

‖v̇ε(t)‖2L2(Ω0) + ‖∇vε(t)‖2L2(Ω0) ≤ C1e
C2T . (2.30)

As already done in (2.24) for vnε , we deduce from (2.30) a uniform L2 boundedness for vε(t). Therefore,
there exists a subsequence vε (not relabeled) which converges as ε → 0 to some v ∈ L2((0, T );H1

D(Ω0)) ∩
H1((0, T );L2(Ω0)), in the following weak sense:

vε → v strongly in L2((0, T );L2(Ω0)) , (2.31)

∇vε ⇀ ∇v weakly in L2((0, T );L2(Ω0; Rd)) , (2.32)

v̇ε ⇀ v̇ weakly in L2((0, T );L2(Ω0)) , (2.33)

moreover, v ∈ L∞((0, T );H1
D(Ω0)) and v̇ ∈ L∞((0, T );L2(Ω0)). Notice that a priori the weak limit v is not

unique, but might depend on the particular subsequence chosen.
Let us show that v solves equation (2.11). For every ε > 0 we take as test function in (2.13) the product

αψ, where α and ψ are arbitrary elements of C1
c ((0, T )) and H1

D(Ω0), respectively (see Remark 2.8), and we
obtain∫ T

0

[〈v̈ε(t), ψ〉H1
D(Ω0) + 〈B(t)∇vε(t),∇ψ〉L2(Ω0) + 〈a(t) · ∇vε(t), ψ〉L2(Ω0) + 2〈v̇ε(t),div(b(t)ψ)〉L2(Ω0)]α(t) dt

+ ε

∫ T

0

[
〈∇v̇ε(t),∇ψ〉L2(Ω0) + 〈v̇ε(t), ψ〉L2(Ω0)

]
α(t) dt =

∫ T

0

〈g(t), ψ〉L2(Ω0)α(t) dt . (2.34)

Let us study separately the asymptotic behavior of the terms appearing in the equality above: exploiting
(2.31)-(2.33), as ε→ 0 we have∫ T

0

〈v̈ε(t), ψ〉H1
D(Ω0)α(t) dt = −

∫ T

0

〈v̇ε(t), ψ〉L2(Ω0)α̇(t) dt→ −
∫ T

0

〈v̇(t), ψ〉L2(Ω0)α̇(t) dt ,∫ T

0

〈B(t)∇vε(t),∇ψ〉L2(Ω0)α(t) dt→
∫ T

0

〈B(t)∇v(t),∇ψ〉L2(Ω0)α(t) dt ,∫ T

0

〈a(t) · ∇vε(t), ψ〉L2(Ω0)α(t) dt→
∫ T

0

〈a(t) · ∇v(t), ψ〉L2(Ω0)α(t) dt ,∫ T

0

〈b(t) · ∇v̇ε(t), ψ〉L2(Ω0)α(t) dt = −
∫ T

0

〈v̇ε(t),div(b(t)ψ)〉L2(Ω0)α(t) dt→ −
∫ T

0

〈v̇(t),div(b(t)ψ)〉L2(Ω0)α(t) dt .

Moreover, by combining (2.29) and (2.30), we infer that also ε
∫ T

0
‖v̇ε‖2H1

D(Ω0)
dt is bounded by a constant

C > 0 independent of ε and t, therefore we get∣∣∣∣∣ε
∫ T

0

[
〈∇v̇ε(t),∇ψ〉L2(Ω0) + 〈v̇ε(t), ψ〉L2(Ω0)

]
α(t) dt

∣∣∣∣∣ ≤ √ε
∫ T

0

√
ε‖v̇ε(t)‖H1

D(Ω0)‖ψ‖H1
D(Ω0)|α(t)| dt
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≤
√
ε‖ψ‖H1

D(Ω0)‖α‖L2(0,T )

(∫ T

0

ε‖v̇ε(t)‖2H1
D(Ω0) dt

)1/2

≤
√
εC → 0 .

The last properties, together with equality (2.34), give that the distributional derivative v̈ is an element of
L2(0, T ;H−1

D (Ω0)), whose action against the test function αψ is given by∫ T

0

〈v̈(t), ψ〉H1
D(Ω0)α(t) dt =−

∫ T

0

[〈B(t)∇v(t),∇ψ〉L2(Ω0) + 2〈v̇(t),div(b(t)ψ)〉L2(Ω0)]α(t) dt

+
∫ T

0

〈[−a(t) · ∇v(t), ψ〉L2(Ω0) + 〈g(t), ψ〉L2(Ω0)]α(t) dt ,

that is, v solves (2.11) (see also Remark 2.8). The validity of the initial conditions of v is readily verified by
taking α ∈ C1([0, T ]) vanishing at T , ψ ∈ H1

D(Ω0), and passing to the limit as ε→ 0 in the products∫ T

0

〈v̇ε(t), α(t)ψ〉L2(Ω0) dt ,

∫ T

0

〈v̈ε(t), α(t)ψ〉H1
D(Ω0) dt .

This concludes the proof. �

Remark 2.9. Let v be a generalized solution of (1.25) and let vε be its viscous approximation solving (2.13).
By the weak lower semicontinuity of the norm, the estimate (2.30) passes to the limit, namely

‖v̇(t)‖2L2(Ω0) + ‖∇v(t)‖2L2(Ω0) ≤ lim inf
ε

[‖v̇ε(t)‖2L2(Ω0) + ‖∇vε(t)‖2H1
D(Ω0)] ≤ C , (2.35)

for some constant C > 0 independent of t. Let now u : QΓ → R be defined according to (1.24), i.e.,
u(t, x) := v(t,Ψ(t, x)). In view of (2.35) and formulas (1.65) it is immediate to check that for every t ∈ [0, T ]
we have

‖u̇(t)‖2L2(Ω) + ‖∇̂u(t)‖2L2(Ω) ≤ C , (2.36)

for some constant C > 0 independent of t.

The uniqueness of solutions relies on a standard technique due to Ladyzenskaya [7], which consists in
taking as test function in (2.11) the primitive of a solution.

Theorem 2.10 (Uniqueness). Under the assumptions of Definition 2.5, there is at most one generalized
solution of (1.25), satisfying the initial conditions (1.26) and the boundary conditions (1.27) and (1.28).

Proof. As already pointed out at the beginning of the proof of Theorem 2.6, we may restrict ourselves to the
case in which z = 0. Moreover, by linearity, it is enough to show that the sole generalized solution v to the
problem (1.25) with

z = g = v0 = v1 = 0

is v ≡ 0. The proof is recursive: first, we show uniqueness in a small time interval [0, t0]; the same argument
applies to [t0, 2t0] and, in a finite number of steps, to all [0, T ].

Step 1. Let s ∈ (0, T ) be fixed and let ξ ∈ L2(0, T ;H1
D(Ω0)) be defined as follows:

ξ(t) :=


−
∫ s
t
v(τ) dτ if t ∈ [0, s] ,

0 if t ∈ [s, T ] .

Note that
ξ(T ) = ξ(s) = 0 ,

moreover, ξ̇ ∈ L2(0, T ;L2(Ω0)), indeed,

ξ̇(t) =


v(t) if t ∈ [0, s) ,

0 if t ∈ (s, T ] .
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By taking ξ as test function in (2.11), we get∫ s

0

[
〈v̈(t), ξ(t)〉H1

D(Ω0) + 〈B(t)∇v(t),∇ξ(t)〉L2(Ω0)

]
dt

+
∫ s

0

[
〈a(t) · ∇v(t), ξ(t)〉L2(Ω0) + 2〈v̇(t),div(b(t)ξ(t))〉L2(Ω0)

]
dt = 0 . (2.37)

Integrating by parts with respect to time we may write∫ s

0

〈v̈, ξ〉H1
D(Ω0) dt = −

∫ s

0

〈v̇, v〉L2(Ω0) dt = −1
2
‖v(s)‖2L2(Ω0) , (2.38)

where we have used the assumption v1 = 0.
Let us rewrite the term involving B. As already noticed in (1.39), B ∈ Lip([0, T ];L∞(Ω; Rd×dsym));

furthermore, by the definition of generalized solution (recall Definition 2.5), it is easy to see that ξ ∈
Lip([0, T ];H1

D(Ω0)). Therefore the product B∇ξ belongs to Lip([0, T ];L2(Ω0)). Integrating by parts with
respect to time, we obtain∫ s

0

〈B(t)∇v(t),∇ξ(t)〉L2(Ω0) dt =
∫ s

0

〈∇ξ̇(t), B(t)∇ξ(t)〉L2(Ω0) dt

= −1
2
〈B(0)∇ξ(0),∇ξ(0)〉L2(Ω0) −

1
2

∫ s

0

〈Ḃ(t)∇ξ(t),∇ξ(t)〉L2(Ω0) dt , (2.39)

since by construction v0 = ξ(s) = 0 in H1
D(Ω0). Inserting (2.38) and (2.39) into (2.37), we get

1
2
‖v(s)‖2L2(Ω0) +

1
2
〈B(0)∇ξ(0),∇ξ(0)〉L2(Ω0)

=
∫ s

0

[
−1

2
〈Ḃ(t)∇ξ(t),∇ξ(t)〉L2(Ω0) + 〈a(t) · ∇v(t), ξ(t)〉L2(Ω0) + 2〈v̇(t),div(b(t)ξ(t))〉L2(Ω0)

]
dt . (2.40)

Let us now bound form above the scalar products in the right-hand side of (2.40). By the Lipschitz
regularity of B, there exists C > 0 such that ‖Ḃ(s, ·)‖L∞(Ω0) ≤ C for a.e. t ∈ (0, T ), in particular∫ s

0

〈Ḃ(t)∇ξ(t),∇ξ(t)〉L2(Ω0) dt ≤ C
∫ s

0

‖ξ(t)‖2H1
D(Ω0) dt . (2.41)

We split div(bξ) into the sum ξ div b+∇ξ · b. As already pointed out in (1.39) div b ∈ Lip([0, T ];L∞(Ω)),
therefore we may argue for div b as for B: integrating by parts with respect to time and exploiting the
equalities v0 = ξ(s) = 0, we obtain∫ s

0

〈v̇(t), ξ(t) div b(t)〉L2(Ω0) dt = −
∫ s

0

〈v(t), v(t) div b(t)〉L2(Ω0) dt−
∫ s

0

〈v(t), ξ(t)∂t(div b)(t)〉L2(Ω0) dt

≤ C
∫ s

0

[‖ξ(t)‖2L2(Ω0) + ‖v(t)‖2L2(Ω0)] dt , (2.42)

for some constant C > 0 independent of s. Performing first an integration by parts with respect to time
and then with respect to space, exploiting in the former the assumption v1 = ξ(s) = 0 and in the latter the
equality b · n = 0 on Γ0 ∪ ∂Ω (see (H8) and (1.2)), we infer that∫ s

0

〈v̇(t),∇ξ(t) · b(t)〉L2(Ω0) dt =
1
2

∫ s

0

[
〈div b(t), |v̇(t)|2〉L1(Ω0) − 2〈v(t),∇ξ(t) · ḃ(t)〉L2(Ω0)

]
dt

≤ C
∫ s

0

[‖v(t)‖2L2(Ω0) + ‖ξ(t)‖2H1
D(Ω0)] dt , (2.43)

for some constant C > 0 independent of s.
As already done in Remark 1.6, we split a into a = a1 +a2, with a1 and a2 defined according to (1.40) and

(1.41), respectively. We recall that a1 belongs to Lip([0, T ];L∞(Ω; Rd)), therefore ȧ1 ∈ L∞((0, T );L2(Ω))
and there exists C > 0 such that ‖ȧ1(t, ·)‖L∞(Ω) ≤ C for a.e. t ∈ (0, T ). Integrating by parts with respect to
time and exploiting the equalities a1(0) = ξ(s) = 0, we get∫ s

0

〈a1(t) · ∇v(t), ξ(t)〉L2(Ω0) dt =
∫ s

0

〈∇ξ̇(t), a1(t)ξ(t)〉L2(Ω0) dt
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= −
∫ s

0

〈∇ξ(t), ȧ1(t)ξ(t)〉L2(Ω0) dt−
∫ s

0

〈∇ξ(t), a1(t)ξ̇(t)〉L2 dt

= −
∫ s

0

〈∇ξ(t), ȧ1(t)ξ(t)〉L2(Ω0) dt−
∫ s

0

〈∇ξ(t), a1(t)v(t)〉L2(Ω0) dt

≤ C
∫ s

0

[‖ξ(t)‖2H1
D(Ω0) + ‖v(t)‖2L2(Ω0)] dt , (2.44)

for some constant C > 0 independent of s. On the other hand, performing an integration by parts with
respect to the space variable we obtain∫ s

0

〈∇v(t), a2(t)ξ(t)〉L2(Ω0) dt = −
∫ s

0

[
〈div a2(t), v(t)ξ(t)〉L2(Ω0) + 〈v(t)a2(t),∇ξ(t)〉L2(Ω0)

]
dt

≤ C
∫ s

0

[‖v(t)‖2L2(Ω0) + ‖ξ(t)‖2H1
D(Ω0)] dt , (2.45)

for some constant C > 0 independent of s. To derive (2.45) we have used the property a2(t) · ν = 0 on
Γ0 ∪ ∂Ω, which follows from the definition a2 := −ḃ and from the equality b(t) · ν ≡ 0 on Γ0 ∪ ∂Ω.

By combining (2.40) with the coercivity property (2.2) of B and the upper bounds (2.41)-(2.45), we
conclude that

‖v(s)‖2L2(Ω0) + cB‖∇ξ(0)‖2L2(Ω0) ≤ C
∫ s

0

[‖v(t)‖2L2(Ω0) + ‖ξ(t)‖2H1
D(Ω0)] dt , (2.46)

where the constant C > 0 does not depend on the parameter s chosen. Now, introducing

z(s) :=
∫ s

0

v(τ) dτ ,

we can rewrite ξ(t) = z(t)− z(s) for every t ∈ [0, s], in particular

‖∇ξ(0)‖2L2(Ω0) = ‖∇z(s)‖2L2(Ω0) ,

∫ s

0

‖ξ(t)‖2H1
D(Ω0) dt ≤ 2s‖z(s)‖2H1

D(Ω0) + 2
∫ s

0

‖z(t)‖2H1
D(Ω0) dt . (2.47)

Moreover, as already done in (2.24), by the definition of z it is easy to show that

‖z(s)‖2L2(Ω0) ≤ 2T
∫ s

0

‖ż(t)‖2L2(Ω0) dt = 2T
∫ s

0

‖v(t)‖2L2(Ω0) dt . (2.48)

Therefore, by combining (2.46) with (2.47) and (2.48), we obtain

‖v(s)‖2L2(Ω0) + (cB − 2Cs)‖z(s)‖2H1
D(Ω0) ≤ (2TCB + 2C)

∫ s

0

[‖v(t)‖2L2(Ω0) + ‖z(t)‖2H1
D(Ω0)] dt .

If s is small enough, e.g. s = t0 := cB/(4C), we can apply Gronwall’s lemma and obtain that

v ≡ 0 in [0, t0] .

Step 2. The strategy adopted in Step 1 can be repeated in some time interval [t0, t1], and in a finite number
of steps, in the whole [0, T ]. Notice that in the previous proof we have used as a key tool the fact that at
time 0 the diffeomorphism was the identity; therefore in the following step we possibly have to restate the
problem starting at the last endpoint t1, considering as initial set Ωt1 . �

In order to state the next result, we need to introduce the following energy: given η ∈ L∞((0, T );H1(Ω0))
with distributional time derivative η̇ ∈ L∞((0, T );L2(Ω0)), we set for a.e. t ∈ (0, T )

EB(η, t) :=
1
2
‖η̇(t)‖2L2(Ω0) +

1
2
〈B(t)∇η(t),∇η(t)〉L2(Ω0) , (2.49)

where B is the tensor field defined in (1.29).
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Proposition 2.11 (Energy equality). Under the assumptions of Definition 2.5, let v be the (unique) gen-
eralized solution of (1.25), satisfying the initial conditions (1.26) and the boundary conditions (1.27) and
(1.28). Then the energy EB(v, ·) is a continuous function from [0, T ] to R. Moreover, in case z = 0, it reads

EB(v, t) = EB(v, 0) +R(v, t) , (2.50)

where R is the integral remainder

R(v, t) : =
∫ t

0

[
1
2
〈Ḃ(s)∇v(s),∇v(s)〉L2(Ω0) − 〈a(s) · ∇v(s), v̇(s)〉L2(Ω0)]ds

+
∫ t

0

[
−〈div b(s), |v̇(s)|2〉L1(Ω0) + 〈g(s), v̇(s)〉L2(Ω0)

]
ds .

Note that if the solution v were smooth enough, then we could take v̇ as test function in (2.11), and (2.50)
would be straightforward. In our case, the proof is rather technical: roughly speaking, we approach v̇ with
H1
D(Ω0)-valued functions by means of a double regularization process, in the same spirit of [9, Chapter 8,

Lemma 8.3].

Proof of Proposition 2.11. The energy EB(v, t) can be written as

EB(v, t) = EB(v − z, t) + EB(z, t)− 〈v̇(t), ż(t)〉L2(Ω0) − 〈B(t)∇v(t),∇z(t)〉L2(Ω0) ,

where z is defined according to (2.6). By the strong continuity of z (see (2.7)) and the weak continuity
of v (see Remark 2.7), we infer that EB(z, t), 〈v̇(t), ż(t)〉L2(Ω0), and 〈B(t)∇v(t),∇z(t)〉L2(Ω0) are continuous
functions from [0, T ] to R. Thus, EB(v, ·) is continuous if and only if so is EB(v−z, ·). Therefore, it is enough
to prove the statement in the case of homogeneous Dirichlet boundary condition. From now on we will take
z = 0.

Let t = t0 be fixed. Let θ0 denote the characteristic function of the time interval (0, t0). We want to
approximate vθ0 : R → H1

D(Ω0) by means of a suitable sequence of functions belonging to C∞c (R;H1
D(Ω0)).

To this aim, we first need to define v for every t ∈ R: by time reflection, we construct an extension (not
relabeled) v ∈ L2(R;H1

D(Ω0)), still satisfying v̇ ∈ L2(R;L2(Ω0)) and v̈ ∈ L2(R;H−1
D (Ω0)). Similarly, we

extend also the coefficients of the PDE (2.11).
For every δ > 0, we call θδ : R→ R the function which equals 1 in [δ, t0 − δ], 0 outside [0, t0] and which is

linear in [0, δ] and [t0 − δ, t0]. As δ → 0, θδ → θ0 in L1(R). Let ρm ∈ C∞c (R) be a sequence of mollifiers. For
brevity, in the following, we will omit the indices δ and m.

In view of the definitions above, for every m and δ fixed, it holds

ρ ∗ (θv) ∈ C∞c (R;H1
D(Ω0)) ,

where the compact support is due to the presence of θ, and the regularity follows from the equality

dk

dsk
[ρ ∗ (θv)] =

(dkρ
dsk

)
∗ (θv)

and the fact that v is H1
D(Ω0)-valued. Similarly, it holds

ρ ∗ (θv̇) ∈ C∞c (R;L2(Ω0)) ,

in particular ∫
R

d

ds
‖ρ ∗ (θv̇)‖2L2(Ω0)(s) ds = 0 . (2.51)

By differentiating the integrand in (2.51) and exploiting the properties of the convolution, we get

0 =
∫

R

[
〈ρ ∗ (θ̇v̇), ρ ∗ (θv̇)〉L2(Ω0) + 〈ρ ∗ (θv̈), ρ ∗ (θv̇)〉L2(Ω0)

]
ds , (2.52)

where ρ ∗ (θv̈) stands for the difference

ρ ∗ (θv̈) := ρ̇ ∗ (θv̇)− ρ ∗ (θ̇v̇) ∈ L2(R;L2(Ω0)) .
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Let us now study separately the behavior of each term in (2.52) as δ → 0, keeping m fixed. The first term
has the following asymptotics:

lim
δ→0

∫
R
〈ρ ∗ (θ̇v̇), ρ ∗ (θv̇)〉L2(Ω0) ds = lim

δ→0

∫
R
〈ρ ∗ (θ̇v̇), ρ ∗ (θ0v̇)〉L2(Ω0) ds = lim

δ→0

∫
R
θ̇〈v̇, ρ ∗ ρ ∗ (θ0v̇)〉L2(Ω0) ds

= −〈v̇, ρ ∗ ρ ∗ (θ0v̇)〉L2(Ω0)(t0) + 〈v̇, ρ ∗ ρ ∗ (θ0v̇)〉L2(Ω0)(0) . (2.53)

Here we have split θ as (θ − θ0) + θ0 and used the properties

ρ ∗ (θ̇v̇) uniformly bounded in L1(R;L2(Ω0)) ,

ρ ∗ ((θ − θ0)v̇)→ 0 strongly in L∞(R;L2(Ω0)) ,

s 7→ 〈v̇, ρ ∗ ρ ∗ (θ0v̇)〉L2(Ω0)(s) is continuous in R ,

where the last property holds true since ρ∗ρ∗(θ0v̇) ∈ C0(R;L2(Ω0)) and v̇ ∈ Cw(R;L2(Ω0))∩L∞(R;L2(Ω0))
(for the weak continuity of v̇ see Remark 2.7). The second term of (2.52) satisfies

lim
δ→0

∫
R
〈ρ ∗ (θv̈), ρ ∗ (θv̇)〉L2(Ω0) ds =

∫
R
〈ρ ∗ (θ0v̈), ρ ∗ (θ0v̇)〉L2(Ω0) ds . (2.54)

This follows by direct computation: it turns out that ρ ∗ (θv̈) is uniformly bounded in L2(R;L2(Ω0)), more-
over it converges strongly in L2(R;H−1

D (Ω0)) to ρ ∗ (θ0v̈) (which, again by difference, is an element of
L2(R;L2(Ω0))). By combining (2.52), (2.53) and (2.54), we infer that

0 = −〈v̇, ρ ∗ ρ ∗ (θ0v̇)〉L2(Ω0)(t0) + 〈v̇, ρ ∗ ρ ∗ (θ0v̇)〉L2(Ω0)(0) +
∫

R
〈ρ ∗ (θ0v̈), ρ ∗ (θ0v̇)〉L2(Ω0) ds . (2.55)

We now apply the same argument to the function

〈Bρ ∗ (θ∇v), ρ ∗ (θ∇v)〉L2(Ω0) ∈W 1,∞(R) .

Starting from the identity ∫
R

d

ds
〈Bρ ∗ (θ∇v), ρ ∗ (θ∇v)〉L2(Ω0)(s) ds = 0

we infer that

0 =
∫

R

[
〈Ḃρ ∗ (θ∇v), ρ ∗ (θ∇v)〉L2(Ω0) + 2〈ρ ∗ (Bθ∇v), ρ ∗ (θ∇v̇)〉L2(Ω0)

]
ds

+
∫

R

[
2〈ρ ∗ (Bθ∇v), ρ ∗ (θ̇∇v)〉L2(Ω0) + 2〈Bρ ∗ (θ∇v)− ρ ∗ (Bθ∇v), ρ̇ ∗ (θ∇v)〉L2(Ω0)

]
ds ,

(2.56)

where ρ ∗ (θ∇v̇) is well defined in L2(R;L2(Ω0; Rd)) as the difference between ρ̇ ∗ (θ∇v) and ρ ∗ (θ̇∇v).
Notice that since B ∈ Lip(R;L∞(Ω; Rd×dsym)) ⊂ Lip(R;L2(Ω0; Rd×dsym)), we have that Ḃ ∈ L∞(R;L2(Ω0; Rd×dsym)),
moreover there exists C > 0 such that ‖Ḃ(s, ·)‖L∞(Ω0) ≤ C for a.e. s ∈ R. We now pass to the limit as δ → 0:
exploiting in (2.56) the properties

Ḃρ ∗ ((θ − θ0)∇v) ⇀ 0 weakly in L2(R;L2(Ω0; Rd)) ,

ρ ∗ ((θ − θ0)∇v)→ 0 strongly in L2(R;L2(Ω0; Rd)) ,

ρ ∗ ((θ − θ0)∇v̇) ⇀ 0 weakly in L2(R;L2(Ω0; Rd)) ,

ρ ∗ (B(θ − θ0)∇v)→ 0 strongly in L∞(R;L2(Ω0; Rd)) ,

ρ ∗ (θ̇∇v) uniformly bounded in L1(R;L2(Ω0; Rd)) ,
s 7→ 〈ρ ∗ (ρ ∗ (Bθ0∇v)),∇v〉L2(Ω0)(s) is continuous in R ,

ρ̇ ∗ (θ − θ0)∇v → 0 strongly in L2(R;L2(Ω0; Rd)) ,
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we obtain

0 =
∫

R

[
〈Ḃρ ∗ (θ0∇v), ρ ∗ (θ0∇v)〉L2(Ω0) + 2〈ρ ∗ (Bθ0∇v), ρ ∗ (θ0∇v̇)〉L2(Ω0)

]
ds

−2〈ρ ∗ (ρ ∗ (Bθ0∇v)),∇v〉L2(Ω0)(t0) + 2〈ρ ∗ (ρ ∗ (Bθ0∇v)),∇v〉L2(Ω0)(0)

+
∫

R

[
2〈Bρ ∗ (θ0∇v)− ρ ∗ (Bθ0∇v), ρ̇ ∗ (θ0∇v)〉L2(Ω0)

]
ds .

(2.57)

Since the restriction θ0v solves the PDE (2.11), we infer that for every ξ ∈ L2(R;H1
D(Ω0)) it holds

∫
R

[
〈θ0v̈, ξ〉H1

D(Ω0) + 〈B∇(θ0v),∇ξ〉L2(Ω0) + 〈a · ∇(θ0v), ξ〉L2(Ω0) + 2〈θ0v̇,div(bξ)〉L2(Ω0)

]
ds

=
∫

R
〈θ0g, ξ〉L2(Ω0) ds

(see Remark 2.8), in particular, by taking ξ = ρ ∗ (ρ ∗ (θ0v̇)) and exploiting the properties of the convolution,
we obtain ∫

R

[
〈ρ ∗ (θ0v̈), ρ ∗ (θ0v̇)〉L2(Ω0) + 〈ρ ∗ (Bθ0∇v), ρ ∗ (θ0∇v̇)〉L2(Ω0)

]
ds

=
∫

R

[
−〈ρ ∗ (θ0a · ∇v), ρ ∗ (θ0v̇)〉L2(Ω0) − 2〈ρ ∗ (bθ0v̇), ρ ∗ (θ0∇v̇)〉L2(Ω0)

]
ds

+
∫

R

[
−2〈ρ ∗ (θ0v̇ div b), ρ ∗ (θ0v̇)〉L2(Ω0) + 〈ρ ∗ (θ0g), ρ ∗ (θ0v̇)〉L2(Ω0)

]
ds .

(2.58)

By combining (2.55), (2.57) and (2.58) we conclude that

〈v̇, ρ ∗ ρ ∗ (θ0v̇)〉L2(Ω0)(t0)− 〈v̇, ρ ∗ ρ ∗ (θ0v̇)〉L2(Ω0)(0)

+〈∇v, ρ ∗ (ρ ∗ (Bθ0∇v))〉L2(Ω0)(t0)− 〈∇v, ρ ∗ (ρ ∗ (Bθ0∇v))〉L2(Ω0)(0)

=
∫

R

[
1
2
〈Ḃρ ∗ (θ0∇v), ρ ∗ (θ0∇v)〉L2(Ω0) + 〈Bρ ∗ (θ0∇v)− ρ ∗ (Bθ0∇v), ρ̇ ∗ (θ0∇v)〉L2(Ω0)

]
ds

+
∫

R

[
−〈ρ ∗ (θ0a · ∇v), ρ ∗ (θ0v̇)〉L2(Ω0) − 2〈ρ ∗ (bθ0v̇), ρ ∗ (θ0∇v̇)〉L2(Ω0)

]
ds

+
∫

R

[
−2〈ρ ∗ (θ0v̇ div b), ρ ∗ (θ0v̇)〉L2(Ω0) + 〈ρ ∗ (θ0g), ρ ∗ (θ0v̇)〉L2(Ω0)

]
ds .

(2.59)

Let us now perform the second passage to the limit: we let the index m associated to the convolution ρm
tend to +∞. Let us study separately the asymptotics of the terms appearing in (2.59). The left-hand side
converges to

1
2
‖v̇‖2L2(Ω0)(t0)− 1

2
‖v̇‖2L2(Ω0)(0) +

1
2
〈∇v,B∇v〉L2(Ω0)(t0)− 1

2
〈∇v,B∇v〉L2(Ω0)(0) . (2.60)

Here we have used the weak continuity of v̇ and ∇v (see Remark 2.7) and the fact that ρ ∗ ρ is still a
smooth even mollifier with integral 1/2. By the strong approximation property of the convolution and by
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the dominated convergence theorem, it is easy to check that in the right-hand side of (2.59) we have

lim
m→+∞

∫
R
〈Ḃρ ∗ (θ0∇v), ρ ∗ (θ0∇v)〉L2(Ω0) ds =

∫ t0

0

〈Ḃ∇v,∇v〉L2(Ω0) ds ,

lim
m→+∞

∫
R
〈ρ ∗ (θ0a · ∇v), ρ ∗ (θ0v̇)〉L2(Ω0) ds =

∫ t0

0

〈a · ∇v, v̇〉L2(Ω0) ds ,

lim
m→+∞

∫
R
〈ρ ∗ (θ0v̇ div b), ρ ∗ (θ0v̇)〉L2(Ω0) ds =

∫ t0

0

〈div b, |v̇|2〉L1(Ω0) ds ,

lim
m→+∞

∫
R
〈ρ ∗ (θ0g), ρ ∗ (θ0v̇)〉L2(Ω0) ds =

∫ t0

0

〈g, v̇〉L2(Ω0) ds .

(2.61)

For the remaining two terms of (2.59) we claim that

lim
m→+∞

∫
R
〈ρ ∗ (bθ0v̇), ρ ∗ (θ0∇v̇)〉L2(Ω0) ds = −1

2

∫ t0

0

〈div b, |v̇|2〉L1(Ω0) ds , (2.62)

lim
m→+∞

∫
R
〈Bρ ∗ (θ0∇v)− ρ ∗ (Bθ0∇v), ρ̇ ∗ (θ0∇v)〉L2(Ω0) ds = 0 . (2.63)

Once proved the claim we are done: indeed, the results obtained in (2.60)-(2.63) combined with the equality
(2.59) imply the statement (2.50).

Set for brevity
ζ := ρ ∗ (bθ0v̇)− b ρ ∗ (θ0v̇) , η := ρ ∗ (θ0v̇) .

Thus ∫
R
〈ρ ∗ (bθ0v̇), ρ ∗ (θ0∇v̇)〉L2(Ω0) ds =

∫
R

[〈b η,∇η〉L2(Ω0) + 〈ζ,∇η〉L2(Ω0)] ds . (2.64)

Integrating by parts (recall that by (H8) and (1.2) b satisfies b · ν = 0 on the boundary of Ω0), it is easy to
see that the first term in the right-hand side of (2.64) gives the desired limit in (2.62). Therefore it is enough
to show that the second term vanishes as m→ +∞. Exploiting the equality

∇η(s) = (ρ ∗ (θ0∇v̇))(s) = (ρ̇ ∗ (θ0∇v))(s) + ρ(s− t0)∇v(t0)− ρ(s)∇v(0)

we may rewrite∫
R
〈ζ,∇η〉L2(Ω0) ds = −

∫
R
〈ζ̇, ρ ∗ (θ0∇v)〉L2(Ω0) +

∫
R
〈ζ, ρ(s− t0)∇v(t0)− ρ(s)∇v(0)〉L2(Ω0) ds .

Note that, since ρ and θ0 have compact support, for m big enough ζ and ζ̇ are identically zero out of the
interval I := (−2T, 2T ). As m→ +∞, it is easy to check that ζ → 0 strongly in L2(I;L2(Ω0; Rd)). Therefore
it is enough to show that also the derivative ζ̇ converges (weakly) to zero in L2(I;L2(Ω0; Rd)). Notice that
by (H11) and (H12) we know that b ∈ Lip(I;L2(Ω; Rd)) ⊂ Lip(I;L2(Ω; Rd)), so that ḃ ∈ L∞(I;L2(Ω; Rd))
and there exists L > 0 such that ‖ḃ(s, ·)‖L∞(Ω) ≤ L for a.e. s ∈ I. Therefore, for a.e. t ∈ I, we may write

ζ̇(t) =
(
ρ̇ ∗ (bθ0v̇)− ḃ ρ ∗ (θ0v̇)− b ρ̇ ∗ (θ0v̇)

)
(t)

=
∫

R
[ρ̇(t− s)b(s)θ0(s)v̇(s)− ḃ(t)ρ(t− s)θ0(s)v̇(s)− b(t)ρ̇(t− s)θ0(s)v̇(s)] ds

=
∫ t0

0

v̇(s)ρ̇(t− s) [b(s)− b(t)]
(s− t)

(s− t) ds−
∫ t0

0

ḃ(t)ρ(t− s)v̇(s) ds .

By the L∞ boundedness of ‖v̇‖L2(Ω0), the aforementioned properties of b, and the bounds∫
R
|tρ̇(t)| dt ,

∫
R
ρ(t) dt < +∞ ,

we deduce that ζ̇ is uniformly bounded in L2(I;L2(Ω0; Rd)). In order to verify that the weak limit (which
exists up to subsequences) is zero, let us study ζ̇ as an element of L2(I;H−1

D (Ω0; Rd)), which, after an
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integration by parts in time, can be written as

ζ̇(t) = −ρ(t− t0)b(t0)v̇(t0) + ρ(t)b(0)v̇(0) + ρ(t− t0)b(t)v̇(t0)− ρ(t)b(t)v̇(0)

+
∫ t0

0

v̇(s)ρ(t− s)(ḃ(s)− ḃ(t)) ds+
∫ t0

0

v̈(s)ρ(t− s)(b(s)− b(t)) ds .
(2.65)

We want to show that ζ̇ converges strongly to 0 in L2(I;H−1
D (Ω0; Rd)), as m → +∞. The only difficult

term is the first integral on the right-hand side of the previous formula. Approximating ḃ by convolution
with respect to time we obtain a sequence βk ∈ C0(I;L2(Ω; Rd)) such that limk βk(s) = ḃ(s) in L2(Ω; Rd) for
a.e. s ∈ I , and such that ‖βk(s, ·)‖L∞(Ω) ≤ L for every s ∈ I. For a.e. t ∈ I we write∫ t0

0

v̇(s)ρ(t− s)(ḃ(s)− ḃ(t)) ds =
∫ t0

0

v̇(s)ρ(t− s)(ḃ(s)− βk(s)) ds+
∫ t0

0

v̇(s)ρ(t− s)(βk(s)− βk(t)) ds

+
∫ t0

0

v̇(s)ρ(t− s)(βk(t)− ḃ(t)) ds =: Fk(t) +Gk(t) +Hk(t) . (2.66)

By Fubini theorem, we obtain∫
I

‖Fk(t)‖2L2(Ω) dt ≤ 4T (max ρ2)
∫ t0

0

‖v̇(s)(ḃ(s)− βk(s))‖2L2(Ω) ds . (2.67)

Since v̇ ∈ L∞(I;L2(Ω)) and ‖ḃ(s) − βk(s)‖L∞(Ω) ≤ 2L, we have the inequality ‖v̇(s)(ḃ(s) − βk(s))‖2L2(Ω) ≤
4L2‖v̇‖2L∞(I;L2(Ω)). On the other hand, for a.e. s ∈ I we have limk v̇(s)(ḃ(s)− βk(s)) = 0 in L2(Ω; Rd) by the

dominated convergence theorem in Ω, since ḃ(s) − βk(s) → 0 in L2(Ω; Rd) as k → +∞ and is bounded in
L∞(Ω; Rd). Therefore, by the dominated convergence theorem in I, for m fixed the right-hand side of (2.67)
tends to zero, consequently ∫

I

‖Fk(t)‖2L2(Ω) dt→ 0 as k → +∞ . (2.68)

To prove that ∫
I

‖Hk(t)‖2L2(Ω) dt→ 0 as k → +∞ (2.69)

it is enough to observe that t 7→
∫ t0

0
v̇(s)ρ(t − s) ds is in L∞(I;L2(Ω)), while, for a.e. t, βk(t) → ḃ(t) in

L2(Ω; Rd) as k → +∞ and is bounded in L∞(Ω; Rd).
By (2.68) and (2.69), for every ε > 0 we can fix k ∈ N such that∫ T

0

‖Fk(t)‖2L2(Ω) dt+
∫ T

0

‖Hk(t)‖2L2(Ω) dt < ε . (2.70)

In view of the continuity of βk, we can determine m0 such that for ρ = ρm with m ≥ m0 we have∥∥∥∫ t0

0

v̇(s)ρ(t− s)(βk(s)− βk(t)) ds
∥∥∥
L2(Ω)

< ε . (2.71)

The inequalities (2.70) and (2.71) imply that the left-hand side of (2.66) tends to zero in L2(I;L2(Ω; Rd)), in
the limit as m → +∞. Since the sum of the other terms in the right-hand side of (2.65) converges strongly
to 0 in L2(I;H−1

D (Ω0; Rd)), we conclude that ζ̇ converges strongly to 0 in L2(I;H−1
D (Ω0; Rd)) as m→ +∞.

For brevity, we omit the proof of claim (2.63): exploiting the Lipschitz regularity of B, the result follows
in a similar way as already done for the claim (2.62).

This concludes the proof of the representation formula (2.50), and gives the desired continuity of EB(v, ·)
in [0, T ]. �

We are now in a position to prove Theorem 2.2.

Proof of Theorem 2.2. The proof consists in showing that generalized solutions of (1.25) (cf. Definition 2.5)
are indeed weak solutions (cf. Definition 1.5). In view of Theorems 2.6 and 2.10, we know that problem
(1.25) admits a unique generalized solution v. In order to prove that v is a weak solution, we need to check
that it is more regular, more precisely that it satisfies (1.34)-(1.37).
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Let us first consider the case in which w, and hence z, is zero. As pointed out in Remark 2.7, v belongs to
C0([0, T ];L2(Ω0))∩Cw([0, T ];H1

D(Ω0)) and its derivative v̇ belongs to Cw([0, T ];L2(Ω0)); in addition, thanks
to Proposition 2.11, ∇v and v̇ are (strongly) continuous from [0, T ] to L2(Ω0; Rd) and to L2(Ω0), respectively.
Therefore the properties (1.34)-(1.36) are readily verified. Eventually, since both v̇ and v̈ are elements of
L2((0, T );H−1

D (Ω0)), we infer that v̇ ∈ W 1,2((0, T ), H−1
D (Ω0)) which is contained into AC([0, T ];H−1

D (Ω0)),
thanks to the reflexivity of H−1

D (Ω0). This gives (1.37) and concludes the proof. The general case, when
z 6= 0, can be deduced by difference, exploiting the regularity of v − z that we have just proved and the
regularity (2.7) of z. �

3. Continuous dependence on the data

In the next theorem we exploit the energy equality (2.50) to derive the continuous dependence on the
data, both for problem (1.6)-(1.9) and problem (1.25)-(1.28).

The manifold Γ introduced in (H3), the initial crack Γ0, and the Dirichlet boundary datum wD are kept
fixed. We consider a sequence Γnt of families of closed subsets of Γ, with Γns ⊂ Γnt for every s ≤ t, as well as a
sequence fn of source terms and a sequence (u0,n, u1,n) of initial data. The convergence of the corresponding
solutions will be obtained under the assumptions detailed in the following theorem.

Theorem 3.1. Let Φ, Ψ: [0, T ] × Ω → Ω be two functions satisfying (H7)-(H12) and (2.1). Let f ∈
L2((0, T );L2(Ω)), u0 ∈ H1

D(Ω0) + w(0), and u1 ∈ L2(Ω0). For every n ∈ N, assume that there exist
two functions Φn, Ψn : [0, T ] × Ω → Ω satisfying (H7)-(H12) and (2.1) with Γt replaced by Γnt , and let
fn ∈ L2((0, T );L2(Ω)), u0,n ∈ H1

D(Ω0) + w(0), and u1,n ∈ L2(Ω0). For every n ∈ N, let un be the weak
solution of problem (1.6) with growing crack Γnt , forcing term fn, initial position u0,n, initial velocity u1,n,
and Dirichlet-Neumann boundary conditions as in (1.8) and (1.9) with Γt replaced by Γnt . Similarly, let
vn be the weak solution of (1.25)-(1.28), where the coefficients (1.29)-(1.33) are constructed starting from
Φn,Ψn, fn, u0,n, and u1,n. Assume that there exist two constants C > 0 and δ0 > 0 such that the following
inequalities hold for every n ∈ N:

detDΦn(t, ·) ≥ δ0 for every t ∈ [0, T ] , (3.1)

‖Φn(t, ·)− Φn(s, ·)‖L∞(Ω), ‖∂iΦn(t, ·)− ∂iΦn(s, ·)‖L∞(Ω) ≤ C|t− s| for every t, s ∈ [0, T ] , (3.2)

‖Φ̇n(t, ·)− Φ̇n(s, ·)‖L∞(Ω) ≤ C|t− s| for every t, s ∈ [0, T ] , (3.3)

‖∂2
ijΦ

n(t, ·)‖L∞(Ω) ≤ C for every t ∈ [0, T ] . (3.4)

Furthermore, assume that the following properties hold as n→ +∞:

Φ̇n(t)→ Φ̇(t) strongly in L2(Ω; Rd) , for a.e. t ∈ (0, T ) , (3.5)

∂iΦ̇n(t)→ ∂iΦ̇(t) strongly in L2(Ω; Rd) , for a.e. t ∈ (0, T ) , (3.6)

∂2
ijΦ

n(t)→ ∂2
ijΦ(t) strongly in L2(Ω; Rd) , for a.e. t ∈ (0, T ) , (3.7)

Φ̈n(t)→ Φ̈(t) strongly in L2(Ω; Rd) , for a.e. t ∈ (0, T ) , (3.8)

fn → f strongly in L2((0, T );L2(Ω)), (3.9)

u0,n → u0 strongly in H1(Ω0) , u1,n → u1 strongly in L2(Ω0) . (3.10)

Finally, assume that (3.1)-(3.8) are valid also for the sequence Ψn with limit Ψ. Under these assumptions,
for every t ∈ [0, T ] we have:

un(t)→ u(t) and u̇n(t)→ u̇(t) strongly in L2(Ω), ∇̂un(t)→ ∇̂u(t) strongly in L2(Ω; Rd) , (3.11)
vn(t)→ v(t) strongly in H1(Ω0) , and v̇n(t)→ v̇(t) strongly in L2(Ω0) , (3.12)

where u and v are the weak solutions of problems (1.6)-(1.9) and (1.25)-(1.28), associated to the limit diffeo-
morphisms Φ and Ψ.

Remark 3.2. Notice that for every n ∈ N, Φn(0, ·) = id, therefore, assumptions (3.5) and (3.6) imply that

Φn(t)→ Φ(t) , ∂iΦn(t)→ ∂iΦ(t) strongly in L2(Ω; Rd) (3.13)

for every t ∈ [0, T ], i ∈ {1, . . . , d}. Moreover, in view of (3.8) the convergence (3.5) is valid for every time.
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Before proving the theorem, we go back to the two-dimensional Example 1.14 and we present a possible
sequence of diffeomorphisms Φn and Ψn satisfying (3.1)-(3.8).

Example 3.3. Let d = 2. We consider a C2,1 simple curve Γ in the planar domain Ω, injectively parametrized
by arc-length through a function γ : [0, `]→ R2, with ` := |Γ|. We assume that γ(0), γ(`) ∈ ∂Ω, γ(s) ∈ Ω for
every s ∈ (0, `), and Γ0 = γ([0, s0]) with s0 ∈ (0, `). Let M > 0 and 0 < δ < cA/2 be fixed, and let SM,δ be
the class of functions with the following properties:

s ∈ C1,1([0, T ]) , s(0) = s0 , 0 ≤ ṡ(t) ≤ (cA − 2δ)1/2 for every t ∈ [0, T ] ,

‖s̈‖∞ ≤M , sup
ϕ∈C1

c ((0,T ))
‖ϕ‖∞≤1

∫ T

0

s̈(t)ϕ̇(t) dt ≤M .

Let sn : [0, T ] → R be a sequence of functions in SM,δ. In view of Examples 1.14 and 2.1, for every
n ∈ N the functions Φn(t, y) := Φ̂(sn(t), y) and Ψn(t, y) := Ψ̂(sn(t), y) defined according to (1.67) satisfy
(H7)-(H12) and (2.3). Moreover, it is easy to verify that the sequences Φn and Ψn satisfy the uniform bounds
(3.1)-(3.4). The set SM,δ is compact: indeed, by the Ascoli-Arzelà theorem and by the compact embedding
of BV into L1 (see e.g. [1, Theorem 3.23]), we infer that there exists s ∈ SM,δ such that, up to a subsequence
nk, as k → +∞ we have

snk(t)→ s(t) and ṡnk(t)→ ṡ(t) for every t ∈ [0, T ] , s̈nk(t)→ s̈(t) for a.e. t ∈ (0, T ) .

In particular, as k → +∞ we conclude that the sequences Φnk(t, ·) and Ψnk(t, ·) satisfy (3.5)-(3.8) with
Φ(t, ·) := Φ̂(s(t), ·) and Ψ(t, ·) := Ψ̂(s(t), ·).

We conclude the section with the proof of Theorem 3.1.

Proof of Theorem 3.1. The proof is divided into several steps: in the first step we prove that the statement
for the sequence un follows from the statement for vn; in Step 2 we show that we can restrict ourselves to
the case of homogeneous Dirichlet boundary conditions; finally, in the subsequent steps, we prove the strong
convergence of vn towards v under the assumption wD = 0.

Step 1. (3.12) implies (3.11). Fix t ∈ [0, T ] and assume that (3.12) is satisfied. We claim that as n→ +∞

∇̂un(t) ⇀ ∇̂u(t) weakly in L2(Ω; Rd) , un(t) ⇀ u(t) and u̇n(t) ⇀ u̇(t) weakly in L2(Ω) , (3.14)

‖∇̂un(t)‖L2(Ω) → ‖∇̂u(t)‖L2(Ω) , ‖un(t)‖L2(Ω) → ‖u(t)‖L2(Ω) , ‖u̇n(t)‖L2(Ω) → ‖u̇(t)‖L2(Ω) . (3.15)

Let Ωnt denote the set Ω \ Γnt . In view of the energy bound (2.36) valid for weak solutions and the bounds
(3.1)-(3.4) on the coefficients, we infer that ∇̂un(t), un(t), and u̇n(t) are bounded in L2(Ω; Rd), L2(Ω), and
L2(Ω), uniformly with respect to n and t. In particular, up to subsequences, they converge weakly in these
spaces. To determine the weak limits, fix a smooth test function ϕ ∈ C∞c (Ω \ Γ; Rd). By the change of
variable formula (1.65) we obtain that

〈∇̂un(t), ϕ〉L2(Ω) = 〈(DΨn(t, ·))T ∇̂vn(t,Ψn(t, ·)), ϕ〉L2(Ω)

= 〈(DΨn(t,Φn(t, ·)))T ∇̂vn(t, ·), ϕ(Φn(t, ·)) detDΦn(t, ·)〉L2(Ω)

→ 〈(DΨ(t,Φ(t, ·)))T ∇̂v(t, ·), ϕ(Φ(t, ·)) detDΦ(t, ·)〉L2(Ω) = 〈∇̂u(t), ϕ〉L2(Ω))

as n→ +∞. For the convergence we have used the assumptions on the diffeomorphisms Ψn and the strong
convergence in H1(Ω0) of vn towards v (see (3.12)). The same argument applies to un(t) and u̇n(t), which
converge weakly in L2(Ω) to u(t) and u̇(t), respectively. Therefore (3.14) is proved. With the same techniques
we derive (3.15): exploiting the strong convergences (3.12) and (3.13), we get

‖∇̂un(t)‖2L2(Ω) = ‖(DΨn(t, ·))T ∇̂vn(t,Ψn(t, ·))‖2L2(Ω)

=
∫

Ω

|(DΨn(t,Φn(t, ·)))T ∇̂vn(t, ·)|2 detDΦn(t, ·) dy

→
∫

Ω

|(DΨ(t,Φ(t, ·)))T ∇̂v(t, ·)|2 detDΦ(t, ·) dy = ‖∇̂u(t)‖2L2(Ω) .
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Similarly we prove that ‖un(t)‖2L2(Ω) converges to ‖u(t)‖2L2(Ω) and ‖u̇n(t)‖2L2(Ω) to ‖u̇(t)‖2L2(Ω). By combining
(3.14) and (3.15) we get (3.11), observing that the limit does not depend on the subsequences.

Step 2. Preliminaries about (3.12). In order to deal with the sequence of problems (1.25)-(1.28) constructed
starting from Φn, Ψn, fn, u0,n, and u1,n, it is worth recasting assumptions (3.2)-(3.10) in terms of the
corresponding coefficients (1.29)-(1.33), which will be denoted by Bn, an, bn, gn, v0,n, and v1,n. It is easy to
check that for every n ∈ N we have

‖Bn(t, ·)‖L∞(Ω0), ‖bn(t, ·)‖L∞(Ω0), ‖ div bn(t, ·)‖L∞(Ω0), ‖an(t, ·)‖L∞(Ω0) ≤ C for a.e. t ∈ (0, T ) , (3.16)

‖Bn(t, ·)−Bn(s, ·)‖L∞(Ω0), ‖bn(t, ·)− bn(s, ·)‖L∞(Ω0) ≤ C|t− s| for every t, s ∈ [0, T ] , (3.17)

for some constant C > 0 independent of t and s. Moreover, in view of (3.1) and (2.1), we infer that
the ellipticity constant of Bn is bounded from below by a positive constant independent of n, t, and y.
Furthermore, exploiting Lemma 4.7, in the limit as n→ +∞ we have

Bn(t)→ B(t) and Ḃn(t)→ Ḃ(t) strongly in L2(Ω0; Rd×d) , for a.e. t ∈ (0, T ) , (3.18)

bn(t)→ b(t) and an(t)→ a(t) strongly in L2(Ω0; Rd) , for a.e. t ∈ (0, T ) , (3.19)

div bn(t)→ div b(t) strongly in L2(Ω0) , for a.e. t ∈ (0, T ) , (3.20)

gn → g strongly in L2((0, T );L2(Ω0)) , (3.21)

v0,n → v0 strongly in H1(Ω0) , v1,n → v1 strongly in L2(Ω0) . (3.22)

Let us now set zn(t, y) := w(t,Φn(t, y)). By construction, the functions zn satisfy Lemma 2.4. As already
noticed in the proof of Theorem 2.6, the difference vn− zn is the weak solution of problem (1.25)-(1.28) with
coefficients Bn, an, bn, initial data

v̂0,n := v0,n − zn(0) ∈ H1
D(Ω0) , v̂1,n := v1,n − żn(0) ∈ L2(Ω0) ,

homogeneous Dirichlet-Neumann boundary conditions, and source term ĝn := gn − hn, where

hn := z̈n − div(Bn∇zn) + an · ∇zn − 2bn · ∇żn ∈ L2((0, T );L2(Ω0)) .

By using Lemma 4.7, it is easy to check that as n→ +∞
zn(t)− z(t)→ 0 strongly in H1

D(Ω0) , żn(t)− ż(t)→ 0 strongly in L2(Ω0) ,
hn → h strongly in L2((0, T );L2(Ω0)) ,

for every t ∈ [0, T ], where z and h are defined according to (2.6) and (2.12). Note that for the convergence
of hn we have used the regularity (2.7) and the computations done in the proof of Lemma 2.4. Similarly, in
view of (3.9) and (3.10), we derive

ĝn → g − h strongly in L2((0, T );L2(Ω0)) ,
v̂0,n → v0 − z(0) strongly in H1(Ω0) , v1,n → v1 − ż(0) strongly in L2(Ω0) .

Therefore, (3.12) is ensured once we prove the strong convergence of vn and v̇n in the case of homogeneous
Dirichlet-Neumann boundary conditions, namely when w = 0. This is done in the following steps.

Step 3. The perturbed problems. We assume w = 0. For every ε > 0, let vε be the solution of the perturbed
problem (2.13) and let vnε be the solution of the corresponding problem with coefficients Bn, an, bn, gn, v0,n,
v1,n. We already know that, as ε → 0, vε weakly converges to v (see (2.31)-(2.33) in the proof of Theorem
2.6). Here we claim that the convergence is strong, that is, for every t ∈ [0, T ]

vε(t)→v(t) strongly in H1
D(Ω0) and v̇ε(t)→v̇(t) strongly in L2(Ω0) , as ε→ 0 . (3.23)

Moreover, we claim that there exists a sequence of parameters εn > 0, converging to 0 as n → +∞, such
that for every t ∈ [0, T ]

vnεn(t)− vεn(t)→ 0 strongly in H1
D(Ω0) , v̇nεn(t)− v̇εn(t)→ 0 strongly in L2(Ω0) , (3.24)

vnεn(t)− vn(t)→ 0 strongly in H1
D(Ω0) , v̇nεn(t)− v̇n(t)→ 0 strongly in L2(Ω0) , (3.25)

as n→ +∞. Once we prove the claims we are done. Indeed, by the triangle inequality we have

lim sup
n→+∞

‖vn(t)− v(t)‖H1
D(Ω0)
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≤ lim sup
n→+∞

(‖vn(t)− vnεn(t)‖H1
D(Ω0) + ‖vnεn(t)− vεn(t)‖H1

D(Ω0) + ‖vεn(t)− v(t)‖H1
D(Ω0)) = 0

and the same holds true for ‖v̇n(t)− v̇(t)‖L2(Ω0).
The claims (3.23)-(3.25) will be proved in Steps 4, 5, and 7, respectively.
Step 4. Strong convergence of vε. Assume w = 0 and define Xε := vε − v. By comparing the energy

equalities (2.28) and (2.50) for vε and v, respectively, it is easy to see that

EB(Xε, t) + ε

∫ t

0

‖v̇ε(s)‖2H1
D(Ω0) ds

=
∫ t

0

[
1
2
〈Ḃ∇Xε,∇Xε〉L2(Ω0) − 〈a · ∇Xε, Ẋε〉L2(Ω0) − 〈div b, |Ẋε|2〉L1(Ω)

]
ds+Rε(t) , (3.26)

where EB is defined according to (2.49) and

Rε(t) := −〈v̇ε(t), v̇(t)〉L2(Ω0) − 〈B(t)∇vε(t),∇v(t)〉L2(Ω0) + ‖v1‖2L2(Ω0) + 〈B(0)∇v0,∇v0〉L2(Ω0)

+
∫ t

0

[
〈Ḃ∇vε,∇v〉L2(Ω0) − 〈a · ∇vε, v̇〉L2(Ω0) − 〈a · ∇v, v̇ε〉L2(Ω0) − 2〈div b, v̇εv̇〉L1(Ω) + 〈g, v̇ε + v̇〉L2(Ω0)

]
ds .

In view of the weak convergences of vε(t), ∇vε(t), and v̇ε(t), and the energy equality (2.50), we infer that
Rε(t)→ 0 as ε→ 0. On the other hand, the uniform bounds on Ḃ, a, and div b, and the uniform ellipticity of
B, imply that the integral term in the right-hand side of (3.26) can bounded from above by C

∫ t
0
EB(Xε, s) ds,

for a suitable C > 0 independent of t and ε. Therefore, using (3.26) and Fatou’s Lemma, we infer that for
every t ∈ [0, T ]

lim sup
ε→0

EB(Xε, t) ≤ lim sup
ε→0

(
Rε(t) + C

∫ t

0

EB(Xε, s) ds
)
≤ C

∫ t

0

lim sup
ε→0

EB(Xε, s) ds .

Finally, by Gronwall’s Lemma, we conclude that limε EB(Xε, t) exists and it equals zero. This proves (3.23).
Step 5. Strong convergence of vnεn − vεn . The functions vnεn and vεn solve two problems with different

coefficients but with the same viscosity εn > 0, whose precise value will be fixed at the end of the step. By
linearity, it easy to verify that the difference Xn := vnεn − vεn solves

〈Ẍn(t), ψ〉H1
D(Ω0) + 〈B(t)∇Xn(t),∇ψ〉L2(Ω0) + 〈a(t) · ∇Xn(t), ψ〉L2(Ω0) − 2〈b(t) · ∇Ẋn(t), ψ〉L2(Ω0)

+ εn〈Ẋn(t), ψ〉L2(Ω0) + εn〈∇Ẋn(t),∇ψ〉L2(Ω0) = 〈qn(t), ψ〉H1
D(Ω0) (3.27)

for a.e. t ∈ (0, T ) and every ψ ∈ H1
D(Ω0), with initial data X0,n = v0,n − v0 and X1,n = v1,n − v1. The

right-hand side of (3.27) is defined as

〈qn, ψ〉H1
D(Ω0) : = 〈(gn − g)− (an − a) · ∇vnεn − 2(div bn − div b)v̇nεn , ψ〉L2(Ω0)

− 〈(Bn −B)∇vnεn + 2(bn − b)v̇nεn ,∇ψ〉L2(Ω0) .

In particular, the forcing term qn is an element of L2((0, T );H−1
D (Ω0)). Thanks to the uniform bounds (3.16)

and (3.17), the energy estimate (2.30) implies that v̇nεn and∇vnεn are uniformly bounded in L∞((0, T );L2(Ω0))
and L∞((0, T );L2(Ω0; Rd)), respectively. Note that these bounds do not depend on the sequence εn. There-
fore, by (3.18)-(3.21) we get

qn → 0 in L2((0, T );H−1
D (Ω0)) as n→ +∞ , (3.28)

and the rate of this convergence is independent of the choice of εn. We now want to write an energy estimate
for Xn. Notice that, since we are dealing with the perturbed problems, the time derivatives Ẋn belong to
L2((0, T );H1

D(Ω0)), thus they can be used as test functions in (3.27): integrating by parts we get

EB(Xn, t) + εn

∫ t

0

‖Ẋn(s)‖2H1
D(Ω0) ds = EB(Xn, 0)

+
∫ t

0

[
1
2
〈Ḃ∇Xn,∇Xn〉L2(Ω0) − 〈a · ∇Xn, Ẋn〉L2(Ω0) − 〈div b, |Ẋn|2〉L1(Ω) + 〈qn, Ẋn〉H1

D(Ω0)

]
ds .
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As in Step 4, the uniform bounds on Ḃ, a, and div b, together with the uniform ellipticity of B, yield

EB(Xn, t) + εn

∫ t

0

‖Ẋn(s)‖2H1
D(Ω0) ds ≤ EB(Xn, 0) + C

∫ t

0

EB(Xn, s) ds+
∫ t

0

|〈qn, Ẋn〉H1
D(Ω0)| ds ,

for a suitable constant C > 0 independent of n and t. The presence of εn allows us to get rid of the last
term: by writing∫ t

0

|〈qn, Ẋn〉H1
D(Ω0)| ds ≤

1
2
‖qn‖L2((0,T );H−1

D (Ω0)) +
1
2
‖qn‖L2((0,T );H−1

D (Ω0))

∫ t

0

‖Ẋn‖2H1
D(Ω0) ds

and choosing εn such that

εn −
1
2
‖qn‖L2((0,T );H−1

D (Ω0)) ≥ 0 ∀n , εn → 0 ,

we conclude that

EB(Xn, t) ≤ Cn + C

∫ t

0

EB(Xn, s) ds ,

with
Cn := EB(Xn, 0) +

1
2
‖qn‖L2((0,T );H−1

D (Ω0)) .

In view of (3.22) and (3.28) we infer that Cn → 0. Therefore, again by Fatou and Granwall’s Lemmas, we
have limn EB(Xn, t) = 0, concluding the proof of (3.24).

Step 6. Weak convergence of vn to v. Assume w = 0. For every n ∈ N, vn satisfies

〈v̈n(t), ψ〉H1
D(Ω0) + 〈Bn(t)∇vn(t), ψ〉L2(Ω0) + 〈an(t) · ∇vn(t), ψ〉L2(Ω0) + 2〈v̇n(t),div(bn(t)ψ)〉L2(Ω0)

= 〈gn(t), ψ〉L2(Ω0) (3.29)

for a.e. t ∈ (0, T ) and for every ψ ∈ H1
D(Ω0). As already pointed out in (2.35), every weak solution vn has

bounded energy, namely there exists C > 0 such that, for every t ∈ [0, T ],

‖v̇n(t)‖2L2(Ω0) + ‖vn(t)‖2H1
D(Ω0) ≤ C .

Thanks to (3.16), (3.17), (3.21), and (3.22), the constant C can be chosen independent of n. In particular,
there exists ξ ∈ L2((0, T );H1

D(Ω0)) ∩H1((0, T );L2(Ω0)) such that, up to a subsequence,

vn ⇀ ξ weakly in L2((0, T );H1
D(Ω0)) and v̇n ⇀ ξ̇ weakly in L2((0, T );L2(Ω0)) . (3.30)

By combining the strong convergences (3.18)-(3.22) with the weak convergences (3.30), passing to the limit
as n→ +∞ in (3.29), we infer that ξ̈ ∈ L2((0, T );H−1

D (Ω0)) and that ξ is a generalized solution of the limit
problem (2.11), with initial conditions v0 and v1. By Theorem 2.10 such solution is unique, therefore ξ = v.
Since the result does not depend on the subsequence, we conclude that the whole sequence vn satisfies

vn ⇀ v weakly in L2((0, T );H1
D(Ω0)) and v̇n ⇀ v̇ weakly in L2((0, T );L2(Ω0)) .

Step 7. Strong convergence of vnεn − v
n. Assume w = 0 and define Xn := vnεn − v

n, with εn as in Step 6.
Following the same procedure as in Step 4, we get

EBn(Xn, t) + εn

∫ t

0

‖v̇nεn‖
2
H1
D(Ω0) ds

=
∫ t

0

[
1
2
〈Ḃn∇Xn,∇Xn〉L2(Ω0) − 〈an · ∇Xn, Ẋn〉L2(Ω0) − 〈div bn, |Ẋn|2〉L1(Ω)

]
ds+Rn(t) ,

with

Rn(t) :=−〈v̇nεn(t), v̇n(t)〉L2(Ω0) − 〈Bn(t)∇vnεn ,∇v
n(t)〉L2(Ω0) + ‖v1,n‖2L2(Ω0) + 〈Bn(0)∇v0,n,∇v0,n〉L2(Ω0)

+
∫ t

0

[
〈Ḃn∇vnεn ,∇v

n〉L2(Ω0) − 〈an · ∇vnεn , v
n〉L2(Ω0) − 〈an · ∇vn, vnεn〉L2(Ω0)

]
ds

+
∫ t

0

[
−2〈div bn, v̇nεn v̇

n〉L1(Ω) + 〈gn, v̇nεn + v̇n〉L2(Ω0)

]
ds . (3.31)
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Exploiting the uniform bounds (3.16) and (3.17), and the fact that each Bn satisfies the ellipticity condition
(2.2) with the same constant, as in Step 4 we infer that

EBn(Xn, t) + εn

∫ t

0

‖v̇nεn‖
2
H1
D(Ω0) ds ≤ C

∫ t

0

EBn(Xn, s) ds+Rn(t) , (3.32)

for some C > 0 independent of n and t.
Let us show that Rn(t) → 0 as n → +∞. In view of the strong convergences (3.22) and (3.5) (whose

validity at every time is discussed in Remark 3.2), we infer that, as n→ +∞,

〈Bn(0)∇v0,n,∇v0,n〉L2(Ω0) = 〈(A(0)− Φ̇n(0)⊗ Φ̇n(0))∇v0,n,∇v0,n〉L2(Ω0) → 〈B(0)∇v0,∇v0〉L2(Ω0) . (3.33)

In view of Steps 4 and 5, vnεn(t) converges strongly to v(t) for every t, while, by Step 6, vn(t) converges weakly
to v(t). Thus

〈v̇nεn(t), v̇n(t)〉L2(Ω0) + 〈Bn(t)∇vnεn(t),∇vn(t)〉L2(Ω0) → ‖v̇(t)‖2L2(Ω0) + 〈B(t)∇v(t),∇v(t)〉L2(Ω0) . (3.34)

In view of (3.16)-(3.21), by dominated convergence in Ω and then in (0, T ), we can pass to the limit in the
integral terms of Rn, and we get∫ t

0

[
〈Ḃn∇vnεn ,∇v

n〉L2(Ω0) − 〈an · ∇vnεn , v
n〉L2(Ω0) − 〈an · ∇vn, vnεn〉L2(Ω0)

]
ds

+
∫ t

0

[
−2〈div bn, v̇nεn v̇

n〉L1(Ω) + 〈gn, v̇nεn + v̇n〉L2(Ω0)

]
ds

→
∫ t

0

[
〈Ḃ∇v,∇v〉L2(Ω0) − 2〈a · ∇v, v〉L2(Ω0) − 2〈div b, |v̇|2〉L1(Ω) + 2〈g, v̇〉L2(Ω0)

]
ds .

(3.35)

By combining (3.31) and (3.33)-(3.35) with the energy equality (2.50), we conclude that Rn(t) → 0 as
n→ +∞ for every time. We now apply Fatou and Gronwall’s Lemmas to (3.32), as in Step 5, and we obtain
that limn EBn(Xn, t) = 0. This convergence gives (3.25), since the ellipticity condition (2.2) for Bn holds
with the same constant for every n. �

4. Appendix

For the benefit of the reader, we recall an existence result for evolution problems of second order in time,
whose proof can be found in [6]. Let B(t; ·, ·),A1(t; ·, ·),A2(t; ·, ·) be three families of continuous bilinear forms
over H1

D(Ω0)×H1
D(Ω0), with t varying in [0, T ], satisfying the following properties, where Ḃ(·; η, ξ) denotes

the derivative of B(·; η, ξ):
(i) for every t ∈ [0, T ] the form B(t; ·, ·) is symmetric;

(ii) there exists c0 > 0 such that B(t; η, η) ≥ c0‖η‖2H1
D(Ω0)

for every t ∈ [0, T ], for every η ∈ H1
D(Ω0);

(iii) for every η, ξ ∈ H1
D(Ω0) the function t 7→ B(t; η, ξ) is continuously differentiable in [0, T ];

(iv) there exists c1 > 0 such that |Ḃ(t; η, ξ)| ≤ c1‖η‖H1
D(Ω0)‖ξ‖H1

D(Ω0) for every t ∈ [0, T ], for every
η, ξ ∈ H1

D(Ω0);
(v) for every η, ξ ∈ H1

D(Ω0) the function t 7→ A1(t; η, ξ) is continuous in [0, T ];
(vi) there exists c2 > 0 such that |A1(t; η, ξ)| ≤ c2‖η‖H1

D(Ω0)‖ξ‖L2(Ω0) for every t ∈ [0, T ], for every
η, ξ ∈ H1

D(Ω0);
(vii) for every η, ξ ∈ H1

D(Ω0) the function t 7→ A2(t; η, ξ) is continuous in [0, T ];
(viii) there exists c3 > 0 such that |A2(t; η, ξ)| ≤ c3‖η‖H1

D(Ω0)‖ξ‖L2(Ω0) for every t ∈ [0, T ], for every
η, ξ ∈ H1

D(Ω0).

Theorem 4.1. Let k > 0, v0 ∈ H1
D(Ω0), v1 ∈ L2(Ω0), g ∈ L2((0, T );L2(Ω0)), and let B(t; ·, ·), A1(t; ·, ·),

A2(t; ·, ·), t ∈ [0, T ], be three families of continuous bilinear forms over H1
D(Ω0) × H1

D(Ω0) satisfying the
assumptions (i)-(viii) above. Then there exists v ∈ H1((0, T );H1

D(Ω0)) with v̈ ∈ L2((0, T );H−1
D (Ω0)) such

that, for a.e. t ∈ (0, T ) and every ψ ∈ H1
D(Ω0),

〈v̈(t), ψ〉H1
D(Ω0) + B(t; v(t), ψ) +A1(t; v(t), ψ) +A2(t; v̇(t), ψ)

+ k〈v̇(t), ψ〉L2(Ω0) + k〈∇v̇(t),∇ψ〉L2(Ω0) = 〈g(t), ψ〉L2(Ω0) , (4.1)
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with initial conditions v(0) = v0 and v̇(0) = v1.

Proof. See [6, Chapitre XVIII, §5, Théorème 1]. �

In the following lemmas we investigate some regularity properties of functions defined in Ω (or [0, T ] ×
Ω), when composed with suitable diffeomorphisms of the domain into itself. Let us specify the class of
diffeomorphisms under study.

Definition 4.2. We say that Λ: [0, T ] × Ω → Rd is admissible if it belongs to the space C1([0, T ] × Ω; Rd)
and, for every t ∈ [0, T ], the function Λ(t, ·) is a C2 diffeomorphism of Ω into itself such that Λ(t,Ω) = Ω and
Λ(t,Γ) = Γ.

Note that, according to (H7)-(H9), both Φ and Ψ are admissible in Definition 4.2.

Lemma 4.3. Let Λ be as in Definition 4.2 and let f ∈ L2(Ω; Rm). Then f(Λ(t, ·)) is continuous from [0, T ]
to L2(Ω; Rm).

Proof. For every ε > 0 let fε ∈ C∞c (Ω; Rm) be such that ‖f − fε‖L2(Ω) ≤ ε. By the assumptions on Λ, via a
change of variables it is easy to see that for every t ∈ [0, T ] we still have ‖f(Λ(t, ·))− fε(Λ(t, ·))‖L2(Ω) ≤ Cε,
for some constant C independent of t and ε. Moreover the composition fε(Λ(t, ·)) is continuous from [0, T ]
to L2(Ω; Rm). Let tn → t as n→ +∞. By the triangle inequality, we have

‖f(Λ(tn, ·))− f(Λ(t, ·))‖L2(Ω) ≤ ‖f(Λ(tn, ·))− fε(Λ(tn, ·))‖L2(Ω) + ‖f(Λ(t, ·))− fε(Λ(t, ·))‖L2(Ω)

+ ‖fε(Λ(tn, ·))− fε(Λ(t, ·))‖L2(Ω) ≤ 2Cε+ ‖fε(Λ(tn, ·))− fε(Λ(t, ·))‖L2(Ω) .

Passing to the limit first as n → +∞ and then as ε → 0 we infer that ‖f(Λ(tn, ·))− f(Λ(t, ·))‖L2(Ω) → 0 as
tn → t, namely the desired L2 continuity of f(Λ(t, ·)). �

Lemma 4.4. Let Λ be as in Definition 4.2 and let f ∈ C0([0, T ];L2(Ω; Rm)). Then f(t,Λ(t, ·)) is continuous
from [0, T ] to L2(Ω; Rm).

Proof. Let tn → t as n→ +∞. By the triangle inequality we have

‖f(tn,Λ(tn, ·))−f(t,Λ(t, ·))‖L2(Ω) ≤ ‖f(tn,Λ(tn, ·))−f(t,Λ(tn, ·))‖L2(Ω) +‖f(t,Λ(tn, ·))−f(t,Λ(t, ·))‖L2(Ω) .

Via a change of variables, we infer that

‖f(tn,Λ(tn, ·))− f(t,Λ(tn, ·))‖L2(Ω) ≤ C‖f(tn, ·)− f(t, ·)‖L2(Ω) ,

for some constant C > 0 independent of n and t. Since t is fixed, we can apply Lemma 4.3 to f(t, ·), obtaining
that ‖f(t,Λ(tn, ·))− f(t,Λ(t, ·))‖L2(Ω) → 0 too, as n→ +∞. This concludes the proof. �

Lemma 4.5. Let Λ be as in Definition 4.2. There exists a constant C > 0 such that

‖f(Λ(t, ·))− f(Λ(s, ·))‖L2(Ω) ≤ C‖∇̂f‖L2(Ω)|t− s|
for every f ∈ H1(Ω \ Γ) and for every 0 ≤ t ≤ s ≤ T .

Proof. It is enough to prove the statement in H1(Ω±), where Ω± are defined in (H4). We consider only the
case of Ω+. For every ε > 0 let fε ∈ C1(Ω+) be such that ‖f − fε‖H1(Ω+) ≤ ε. Then

fε(Λ(t, y))− fε(Λ(s, y)) =
∫ t

s

∇fε(Λ(τ, y)) · Λ̇(τ, y) dτ ,

and hence

‖fε(Λ(t, ·))− fε(Λ(s, ·))‖2L2(Ω+) ≤ sup
τ
‖Λ̇‖2L∞(Ω+)

∫
Ω+

(∫ t

s

|∇fε(Λ(τ, y))| dτ
)2

dy . (4.2)

By applying the Hölder inequality, changing the order of integration, and performing the change of variables
x = Λ(τ, y), we deduce the estimates∫

Ω+
(
∫ t

s

|∇fε(Λ(τ, y))| dτ
)2

≤ |t− s|
∫

Ω+

∫ t

s

|∇fε(Λ(τ, y))|2 dτ dy

= |t− s|
∫ t

s

∫
Ω+
|∇fε(x)|2 detD(Λ−1)(τ, x) dx dτ
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≤ |t− s|2 sup
τ
‖ detD(Λ−1)(τ, ·)‖L∞(Ω+)‖∇fε‖2L2(Ω+) . (4.3)

Arguing as in Lemma 4.3, by the triangle inequality, in view of (4.2) combined with (4.3), we obtain

‖f(Λ(t, ·))− f(Λ(s, ·))‖L2(Ω+) ≤ Cε+ ‖fε(Λ(t, ·))− fε(Λ(s, ·))‖L2(Ω+)

≤ C(ε+ ‖∇fε‖L2(Ω+)|t− s|) ≤ C(ε+ ‖∇f‖L2(Ω+)|t− s|) ,
for some constant C > 0 independent of ε, t, and s. Finally, letting ε→ 0, we conclude the proof. �

Lemma 4.6. Let Λ be as in Definition 4.2 and let t ∈ [0, T ]. Then for every f ∈ H1(Ω \ Γ)
1
h

[f(Λ(t+ h, ·))− f(Λ(t, ·))]→ ∇̂f(Λ(t, ·)) · Λ̇(t, ·) strongly in L2(Ω) as h→ 0 .

Proof. It is enough to prove the strong convergence in L2(Ω±), where Ω± are defined in (H4). We consider
only the case of Ω+.

Let Th and L be the linear operators from H1(Ω+) to L2(Ω+) defined by

Th(f) :=
1
h

[f(Λ(t+ h, ·))− f(Λ(t, ·))] and L(f) := ∇f(Λ(t, ·)) · Λ̇(t, ·) .

By a change of variables it is easy to see that these operators are continuous. If f ∈ C1(Ω+) we have

Th(f)(y) =
1
h

∫ h

0

∇f(Λ(t+ τ, y)) · Λ̇(t+ τ, y) dτ , (4.4)

thus
‖Th(f)‖L2(Ω+) ≤ C‖f‖H1(Ω+) ,

where C > 0 is a constant independent of f . By density, this inequality is valid for every f ∈ H1(Ω+).
For ε > 0 fixed, let fε ∈ C1(Ω+) be such that ‖f − fε‖H1(Ω+) < ε. Then

‖Th(f)− L(f)‖L2(Ω+) ≤ ‖Th(f)− Th(fε)‖L2(Ω+) + ‖Th(fε)− L(fε)‖L2(Ω+) + ‖L(f)− L(fε)‖L2(Ω+)

≤ 2Cε+ ‖Th(fε)− L(fε)‖L2(Ω+) .

In view of formula (4.4) we have ‖Th(fε)− L(fε)‖L2(Ω+) → 0 as h→ 0, and hence

lim sup
h
‖Th(f)− L(f)‖L2(Ω+) ≤ 2Cε .

By the arbitrariness of ε > 0, the proof is concluded.
�

Lemma 4.7. Let Λ and Λn, n ∈ N, be diffeomorphisms as in Definition 4.2, and let f and fn, n ∈ N, be
elements of L2(Ω; Rm). Assume that there exist δ1 > δ0 > 0 such that δ0 < ‖detDΛn(t, ·)‖L∞(Ω) < δ1 for
every t ∈ [0, T ], n ∈ N, and that, as n→ +∞,

fn → f strongly in L2(Ω; Rm) , Λn(t, ·)→ Λ(t, ·) strongly in L2(Ω; Rd) for every t ∈ [0, T ] .

Then, as n→ +∞,

fn(Λn(t, ·))→ f(Λ(t, ·)) strongly in L2(Ω; Rm) for every t ∈ [0, T ] .

Proof. For every ε > 0 let fε ∈ C∞c (Ω; Rm) be such that ‖f − fε‖L2(Ω) ≤ ε . By the triangle inequality we
may write

‖fn(Λn(t, ·))− f(Λ(t, ·))‖L2(Ω) ≤ ‖fn(Λn(t, ·))− f(Λn(t, ·))‖L2(Ω) + ‖f(Λn(t, ·))− fε(Λn(t, ·))‖L2(Ω)

+ ‖fε(Λ(t, ·))− f(Λ(t, ·))‖L2(Ω) + ‖fε(Λn(t, ·))− fε(Λ(t, ·))‖L2(Ω) .

We can bound the right-hand side as follows: performing a change of variables in the first three terms and
exploiting the regularity of fε in the last term, we get

‖f(Λn(t, ·))− f(Λn(t, ·))‖L2(Ω) ≤ C(‖fn − f‖L2(Ω) + ‖f − fε‖L2(Ω))

+ ‖∇fε‖L∞(Ω)‖Λn(t, ·)− Λ(t, ·)‖L2(Ω) ,

for some constant C > 0 independent of n and ε. Passing to the limit as n→ +∞ and then as ε→ 0, by the
strong L2 convergences of Λn(t, ·), fn, and fε, we conclude the proof. �
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We conclude this Appendix by proving Lemma 2.4 on the regularity of the composite function z(t, ·) :=
w(t,Φ(t, ·)).

Proof of Lemma 2.4. By the chain rule in Sobolev spaces, since every Φ(t, ·) is a C2 diffeomorphism of Ω into
itself, we infer that the composite function z(t, ·) := w(t,Φ(t, ·)) belongs to H2(Ω0) for a.e. t ∈ (0, T ), and its
distributional derivatives read

∇z(t, ·) = DΦ(t, ·)T∇w(t,Φ(t, ·)) , ∂2
ijz(t, ·) = ∂2

kmw(t,Φ(t, ·))∂iΦk(t, ·)∂jΦm(t, ·)+∂2
ijΦk(t, ·)∂kw(t,Φ(t, ·)) .

Exploiting these explicit expressions for the distributional derivatives of z, the regularity assumptions (H7),
(H11), (H12), and (1.10), we infer that also z belongs to L2((0, T );H2(Ω0)). Arguing as in the proof of Lemma
1.8, exploiting the regularity of w and ẇ, we infer that z ∈ Lip([0, T ];L2(Ω0)) and the distributional time
derivative reads ż(t, ·) = ẇ(t,Φ(t, ·)) +∇w(t,Φ(t, ·)) · Φ̇(t, ·). By the chain rule, we infer that ż(t, ·) ∈ H1(Ω0)
for a.e. t ∈ (0, T ) and, by direct computation, that ż ∈ L2((0, T );H1(Ω0)). Let us now pass to the second
partial time derivative. Exploiting the Lipschitz continuity of Φ̇ (see (H11)) and the absolute continuity of
ẇ and ∇w from [0, T ] to L2(Ω) and L2(Ω; Rd), respectively, it is easy to prove that ż ∈ AC([0, T ];H−1(Ω0)).
In particular z̈ ∈ L1((0, T );H−1(Ω0)) and, for a.e. t ∈ (0, T ), the action of z̈(t) against any test function
ψ ∈ H1(Ω0) can be deduced by the identity

〈z̈(t), ψ〉H1(Ω0) = lim
h→0

1
h
〈ż(t+ h)− ż(t), ψ〉L2(Ω) .

Computing the last limit we infer that for a.e. t ∈ (0, T )

z̈(t, ·) = ẅ(t,Φ(t, ·)) + 2∇ẇ(t,Φ(t, ·)) · Φ̇(t, ·) +∇w(t,Φ(t, ·)) · Φ̈(t, ·) + ∂2
hkw(t,Φ(t, ·))Φ̇h(t, ·)Φ̇k(t, ·) .

Therefore, in view of (H11), (H12), and (1.10), we derive z̈ ∈ L2((0, T );L2(Ω)), concluding the proof of (2.7).
Eventually, the boundary conditions (2.8), (2.9), and (2.10) follow by (1.13) and by combining the hypothesis
(1.12) with definition (1.29), assumption (H8) and property (1.2). �
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