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Introduction

Several physical phenomena arising in fluid dynamics and kinetic equations can be modeled by the
transport PDE

(0.1) du+b-Vu=0

where b(t,z) : [0,T] x R? — R is a velocity field, and u(t,z) : [0,7] x R? — R? is the the physical
quantity that evolves in time. Such quantities are the vorticity of a fluid, or the density of a collection of
particles advected by a velocity field which is highly irregular, in the sense that it has a derivative given by
a distribution and a nonlinear dependence on the solution u. The theory of characteristics provides a link
between this PDE and the ODE

AX (4 o) = .
(0.2) { )(?(ét’x)): xb(t7X(t7 )

where X (t,z) : [0,7] x R — R? is the flow map of the particle trajectories. In the classical setting,
b is Lipschitz with respect to the spatial variable, and Cauchy-Lipschitz theory identifies a unique flow
X (t,z) : [0, T] x R — R? which solves (0.2) and inherits the Lipschitz regularity of b. Furthermore, if ug is a
solution at initial time to (0.1), then it is transported by the flow solving (0.2). The question of well-posedness
of (0.1) is more complex when the velocity field is no longer Lipschitz in its second variable, but has only a
weak derivative which is merely integrable or a measure. The most well-known developments in recent years

have been [25] and [5], wherein well-posedness of (0.2) was shown in the almost everywhere sense, under the
assumption that b € I/VI})C1 or b € BV, respectively, with bounded divergence. These approaches exploited

the link between (0.2) and (0.1) and relied on what is called the renormalization property of the vector
field; roughly speaking, that given a bounded distributional solution u to (0.1), u? is also a solution, and so
are many other nonlinear compositions of w. This property is intrinsically linked to well-posedness: should
renormalization hold, then solutions of (0.1) are unique and stable. However, a weak sense differentiability
of the vector field is needed to give a positive answer: in order to prove that b has the renormalization prop-
erty, a regularization procedure is introduced for the PDE, leading to a commutator estimate. In order for
the ’error term’ to converge to zero in a suitably strong sense, the Sobolev (or BV) regularity of b is essential.

The more recent development in [22] has been well-posedness of (0.2) via quantitative estimates for the
flow which rely only on the Sobolev regularity and growth of b (without assumptions on the divergence).
Out of the smooth context, one replaces the notion of a classical flow with that of an almost-everywhere map
solving (0.2) in a suitable weak sense. This is called a regular Lagrangian flow and is measure-preserving in
the sense that it does not concentrate trajectories. Equivalently there is a constant L such that

LY(X(t,)"Y(B)) < LLYB), for every Borel B C RY,
a condition which holds for instance for vector fields with bounded divergence. The difference in this
approach is that it identifies an equivalence class of solutions to (0.1) which, like their smooth counterpart,

are transported by regular Lagrangian flows. Because the flows are measure preserving, the flows also preserve
equi-integrability of approximations of the initial data. The approach in [22] gives stability, compactness
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(and therefore existence), and a mild Lusin-type Lipschitz regularity for the regular Lagrangian flow. In
comparison to the the literature in [25, 5], one obtains explicit quantitative rates in the estimates for
stability and compactness. These bounds depend only on the compressibility constants of the Lagrangian
flow, not on the divergence of the vector field, which could in principle be unbounded. The more recent
developments have been generalized for when b is less than Sobolev, or more precisely has a gradient given
by a singular integral, a common regularity in fluid and kinetic equations, and will support the main results
of this thesis summarized in the following sections 1, 2, 3.

1. The Euler equation

A further development in [16] has broadened the Lagrangian approach to give the same quantitative
stability for Lagrangian flows associated to vector fields which are no longer Sobolev or BV, but have a
gradient given by the singular integral of an integrable function. This has significance for the incompressible
Euler equation in 2 dimensions, which is an old problem in fluid dynamics. The equation for an inviscid
fluid are given by

0.3) { v +div(vev)+Vp=0

dive =0,

where v(t, x) is the velocity, representing the speed of a particle at position « and time ¢, and p(¢, x) is the
scalar pressure, that sustains the incompressibility constraint dive = 0. It can be written as the vorticity
formulation

(0.4) Ow + div(vw) =0

where w is the vorticity, v is the velocity given by the coupling curl v = w. The velocity can be written via the
Biot Savart law a convolution with the vorticity, making the problem nonlocal (and the PDE nonlinear). In
case of L! vorticities, the gradient of the velocity is no longer locally integrable, as it is the singular integral
of an L! function. The usual strategy for proving existence of solutions to (0.3) is by smoothing the initial
data, and using estimates that enable passing to the limit in its weak formulation. For initial velocities

belonging to H*, s > 2, well-posedness of solutions was proved in [72]. Existence and uniqueness of solutions
to (0.3) is known for vorticities in L' N L, and was first proved in [74]. For compactly supported initial
vorticities in LP, with 1 < p < oo, existence was first proved in [26]. In all cases the summability of the

vorticity imply at best that the velocity field is Sobolev. Sobolev embeddings guarantee strong convergence
in L12OC for the approximated velocities, when the vorticity has some integrability higher than L!. In the
case of measure vorticities with distinguished sign, the velocity is void of any Sobolev regularity, and has
gradient given by the singular integral of a measure. This is generally insufficient for strong convergence of
the velocities in L2 _*: the approximated velocities may concentrate. However, concentrations may occur for
sequences whose limit still satisfies (0.3), in spite of the lack of strong L2 . convergence: this is referred to

as concentration-cancellation and has been studied in [28], [12], and [24].

We will address the question whether initial vorticities in L' give rise to weak solutions which are trans-

ported by flows. Under the bounds in this setting, using the compactness estimates of [16], we show that
Lagrangian flows associated to velocities whose curl are equi-integrable are strongly precompact, and thus
stable under approximation. In contrast to [12], [24] [34], [69], we rely only on the Lagrangian formulation,

so that existence of solutions which are naturally associated to flows is a consequence. In this setting we
can also allow for velocities with locally infinite kinetic energy. Without using strong convergence of the
velocities, we are able to prove the Lagrangian flows converge anyway, and can nevertheless deduce strong
compactness of the solutions a posteriori.

ISee for instance Example 11.2.1 in [12].
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2. The Vlasov Poisson equation

The second problem we address are Lagrangian solutions to the Vlasov Poisson equation with L' data.
The PDE is given by

where f(t,x,v) > 0 is the distribution function, t > 0, x,v € RN x RY, and

(0.6) E(t,z) = V,A™! </f(t,a:,v)dv)

is the force field. If we denote by p(t,z) = [ f(t,z,v)dv the density, and
(0.7) b(t, ,v) = (b1, b2)(t, 2, v) = (v, B(t,x)) = (v, VoA p)

the associated vector field on (0,7) x RY x RY | then the Vlasov equation can be written in the form of the
transport equation 0y f +b-V,,f = 0. A solution involves the couple (f, E). Observe that the regularity
we are dealing with is worse than what has previously been discussed: the first component by is Lipschitz
but has no decay in z, the second by involves the nonlinearity E(t,z) which is highly singular in z: it has a
gradient given by the singular integral in RY of the density. b has (x,v) differential given by

Dbt Dbt 0 Id
(08) Db = (D1b2 D2b2) = (Slp 0> ’
where the index 1 stands for x, 2 for v, and S; is a singular integral operator on RY. Apart from the
nonlinearity, the difficulty of this system lies in the fact that an equation on phase space RY x RY is coupled
with a ’split’ vector field (0.7) whose non-trivial component by has weak spatial regularity and does not decay
in RY. Considering solutions with data in L!, integration with respect to v means only an L!(RY) bound on
p (and no decay in RY) survives, which does not give good bounds for E. Global weak solutions to the VP
system were proved to exist in [7, 30, 31], with only f° € L'(R%), fClog™ f* € L', [v]?f° € L', E° € L2
Related results with weak initial data have been obtained in [54, 39, 76, 52]. Even weaker solutions were
considered in [46, 47, 48], where the distribution function is a measure. However, these solutions do not
have well-defined characteristics. We seek to extend the existence result of [30] to initial data in L' with
finite energy avoiding the Llogt L assumption. Our weak solutions are Lagrangian (in the same spirit as
solutions to the Euler equation) and involve a well-defined flow. We use the theory of Lagrangian flows for
transport equations with vector fields having weak regularity, developed in [25, 5, 3, 22, 4], and recently
in [16, 2, 14]. It enables to consider force fields that are not in WI})’Cl, nor in BVjy.. In this context we will
prove stability results with strongly or weakly convergent initial distribution function. The flow is proved to
converge strongly anyway, and the class of solutions considered is stable. The split nature of the vector field
is the motivational setting for the next stability result: the main problem has been to generalize the previous
results of [22, 16] to anisotropic vector fields, such as the one considered in (0.7). In this we go beyond the
regularity setting where the vector field has gradient given by the singular integral of an L! function, and it
theoretically allows us to consider measure densities. However, these do not give a good notion of solution,
since the Lagrangian flows are defined only almost everywhere.

3. Anisotropic vector fields

We consider the following anisotropic vector fields: those for which the gradient is given by the singular
integral of a measure in some directions, and the singular integral of an L' function in others. Apart from
stability and compactness of Lagrangian solutions to the transport equation, this allows us to prove existence
of Lagrangian solutions to the two and three-dimensional Vlasov Poisson non-linear equations with L! data.
We study general vector fields of the form b(t,z) = (b1, b2)(¢, 21, x2), where the components b; and by have a
split’ regularity. We we write RY = R™ x R™ with coordinates 2; and x5, and split analogously the vector
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field according to b = (b1, b2). We will consider the case in which D;bs is a singular integral (in R™) of a
measure, while D1b1, D2by and Dsbs are singular integrals (in R™) of integrable functions:

1 1
Db(S*L S*L)

SxM SxL!
(in fact our assumptions are slightly more general: see assumption (R2a)-(R2b) in Chapter 5, Section 18).
This technical regularity assumption is motivated by the structure of the differential of (0.7). In [23], an

integral functional measuring a logarithmic distance between two flows, X and X, is introduced. This
allows some a priori estimates measuring 'non-uniqueness’ of the flow to be derived. We use a functional in
which the two directions are weighted by parameters according to their degree of regularity. We modify the
functional so that it depends on two (small) parameters ; and dy, with 07 < ds:

09) By o) /B o (1+ <|X1<s7x>5—lxl<s,x>|’ |X2<s,x>5—2x2<s,z>|>D "

where 01, 02 are parameters to be chosen later, and the integral is localized over a fixed compact set.
It is clear that for a given v > 0 we have the lower bound

Banls) 2 [ g (14 ) do = £((1 - Xz 2 Pyog (14 1)
(1X—X|>7} 01 o1

This gives the estimate

Ds(s)
log (1 + %)
A strategy for proving stability (and uniqueness) is thus to derive upper bounds on the functional ®5(s) which
blow up in § slower than log (1/6) as § — 0. Differentiating and integrating in time yields the interpolation

) 20bllee - (5o 101(X) = Di(X)], 5 [B2(X) — ba(X)])
R R e = =]

1 ’ 2

(0.10) LY{IX = X2 ) <

(0.11) dzdt .

We remark that this integral is performed over a suitable localization with respect to the sublevels where
the flows are not too large. An estimate for the size of this set is crucial in the final estimate. However,
the complication of the anisotropic difference quotient in (0.11) requires the use of a modified operator to
estimate the directional increments of b. This is complicated by the fact that just as a classical maximal
function estimates the difference quotients in the BV case, the grand maximal function is an approximation
of the identity in all x, y variables which is not bounded when composed with a singular integral in x variables.
This is resolved by the use of tensor products of maximal functions. One relevant technical point in the proof
is the estimate for the anisotropic difference quotients showing up when differentiating (5.59). We need an

estimate of the form:
T1 — Y1 T2 —Y2
(252 2o v+ uw)

(0.12) |b(x) — b(y)|<

where U is a suitable function of the derivative of b. This is complicated by the fact that, as in the classical
case, one expects to use a maximal function in x; and zs in order to estimate the difference quotients,
but however this would not match (in terms of persistence of cancellations) with the presence of a singular
integral in the variable z; only. This is resolved in Section 19 by the use of tensor products of maximal
functions, and will result in the proof of (5.60) together with a bound of the form

|U||< 61(| D1b|[+62]| Dbl -
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We then use the equi-integrability of the L' components of Dby, Daby, Doby which gives a remainder in L2
that can be controlled much in the same way as [16]. After an interpolation estimate on the minimum in
(0.11), from the estimate in (0.12), we derive the weighted upper bound

J

o 1
(0,13 Bs,4(5) = | - 1D1balct 1000 v+ Dablls +1Datals [ 10g ()

The last step is to achieve ’smallness’ of this bound relative to the parameter log(1/4) is exploiting the equi-
integrability of g to gain L' smallness up to an L? remainder. The L' components ||Daby| 1, |[D1b1]/z1 and
| Daba||z: (although the derivatives themselves are not L') can be assumed to be small, since the singular
integral of the L! function preserves the equi-integrability estimates as in [16]. This is not the case for
[|D1b2||amr. However, this is mitigated by the coefficient d;/d2, since we can choose d; to go to zero faster
than 52 : (51 < 52.

This regularity setting does not include the BV case, but the anisotropic functional introduced is a first step
toward this open problem, since it allows to compensate for the lack of equi-integrability of the measure-part
derivative with a ’weighted’ functional, allowing for a part of a derivative to be the singular integral of a
measure. Observe that the last step is where the estimate fails for BV, or when more than one component
is the singular integral of a measure. This is due to the lack of equi-integrability of measures and is required
to send all parameters to zero. An full extension of this procedure to the BV case would answer positively
the following conjecture:

CONJECTURE 3.1 (Bressan). Let b, € C1([0,T) x RN) be smooth vector fields and denote by X, the
solution of the ODFEs

dX, z) = bp(t, Xn(t,z
(0.14) { ;t(énx)); (t, X (t,2))

Assume that X,, satisfy for some constant C' > 0

é < det(Vo(Xy)(t,2)) < C,

and that ||by||eo and ||Dby, |11 @~y are uniformly bounded. Then the sequence X, is strongly precompact in
Ll

loc*®

Our result is the following stability estimate. For two Lagrangian flows X and X associated to b and b
in the regularity setting described above, for every v > 0 and 1 > 0 there exist A > 0 such that
(0.15) LY ({I1X = X[> 7)) b= dllpa(omyx By 1
The corollaries are the following. We have (apart from uniqueness) an explicit rate of stability for a sequence
X, of Lagrangian flows associated to vector fields b, in the above regularity setting, that converge in
L ([0,T] x RY) to b. We have as well strong compactness in L _ for a sequence X,, of Lagrangian flows
associated to vector fields b,,, and hence we arrive at existence of a Lagrangian flow associated to a vector
field b in our setting, with suitable bounds on the divergence to guarantee that the compression constants
of the flows are uniformly bounded. This will be applied in Chapter 7, where we apply the stability results
to the vector field in (0.7).

3.1. Plan of the thesis. In Chapter 1 we will review the Calderén Zygmund theory of singular in-
tegrals. The classical theorem of singular integral operators on L! and LP will be proved along with an
interpolation theorem using the Calderén Zygmund decomposition on R?. Attention will be paid to singular
kernels of fundamental type, which appear in the context of the Euler and Vlasov Poisson PDE. In Chapter
2 we will review the DiPerna Lions [25] theory of renormalization and well-posedness of bounded weak
solutions to the transport equation under the Sobolev regularity of b. We will give the proof of strong L]

loc
convergence of the commutator estimate. We also remark on the extension of the renormalization scheme
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to the BV setting thanks to Ambrosio [5].

In Chapter 3 we will review the existence of classical solutions to the 2 dimensional Euler equation and
link the study of the ODE in (0.2) to the vorticity equation. The potential theory involves the estimates
coming from the study of singular integral operators from Chapter 1. These will also be used to summarize
the results for weak solutions in the settings of [74, 26, 24], in which we will exploit the Aubin-Lions type
arguments to show convergence of the velocity field under the integrability assumptions on the vorticity. The
uniqueness result for vorticities in w € L' N L> will also be proved using estimates on the L? energy. We
end with Delort’s existence proof of vortex sheets (or measure vorticities) with distinguished sign.

Chapter 4 will be devoted to the classical existence of smooth solutions to the Vlasov Poisson equation in 3
dimensions, a Lagrangian proof of existence using the characteristics which was first done in [55]. Similarly
to Chapter 3, it involves estimates from potential theory but requires also an estimate on the moments of f,
first proved in [38]. We also recall growth and regularity bounds on E. The classical existence proof involves
first a local existence result (using an iterative scheme) which is then shown to be global.

Chapter 5 will be devoted to the Lagrangian flow compactness estimates discussed in [22, 16, 14]. A crucial
estimate involves a composition of the Hardy-Littlewood grand maximal function with the singular integral
satisfies sufficient cancellations with singular kernels which make the composition operator M S well defined,
and bounded from L' — M. This means we have the bound

(0.16) IMSfl[[an < Cn,sl ]

where M denotes the weak Lebesgue space. Additionally, the difference quotients of b are estimated in terms
of the grand maximal function of the derivative. In particular, when Db = Sg, where Sg is the singular
integral of an L' function g, one has
[p(X) — b(X)|
X — X]|
which is the vital step in the stability estimate for vector fields whose gradient is given by a singular integral,
and will be applied to our stated problem on the Euler quation. The first result of this thesis is the stability
of Lagrangian flows associated to anisotropic vector fields, with consequences for compactness and existence
of the flows.
Chapter 6 involves the second result of this thesis, which is existence of several classes of weak solutions to the
Euler equation when the vorticity is L' summable. As stated, this puts us out of the historical context which
relies on absolute convergence of the velocity v = K % w in order to prove existence of solutions. However,
the derivative Dv is in the setting of [16], and we may apply compactness results to deduce stability of
vorticity approximations. An interesting property is that here we require only distributional convergence
of the velocities, which suffices anyway for strong compactness of the associated flows. Since Lagrangian
solutions of the Euler equation are defined as weak solutions associated to Lagrangian flows, their existence
follows. These are in particular solutions in the renormalized DiPerna Lions sense.
Chapter 7 is the final result of this thesis and is the application of Chapter 6, more specifically the stability
estimates for anisotropic vector fields, to the Vlasov Poisson equation, in order to prove existence and
compactness of Lagrangian flows to the characteristic ODEs. This implies existence of Lagrangian solutions
in L'. Although the estimate (0.15) allows to consider measure densities, the reason we do not consider
measure solutions is that the Lagrangian flows are defined only almost everywhere. We will also need to
prove strong compactness of the force field, using the bounds from singular integrals to control the time
derivative of E, and an abstract lemma which allows to control the spatial increments of E. We remark
that we require a finite energy condition in order to prove a bound on the size of the superlevels of the flow,
which we need to conclude the estimate in (0.11).
Finally, we remark that in many theorems in the classical framework we do not state the result under the
sharpest possible assumptions. For instance, an assumption that the initial data are compactly supported
simplifies the proofs but is not necessary, and at several points we will assume C' regularity rather than

(0.17) < MSg(X) + MSg(X),
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Lipschitz. Some of the existence lemmas in the smooth framework will not be proven here, but results from
Cauchy Lipschitz theory are used often in our regularization arguments.






CHAPTER 1

Preliminaries

4. The Picard Lindelof theorem for ODEs

We begin by recalling the following classical theorem from Cauchy-Lipschitz theory. The starting point
in the theory of ODE is when the right hand side of the ODE (0.2) depends on the solution in a local
manner, i.e. £ € I C R, and b(¢,-) is locally Lipschitz. The following theorem provides local existence and
uniqueness: for any (tg, o) in the region where b is continuous in both variables and locally Lipschitz in its
second argument, there is a neighborhood of (o, o) such that the ODE has a unique local solution in this
neighborhood. Furthermore, the solutions are C! in this neighborhood.

THEOREM 4.1 (Picard Lindelof/Cauchy Lipschitz). Let (X, ||||x) be a Banach space, and let ty € R,
and rg € X be given. Consider the ODE
(1.1) F(t) = b(t, (1)), 7(to) = o.
Suppose that b: R x X — X is bounded and continuous on some region
Qap ={(t,y) : [t —to|< o, ||z — zo|x< B}
Suppose that b is Lipschitz with respect to x, uniformly in time on Qq.g. Then there exists 6 > 0 and a
function v belonging to C*([tg — 6,to + 6]; X) which is the unique solution to (1.1).

We remark that the modern version of this proof is based on Banach’s fixed point theorem and constructs
a solution by iteration, a method which has persisted in many proofs of construction of local-in-time solutions
to both PDE and ODE. (See for instance section 13.) If we consider the solution +(¢) as a function of time
and the initial point, we can define the classical flow of a smooth and bounded vector field b : I x R — R¢
as the map X (t,2) : I x R? — R? satisfying, for all (¢,z) € I x RY,

dx _
X(to,x) = x.
Existence and uniqueness of the flow follows from Theorem 4.1. Denoting by X (s, ¢, ) the flow of b starting
at time s € I, the following semigroup property holds: for every tg,t1,t2 € I,
X(tz,to,.’lﬁ) = X(t27t1,X(t1,t07.’17)).
For vector fields with weaker regularity, it is reasonable to expect existence (via an approximation scheme)
but not uniqueness of solutions.

THEOREM 4.2 (Cauchy-Peano). In the region C C I x R? where b is continuous in both variables, for
any (to,zo) € C, there erists a local C* solution in a neighborhood of this point.

REMARK 4.3. Let L C I x R? denote the open region (possibly empty) where b is continuous in both
variables and locally Lipschitz with respect to x. Then in the region L C C the local solutions are unique
and Lipschitz. The regularity is lost when they ’leave’ L. When they reach the boundary, still within C, the

13
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flow may separate into several solutions. Thus for the solution to be able to leave C, it must happen that b
is nonlinear in its spatial variable. (Otherwise L = I x RY.) The typical ezample is

() =~ I(@), ~(0)=0.

Indeed there are solutions y(t) = 0, v(t) = 1t*, and infinitely many others.

5. Notation and background material

Throughout the paper we will denote by Br = Bgr(0). We will denote by L°(R?) the space of all
measurable real valued functions on R?, defined a.e. with respect to the Lebesgue measure, endowed with

the convergence in measure defined below. We denote by L?OC(Rd) the same space, endowed with local

convergence in measure. The space log L(R?) contains all functions u : R? — R such that fRd log(1 +
|u(z)|)dz < oo, with log Lo (R?) defined accordingly. We refer to B(E, F') the space of bounded functions
between sets ' and F. We denote by S(R?) the Schwartz space of rapidly decreasing functions, and the
dual &'(R%) the space of tempered distributions.

DEFINITION 5.1. We say that a sequence of measurable functions u, : RY — R converges globally in
measure in R? to a measurable function u : R* — R if for every v > 0 there holds

LY {z e R : up(z) — u(z)|>~}) = 0, as n — oo.

Similarly, we say that the sequence u, converges locally in measure to u if for every v > 0 and every r > 0
there holds
LYz € By : |un(z) — uz)|>~}) — 0, as n — oo.

We study several bounded operators on LP which do not remain bounded on L', and satisfy only weak
bounds. To that end we begin with the definition of weak LP spaces. We introduce the following pseudo-norm:

DEFINITION 5.2. Let u be a measurable function on  C R, For 1 < p < oo, we set
e )= ing{APLd({x €Q : fu(x)[> Ab)}
and define the weak Lebesgue space MP () as the space consisting of all such measurable functions u : @ — R
with |||u]|[pre ()< 00. For p = oo, we set M () = L=(Q).

REMARK 5.3. We remark that the weak Lebesgue spaces MP(Q)) are normalizable for p > 1, but not for
p = 1. For clarity we denote the pseudonorm with |||-||| s -

REMARK 5.4. For any vector field f € Ly(M,) we have the inequality
1S @ )llaez, < @)y
However, a Fubini-type inequality of the form
S G )llaez, < I1f @)l )

does not hold on the product space. This can be seen by considering the characteristic function on the set
{(z,y) eR?: 0< 2z <1,0<y < 1/z}.

One such operator that is bounded only in the weak sense on L! is the classical (local and global)
maximal function.

DEFINITION 5.5. Let u be an integrable function defined on R%. The mazimal function of u is defined as

Mu(z) = sup][ lu(y)|dy, for every x € RY.
By (z)

r>0
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For u a finite measure we define
Mu(z) = sup][ dlu|(y), for every x € RY.
r>0J B, (x)
The local mazimal function of u is defined as

Myu(z) = sup f ()| dy,
0<r<A J B, (z)

1

which is finite a.e for a function v € L,

or a locally finite measure.
The maximal function Mwu is finite almost everywhere, but its norm is bounded only on LP.

PROPOSITION 5.6. For every 1 < p < oo we have the strong estimate

[[MullLpray< Capllul| e ra),
with only the weak estimate for p =1,

[ Mull| a1 (rey < Callul| peray-

When u € L'(R?) is not identically zero, Mu ¢ L*(R?). In fact, Mu € L}, (R?) if and only if |ullog™ |u|€

L{ (R%), as we have in the following lemma.

loc

LEMMA 5.7. Let A > 0. The local mazimal function of a function u € L} (R?) is finite for a.e x € R?
and

[ Mty <cnpren [ utw)logz + [utw)dy
B,(0) B,1x(0)
Forp>1 and p > 0 we have
[ onawyray <, [ P
B, (0) By (0)

This is false for p =1, where we have only the weak estimate, for all a > 0

c7l
€ By0) Muly) > al< 2 [ Juty)ldy.
B, (0)

We recall the following lemma which states that the maximal function is the ’largest’ of all approximations
of the identity.

LEMMA 5.8. Let ¢ : (0,00) — [0,00) be a nonincreasing function and assume

1= [ iy <.

Then for every u € Li (R?) and ¢ > 0 we have

loc

1
/ lu(x —y)| v (|y|> dy <T-Mu(x) for every z € RY.
Rd 9 9

We recall a classical theorem on the difference quotients of a BV function.

LEMMA 5.9. Let u € BV(R?), and denote by Du is the distributional derivative of u. There exists an
L%-negligible set N C R? such that

1 For every z,y € R4\ W,
[u(@) = u(y)|< Calz — y| (MDu)(@) + (MDu)(y)).
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2 For every x,y € RY\ N with |v — y|< X, we have the local inequality
[u(2) = u(y) < Calz = y|((MrDu)(x) + (MrDu)(y)).

We remark on the significance of this lemma since it offers a pointwise bound on the increments of a BV
function. This is particularly useful for performing estimates on Sobolev functions, since the operator M Du
is bounded on L? for p > 1 whenever Du is. The critical case is of course p = 1, when only the weak estimate
for M Du holds. We next recall an interpolation lemma for functions belonging to M N MP, which allows to
interpolate between the two spaces. The useful estimate is that the L' norm depends only logarithmically
on the M? norm. This implies that functions in M are 'not too far’ from being in L'.

LEMMA 5.10. (Interpolation Lemma.) Let u : Q — [0, +00) be a nonnegative measurable function, where
Q C R? has finite measure. Then for every 1 < p < oo, we have the interpolation estimate

p Iulllare (0 1
oy 2l |1+ g (T 0¥ i3 ) .
p— [[ulllar: @)
We also state a crucial lemma on the characterization of a uniformly integrable family of functions. It
states that, up to a remainder in L?, uniformly equiintegrable sequences of functions have arbitrarily small
norm in L.

LEMMA 5.11 (Equi-integrability). Consider a family {p;}icr C L*(2) which is bounded in L*(Q). Then
this family is equi-integrable if and only if for every € > 0, there exists a constant C. and a Borel set A. C §)
with finite measure such that for every ¢ € I one can write

vi =i + ¢,
llpillLiy<e and spt(¥7) C A, [|¢f|l2(0)< C-

There are many variants of the following lemma, can be seen as a generalization of Rellich-Kondrachov
compactness theorem when a sequence of functions with Sobolev spatial regularity has an additional time
regularity.

LEMMA 5.12 (Aubin Lions). Let m < s. Suppose u,, is a sequence in L°°([0,T]; H*(R%)) such that

(1) wu, is uniformly bounded in L>([0,T]; H*(R%)),
(2) Oyuy, is uniformly bounded in L°°([0,T]; H™.(R?)).

Then uy, is strongly precompact in L> ([0, T); Hf. .(R%)) for any m <r < s.
We also recall a classical weak form of the Aubin Lions lemma, in the spirit of Kruzkov [41, Lemma 5].

LEMMA 5.13. Let Q be an open subset of RY and T >0, 1 < p < co. Assume that S is a bounded subset
of LP((0,T) x Q), such that

(1) S is locally LP-precompact in space, i.e. for any compact subset K C €,

T
(1.3) / / lu(t,z + h) —u(t,z)|P dedt — 0 as h — 0, uniformly for u € S.
0o JK

(2) For u € S, dyu is bounded in L>®((0,T);D'(Q)). This means that for any ¢ € C*(Q) and any
u € S, the map t — (Qzu, ) belongs to L>((0,T)) and

(1.4) [(Oru, ) |< Cyp, for a.e. t €(0,T) and all u € S,

where C, > 0 depends on the support of ¢ and a finite number of L norms of derivatives of ¢
(but not on u).

Then S is precompact in LY ((0,T) x Q).

loc
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PRrROOF. According to the Riesz-Fréchet-Kolmogorov criterion of precompactness in LP and taking into
account (1), we have to prove that for any compact sets L C (0,7) and K C ,

(1.5) / / lu(t + 7,2) — u(t, z)|P dedt — 0 as 7 — 0, uniformly for u € S.
LJK

For € > 0, define u. = p. *, u, where p. is a mollifier sequence in space. Then because of (i), u. — u can be
made arbitrary small in LP((0,7") x K) for £ small enough, uniformly for v € S. But for fixed ¢, because of
(ii), Orue is bounded in L>((0,T) x K), uniformly for u € S. It follows that ||u. (-4, ) —ue||Lr (Lx ) < Ce|T].
Decomposing

(1.6 U7, ) = (4 7, ) 7, ) e ) — ) (e — ),
we conclude that u(-+7,-) —u — 0 in LP(L x K) as 7 — 0, uniformly for u € S, i.e. (1.5) holds, and this
concludes the proof of the lemma. O

We review three convolution operator inequalities used in potential theory, beginning with Young’s
inequalities.
THEOREM 5.14 (Young’s inequality). Let 1 < p,q,r < co with 1 + % =

= % + %, Then for all f € LP(RY)
and g € LI(R?) the convolution f * g belongs to L™(R?) with
I1f * gl r ey < | fl| Lo ®ay 191 Lo (ray-

THEOREM 5.15 (weak Young’s inequality). Let 1 < p,q,r < oo with 1+ % = =+ Then for all
f € LP(RY) and g € MI(R?) the convolution f * g belongs to L™(R?) with
[1f =gl

We end with the following Theorem which gives a control on the potential of an integrable function.

1 1
P q’

Lr @) S |l e ey 911 ara (ray-

THEOREM 5.16 (Hardy Littlewood Sobolev inequality). Let 0 < o < d. Given a function u € L _(R%),
define the Riesz potential of u as

Iy (u)(z) := /]Rd |xf(yy|)d—“dy’ z € RY.

The integral is well defined provided v € LP(RY) with 1 < p < g. We have the following decay estimates on
I, (u):

Sub-critical case: Let 1 < p < q < oo and ¢ = dfip. Then

||Ia(u)HLq(Rd) < Ca,dp

Critical case: Forp=1 and q = ﬁ we have the weak estimate

|“||Lp(Rd) :

[ Za(w)[|ara@ay < Coa llull 1 ray -
We recall an interpolation theorem from [65] for nonlinear operators. Since most of the operators we
study will not be bounded on L', we define precisely what it means to be bounded from L' — M?!.
DEFINITION 5.17. Let T : LP(R?) — L4(R?) be an operator. We say that
o T is of type (p, q) if there exists A > 0 so that
ITfllLe@ay< Allfllo@ay, — Vf € LP(RY)
o T is of weak type (p,q) if there exists A > 0 such that for all « >0

Al fl] e @
(67

Li{z eRY:|Tf|> al) << )q, Vf e LP(R?).
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We remark that if T is of type (p,q) then it is of weak type (p,¢). In particular the latter is equivalent
to saying T is bounded from LP to M9?. We then have the following interpolation result.

THEOREM 5.18. Let 1 <1 < 00 and T : L*(R?) + L"(R%) — L°(R?) be a sub-additive mapping, meaning
that
T(f + g)@)|< T f(x)[+Tg(x)].
Suppose T is of weak type (1,1) with constant Ay and weak type (r,r) with constant A.. Then T is of type
(p,p) for all p € (1,7) with constant depending only on Ay, A, p,r.

6. Singular integrals

In this section we review some classical literature on the Calderén-Zygmund theory of singular integral
operators. These are operators on L? of the form

(1.7) Su(g) = K(€)

where K is a bounded multiplier, and u € L2 (R?). These comprise a class of convolution operators commuting
with translations that are bounded on L?. The operator S consists of a kernel K possessing a non-integrable
singularity at a finite point (the origin) as well as at infinity. The kernels also satisfy certain growth and
regularity conditions, but it is the local singularity at the origin and the cancellation condition that is its
most crucial characterization. It is important to note that in the representation formula (1.7), K is generally
not a function, and its Fourier transform is in the sense of distributions. An important result due to Stein
[65] states that if S is a translation invariant operator bounded on L?, then S is necessarily of the form

Su(x) = K *u(x),

for an appropriate tempered distribution K € S’(R?%), whose Fourier transform is bounded. Since there are
distributions arising neither from functions nor measures, writing (1.7) as a convolution should be understood
in the principal value sense, that is
(1.8) Su(x) = lim Lo yse K (2 — y)u(y)dy.

e—0 Rd
If K satisfies a local cancellation conditon (for instance that K is odd, if d = 1) then this limit exists in LP.
A fundamental property of singular kernels is that they extend via convolution to bounded operators on L?,
for 1 < p < co. This is not true for p = 1. However, a substitute result, namely a weak bound from L' into
M1 exists. The techniques for proving this weak-type result were initiated by Besicovitch and Titchmarsh in
the case of the one dimensional Hilbert transform, and were further developed by Calderén and Zygmund’s
treatment of the n-dimensional theory. The rest of the chapter will be devoted to the presentation of those
methods.

DEFINITION 6.1. We say that K is a singular kernel on R if
(1) K € 8'(RY) and K € L®(R%),
(2) Klga\{0y€ Ligo(R*\ {0}) and there exists a constant A > 0 such that

/|>2| \|K(x_y)_K($)|dx§A

for every y € R4,

We next give a sufficient cancellation, growth and regularity condition for kernels K € Ll (R%\ {0}) so
that the associated distribution is a singular kernel.

PROPOSITION 6.2. Consider a function K € L _(R?\ {0}) satisfying the following conditions:

loc
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(1) There exists a constant A > 0 such that
/ |K(z —y) — K(x)|de < A for every y € RY;
|z[>2]y]
(2) There exists a constant Ag > 0 such that
/ |z|| K (z)|de < AgR  for every R > 0;
je|<R
(8) There exists a constant Az > 0 such that

/ K(x)dx
Ri<z<R2

Then K can be extended to a tempered distribution on R® which is a singular kernel, unique up to a constant
times &y. Conversely, every singular kernel on R? has a restriction on R%\ {0} that satisfies the previous
three conditions.

< A for every 0 < Ry < Ry < 0.

We define the following particular class of singular kernels, satisfying conditions (1)-(3) above.

DEFINITION 6.3. A kernel K is a singular kernel of fundamental type in R¢ if the following properties
hold:

(1) Klga oy€ C*(R*\ {0}),
(2) There exists a constant Cy > 0 such that

C
(1.9) K@l<pm  weRN\{0},
(8) There exists a constant Cy > 0 such that
C
(1.10) VK (z)| < I:vlﬁ z e R4\ {0},

(4) There exists a constant A; > 0 such that

/ K(x)dx
Ri<|z|<R2

In particular, these conditions are sufficient to extend the function defined on R¢\ {0} to a singular
kernel K on R, unique up to addition of a multiple of a Dirac delta at the origin, and which satisfies the
estimates in Definition 6.1. Since K € L* (RY) we may consider the action of a singular kernel on L? in
Fourier variables. By a density argument one can extend this operator to L?, satisfying the same bounds.

(1.11) < A for every 0 < Ry < Ry < 00.

THEOREM 6.4. (Calderén Zygmund.) Let K be a singular kernel and define
Su=K*xu foruc L*(RY)
in the sense of multiplication in the Fourier variable. Then for every 1 < p < oo we have the strong estimate
(1.12) 1Sull Lo ey < Cap(A + ||K] o) [ul| Lozay, w € LP N L2 (RY),

and for p =1 the weak estimate

(1.13) 1Sulllass gy < Ca(A + 1K) lull 11 (may, u € L N L2 (RY).

One has in addition the rough estimates
cd
Cap < —, 1<p<2,
d,p > p— 1 p

Cap<cqp, 2 < p<oo.
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For a given singular kernel K, we will call the associated operator S defined in Theorem 6.5 a singular

integral operator on R%. S can be extended to the whole LP(R?) for any 1 < p < oo with values in LP(R?),
still satisfying the same estimate. We define then the Fréchet space R(R?) = Npen, 1<p<ooW™P(RY) and
its dual R'(R?) C S’'(R9). Since Theorem 6.4 implies all singular integral operators are bounded on R(R%),
by duality we can define the operator S also R/(R?) — R’(R%). In particular it enables us to define Su for
u € M(R?). The result Su is in R'(RY) C S'(R?).
For p = 1, S extends to the whole L!(R¢) with values in M!(R?), with the same estimate as in the theorem.
Since a function in M? is not generally integrable, and hence it cannot define a distribution, one cannot
identify the values of SPu as a distribution and SM "was an M function. For all u € L'(R?), the operator
SP LY R?Y) — S'(RY) is an extension of S and defines a tempered distribution via the formula

(1.14) (8Pu, ) = (u, S¢)
for every ¢ € S(R?). )
This is well defined, since for ¢ € S(R?), Sp € HI(R?) and which belongs to Co(R?) when ¢ > d/2.
SPy e 8'(R?) can likewise be defined for u € M(R?). Since K € L, and since (i, S¢)s s = (u, Sp)s/.s =
(u, K$)sr.s, (1.14) is equivalent to the definition in Fourier variables
SPu = Ki

in S'(RY).

PROOF OF THEOREM 6.4. Because of its significance for the kernels considered in this paper, we prove

Thereom 6.4 in the case when K is a singular kernel of fundamental type.
Step 1. S is of weak type (2,2). Since K € L™ it follows by Plancherel identity that for u € L' N L2

|[SullL2®ay < cl|ul| L2 (ray.-
S admits a unique extension to all of L?, where the above inequality still holds. By Chebyshev’s inequality
we get
£z € R : [Su(@)]> a} < (2/a?) /|u|2da;, Vu € L2(RY).
Rd
Step 2. S is of weak type (1,1). We seek a constant C' such that
Lz € R : [Su(z)]> a} < (/) /|u|da:, vu € L'(RY).
Rd

We fix a > 0 and apply a Calderén Zygmund decomposition on |u|. We decompose R? into closed cubes
{I;}32, with mutually disjoint interiors such that for each k,

{ a < f [ul< 2%,

lu|< a.e outside Uy Ij.

bk:<u—][ u) 17, and
Iy

1.15
( ) _ u, x ¢ Ukav
9= flk u, x € I}.

We set

By construction we get that g, by € L'(R?) and additionally the estimates

(1.16) spt (b)) C I, / be =0, ||bgl|z:(may< 2/ ul, > lbkll e ey < 2lJull Ly gy
Ik- Ik k
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Moreover, we have the decomposition in L*(R™):

u=g+5b
where b= )", bi. These have following properties:
(1.17) br(x) =0 Vo ¢ Uply,
(1.18) 9]l 1 may < [|ul| L1 ey
(1.19) gl Lo gy < 2%,
(1.20) LHURIx) < Zk:ﬁd(lk) < iuunLl(Rd).

Since Su = Su+ Y, Sby, it follows that
LYz e RY: [Su(z)|> o} < LMz € R |Sg(x)]> a/2} + Zﬁd{x € R |Sby(x)|> a/2}.
k

Step 3. We estimate Sg.

(121 lolBe= [ la@Pdet [ lo@)de
IQU)CI;C rEUg [
(1.22) < / alg(x)|dr + o’ LY (UL T})
Iguklk
(1.23) < (& + Dallul| g1 re).-

Applying step 1 to Sg we obtain
c
LYz e R [Sg(x)|> a} < -l ea).

Step 4. We estimate Sby. Let y; denote the center of the cube Ij. Since by are supported on Iy and have
zero average on Iy, for ¢ Uil we can write

(1.24) Sbi(x) = [ K(z —y)br(y)dy
Iy

(1.25) = [ 1K@ =)= Ko = wlbet)ds

k
For y € I, we have the estimate

1

(1.26) [K(z—y) = K(z—yi)| < / IVE(s(x —y) + (1= s)(@ — ye)lly — yelds

0

1 . .
cly — k| diam(Iy) diam(1)

1.27 </ ds <c¢g su — < .
127 T L P P L

In the last line one observes that the diameter of I is proportional to its distance from the complement of
Ul If x is a fixed point outside of U Iy, the distances {|z — y|} as y varies over I}, are all lower bounded
by 3|z — yx|. Hence from (1.16) we have

dlamI diam(1,
(1.28) |Sbi ()< y|5+1 / by < ca 7o (5L|u||p<Rd).

Thus it suffices to prove that
[ 1shu@lde < callulls oy,
¢Uk I
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Observe that (1.28) is indeed integrable at infinity. Using polar coordinates centered at y; one has

diam (7,
(1.29) /¢ |Sbi.(2)|dz < cqllull 1 (ra) L
@ U I

T dz < cqllul| L1 (ray-
|z—yp|>2diam (1))

It follows from a layer cake decomposition that for every a > 0
2c
LYz ¢ Uply, : |Sbi(z)|> a/2} < Fd||u||L1(Rd).
Combining this with step 3 and the fact that
1
LYUgIy) < EHUHU(R%

we obtain that S is of weak type (1,1).

Step 5.(The L? inequalities.) For 1 < p < 2, we verify the hypothesis of the interpolation Theorem
5.18 with r = 2. S is linear and well-defined on L!(R?) + L?(R?) by the preceding arguments. It is of weak
type (1,1) and of weak type (2,2) with bounds depending only on ||K||os and d. Thus for every u € LP(R%),
1<p<?,

(1.30) [[SullLr@ay< Apllul| e (ray,

where A, depends only on ||K||s,p and d.
For 2 < p < 0o, we use the duality between LP and L? for % + % =1. Let u € LP(R?%). Then it follows from

(1.30) that we can estimate
/ (Su)gdx
geLr’ Rd

sup {/ u(Sg)dz
geLy’ R4

[lull Lo ray sup {11SgllLe @ay: 9]l e may< 1}
geLr’

o [P—— { 1ol gy < 1}

Nlow o= 1]

IN

< Cpllul| e (way-
O

We remark that condition (1) in Proposition 6.2 ensures (1.24) is immediately integrable outside the
union of cubes I;,. One has

[ Ke-p-Ke-wlde< [ K@) - K@do < A

z@ (Ui li)e |z|>2]y|

(1) is historically [65] the regularity condition assumed for a singular kernel. It is implied by a Holder
regularity on K as well as by (3) in Definition (6.3). However, using the decay of VK outside of the origin
gives a better picture of the Calderén Zygmund geometry outside of the singular set Upl. For a proof of
the optimal constants Cq p, see [65].

The range of p in Theorem 6.4 is sharp, since the operator S is not bounded on L*°. However, if the function
u has an additional Hélder regularity, one has the following interpolation estimate.

LEMMA 6.5. Let S be the operator defined in Theorem 6./. Let u € C*(RY) for some o € (0,1) be
supported in some ball of radius R > 0. Then for every € > 0 there exists a constant ¢ > 0 independent of
R, u, such that

|[Sul| o (mey < € [[|ull oo raye® + max(1,log(R/e))|u]| Lo may ] ,
and
[[Sullcamay < f|ul] g (ray-
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We recall also an interpolation lemma for singular integrals which states a necessary condition for an
L?-bounded operator to be bounded on L' — M?!. From the proof of Theorem 6.4 we see that Sg is bounded
on L?, and outside of U Iy, Sby(x) has a decay rate which is integrable at infinity. This combined with an
a priori estimate on the size of Uil allows one to prove via the Calderén Zygmund decomposition that Su
is bounded in M. This suggests that a sufficient condition for a general operator T' to be bounded from
L' — M is that for = out of the support of some suitable function u, Tu decays sufficiently fast at infinity,
so that its integral outside of the support of u is proportional to the L' norm of u.

LEMMA 6.6. Let Ty : L? — L? be a nonlinear operator satisfying
(1) Ty (u) <0 for every u € L*(R?);
(2) Ty (u+v) < Ty(u) + Ty (v) for every u,v € L2(RY);
(3) Ty(Mu) = |NTy(u) for every u € L*(R?) and A € R;
(4) There exists a constant Py > 0 such that
[T ()]l 2 ray < Palful] L2 (may

for every u € L?(R%); -
(5) There exists a constant Py > 0 such that if u € L*(R?) satisfies sptu C Br(zo) for some x¢ €
RY R >0, and [p,u =0, then

[ Tetwde < Pl s,
lz—x0|>2R
Then there exists a constant Cy, depending only on dimension d, such that for every u € L*(R%) N L2(RY),
T4 ()] gay < Ca(Pr+ Po)l[ul] 1 ga).-

PROOF. Step 1. We apply the Calderén Zygmund decomposition. Let o > 0. For any u € L*(R%) N
LY(R%), we decompose R? into closed cubes {1} }$°, with disjoint interiors such that for each k,

a < f, [ul< 2%,

lu|< a a.e outside Uy I}.
Let by, and g be defined as in (1.15). Let By = By, (yr) be a ball containing Ij, centered at yj, such that for
some c¢g we have

[,N(Bk) S Cd[,d(.[k).
Set
Vie = Bar, (Yk), V = UpVi.
It follows that
1
(1.31) LAV < L Vi) <> 2Nen L4I) < zdcdauuny(w).
k k

Since spt (by) C By and [, by = 0, we have from assumption (5) that

(1.32) [ e < Pillus o,
R\ V,

Step 2. Fix m € N. By subadditivity of T},

(1.33) Ty <9 + i%) <Ti(9)+ iT-‘r(bk)'

k=1 k=1
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Then by (1.16) and (1.32) we get

(1.34) Zm: T (bx)
k=1

< ZlekaLl(Rd)S 2P| |ul| 1 (ray-
LY(R4\V) k=1
Since from (1.17) we have

1/2
l19]] 2 re) < (QdOZHUHLl(Rd))

)

it follows that

1/2
(1.35) T4 ()| 22y < P (2% |ul| 1 ray) "
Using (1.31), (1.34), (1.32), and (1.35) we can estimate for every A > 0 the superlevels

L£? <{x ceRY: T, <g+§bk> (z) > A})

<l ({x eR?: T (g9)(x) > 2}) + £ ({x eV: ZT+(bk)($) > ;})
k=1
(1.36) + £ ({x ¢V iT+(bk)(x) > ;‘})

k=1
1
N2

< P222da||u\|L1(RN)+[,d(V) + 2P1||“HL1(]R"')

1
(A/2)?
< [a2d+2p22 + l2dCd + 14P1:| HU”LI(Rd .
=2 a ) )
Since by definition of by, we have

> bk < [ul+lgle LAR),
k=1
we deduce by Dominated Convergence that

g+Zbk—>g+Zbk:u, m — oo, in L*(RY).
k=1 k=1

But this clearly implies that

k=1
in L2(R%). Up to a subsequence, (1.37) holds pointwise a.e. in R?, so by Fatou’s lemma
a

(1.38) L:{z € RT: Ty (u)(z) > A}) < [/\2

1 1

2d+2P22 =+ 72dcd =+ 4P1] ||u||L1(Rd).
@ A

Optimizing in « gives

(139) L’N({x € Rd : T+(u)(a:) > /\}) < % [2d+2\/ap2 + 4P1] Hu||L1(Rd).



CHAPTER 2

The transport equation in the Sobolev setting

We describe the classical well-posedness problem of the Cauchy problem for the transport equation
Ou+b-Vu=0, (t,x) € I x RY,

where I C R is an interval of times, and when b(¢,z) is not Lipschitz but rather has Sobolev or BV
regularity. For this reason we will describe a weak formulation of the equation in the distributional sense.
If u € L>®(I x R?) and b has locally summable divergence, then we can give a distributional meaning to the
terms Jyu and b - Vu, with

(2.1) (b-Vu,p) = —(bu, Vo) — (udivd, ¢),

for every ¢ € C>([0,T] x R%). We present a computation in order to formalize the idea of renormal-
ized solutions, which gives a fundamental characterization of the chain rule outside of the smooth setting.
The theory of DiPerna and Lions links this renormalization property inherently with well-posedness of the
transport equation. We present the weak formulation of the equation under the assumption that b and its
divergence are locally integrable.

A strategy for uniqueness. We present an exploratory computation motivating the concept of renor-
malization, to show uniqueness for the Cauchy problem

Opu(t, z) + b(t, ) - Vu(t,z) =0

u(0,z) = u%(z).
We neglect for the moment any regularity assumptions on b, and proceed with a formal argument. Let b be

a divergence free vector field. Multiplying (2.2) by 2u, we obtain
Step 1.) 2udyu 4 2ub - Vu = 0,

(2.2)

which we re write as
Step 2.) o +b-Vu? =0.
Integrating on R? for fixed time ¢ € [0, 7] and using the fact that divb = 0 we get

d
Step 3.) —/ u(t, r)*dx = —/ div (b(t, x)u(t, z)*)dx = 0,
dt Rd Rd
which implies that the L?(R?) norm of u is conserved:

d
Step 4.) %”u(ta Nl L2 ®ay= 0.

This implies that if the initial data is u° = 0, the only solution is v = 0, which is clearly necessary and
sufficient for uniqueness. However, this formal argument fails in a weaker setting. Since solutions of (2.2)
are not smooth in general, application of the chain rule in step 2 is not justified. The second issue to deduce
from step 4 that [|u(t,-)||;2(re)= 0 when the initial datum in the formulation of (2.2) is meant in a weaker,
distributional sense. We require that

lu(t, ) 2@ay—= |[u°]| L2y, t—0,

25
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but this is equivalent to a strong continuity property of the solution that does not follow from the weak
formulation.

7. Weak solutions

Let b be a vector field belonging to Li ([0, T] x R%) such that divb € L _([0,T] x R%), and let u° €

loc loc

L%OC(Rd)'
DEFINITION 7.1. Given T > 0, we say that a function u € L2 ([0, T];R?) is a weak solution in [0,T] of
(2.2) if the following identity holds for all p € C°([0,T) x R%):
T
(2.3) / / u(t, )[Orp(t, ) + @(t, z) divb(t, ) + b(t, z) - V(t, z)]dedt = —/ u®(2)¢(0, z)dz.
0 R Rd

Observe that the local boundedness assumption on u implies that d;u has meaning as a distribution, and
the weak formulation is consistent with smooth solutions to (2.2), as can be seen by multiplying (2.2) with
test functions ¢ € C2°([0,T) x R?) and integrating over [0,7] x R%. In order to recover the initial datum
u® from a weak solution u, we come to the notion of weak continuity of weak solutions. Let u be a weak
solution to (2.2). If we consider the weak form (2.3) for u by testing against tensor products of functions
o(t)¢p(z) with p € C1((0,T)) and ¢ € CL(R?) then we get

(2.4) pn u(t, x)op(x)de = / u(t, z)[p(x)divb(t, ) + b(t, z) - Vo(z)]dx, in D'([0,T]).

R4 R4
If we consider functions ¢ € C!}(R?) with spt ¢ € Bg, then we obtain the following estimate:

d
(25) G [ utt.2)o@ds| < [lollor e Valo),
Rd
where Vz(t) is the function belonging to L!([0,T]) given by
(2.6) Vr(t) = ||u||oo/ (Idiv b(t, z)|+[b(t, z)|)dz.
Br

This in turn implies

t
(2.1 [ tt.) = uls.a) o)z < llollorges [ Vilr)ar

S
for every ¢ € C(Bg) and almost every s,t € [0,T]. Thus u(t,-) can be extended uniquely to a continuous
function ug(t,-) € [CL(BRr)]’. Repeating this argument for R € N and since u € L*([0, T] x R%) we get that
(t,-) is continuous in [L'(R?)]’. We thus have the following.

LEMMA 7.2. (Weak continuity in time.) The map t — u(t,-) is weakly—* continuous from [0,T) into
L>(RY).

We remark that the assumption ¢ — wu(t, ) is weakly—+ continuous (up to a modification on a negligible
set of times) in the L>°(R?) topology is a reasonable one, in order to define the weak solution u(t,-) at the
endpoints of [0, 7] and give a sense to the initial datum u°. In general, one cannot expect strong continuity
of the solution with respect to time.

7.1. Existence of weak solutions. Since (2.2) is a linear equation, existence of weak solutions is
trivial: a smooth approximation of the vector field allows passage to the limit.

THEOREM 7.3. (Eristence.) Let b € L°°([0,T] x R%) with divb € LL _([0,T] x R?) and let u® € L>=(RY).
Then there exists a weak solution u € L>=([0,T] x R?) to (2.2).
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PROOF. Let p. € C°(RY) be the standard mollifier and let 7. € C°(R*!) be a mollifier on RI*!,
Denote by u§ = u® * p. and b. = b n.. Since b. is smooth, there is a solution u. uniquely determined by
the u? to the equation

8tu + bg -Vu=0
u(0,-) = u?.

Clearly u. is uniformly bounded in L>([0,7] x R?%), so up to a subsequence we have that u. is weakly—x

convergent to a limit u in L°°([0, T] x R?). Passing to the limit as ¢ — 0 in the weak formulation (7.1) shows

that u is a weak solution.
O

8. Renormalization

With weak solutions of low regularity, the application of the chain rule in order to write
du? = 2udu, Vu? = 2uVu,

is not justified. We begin the next discussion with a remark. Let b be a Lipschitz vector field. Then the
smooth solution to (2.2) u € C1([0, 7] x R?) satisfies for any 8 € C}(R),

(2.8) OB(u) +b-VB(u) = B (u)[0u+b- Vu).

This implies that 3(u) is a smooth solution with initial datum S(u®). We now define a class of weak solutions
which satisfy such a rule, in the sense of distributions. Only the integrability in time (and not the regularity)
of b does plays a role, so we will denote by I C R a generic (and possibly infinite) interval of times.

DEFINITION 8.1. (Renormalized solutions.) Let b € L*(I; LL (R%)) be such that divb € L'(I; Ll (R?)).
Let u € L®(I x R?) be a weak solution of the transport equation with initial datum u®. Then u is a

renormalized solution if

OB(u) +b-VB(u) =0
29 { Bu(0,)) = B(u)

holds in the sense of distributions for every bounded function B € CY(R), where the distribution b - Vu is
defined according (2.1).

We say that b has the renormalization property if every bounded solution of the transport equation
with vector field b is a renormalized solution. It turns out that this property is intrinsically tied to the well-
posednesss problem: renormalization implies well-posedness. Under certain incompressibility assumptions
(such as divb € L*) renormalization also implies stability of solutions and thereby existence of solutions by
approximation. DiPerna and Lions proved that all distributional solutions are renormalized when there is
Sobolev regularity of the space variables.

THEOREM 8.2. Let b: [0,T] x R? — R? be a bounded vector field such that divb € L*([0,T]; L>=(R%)). If
b has the renormalization property, then bounded solutions of (2.2) are unique. Moreover, if b, and u® are
smooth and uniformly bounded approzimations such that b, — b and u® — u® strongly in LL (R9), then the

loc
solutions w, associated to b, with initial data u®, converge strongly in Li _(R?) to the solution u associated
to b.

PROOF. By linearity it suffices to show that the only bounded solution to
Ou+b-Vu=0
u(0,-) =0

is u = 0. Since b has the renormalization property, we have the additional information

in D'([0,T] x RY)
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Bw)(0.) = 0 (2.10) in D'([0,T] x RY),

for any bounded 8 € C'(R). Fix R > 0 and > 0 and let ¢ € C°([0,T) x R?) such that ¢ = 1 on
[0,T — 7] x Br(0) with the property

(2.11) o(t,x) < —[[blloc|VE(t, 2)]
on [0,T] x R. Let 3 € C*(R) be positive and define
fi) = y Blu(t,z))o(t, x)dx.

By (2.10), f(0) = 0. Let ¢ € C.([0,T)) be a positive test function. Then we can estimate the distributional
derivative < f(t) by testing (2.10) against o (t)¢(t, z):

T
- / ) (D)t

{ 0iB(u) + b VA(u) =0

T T
:/ B(U(t,x))ﬂt)[@m(t,x)+b(t,x)~V¢>(t,x)]dxdt+/ F@)divd(t, x)p(t)dt
0 R4 0

T
< / FO)I1div b(t, ) |owip(t)dt.

Observe that the first integral in the second line is negative from the choice of ¢ in (2.11). Thus

LF0) < 11divb(e, () in D(0,7]).

Since divb € L([0,T]; L*°(R%)), Gronwall’s inequality yields that f(t) = 0 for all t € [0,T]. By varying
¢(t,z) we deduce that S(u(t,-)) = 0 for every t € [0,T] and every admissible § and hence u(t,-) = 0 for
every t € [0, 7.

It is clear that up to a subsequence, u,, is weakly—* compact in L>([0,7] x R?) and the limit u is a
weak solution. Since this solution must be unique, the whole sequence converges to u. Since b, is smooth,
it has the renormalization property, therefore u2 is a solution of (2.2) with initial datum (u2)2. But then
u2 converges in L>([0,T] x R?) — w* to a unique solution with initial data (u°)2?. By the renormalization

property, this solution must be u2. Since both wu,, and u? converge in L>([0,T] x R?) — wx to u and u?
respectively, we deduce by Radon-Riesz theorem that u,, converges to u strongly in Llloc([O, T] x R%). (|

We now come to the seminal result of DiPerna and Lions, in which it is proven that every vector field
with Sobolev regularity has the renormalization property. We present the regularization argument (which
uses a radial convolution kernel) and exploits the Sobolev regularity of b in the term b - Vu.

THEOREM 8.3. Let b € L (I; Wlicl (RY)) and let u € LS (I x RY) be a weak solution of the transport

loc loc
equation. Then u is a renormalized solution.

PRrOOF. We fix an even convolution kernel p. € C°(R9). Denote by u. = u * p.. We convolve the
transport equation, and note that we have a commutator term r. when convolving with the term b - Vu:

(2.12) O +b-Vue =b-Vue — (b- Vu) x p; :=re.
By smoothness of u. w.r.t. @, we have from the PDE that d;u. € Li,_, therefore for every fixed € > 0, u.
belongs to VVli)Cl (I x R%). Thus we can apply Stampacchia’s Chain rule for Sobolev spaces [64], to get

(213) B (ue)re = & () +b- VB(ue).



8. RENORMALIZATION 29

When ¢ — 0 convergence in the distributional sense of all terms in the right hand side above to (2.9) is
trivial. On the other hand, ’(u.) is locally equibounded, and from the identity (2.1) it follows that r.
converges to zero distributionally. In order to ensure distributional convergence of the product f'(uc)r. we
would like that 7. — 0 in L{ _(RY). Tt was proven by DiPerna and Lions that this is indeed the case, and
this is where the Sobolev regularity becomes essential.

PROPOSITION 8.4. (Strong convergence of the commutator.) If u € LS.(I x RY) and b is a bounded

loc
vector field belonging to b € Li (I; Wl’l(Rd)), then . — 0 strongly in Li (I x R%).

loc loc loc

PROOF. From the definition of b - Vu and the convolution of a distribution with a smooth function, we
have

(2.14) re(t,x) = / u(t, 2)(b(t, z) — b(t,x)) - Vpe(x — 2)dz — (udiv b) * p(x).
Rd
Changing variables z — x — ey we can write
b(t,x — —b(t
(2.15) re(t, ) :/ u(t,xfay)( (t, —ey) = bit, z)
R4 e

Next we use the continuity of translations in L and the strong convergence of difference quotients (a property
which indeed characterizes Sobolev functions.) For any f € VVll’l(Rd),

(2.16) lim £ F22) = f()

e—0 S

- Vp(y)dy — (udivd) * pe ().

= Df(x):  in L, (RY).

Thus we obtain that r. converges strongly in Ll (I x R?) to

—u(t,x) /]Rd (Db(t, z)y) - Vp(y)dy — u(t, z)div b(t, z).

The elementary identity

dp
Yim—(y)dy = —d;;
/. ) ]
shows this limit is 0. O

REMARK 8.5. We remark here that the last line of the proof can be neglected: since r. tends distribu-
tionally to zero, the point of the proof of Proposition 8.4 is the strength of the convergence.

The renormalization strategy of Theorem 8.3 has become an important technique to proving well-
posedness of the transport equation. Since the Sobolev regularity of b only enters in the last step (2.16) of
the commutator proposition, the general argument may be applied to a weaker regularity setting involving a
distributional derivative. Indeed the renormalization property was proved for vector fields of bounded vari-
ation in [5]." The main difference is that here Db = D + D?®b, where D% and D*b denote the absolutely
continuous and singular part of Db respectively. The difference quotient (2.16) does not converge strongly
in L{ . due to the part of the derivative which is the singular part of the measure. One has instead

b(t,x —ey) — b(t, x)

=bl,(t,x) + b2, (t x),
where
b;y(t, x) — D(t, x)y, strongly in L%OC(Rd),

: 2 d
hmsup/ bz, (t, ) |dx < |D*b(t, -)y|(K) VK € R°.
e—0 K

IThe renormalization scheme has been used in various other regularity settings, for instance with vector fields such that the
symmetric part of the derivative is absolutely continuous w.r.t £¢ [20], and for special vector fields with bounded deformation

[6]-
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Thus the commutator r. corresponds to two integrals, the first involving b;y(t,x), and the other with
bay(t,m). Under suitable bounds on the divergence, the first part converges strongly in LlloC as in the
previous proof. It is however the error term in the commutator involving the singular part of the derivative
that is more complex. This relies on an anisotropic regularization procedure on the derivative of b to control
the error term. This leads to the following theorem, which we state without proof.

THEOREM 8.6 (Ambrosio). Let b be a bounded vector field in L _(I; BV (R?)), such that divb €
LY((0,7); LY(RY)). Then b has the renormalization propertsy.



CHAPTER 3

The Euler equation

The incompressible Euler equations for the motion of an inviscid fluid are given by

Ow+divivev)+Vp=0
(3.1) v(0,) = °(a),

diveo =0
where v(t, x) is the velocity vector representing the speed of a particle at position = and time ¢, and p(¢, x)
is the pressure. We consider the two-dimensional setting. The incompressible Euler equations may be re-

written as the transport equation for the scalar vorticity w, advected by the velocity v, where the coupling
is given by

(3.2) w = curl v.
This gives the vorticity formulation
(3.3) Ow + div(zw) =0
w(0,) = w(x).
The coupling (3.2) can written via the Biot-Savart law as the convolution
1 [(z—y)
(3.4) i) = 5= [ Sty = K s (ta),
R2
where we denote by K(z) = %ﬁ = (%, ﬁﬁ) the Biot-Savart kernel. We remark that K € LY (R?) for

p<2and K € LY(R?\ B1(0)) for ¢ > 2, so in order for (3.4) to converge absolutely one would require that
we LF' (R2) N LY (R2) for p/ > 2 and ¢/ < 2, for all times. Alternatively, for vorticities in L? with p > 2, the
velocity is bounded.

In this chapter we begin with the smooth setting with a formulation of (3.3) as an integrodifferential equa-
tion, so that the study of smooth solutions reduces to the study of an ODE. We discuss the formulations of
weak solutions when all terms in (3.1)-(3.3) make sense in the integral formulation, and study the classical
existence proofs of solutions associated to vorticities in L' N L>°, L' N LP for p > 1, and finally for vortex
sheet initial data, which are measure vorticities belonging to H~1(R?). Because the velocity field is coupled
with the vorticity via (3.2), it is recovered from the vorticity via the nonlocal operator K. This gives a
regularity on v which is no more than WP for p < oo, with an extension to p = oo only if the vorticity
has an additional Holder regularity and compact support. We begin by summarizing the regularity and
integrability properties of v.

Regularity of the velocity field. We summarize some estimates for the vector field v given by (3.4).
The Biot Savart kernel K belongs to L%OC(Rz) and has a distributional derivative given by the following
singular kernel.
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(I) For 7,5 = 1,2, we have

: 1 —T2 X1
. K () =0p, — | —=, —5 | -
(39 on ) =05 (T ),
The Fourier transform of (3.5) is bounded and is given by
; 1 _52 51 2
3.6 Oz, KU(§) = 5=&; (,) € L*°(R?).
( ) : ( ) ot J |£‘2 |€|2 ; ( )

This kernel satisfies the conditions of definition (6.3), thus its associated singular integral operator
has an extension on L? for 1 < p < oo. For p = 1 the kernel 0, K ¢ defines a tempered distribution
Si € §'(R?) via the formula

(3.7) (Sju. ) = (u,Sjp) Vo € S(R?),
where S is the singular integral operator associated to the kernel 0, K {(—x). Thus for 4,5 = 1,2,
we have

(3.8) (Du(t,x))i; = 05,0 (t, ) = S;:w(t,x) in §’((0,T) x R?),

where S]i. is the singular integral operator associated to the kernels 9, ; K i applied to the function
w. The Calderén Zygmund estimate from 6.4 gives the bound

Dol Lo (0,1):L7®2) < CpllwnllLee(0.1):Lr®2)), V1 <p < o0
An elementary computation shows that
(IT) div v(t,z) =0 in D'((0,T) x R?).
(ITI) Vorticities bounded in L>°([0,T]; LP(R?)) for any 1 < p < oo are associated to velocities bounded
in L>°([0, T); L' (R?)) + L*°([0, T]; L>°(R?)). Indeed the weak Hardy Littlewood Sobolev inequality

gives the following estimate for any 1 < p < 2 and ¢ = 2%):

(3.9) [0l o= (0,):Lar2)) < €llwllLo 0,1y Lr (B2)),
with the weak estimate for p = 1:

(3.10) 1101l os ((0,1):002w2)) < €l Loe (0,711 2)) -

(3.9) and (3.10) imply in particular the embedding v(¢,z) € LY

loc

((0,T) x R?) for any 1 < p < 2.

REMARK 8.7. One generally can assume leOC integrability of smooth solutions to (3.1), as can be shown by
the following energy estimate. If v belongs to C1([0,T) x R?) and solves (3.1) with initial datum v° € L?(R?),
then we can multiply (3.1) by v, use the Chain Rule and integrate, to obtain

(3.11) %%/w(t,x)\?dx _ —/[((U-V)v) o)t x)dx.
R2

R2
Integrating the right side by parts, we get the conservation of energy:

(3.12) /|v(t,x)\2dx _ /|v(0,x)|2dx,
R? RQ

for allt > 0. Hence, sufficiently smooth solutions of (3.1) conserve the energy. One might wonder if the L?
norms of the vorticity are also conserved. It turns out that in two dimensions this is indeed the case, when
the initial datum is smooth. The nature of smooth solutions to (3.3) will be discussed in the next section.
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9. Smooth solutions

Global in time existence of smooth solutions is known for two dimensions. A celebrated result by Beale-
Kato-Majda roughly states that if the vorticity remains bounded in space and integrable for all times, i.e.

the quantity
T
RS

is finite for every T', then the flow associated to the velocity field (and hence the solution) exists globally
in time. One immediate consequence of this is that the 2D Euler equation has global in time existence of
smooth solutions: the vorticty is conserved along particle trajectories: ||w(t,-)||co< ||w°||o0, and hence does
not become unbounded. In this chapter we will restrict ourselves to the study in two dimensions.

We summarize the theory in the classical setting, first by recalling the formulation of the Euler equations as
an integrodifferential equation involving particle trajectories. For a given smooth velocity field v(s, z), and
for any s € [t, T the fluid particle trajectories X (s,t,2) € C1([0,T] x [0,T] x R?) satisfy

(3.13) %(s,t,x) — (s, X(s,7),  X(bta) =,

where v is given by the convolution in (3.4). Note that due to the incompressibility condition the maps
X(s,t,-) are volume-preserving. They satisfy the group property

X(rt,X(t,s,z)) = X(r,s,x)

and in particular X (s,t, X (t,s,2)) = x, so that X 1(s,t,-) = X(t,s,-). We will consider s € [0,7T] instead
of s € [t,T]. The theory of characteristics implies that the vorticity is transported according to the following
classical formula.

LEMMA 9.1 (Vorticity transport in 2D). Let X (s,t,x) be the smooth particle trajectories corresponding
to a smooth divergence-free velocity field v(s,x). Then the vorticity w = curlv solving (3.3) is given by

w(t,z) =’ (X(s =0,1, x)), for all t € 10,T7.
We may write this as
w(t,z) = (X1t x)),
or equivalently
w(t, X (t,r)) = W’ (z).
In particular, the vorticity w is conserved along particle trajectories.

REMARK 9.2. The divergence free condition ensures that the trajectory X (t,x) is measure preserving, so
that ||w(t, )| e ®2)= ||w°||Lr(r2) for any 1 < p < oo.

REMARK 9.3. Let L = ||v||o denote the Lipschitz constant of the map t — X(t,z) € C*(R;R?). If
W € CH(R?), then using the fact that

|X(t,z) — Id|< Lt, Ve eR? ¢t >0
we deduce that w(t,-) € CL(R?) for any t > 0, with
sptw(t, ) C sptw® + Bry.
In other words, the vorticity is transported with finite speed. Equivalently, for any time T > 0 and radius R

there exist R > 0 such that
sup / lw(t, z)|dx = / |w° (x)|dz.
te[0,T]J Br Bry,
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Lemma 9.1 allows us to re-write (3.13) with a change of variable y — X (¢,y) so that

(3.14) v(s,x) = . Kz — X (s,t,9))w’(y)dy

and

Cff; s, t, ) f K(X(s,t,z) — X(s,t,))w’(y)dy,

(3.15)
X(t,t,0) =

Observe that any solution to (3.15) defines a velocity by (3.14) and a vorticity according to Lemma 9.1. For
sufficiently smooth solutions, it turns out that the particle-trajectory formulation is equivalent to the Euler
equation (3.3).

PROPOSITION 9.4. Let v°(x) be a smooth velocity field satisfying divv® = 0 and let w® = curlv®. Suppose
that X € C*([0,T] x R?) is a solution to (3.15) on some time interval [0, T]. Let v be the associated velocity
field given by (3.14). Then the integrodifferential equation (3.15) is equivalent to the 2D Euler equation (3.3)
for sufficiently smooth solutions (w,v) € C*([0,T]; C.(R?)) x C1([0,T] x R?).

REMARK 9.5. Proposition 9.4 gives a necessary and sufficient reduction from (3.3) to the ODE in (3.15),
since it dictates that sufficiently reqular solutions are associated to flows. This equivalence simplifies the proof
of local in time existence of (3.3), since one can construct a solution to (3.3) assuming that nonlinear operator
on the right hand side of (3.15) satisfies a Lipschitz property. One might ask if Propostion 9.4 holds for a
weaker class of solutions with less reqularity. In the following section we will introduce several formulations
of weak solution show that this need not be the case.

We now define smooth solutions to (3.3) with the coupling given by the Biot Savart law.

DEFINITION 9.6. Let (w°,0°) € C.(R?) x C1(R?) with w® = curlv®. We say the couple (w,v) is a smooth
solution to (3.3) in [0,T) with initial data (w°,v°), if
(1) (w,v) € CH([0,T); Cc(R?)) x CH([0,T) x R?),

(2) curlv = w,
(3) for allt €10,T),
(3.16) w(t,z) = (X(s =0,t, 1:)), for all t € [0,T7,

where X (s,t,x) € C1([0,T)? x R?) is a solution to (3.15).
We now state the necessary and sufficient criterion for smooth solutions to (3.15) to exist for all time.

THEOREM 9.7 (Beale-Kato-Majda). Let N = 2 or 3. Let w® = curlv® be a compactly supported initial
vorticity, with dive® = 0 and w® € CO*(RYN) for some a € (0,1). Let w(t,-) be a local in time smooth
solution to the Euler equation. Suppose that for any T > 0 there exists M such that

/ HUJ |Loo(]RN)dt < M.

Then the corresponding particle trajectory X (t, z) belongs to C*([0,00) x RY), i.e. the solution exists globally
m time.

We remark that this criterion implies global existence immediately two dimensions. This is because a
vorticity associated to an L initial datum cannot become unbounded. Theorem (9.7) implies a continuation
criterion for construction of a smooth solution to the ODE (3.15): a solution can be continued for as long
as all quantities depending on ||w(t, -)||oo Temain bounded. Thus we have the following.
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THEOREM 9.8 (Global existence of smooth solutions). Suppose that (w°,v°) is a compactly supported
datum with w° = curlv?, dive® = 0, and w® € C%*(R?) for some a € (0,1). Then there exists a unique
volume-preserving particle trajectory X (t,x) € C1([0,00) x R?) solving (3.15), and hence a unique smooth
solution (w,v) to (3.3).

REMARK 9.9. To obtain a global smooth solution we require an additional Holder regularity on the
vorticity at initial time: it follows from (3.16) that the smooth solution inherits the C%% regularity of w° at
later times. For initial data W° belonging to CL(R?), the smoothness persists.

PROOF OF THEOREM 9.8. We outline the proof which can be found for instance in [12]. Let R > 0 be
such that sptw® C Bp. We verify that under the assumptions of the theorem, the right hand side of (3.15)
is bounded and locally Lipschitz. Define for the purpose of this proof the modified Holder norm

Lfllcre @2y = [FO)+VafllLe @) +[Vaflla
where we denote by ||-]|, the seminorm

fz) = fly
Mflla=  sup  HADZIWL
z,yER2 x#y |x - y|
Let
FX(syti0)) = [ KO (s0ti) = X (o)) ()
R2
Observe that F' depends only on X(s,t,2) and not s and X(s,t,x) separately. Then it remains to prove
that the autonomous operator F': Orp — B is bounded and Lipschitz, where
B={X :R*-R?: [ X()|lcr«< oo},

and O C B denotes the open set

1
Or = {X € B:infdet Vo X() > 5. [|X()llera< R} .

Local existence and uniqueness of a particle trajectory solution to (3.15) follows from Picard Lindel6f (The-
orem 4.1). We remark on the technical assumptions on Or and B. B is a Banach algebra consisting of
functions on R? with Hélder continuous gradient. The condition det V,X(-) > 3 ensures that the locally
invertible mappings in O are invertible on R? and allow the change of variable x — X ~!(z). For any
X € Og, we have the following inequalities:

(V2 X) " Ha< el VL X[3,
(3.17) X lere@n < el X|Ign.ag), and
[lw” 0 X7 Hla < ellw®llal X IIE o ge)-
After a change of variable we can write
FoX(x)= FoX_l(aJ)7

where

F(z) = | K@ =)l (X (1)) det Vo X (y)ldy.
Applying Lemma 6.5 with € = 1 and from the estimates in (3.17) it follows that F' is bounded on Og, since
(3.18) [Va[EFo X |lo <ef|[w o X det Vo X 1()]|a

< o(R, R)||w’[a-
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Lipschitz continuity of F' on (Og, ||-/|c1.«) follows from a similar estimate. Let X, X € Og. Indeed the
Holder continuity of X and X implies that for any z € R,
d _

P (@) + 2 X@)]co= [ K(X(&) = XV X W) w) dy

RQ
+ [ (VKX (@) = X)X (@) = XV X (1)) ds

Observe that the last integral is well defined, since by changing variable one verifies the singularity of the
kernel VK is cancelled by the Holder regularity of X. The two terms can then be estimated in the same
way as (3.18). This eventually gives

[(VaF)(X) - X|eno ez < e(By R)60 ol X lena e,

so that V,F is a bounded linear operator on Og. Thus the ODE (3.15) has a unique solution X (t,z) €
C1([0,Tr); Or) for every R > 0, and hence a smooth solution (w,v) in [0, Tg). Applying Lemma 9.1 gives
that

T T
/0 [w(#; )| Lo 2y dt = /o [|w?]| Lo 2 dt,
and by Theorem 9.7 the solution is global. 0

10. Weak solutions

It is often the case in the physical setting that v,w and p are not differentiable, so we need to consider
the weak formulation.

DEFINITION 10.1. Let v° € L2 _(R?). We say that v € L>([0,T]; L2 .(R?)) is a weak solution of the

loc loc

Euler velocity formulation (3.1) with initial datum v° if for all ¢ € CL([0,T] x R?) with div ¢ = 0 there holds

T

(3.19) / /(pt v+ Vo :v@udzdt + /ga(&x)vo(x)dx =0,
0 g R2

and v is divergence free in the sense of distributions.

We also consider a vorticity formulation that makes sense when vorticities are discontinuous but have
sufficient integrability. If we consider test functions of the form ¢ = —V<¢, one should in principle recover
the weak formulation for (3.3) via the coupling (3.2). However, observe that if v € LP with p > 1, Calderén
Zygmund theory discussed in section 6.1 and Sobolev embedding give that v € L?/(2=P)In order for the
product vw to have well-defined local integral, one would require that w € LP for p > %. This leads us to
the second weak formulation for the vorticity.

DEFINITION 10.2. Let p > 4/3. Given w® € L*(R?) N LP(R?), we say (v,w) is a weak solution to the
vorticity formulation on [0,T] with initial datum w°(z) if
(1) w e L([0, T); L' (R?) 0 LP(R?));
(2) v=Kxw,
(3) Vo € CL([0,T]; CL(R?)) there holds

T
(3.20) /0 /R2 w(t,z)(Orp(t, z) + v(t, ) - Vo(t, z))dzdt = /]R2 o(T, z)w(T, z)dx — / ©(0, 2)w° (x)dx.

R2
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Weak solutions form a much larger class than classical solutions: indeed, every classical solution fulfills
Definition 10.2, but weak solutions in general need not be C'!. Existence and uniqueness of weak solutions in
a bounded domain with bounded initial datum was first proved by Yudovich, using a smooth approximation
argument.

THEOREM 10.3. Let w° € LY(R?) N L>(R?). Then there exists a weak solution (w,v) to the vorticity
formulation in the sense of definition 10.2.

PROOF. Let p € C°(R?) be a positive mollifier with [, p = 1, and denote by p,(z) = n?p(-/n),
wi(x) = pn(z) * w(x). Then by Theorem 9.8 we obtain a unique global smooth solution (v,,w,) with
v, = K % w, to the Euler equation, which in particular satisfies the conditions of definition 10.2. The next

step is to derive estimates from potential theory to get uniform bounds on the quantities ||ws, ||~ +]||wn|| L
and ||v, ||z In fact, one has'

(3:21) [lon (8, ) oo (r2) < e[lwn (#, ) Lo 2y Hlwn (t, )| R2)) < ¢ ([Jw]] 2o+ £1),
and there exist w(t,-) € L'(R?) N L>®(R?) and v(t,-) = K(-) * w(t,-) such that for any t € [0,T] and
1 < p < o0, we can extract a subsequence
Wn(t,") = w(t,-)  in LP(R?) —
vp(t, ) =% v(t,") in L (R?) —w — %, n — 00.
To prove strong compactness in space of the velocities, we use the Calderén Zygmund estimate

[1Dvn | Los ((0,7):r (R2)) < Cpllwn || oo ((0,1); L7 (R2))-
By (3.21), the right hand side is uniformly bounded for any 1 < p < oo. Thus wv,, is uniformly bounded in
L>=([0,T]; WLP(R?)) for any 1 < p < oo, and hence also in L{ (R?), with ¢ = 22pp > 2 by the Sobolev
embedding. By Rellich’s theorem we obtain that v,, is strongly precompact in LZ (R?; L ([0,7]) — ws).
To prove strong compactness in time, we use the uniform control on the time derivative of v,. Since v,, are
smooth solutions, we have that for any s > 2,
Oyvn € L([0,T]; Hyyl (R?)),

with uniform bounds. (See for instance the proof of Theorem 10.5.) For every ¢ € [0,T], the following
uniform in n estimate holds:

(3.22) sup [on(t+7,),0) — (vp(t, ), )| <7 sup [(Orvn(t, ), p)|< CT.
pEH®(R2),||p|| s <1 0<t<T

loc

It follows from an Aubin Lions argument (see Theorem 29.2) that after extracting another subsequence,
vp, — v strongly in L2 _([0,7] x R?). It is straightforward to show that the limit (v,w) is a weak solution.
By the uniform bounds in (3.21), it follows from weak convergence of the product wy,v,, that

(3.23) lim / /]R2 wn,(t, ) (Opp(t, )+ vn (t, z)-V(t, z))dxdt = / /R2 w(t, z)(Opp(t, v)+v-Vo(t, x))dzdt.

n—oo

]

We have proven Theorem 10.3 using the derivative bounds on the velocity arising from potential theory.
This regularity setting allows us to conclude that the velocities converge strongly in LIQOC, from which it
follows immediately that the limit must satisfy the weak formulation (3.20). Because the approximations
are smooth, they are classical solutions for which the vorticity is transported by a flow. However, it is far
from obvious that the limiting velocity has a curl which is associated to a flow as in (3.16). In [74], the
limiting vorticity is constructed by means of particle trajectories in (3.13). In particular, the limit vorticity
is transported by a flow. The next question is whether different regularizations may produce some weak

1See [74] or Lemma 13.3 for a similar computation.
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solutions which are not associated to flows. The next result states that in the setting of vorticities in LN L,
the velocity associated to the difference of any two solutions w; and ws decays sufficiently fast and has finite
L? energy, which rules out this possibility.

THEOREM 10.4. Let w° € LY(R?) N L>®(R?). Then the weak solution (w,v) € L°([0,T]; L*(R?) N
L (R?)) x L*([0,T); L>°(R?)) is unique.

PROOF. For simplicity we prove the theorem for solutions with compact support.
Step 1. Any weak solution w € L' N L*> with compactly supported initial datum wq(z) satisfies

(3.24) /Rz w(t,r)dr = /RQ WO (x)de.

This follows since the corresponding velocity v is bounded in L>°(R?). The support of the vorticity has finite
propagation speed so that there is an increasing bounded function R(t) such that sptw(t, ) C {x € R? : |z|<
R(t)}. From the identity (3.20), we see that any test function ¢(¢,z) identically 1 on 0 < t < T |z|< R(t)
gives zero on the left-hand side.

Step 2. Let (w;,v;)5_, denote two weak solutions with the same initial data curlv) = w® € L°(R?). The
velocities solve the distributional formulation

Ow+v - Vv =—-Vp,
dive = 0.

Since the support of w; are contained in Bg (), we have the following expansion for v;, whenever |z|> 2R;(t),

i(t,x :i Wi x| 72).
wit) = 5 [ty +0(el )

Then by (3.24) the integral terms in v = v; — vy cancel each other and v(t,z) = O(|z|~2) for |z|>
2max; R;(T). This gives

= / lu(t, z)|[2dz < oo.
R2
Combining this with the fact that v satisfies the distributional identity
0w+ w1 - Vo+v-Vuy =—=V(p1 —p2),

and taking the L? inner product of this equation with v, we may integrate by parts to obtain

1d
——FE(t) — / vV - vide —|—/ (v- Vg )vdr = / (p1 — p2)V - vdx,
2 dt R2 R2

R2
whence it is clear that only the first and third terms survive. Let 1 < p < oo. Using Holder’s inequality gives
d (r—1)/p
RGNS 2/ [u(t, 2) [} Voa(t, 2)|dz < 2||Voa(t, )| | Lo r2) (/ v(t, )| 2P/ (P~ 1)dx>

ey (r-1)/p
< 2[|Vwa(t, )| e r2) (|v( LMPRQ / [v(t, )| dx) .

Using the Hélder inequality and Calderén-Zygmund Theorem 6.4, one has for 2 < p < oo the interpolated

estimate
o

1—-1
Ll(Rz)HWOH r

||V”U2( )HLF’(R2)< Cpr Lo (R2)"

This implies

(3.25) E(t) < MpE()'~"/7,

d
dt
for some constant M depending on ||w®|| e (r2) and ||w®]| 11 (g2).

Step 3. We conclude by the following argument. Since E(0) = 0, E(t) = 0 is a trivial solution to 3.25.
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Though this inequality does not have unique solutions, it possesses the maximal solution E(t) = (Mt)P, and
that any other solution E(t) satisfies E(t) < E(t). We want to prove this maximal solution can be made
small enough.

Define an interval Iy = [0,7*] where T is chosen small enough so that T < ﬁ Then for every t € Iy,

s ).

which is arbitrarily small for sufficiently large p. This implies that E(t) = 0 for every t € I;. Repeating
this argument for a partition of [0,7] we conclude that E(t) = 0 for all ¢ € [0,7] and thus v; = ve almost
everywhere.

|

10.1. Existence of weak solutions with vorticity in L' N LP. The following classical result (see
[12]) states that given a smooth approximating sequence of solutions (wp,v,) to (3.1), a uniform bound
on the kinetic energy guarantees strong convergence in L' of the velocity fields. The obvious question that
arises is whether this convergence is strong enough to pass to the limit in the velocity formulation. It turns
out to be sufficient if the vorticities possess an additional LP,p > 1 control: in fact, the velocities converge
strongly in L?

loc*

THEOREM 10.5. Let (vy,) be a family of smooth solutions to (3.1). Let w, = curlv,, and assume that
forany R >0

2de <
(3.26) OrgtaSXT/\wn(t, x)|dx + /|Un(t,x)| de < C(R,T).
R? Br

1
loc

Then up to subsequences (v,) is strongly compact in Li ([0,T] x R?), and (w,) is weakly-+ compact in

L>([0,T]); M(R?)), with limits (v,w) satisfying

max /|v(t,x)\2dm < C(R,T), dive =0,
0<t<T
Br

curl v = w.

PROOF. Step 1. From assumption (3.26), up to a subsequence there is w € L°([0,7]; M(R?)) such
that w, —* w weakly-* in M(R?). By finiteness of the kinetic energy first show that for all s € N with
s > 1, for any cutoff ¢ € C2°(R?), and t1,ts € [0, 7]

(3.27) l[pvn(t1,-) — dvnlte, )||H—s—1@2) < Clty — tof.
Since v,, are smooth, divergence-free solutions we can estimate
to a
Hqﬁvn(tl, ) — ¢Un(t2, ')HH*S*l(R?): H¢ aivn(sa )dS
ty s H-s-1(R2)
ov,,
(3.28) < [t2 — t1] sup 37(57 ) < ta —t1| sup ||@(vn - Vop)(s, )| m-+—1r2)
0<t<T S H-s—1(R2) 0<t<T

< ta = t1|(|div (p(vn @ v2))(s, ME——1(®2) +(||(vn @ v0)(5,-) : VOl r—o-1(m2))
< lt2 — talll@(vn @ va) (s, ) - ®2) < [t2 — tal[|@(vn @ v0) (s, )11 (r2)-
It follows that for all ¢ € C°(R?), and t1,t5 € [0, T,
|lpwn (ts,-) = dwn(ta, )| -s—2(m2)< Clt1 — ta.
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On the other hand, by the dual version of the Sobolev embedding we have, for all s > 1:
(3.29) sup_|[wy (t,)||-s®2)< C sup ||gwn(t,)||L1(r2)< C (o).
0<t<T 0<t<T

Thus we can apply Aubin Lions Lemma to get existence of w € C([0, T]; H;;5(R?)) such that for any s > 1
and ¢ € C°(R?), one has up to a subsequence
(3.30) sup |[¢wn (t,-) — ¢w(t, )| g—sm2)— 0.

0<t<T
Step 2. We show that v, is a Cauchy sequence in L. Let p € C2°(R) be a radial cutoff function identical
to one on B and zero for |x|> 2. Set ps(z) = p(x/d). Then we estimate

|[on = vml|L1 0,7y xR2) < /HP&(w —yY)K(x —y)(wn — wm) (& Y)l|L1(0.1)xr2)dY
R2
+ [1ltor = ps)a = 9K (@ = 9)eon = ) )l |21 0 178
R2

+ / (1= pr) (& — 9)E (& — 5)(wn — )t )12 (0. xcr2)
RQ

L4+ s
By Young’s inequality
I <||psK|| L1 r2)||wn — Win|l L1 ((0,7)xr2) < €6, and
I3 < ||(1 = pRr)K * (wn — wm)|| Lo ((0.1)x22) < cl|(1 = pr) K[| Lo r2)< ¢cR™

For I, we note that for fixed x € Bgr, (pr — ps)K(x — ) € C°(R?). Let ¢ = par and s > 1. Then from
(3.30) we get the following pointwise convergence:

/ (o — p3)(& — 9K (& — 9) wn(t,y) — wm(t,)]|dy
R2

<|l(pr — ps) K|| s (r2)||dwn — dwml| Lo ((0,1); -5 (r2))—> O
Applying Dominated Convergence gives that I — 0 as n,m — 0o. Choosing ¢ and R first such that I; + I3

is small yields the result.
|

REMARK 10.6. We remark that the assumption v° € L% _(R?) is required in the estimate (3.28) in

loc

order to apply Aubin-Lions and deduce convergence of wy, in L>((0,T); H,;(R?)). The L* control on the
vorticity gives only the M? bound on v, in (3.10), therefore an approzimation of solutions to the velocity
formulation requires the L? energy estimate in (3.26). While this automatically implies that v, is weakly
precompact in L2, in general (3.26) does not imply that the sequence is strongly precompact, see for instance
Ezample 11.2.1 in [12]. This is due to the fact that a pointwise converging, weakly convergent sequence in
L? may still concentrate. However, concentrations may occur for sequences whose limit still satisfies (3.1),
in spite of the lack of strong L120C convergence: this is referred to as concentration-cancellation and has been
studied in [28, 12]. This happens for instance if the vorticity is a measure with distinguished sign [24] and
will be discussed in the next sections.

We now use Theorem 10.5 to prove the following existence result. Given a uniform control in L' N L?,
p > 1 of the vorticity approximations, the corresponding velocities converge strongly in L120<:~ In the weak
velocity formulation, this allows for passage to the limit in the non-linear term v ® v. The crucial point is
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that the LP control gives a control on the gradient of v (a singular integral of the vorticity) also in LP, so
that by the Sobolev embedding v belongs to a higher Lp/, p’ > 2 space.

THEOREM 10.7. (DiPerna Majda.) Let (v°,w°) € L (R?) x L'(R?) N LP(R?) for some p > 1, with

w? = curlv®. Then there exists (v,w) € L>=([0,T); L2 .(R?)) x L>([0,T); L* (R?) N LP(R?)), with w = curlv,
solving the weak velocity formulation (3.19).

PROOF. We regularize v" with the standard mollifier p € C°, [p =1, p > 1, with p, = n?p(z/n). Let
v) =% % p,. Then w? = curlv?. Let v,, be the unique smooth solution to (3.1) with initial datum v? and

curlv,, = w,. For any R > 0, the solutions (wy, v,) satisfy the uniform estimate

(3.31) max /|wn|dx+/|wn|pdx+/ |vp|?dz | < Crp.
Br

0<t<T
2 R2

By Theorem 10.5, there exists v € L>((0,7); L .(R?)) and a subsequence still denoted v,, such that v,, — v
strongly in L] _((0,7) x R?.) From 3.31, we have as well that v, —* v in L>((0,T); L .(R?)) —w*. We show
that this convergence is in fact strong. We have the following Calderén Zygmund estimate for the gradient

of v. For every ¢ € [0,T],

(3.32) IVon(t, M pere) < Cpllwnl e r2)-
We write
(3.33) vy = Ky xw, + Ko *wy,.

where the truncations K; and Ky are defined as Ki(x) = K(x)1p, ) and Ky(x) = K(x)1p, .. Since
K € LY(R?), K3 € L*°(R?) and w,, € LP(R?), we have by Young’s inequality

(3.34) [[K1 % wnl|Ler2) < Cp.
and
(335) HKQ*wnHLoo(Rz)S C.

From (3.34) and (3.35) it follows that v, is uniformly bounded in L*°((0,7); LY (R?)). By the Sobolev
embedding theorem with p’ = 22pr we have for any R > 0

(3.36) sup |[vn(t, ) 1o (5 < C-
0<t<T

Since p’ > 2, this implies in particular the interpolation estimate for 0 < A\ < 1:

(3~37) ||Un - ’UHLz((OyT)XBR)S Can - UH};(A(O,T)X]_E;R)HUn - UHzP’((O,T)xBR)'

By the convergence of v, in L] _((0,T) x R?), we deduce that v, — v strongly in L% ((0,7) x R?). Writing
the difference of the nonlinear terms in (3.19) as

Vo:v,@vp, —Vep:v@v=Ve: (v, —0v)@v, +Vp:v® (v, —v),

it is clear that

n—oo

T T
lim/ /got-vn—i—Vgo:Un@vndmdt:/ /got-v—i—V(p:v@vda:dt.
0 0
R2 R2
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10.2. Existence of vortex sheets with distinguished sign. Given smooth approximating sequences
(U, wn ) without a uniform L*NLP control on the vorticity, it is not true in general that the velocities converge
strongly in leoc' The L' convergence does not forbid concentrations to occur in the limit of v,,. The natural
question is whether measure vorticities still give rise to approximations whose limit is a solution to the velocity
formulation. The answer is positive in case that the vorticity that does not change sign, since concentration-
cancellations occur in the nonlinearity v, ® v, so that the limit velocity satisfies the formulation (3.19). It
is an outstanding open problem whether vorticities of mixed sign give rise to a velocity that solves (3.19).
When a vorticity has two signs, nearby vortices may screen each other by canceling out higher order effects
on more distant velocities, which in turn drive a stronger concentration of vorticity, leading to instability.
In the case of vorticities with distinguished sign, all fluid elements spin in the same direction so that no
screening effects at small scales can occur. In this section we summarize Delort’s proof for existence of weak
solutions associated to measure data. These correspond to initial vorticities in MNH ~! which do not change
sign.

THEOREM 10.8. (Delort.) Let (v°,w®) be initial data such that W° = curlv®, with w® belonging to
M(R?) N HY(R?). Assume additionally that w® > 0 and v° has locally finite kinetic energy, i.e. that

VR >0: / [v°|%dx < C(R).
Br

Then there exists a weak solution (v,w) € L>([0,T); L (R?)) x L*>([0,T); M(R?)), w = curlv, associated
to (v°,w?), solving the weak velocity formulation (3.19).

PROOF. Step 1. We assume for simplicity that w® has compact support. We regularize v° with the
standard mollifier p € C°, [p =1, p > 1, with p, = n?p(z/n). Let v2 = v° % p,. Then w! = curlv?,
w2 >0, and for any R > 0,

/ |00 |2da + /|w2|d:c < C(R?).
Br

We have that v3 — v° strongly in L2 (R?) and w® — w® in H;*(R?). Let v, be the unique smooth solution

to (3.1) with curlv,, = w,. The solutions (wy, v,) satisfy the uniform estimate

2
. < .
(3.38) Jax /|wn|dﬂc + /BR|vn| dz | < Cgrr

By Theorem 10.5, there exists v € L>([0,T], L% (R?)) with curl v = w € L*([0,T]; M(R?)) and sub-

loc
sequences (v,,wy) such that v, — v in L2 (R?) — w and w, —* w in L>([0,7]; M(R?)) — w*, with the
additional convergence v,, — v in L _([0,7] x R?) — s.
Step 2. We exploit the special non-linear structure of equation (3.19). Since we test with functions

© € C([0,T] x R?) with divy = 0, it is equivalent to substitute, for n € C°([0,T] x R?),

P = Vl?? = (*771277711)-
If we substitute this in (3.19) the equation reduces to

T T
639 [ [eo = mavadsdt = [ [0 = D) 4 s — ) (010t =0,
0 0
R2 R2

Thus we need only to show that the quantities v3,, —v7,, and v1 ,va, converge weakly to v3 — v} and

v1v9 respectively. (Observe that these quantities are antisymmetric and their convergences do not imply
distributional convergence of |v,|2.) Since the vorticities w, do not satisfy a uniform LP control, p > 1, it
is a priori possible that concentration occurs in the limit of v,. Using the fact that the vorticity is of fixed
sign we show that concentration-cancellation occurs in the limit. Since w(z) > 0 it follows that w(t,z) >0
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for ¢ > 0. By a rotation of 7/4, v2 n — V2 . becomes viv2. By rotational invariance of (3.19) it suffices to
prove that for every ¢ € C°((0,T) x R?),

(3.40) lim / / 2(t, z)p(t, x)dxdt = / / o(t, z)dzdt.
n—oo

Step 3. We define the vorticity maximal function as
nl(Br) = [ fonluldy
BR(I)

We show that if this decays sufficiently fast as R — 0, the quadratic quantity vlv2 can be controlled in
the limit. We recall without proof an estimate from | ] which gives a decay rate on the circulation for L!
vorticities. All vorticity sequences which are uniformly bounded in L', with associated velocities uniformly
in L, satisfy the following decay estimate on the vorticity maximal function.

LEMMA 10.9. Assume that (w2,v2) are smooth, w® > 0 has compact support and (w,v0) satisfies the

estimate in (3.38). Them the vorticity mazimal function has the following decay rate for any § < 1/2:

(3.41) max / wn(t, x)dz < Crpllog(28)|~*/2,
Bg(ajo)

0<t<T,zoER2

where Cr depends only on T, the quantity in (3.38) and the support of WO. In particular, the limiting vorticity
w satisfies the same estimate: for § < 1/4 there holds

3.42 dw(t, z) < Cr|log(46)|~1/2.
o el [ el a) < Corlog(a9)

Next we use the Biot-Savart law to re-write the expression (3.40)
[tttz = [ Foegon(t. oyt y)dody
R? R2xR?
where F,(z,y) is the function on R* given by

-1 0?
Fow) = T g |, oele = =logly — slo(e)ds

One can check that F,(z,y) is a bounded function on R? x R?, continuous outside the diagonal, and tends
to zero at infinity. (See [24].) We test (3.40) on test functions of the form ¢(t)y(z), with ¢ € C(RT), ¢ €
C>°(R?). Let p(x) € C° be a fixed radial positive cutoff function equal to 1 on B;(0) and identically zero
for |z|> 2. Fix 0 < § < 1. Then we write

(3.43) / / (£)0o (@) dwdt
(3.44) / / / Bt [ (' 5y)]Fw(x,y)wn(t,m)wn(t,y)dxdydt
(3.45) / //qf) ( |)Fw(gc,y)wn(t,m)wn(t,y)dxdydt




44 3. THE EULER EQUATION

For fixed ¢ and ¢ € [0,T], we have that qb( ) [ —p (@)] F,(x,y) € Co(R*). We have by step 1 that
wn(t, ) @w,(t,y) = w(t,r) ® w(t y) in L>((0,T); M(R?) x M(RR?)). Thus we may pass to the limit in

(3.47) lim 1 = | qS dt//[l— <|‘T y')] (@, y)dw(t, T)dw(t, y).

n— oo

Step 4. We apply Lemma 10.9 to estimate I5. By non-negativity of w, and the estimate in (3.38),

(3.48) |hK0¢mww/"// C”ﬂ) (0 9)on (b, ) (1, ) dadydt

(3.49) g(?@zn¢|w,T>Pog(%@)]_lpué ﬁ[am(ty)dwﬁ

(3.50) < Cle ol ) [ (5]

Lemma 10.9 and the convergence of w,, imply that the same estimate holds when w, is replaced by w. Since
0 > 0 can be chosen arbitrarily small, we conclude the argument. O

REMARK 10.10. We remark that equi-integrability of an approzimating sequence of vorticities would imply
also that concentration-cancellation occurs for the corresponding approzimated sequence of wvelocities, since
it implies a decay of the last integral in (3.48). The point here is that in spite of the lack of equi-integrability
of the measure vorticity, a signed measure has mazimal function decaying to zero at a logarithmic rate. This
corresponds to the circulation of a positive vorticity in a ball of radius § going to zero as § — 0. Indeed the
decay of the vorticity maximal function in Lemma 10.9 is false for measures without distinguished sign.

The solution constructed in [24] is global in time. However, the uniqueness of a weak vorticity solution
with measure data is still an open question, in spite of numerical evidence that suggests the contrary [56].
The uniqueness result presented in Theorem 10.4 is only known for initial vorticities in L>° or very close to
L [71]. By contrast, a pioneering work [62] showed existence of a nontrivial weak solution in L? to the
velocity formulation, compactly supported in space and time.



CHAPTER 4

The Vlasov Poisson Equation

We introduce the Cauchy problem for the classical Vlasov-Poisson system

(4.1) Wf+v-Vof +E-V,f=0,

(42) £(0,3,0) = £2e,0),

where f(t,x,v) > 0 is the distribution function, t > 0, x,v € RY, and

(4.3) E(t,z) = =V, U(t,x)

is the force field. The potential U satisfies the Poisson equation

(4.4) = AU = wlplt,7) — pu(a)),

with w = +1 for the electrostatic (repulsive) case, w = —1 for the gravitational (attractive) case, and where

the density p of particles is defined through

(4.5) p(t,x)= [ [f(t,z,v)dv,
RN

and p, > 0, pp € L'(RY) is an autonomous background density. Since we are in the whole space, the relation
(4.3) together with the Poisson equation (4.4) yield the equivalent relation

(4.6) E(t,z) = ﬁ% # (p(t, @) — po(x)),

where the convolution is in the space variable.

In this chapter we review classical solutions to the initial value problem 4.1. Local existence was first
due to [7]. This provides not only a unique local existence result for compactly supported initial data but
also establishes a criterion condition, which shows how a solution may cease to exist after finite time. As
long as the 'maximal velocity’ of a solution, defined as

P(t) = sup{|v|: (z,v) € spt f(¢),0 <t < T}

is bounded, the solution continues to exist. Two simultaneous proofs of global existence of smooth solutions
for both the repulsive and attractive cases were proved independently in [55] and [44]. The proof of [55]
will be studied here. In this we show that this maximal velocity grows at most polynomially in time.

11. Conservation of mass and energy

We recall some basic identities related to the VP system. Integrating (4.1) with respect to v and noting
that the last term is in v-divergence form we obtain the local conservation of mass

(4.7) Op(t,x) + div . (J(t,x)) =0,

where the current J is defined by

(4.8) J(t,z) = / vf(t,z,v)dv.
RN

45
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Integrating again with respect to x, we obtain the global conservation of mass

d d
(4.9) pn // ft, z,v)daxdo = pr /p(t,x)dw =0.
RN

RN xRN
2

Multiplying (4.1) by %, integrating in x and v, we get after integration by parts in v

2
(4.10) % // |%f(t,avm)dxalv - / E-vfdzdv=0.
RN xRN RN xRN
Using (4.6) and (4.7), one has
Al w x
4.11 E — | = =
) A2 <|SN-1| v "’“) N
or in other words
(4.12) OE = wV,(—-A,) " div . J,

which means that 9, F is the gradient component of —wJ, by the Helmholtz-Weyl projection. We deduce
that

(4.13) / E-0Fdx = fw/ E-Jdx.
RN RN
Using (4.8) in (4.10), we obtain the conservation of energy

2
(4.14) 4 // P 0, 2, v)dado + £ /|E(t,x)|2dx =0.
dt 2 2
RN xRN RN

The total conserved energy is the sum of the kinetic energy and of the potential energy multiplied by the
factor w = £1. In particular, in the electrostatic case w = +1 we deduce from (4.14) a uniform bound in time
on both the kinetic and the potential energy, assuming that they are finite initially. In the gravitational case
w = —1 it is not possible to exclude that the individual terms of the kinetic and potential energy become
unbounded in finite time, while the sum remains constant. Indeed it is known that it does not happen in
three dimensions as soon as f° is sufficiently integrable, but we cannot exclude this a priori for only L'
solutions: see Proposition 13.7.

REMARK 11.1. Note that the assumption E° € L? is satisfied in 3 dimensions as soon as p° — p, € LS/5
(See Lemma 15.3). However, in one or two dimensions, for E° to be in L? it is necessary that [(p°—pp)dz =
0, as is can be seen in Fourier variable. It is also necessary that p° — py, has enough decay at infinity. Thus
in one or two dimensions, in order to have finite energy, py cannot be zero identically.

12. Regularity of the velocity field
Recall that the Vlasov Poisson equation is a transport equation with the vector field
(4.15) b(t,x,v) = (b1, b2)(t, 2,v) = (v, E(t,x)) = (v, ~wV,A"!p).

We use the results from section 6.1, chapter 1 to give estimates for the regularity and growth of the electric
field E(t,z) as defined in (4.3) and establish bounds on the vector field b.
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12.1. Local integrability. If p—p, € L? with p > 1, we have the estimates from the Hardy-Littlewood-
Sobolev inequality:

O B e e L )

(4.16) Lo
<enllpt z) — po(z)|[Lo@n),

where ¢ = NN—_’;. If p— pp € LY(RY), we have the weak inequality:

—1
(4.17) [V (=2)" (p(t, x) - pb(x))IIIM%(RN) < enllp(t, z) = po(@)|| L1 ®y)-
It follows that

(4.18) |HE|||L°°((O,T);M%(]RN))S enllp = pollLe(0,1);01 ®N))-

12.2. Spatial regularity. Since b; = v is smooth, the only non-trivial gradient is the one of by = E,
indeed the differential matrix of the vector field is given by

_(Dzby Db\ [ 0 1Id
(4.19) Db = (DIb2 Dvbg) - (DfE 0) '
We have by (4.15)
(4.20) (Do E)ij = 05, By = =082, ((—A2) " H(p— pp)) for 1 <i,j <N.

It is well-known that the operator 97, (—A,)~" is a singular integral operator. Its kernel is

1 0 ZT;
4.21 Kij(x) =— —
( ) 1, (:L‘) |SN,1| 8mj (CU|N> b

it is given outside of the origin by

1 & i N
(4.22) Kij(z) = V] (NI|N12 - m|JN> . for x € RV\{0}.

The kernel satisfies the conditions of definition 6.3 and K;;(€) = —&:£;/|¢[%. Thus (each component of) D, E
is a singular integral of the density. From (4.19) it is clear that b is divergence free.

12.3. Time regularity. According to (4.12), 9;F is a singular integral of the current J defined by
(4.8). Using the bounds available for solutions with finite mass and energy

(4.23) 1A s e [ 101, v)dodo < .
and since |v]| < 1+ |v|?, we get that J € L°°((0,T); L*(RY)). Hence ,F is a singular integral of an
L>((0,T); LY(RY)) function. In particular,
(4.24) OE € L>((0,T); S (RN)).
13. Smooth solutions in 3D

We first consider classical solutions of the Vlasov Poisson system (4.1),(4.2), (4.3), where all derivatives
exist in the classical sense. Because of remark 11.1, we can from now on assume that p, = 0. Two
simultaneous proofs of global existence for both the repulsive and attractive case of classical existence were
given by Pfaffelmoser [55], and by Lions and Perthame [44].
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13.1. Local existence. In order to construct a smooth solution we consider the characteristic flows.
The following lemma is from Cauchy Lipschitz theory. Let p = p; be defined as in (4.5) with N = 3. Define

(4.25) Ult,z) := w/R GY)) d

Y,
s [z =yl
provided that the integral is finite. We let Z(s,t,z,v) = (X,V)(s,t,2,v) be the characteristic flow on

RY x RY associated to the vector field b given by (4.15). The following lemma is a consequence of Picard
Lindelof.

LEMMA 13.1. Let I CR and E = -V,U € C'(I x RY) be continuously differentiable with respect to x
and bounded on I x RY for every I € I. Letb = (v,—wkE). Then for everyt € I and z = (z,v) € RY x RY
there exists a unique solution Z(s,t,xz,v) = (X,V)(s,t,z,v) of the characteristic

(4.26) Z(s,t,x,v) = b(s, Z(s,t,x,v))
(4.27) Z(t,t,x,v) = (z,v).
The flow Z satisfies the following
(1) Z : T x I xRY x RY — RY x RY belongs to C1(I x I x RY x RY),

(2) For all s,t € I the mapping Z(s,t,-) : RY x RY — RY x RY is a C-diffeomorphism with inverse
Z(t,s,:) and is measure-preserving.
Moreover, for every f° € CY(RY x RY) the function
(4.28) ft,z,v) = f9(Z(0,t,z,v)), tel,

is the unique solution of (4.1) in CY(I x RY x RY) with initial datum f°. Moreover for every 1 < p < oo
andtel,

£ M Loy xryy= £ Lo ry xr)-
Using Lemma 13.1 we can define precisely the notion of a classical solution to (4.1).

DEFINITION 13.2. We say f : I x R? x R® — [0, 00) is a smooth solution of the Vlasov Poisson equation
in some interval of times I C R with initial datum f° if:
(1) f is given by the formula in (4.28),
(2) The induced density p(t,x) and potential U(t,x) associated to f by (4.5) and (4.4) belong to C*(I x
R3), with U(t,-) belonging to C*(R3), and U is given by the convolution in (4.25),
(3) for every I € I, E(t,x) belongs to L*°(I x R3),
(4) The functions f, E, p satisfy (4.1)-(4.6) with p, = 0.

We recall some estimates from potential theory, which improve the integrability bounds we derived in
section 12 when the densities are sufficiently smooth. We drop for the moment the dependence in time
to derive spatial bounds on the potential and force field. The properties of the singular kernel in (4.21)
combined with the regularity of p give better bounds on the electric field E' and its spatial gradient. These
quantities are important to control in order to construct a local solution.

LEMMA 13.3. Let p = ps be defined as in (4.5) with N = 3 and assume p € CL(R?). Define
U(zx) := w/ Py) d
R

s |z —yl 7

Then the following holds.
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(1) If p € CL(R3) then U is the unique solution of

AU = 4rwp, lim U(x) =0,
|| — o0
in C*(R3). Moreoever
r—y
V.U (x zw/ — dy,
(z) . |x_y|3p(y) Yy
Ux) = O(Jz|™Y), V.U(z) = O(|z| ), as |x|— oo.

(2) For any 1 <p<3,
3 1-p/3
172Ul 1o 3)< cpllol gy 1ol =250 -
(3) If p € LS/5(R2) then U € LS(R3) and V,U € L*(R3), with a control on the norm given by
1U|Ls r2) < cllpllLo/s gs), [IV2Ul|L2(m3) < C||P||2L6/5(Rg)-
(4) The second order weak derivative of U, which we denote V,E(x), satisfies, for any 0 <r < R,
Ve Bl ms) < clR™Ipl 1 @s) +7]|Vapl| oo re) +(1 +og(R/)|pl oo (r3)]
with ¢ > 0 independent of p, R, and r, and
IV2 B[ oo (r3) < €[L + [|pl| Lo ra) (1 +1og™ ([[VapllLe@2)) + 1ol @s))-

PROOF. We omit the proof of (1) which can be found for instance in [33]. (3) follows directly from the
weak Young inequality (Theorem 5.15) and Hardy Littlewood Sobolev inequality with d = 3. (4) is due to
the cancellation properties of the singular kernel in (4.21). If p € C} then we have

(4.29) 0.0, U(a) = ap(ta)dy —w [ Kijlo—9)lpw) - plo)ldy
|z—y|<r
(4:30) o [ K-
|z—y|>r

where K is the kernel in (4.22). Observe that the C! regularity of p kills one power of the singularity of
(4.29) so the former integral exists. We let 0 < r < R and compute

4 4
Oz, 0. U < — IS IS —d
00, V@) < Fllollat ol [ gl
lz—y|<r
4 4
+ / —=|p(y dy+/ = p(y)|dy
o gp P | e

r<|z—y|<R
< c(llpllootr [1Vpllootlpllsclog(R/) + R™*Ipl|1) -

The last statement follows from choosing R = 1 and r = 1/||Vp||e if ||Vp||eo> 1, otherwise r = 1. For (2)
we use Holder’s inequality to estimate for any R > 0, and any p’ such that % + 1% =1,

V.U < / |p£y;||2dy+ / Py,

| |z —yl?
lz—y|<R |[z—y|>R

1
4’]'[' _ ’ F
g ) ol

Since 1 < p < 3, p’ > 3/2. Optimizing in R gives the result. O

smmmu+(
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We next recall a local classical result first proved in [7] that gives unique local existence for compactly
supported initial data. A continuation criterion is introduced: a classical solution can be extended as long
as its maximal velocity support or its density remain bounded, and thus a possible breakdown by shock
formation is ruled out. The quantity

P(t) = sup{|v|: (z,v) € spt f(t),0 <t < T},

is used to control ||p(t)|]so, [|0(E)||L1, || V2U]|so locally in time, and thus implies a control on the derivatives
V. Z of the flow.

THEOREM 13.4. Let fO € CHRY x RY') be non-negative. Then there exists a smooth solution f of
(4.1) on some time interval [0,T) with initial datum f°. For all t € [0,T) the function f(t,-) is compactly
supported and non-negative. If T > 0 is chosen mazimal and if

P(t) = sup{|v|: (z,v) €spt f(¢),0 <t < T} < o0,

or
sup{p(t,z): 0 <t < T,z € R*} < o0,
then the solution is global, i.e. T = co.

PROOF. We sketch the proof which relies on an iteration scheme. We show that the quantities necessary
to continue a classical solution can remain bounded as long as P(t) does. Let z = (x,v) € RS. We fix R°
and P° so that fO(z,v) = 0 if |z|> R° or |v|> PY. Then the zero-th iterate is defined as fO(t,z) = f°(z),
for t >0, z € RY x RY. One defines the n + 1-th iterate by setting

Far1(t,2) = f2(Zn(0,t, 2)),
where Z,,(s,t,2) = (Xn, Vo)(s,t,2,v) is the solution of the characteristic system
T =w, 0 =—-V,Uy(s,x),
with Z,,(t,t,2) = 2, pn = py,, and U, = U, . Let P°(t) := PY and for each n set
(4.31) Poi1(t) := sup{|Vi(s,0,2)|: z € spt f°, 5 € [0,T]}
By Lemma 13.1 and 13.3, the sequence f,, satisfies the following bounds for all £ > 0:
fo € CH([0,00) X RY X BY), [1£(t, Moo= 1f%]loes LFCE:MIzr= 170 1e,

t
and fp,(t,z,v) =0 if |2|> Ro +/ P,(s)ds or |v|> P,(t).
0

One has also p,, € C1([0,00) x R?) with

4
(4.32) lon( =11z loat o< ?I\fo\looPﬁ’(t% vt > 0.
This implies V,U, € C1([0,00) x R?) with the bound given by Lemma 13.3
(4'33) ||van(t7')HooS C(fO)Pf(t),

with C'(f°) depending on || f°||; and || f°||so- (4.33) turns out to be the crucial quantity in bounding P, (¢) and
the length of the time interval on which the iterates converge will depend on C(f%). Let P : [0,4] — (0, 0)
denote the maximal solution of the integral equation

P(t) = P° 4+ C(f%) /t P2(s)ds,
0

where § := (POC(fO))f1 and 0 < t < §. From the characteristics one has for any 0 < s < t < § and
z € spt fO,

|nmmagwwémkuwmwh§W+CU%AVﬂﬂmspw.
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This together with (4.31) implies inductively that P, (t) < P(t), which establishes a local in time control on
P, (t) and hence also on the density and electric field. To continue the smooth solution we show that all
derivatives are under control as long as P is. Fix 0 < §y < . We show the iterates converge uniformly on
any compact [0, dp]. To control V,p, we estimate with

[Vapni1(t, z)|< / |Vz[fO(Zn(07t,x,v))]|dv < C(fo)Hern(Oat» MNloo-

lv|<P(t)
Differentiating the characteristic system Z,, with respect to  one can apply a Gronwall argument to V,Z,,
which is then bounded by an exponential in time integral of V,E,. But this implies that

t
(4.34) Vst (8 oo < Cexp ( JRGZ=NE .>|de) .
0

The vital step here is the estimate in Lemma 13.8 (4), wherein ||V, E,||s depends only logarithmically on
[|Vepnlloo, so that (4.34) and (4.32) imply that

(435) 9Btz e [ VLB ).

Induction gives the bound
Ve Eng1(t, )< Ce.
This closes the estimate

(4.36) [IVapnti(t, Mot Ve Eny1 (s )llso < C,
for a sufficiently large C, not depending on t € [0, ] or n. (4.36) implies the Gronwall estimate

(4.37) | Z0n(8) — Zn-1(5)| < c/ [|VoUn(7,) = ViUn—1(7, )| ocdT.

The bound from (4.37) yields that the sequence f, is uniformly Cauchy and converges to some function
f €C.(0,T) x RY x RY), since the supports of p, and f,, are uniformly bounded in n. This follows from
the estimates

‘fn+1(t7z) - fn(tu Z)‘S C|Zn(07t7z) - Z’nfl(oatuzﬂ

t
< c/ VU (7, ) = Vol (7, )| |sodr
0
(4.38) '
< C/O 16n(7,) = pret (7, NP2 pu (T, ) = pues (7, )|} dr
t
< [ Mfalr,) = faa(r, |
0
The uniform limit f has the properties
t
(4.39) Ft2,0) = 0 if |2]> R +/ P(s)ds or [v]> P(#),
0

and p, — p = py, U, — U = Uy uniformly. To show f is a classical solution, we need to show that
U, V.U, V.E € C([0,5] x R?).

This follows from Lemma 13.3, since for any m,n € N, and for any 0 < r < R,

||VwEn(tv ) - VwEm(ta )HOOS c [R_SHpn(t, ) - pm(t, ')‘|L1+T||prn(ta ) - vam(tv )||OO
+ (L +1og(R/r)lon(t, ) = pm(t, )]s
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and

||szn(ta ) - VmUm(ta ')||oo§ Cp”ﬁ’n(tv ) - pm(t, ')H1L/13||Pn(t, ) - Pm(ta )H%B

Observe that for any 0 < r < R the sequences V,U, and V,E, are uniformly Cauchy. (Since f has compact
support the L1 difference of p, can be estimated by the L> difference, which converges to zero.) The L>
difference of the derivatives of p,, can be bounded by a constant, but are compensated for by the factor r in
front which can be chosen arbitrarily small. This allows to conclude that the sequence Z,, is precompact in
C1([0, 0] x [0,80] x RY x RY), converging uniformly to the characteristic flow Z associated to (v, E). Then
the solution f belongs to C'([0,dp] x RY x RY) and f(t,2,v) = lim, oo fO(Z.(0,t,2)) = f2(Z(0,t,2)).
Lastly, we prove the solution is global by contradiction. Suppose instead that f € C1([0,T) x RY x RY)
is the maximal solution obtained by the previous construction. Assume that P(t) is finite but T < co. By
Lemma 13.1, |[f(t,)||co= [|f°l|cc and [|f(¢,*)||z1=||f°]|z: for all 0 <t < T'. Using the procedure above for
the new initial value problem starting at to = ¢ with datum f(¢°), if ¢ is sufficently close to T then one can
extend the solution beyond T'. This follows since C(f(t°)) = C(f°) and the integral equation

P(r) =P+ C(f(t°) | P*(s)ds
to
has a maximal solution on some interval I = [t°t° + §’] of length ¢’ independent of t°. Since f vanishes
for |v|> P(t), the iterates P, will be bounded by P as before on I. Repeating the previous estimates on I
shows that the solution must exist here. We remark that the a priori bound on p implies a bound on V,U
and hence on P as well. ]

REMARK 13.5. Following the construction one can check that the solution f is unique. If f and g are
two solutions with the same initial datum then the estimates for the iterates f, — fn—1 can be repeated for

f —g to give t
(1) = g()]]e < O/ 1£(s) = g(5)]]|oods.
0

REMARK 13.6. The condition that f° is compactly supported can be relaxed for data with sufficient decay
at infinity. Because of this assumption, the solution constructed in the theorem satisfies stronger bounds than
required by definition 13.2, since Z measure preserving implies that [ stays compactly supported for all time.

13.2. Energy estimates. Recall that the problem with the conservation of energy is that in the
gravitational case w = —1 the potential energy does not have a definite sign so the individual terms may
become unbounded in finite time although their sum is constant. In the repulsive case w = +1 both terms
are clearly bounded. The conservation of energy plays a crucial role in stability analysis of approximating
solutions, and a rather surprising result given by Horst [38] states that in both gravitational and repulsive
cases, the potential and kinetic energies for smooth solutions remain bounded. The reason is that both the
spatial density ps and the field VU¢ can be bounded by the kinetic energy of f, which is a second order
moment in velocity of f, while ps is a zero order moment. This will be seen in the following result.

PROPOSITION 13.7. Let f be a classical solution to (4.1) on [0,T) with spatial density p. Then for all
t€[0,7), p(t,-) € L>3(R2), and both the kinetic and potential energies are (individually) bounded:
1 1
5/ [v|? f(t, z,v)dvdz, §/|VIU(t,x)\2d$ <C

2/5
1ot ) o may S CILF(E TR s s )

where C depends only on ||fO||p1 and ||f°]|L~ and its kinetic energy.

In order to prove this energy estimate we first derive a general result on the & — th order moments of an
integrable function. This allows us to prove that the spatial density p, a zero order moment of f, is bounded
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in an appropriately scaled norm by the kinetic energy, which is a second order moment (in velocity) of f.
For k > 0 and for a non-negative, measurable function f : R x R3 — [0,00) we denote the k — th order

moment density by
(@)= [ ol fa.0)do
R3

and the k — th order moment in velocity of f by
M (f) := mk(f)(:c)dx:/ / [v|* £ (x, v)dvda.
R3 R3S JR3
LEMMA 13.8. Letlgp,qgoowz’th%Jr%:l,ng/gkgoo and set
_ k+3/q
K+3/qg+ (k—K)/p

If f € LP(R3 x R3) is non-negative and My(f) < oo then my (f) € L"(R2) and there is ¢ = c(k,k',p) > 0
such that

k—k")/(k+3 !
||mk,( )||LT R3)< C”fH(Lp(RsX/](RSﬂ; /Q)M (f)(k +3/9)/(k+3/q)

PROOF. We split the integral on R? into sets corresponding to small and large velocities and optimize
with respect to the chosen split parameter. For any R > 0, we can write

mMﬂm</’|WVWMM+/D;w7@wM

lv|<R

1/q
< |f(x7')||LP(R%)</ |v|’“/‘Zdv> +R’“"’“/ w[* f(,v)dv
[v|<R [v|>R

< ol f (@, Loy BN 9+ RY Fmy(f)().

Choosing R = [my(f)(x)/||f(x, ~)|\LP(R3)]1/(’“+3/‘7), we minimize the right hand side with respect to R. This
gives the estimate

mi () (@) < (|| f (@, ) [ o) FFEED (my () (@) BH /),

Raising this to the power r and integrating over R we obtain the estimate of the lemma by applying Holder’s
inequality. ]

PROOF OF PROPOSITION 13.7. The case w = +1 is obvious, since the kinetic and potential energy are
both non-negative and bounded. By Lemma 13.8 with k = 2,k' = 0,p = co,q = 1,7 = 5/3, we have

1t ) zs/aray < ellF (8 )72 ga wmgy Ma(F (D)™ 1= el £ (1T (g e Er(F(£) 7.

For the case w = —1 we apply Lemma 13.3 part (3) and Lemma 13.8 with k =2,k' =0,p =9/7,r =6/5 ,
to get

3/2
(4.40) B (fO) == IVU (¢, ) 72ma) < cllo(t, ) Fo/s sy <cl £ (2, )I|L§/7(RM%)Mz(f(t))”2~
(4.41) = cEy(f(1))"/*.
By the conservation of energy this implies the kinetic energy is also bounded:

Ex(f(t) = cBu(f())2 < En(f(8) + Ep(f (1) < Bu(f°).
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13.3. Global existence. We use Theorem 13.4 to prove global existence, first proved for general
smooth data by Lions and Perthame [44] and then Pfaffelmoser [55]. The former uses a less strenuous
bound on the third order moments Ms3(f) in order to bound the maximal interval of existence P(t). Indeed
we have from Lemma 13.3 with p = 2, Proposition 13.7 and (4.32) that

VLU ()l el )I[8£°< eP(8)*?,

which implies the Gronwall estimate

P(t) < P(0) +/0 V.U (s, )||ods < P(0) +c/0 PA/3(5)ds.

This bound is improved with an additional estimate for M3(f(t)) by splitting the integral over z and then
over v to obtain a global bound for P(¢). The a priori energy estimates in Proposition 13.7 combined with
compactness properties of the operator A~! are used to prove global existence [44]. These solutions are not
known to be unique nor are they known to satisfy the conservation laws. On the other hand, the latter proof
[55] avoids an estimate from Lemma 13.8 and uses a more elegant Lagrangian estimate along a characteristic
to measure the increase of velocity. In this method one fixes a characteristic (X, V') along which the increase
in velocity during the time interval [t — A, ¢] is estimated. The integral is split onto three domains of (z,v)
concurrently. Rather than estimating the maximum value of |V, U|, the integral of this quantity is considered
on a small time interval. The aim is to understand the total effect which one particle (the source particle)
has on another (the target particle) on a given short interval. The first set is where velocities are bounded,
either absolutely or with respect to the target particle, the second, along which velocities are unbounded,
and wherein the particles in the integral are close to the target particle so that the singularity of the kernel
x/|z|? is strong, and the third, the "ugliest’ set which contains the complement. On this set the time integral
is exploited in a delicate way in order to bound it with the kinetic energy.

THEOREM 13.9. (Pfaffelmoser.) Let fO € CHRY x RY) be non-negative. Then there exists a global
classical solution f of (4.1) with initial datum f°.

PRrROOF. Step 1. Let f be the solution, and [0,7) be the (positive) maximal interval of existence
provided by Theorem 13.4. The following arguments will also apply backwards in time. Let

P(t) = max{|v|: (z,v) € spt f(s),0 < s < t}.

We prove that this is bounded. We fix a characteristic (X, V)(¢) with (X,V)(0) € spt f°, and let 0 < A <
t < T. We estimate the increase in velocity along the single fixed characteristic X (s):

(s,y,w
4.42 V()= V(t—A)< // / DD dwdyds.
(4.42) [V (t) - )< o - X y

Changing variable y — X (s,t,x,v),w — V(s,t, x,v), and noting that f is constant along flow lines, (4.42)
becomes

(4.43) V() — V(t—A)< / /Rs /R3 ot ;; U>X(S)|2dvdmds.

Fix parameters 0 < p < P(t) and » > 0 to be specified later. We split the integration domain into
the following three sets, the "good”, the "bad”, and the ”ugly”: a set where the velocities are bounded,
either relatively or absolutely, a set where velocities are large and the particle in the integral is close to the
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singularity, and a final set in which we can bound the integral with the kinetic energy.
G ={(s,z,v) € [t — A, 1] x RY x RY : |[v|< p}
U{(s,2,0) € [t — A ] x RY x RY : | — V(1)< p},
B ={(s,z,v) € [t — A, t] x RY x RY : |[v|> p}
N{(s,z,v) € [t — A t] x RY x RN : |v — V(t)|> p}

N [{(s,x,v) €t — A x Riv X ]Rf)v X (st xv) — X(s)|< r\v|73}
(4.44)
U{(s,z,v) € [t — A, ] x Riv X ]Rfjv X (st zv) — X(s)|< v — V(t)|73}]7

U={(s,z,v) € [t — A, t] x RY x RY : |v|> p}
N{(s,z,v) € [t = A t] x RY x RN : |v — V(t)|> p}
N{(s,z,v) € [t — A, t] x RY x RY : | X (s,t,2,v) — X(s)|> rv| 3}
N{(s,z,v) € [t — A t] x RY x RN : | X (s,t,2,0) — X(s)|> rlv — V(t)| 3}
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G is a good set because it is not too large. On B both the velocity of the source particle and its velocity
relative to the target particle are large. At the same time the distance between the two particles is small
in comparison to one of these velocities. On U, the time integral is important: the target particle cannot
remain for long in region where the density is very large or where the distance to the source particle is too

small, due to its high velocity.

Step 2. We choose a length of the interval [t — A, ¢] such that the velocities do not change much. By Lemma

13.3 (2) and Proposition 13.7 there is ¢ > 0 so that
(4.45) VUt oo < ellot, )l Lot )10 < ePY(2).

We fix an increment in time A = A(t).

i p
A= mln{t, " (t)4/3}’
then

(4.46) V(s t,z,v) —v|< AcP(t)*? < Zp,  Vse[t—A,t],z,0eRS

> =

Step 3. For (s,z,v) € G we have after changing variables back X (s,t,z,v) — y, V(s,t,2z,v) — w that

t
f(t7 x?”) f(s’ y)w)
S A (e (LGRS M s el
t—A

lw|<2p U |lw—V (s)|<2p
If we let
(4.48) p(s,y) = f(s,y,w)dw < Cp?,
lw|<2p U |lw—V(s)|<2p

and |p'(s,)||Lsss< ||p(s, -)||Ls/3< c. We can estimate using (4.45)

lw|<2pU|w—V(s)|<2p

< Cp*BA.
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Step 4. For (s,z,v) € B we have from (4.46) the following
[p/2 < Jw|< 2] N [p/2 < |w =V (s)|< 2o = V(1)]]
0 | ly = X(s)l< Sruwl Uy = X(s)|< Srfw = V(s)| 7%,

On the other hand on the domain of integration we have |w|< P(t)| and |w—V (s)|< 2P(t). Since || f(s, )||coc=
|| f9]|oc We can change variable and bound the following:

ft,z,v)
/G | X (s,t,2,0) — X(s)|2dvda:d3

t

f(s,y,w)
< ————dydwds
/ / / ly — X(s)[?
t—Ap/2<|w|<P(t) ly— X (s)|<8r|w|—3

t

] [ e

t—Ap/2<|w—V(s)|<2P(t) ly— X (s)|<8r|w—V (s)|~3
4P(t
< Crlog (()> A.
p

Step 5. To estimate the integral on U we integrate with respect to time first and try to bound |X (s, ¢, z,v) —
X (s)| from below linearly in time. Let (z,v) € R® with |v — V(¢)|> p. We define

d(s):X(S,t,.’I},U)—X(S), Se[t—Aﬂf]
We compute the Taylor expansion of d around a minimal point sg € [t — A, ] :

|[d(so)|= min{|d(s)]: t — A < s < t}.

Let ~ )
d(s) =d(sg) + (s — s0)d(s0), s€t— At
Then
(4.50) d(so) = d(s0), d(s0) = d(s0)
and so

[d(s) — d(s)|= |V (s, t,2,v) = V(5)|< 2/[VoU(s)||oo < 2¢P(t)"/°.

After computing the second order Taylor expansion of d(s) — d(s) around sg and using (4.50) we get
(4.51) d(s) — d(s)| < eP(t)*3(s — 50)? < cP(t)Y?Als — so
1 1
(4.52) < 1p|s—so|< Z|U—V(t)||8—80|~
On the other hand by (4.46)
[d(s0)|= |V (s0,t,@,v) = V(s0)|> [v = V()| =p/2 > 1/2|v = V(1)].
By definition of 5o, we compute the Taylor expansion of |d(s)|? around sg;
1 .
0 < 5 (d(s)[=ld(s0)[*) = (s = 50)d(s0) - d(50) + O((s = 50)*),
so that

(s — s0)d(so) - d(so) > 0.
Hence for all s € [t — A, t], we have that

. 1
()= 1o = V()]s = sol*
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Together with (4.51) this gives

(4.53) |d(s)|> ih} —V(@®)|ls — sol, Vs e[t — A,
and (x,v) € B. Next we define
& e

4.54 = .
(454 7ile) { (02 &< eyl
and

) e E>rlv—V(EH)?
(459) 72(8) = { (o —VOI)2 £ <rlo— V(D)

From the definition of U we have that o; are non-increasing and using (4.53) we get

|d(s)|721U(s,x,v) < o;(ld(s)]) < oy (iv - V()l|ls— so|> , Vs €[t — A,

fori=1,2. O

Step 6. We can now estimate the time integral on U. Calculating the integral fooo 0;(&)d€ for i =1,2
we get

[ 1210 (5., 00ds < 80— Vo) / T ou(€)de
(4.56) N
< 16Jv — V(t)\_lmin{r_l|v|3,r_l|v — V(t)|3}

< 16r o 2
Thus finally

t
f(tﬂ:,u) / / / Y
dvdads < d 1 dedvd
/UIX(s,tac,v)—X(s)|2 vares = [ Jes |d(s)| "1y (s, 2, v)dsdvds
t—A

< C’ril/ [o2f(t, z,v)dvde < Cr~L.
r3 JR3
Adding up the estimates on G, B,U and by definition of A we get the following control:
V(t)—V(t—A)<C <p4/3 + rlog(4P(t)/p) + r_lA_l) A

= C (p"* + rlog(4P(t)/p) + " max{1/t,, 4cP(t)"/* /p}) A,

Step 7. We now choose p and r so that the sum above is the same order of P(t). Setting
p =P, r=Pt)%,

we can assume without loss of generality that P(t) > 1 so that p < P(t). We make the following observation.
Since

lim P(t) = oo,
t—T

if T < o0, and P(t) is non decreasing, there exists a unique T* € (0,7) so that
1/t <4C*P(t)Y3/p = 4C*P(t)3¥/33, > 1T*,
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Hence for all t > T,

[V (t) — V(t— A)|< CP()'/33 log(P(t))A.
Thus for any € > 0 there exists a modified constant C' > 0 so that
(4.57) V() = V(t—A)< CPH)O/33 A, vt > T

We partition the time interval [T™*,¢]. Let ¢ > T* and define to = ¢ and t;41 = t; — A(¢t;) for ¢; > T*. Since
t; — tiv1 = A(t;) > A(tp), we can find k& € N so that

e <T" <th_1<..<tyg=t.
From the estimate (4.57) we deduce
k

k
V() = Vit < SIV(tr) - V()< CP@/5 3 (1, — 1)
i=1 i=1
< CP(t)16/33+8t.
Now by definition of P(t) we have
P(t) < P(ty) + CP(t)'0/33+=¢,

Note that P(tx) < supsejo, |V (s)|< C and P(t;) < P(t). This eventually implies that for any § > 0 there

exists C > 0 such that
(4.58) P(t) < (1+t)33/1+ ¢ e0,T),

so by Theorem 13.4 we conclude.

REMARK 13.10. The bound in (4.58) has been improved in [38] to
P(t) <C(1+t)log(2+1),

which is valid in both cases w = 1 and is the sharpest bound known so far. In the repulsive case, it was
shown in [57] that
P(t) < C(1+1)%3.

REMARK 13.11. Theorem 13.9 provides limited information on the asymptotic behavior of the solution
for large times. This is not surprising since the proof is valid for both the repulsive and attractive cases while
the asymptotic behavior can be expected to be different. In particular in the plasma physics case (w = +1)

particles repel each other, so the spatial density should decay as t — oo, whereas in the case w = —1 static
solutions are known to exist [8, 9, 57|, so there can be no decay on f. On the other hand in the plasma
physics case, certain solutions [10, 32] have been known to decay polynomially in time as t — oco. Whether

all smooth solutions decay in time in the repulsive case remains an open problem.



CHAPTER 5

Estimates for Lagrangian flows

14. Vector fields with Sobolev regularity, p > 1

In this section we show that the results from DiPerna Lions theory can be recovered from a priori
estimates from the Lagrangian formulation

X
(5.1) C;—8(5,90) = b(s, X (s,7)), s €[0,T],
X(0,2) ==,
under suitable growth conditions of the field b and an appropriate notion of flows when b is non-smooth. We
summarize the quantitative estimates derived in [23] for WP vector fields, with p > 1. These will allow
us to recover the existence, uniqueness, and stability of Lagrangian solutions to the transport equation.
The novelty of the approach offered in [23] is that using a purely Lagrangian derivation, from just the

definition of such flows, one is able to derive quantitative regularity and stability of regular Lagrangian
flows, as well as propagation of mild regularity for weak solutions to the transport equation. As opposed to
the renormalization scheme in section 2 which is used to prove uniqueness, we exploit the ODE (5.1) to get
an explicit rate on the decay on the set where two flows associated to b differ, and this estimate relies only
on the regularity and growth of b. For simplicity, we assume that b € WP N L. As in [23], we summarize
the estimate for the superlevels of the function X (¢,z) — X (t,z) of Lagrangian flows associated to b and b
which depend only on the L> and WP norms of b and b. In fact, this can be relaxed to a more general
growth condition on b, a technical modification we postpone for section 16 in order to illustrate the initial
analysis more clearly. The estimate precedes the following corollaries:

(1) Existence, uniqueness, stability, and compactness of Lagrangian flows,

(2) Approximate differentiability of the Lagrangian flow.
We remark that the missing point in these estimates is the case when p = 1, due to the fact that the maximal
function of an L' function is no longer in L'. However, this is resolved in section 16, where we outline the
analogous estimates for a vector field whose derivative is the singular integral of an L' function.
For locally summable vector fields, we begin with the following definition of a flow map associated to a
weakly differentiable and bounded vector field.

DEFINITION 14.1. Let b € LL _([0,T] x RY). A map X : [0,T] x R? — R? is a regular Lagrangian flow
for the bounded vector field b if
1) for a.e. * € R the map t — X (t,x) is an absolutely continuous integral solution of %(t) = b(t,~(t)) for
t € [0,T] with v(0) = x.
2. There exists a constant L independent of t such that
LUX(t,.)7H(A)) < LLYA)

for every Borel set A C R%. The constant L is called the compressibility constant of X.
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REMARK 14.2. The bounded compression constant corresponds to a lower bound on the Jacobian of the
flow, and is equivalent to

(5.2) [ oozt [ s
RN RN
for all measurable non-negative .

14.1. Definition of the quantity ®s(¢) and an exploratory computation. We begin by introdu-
cing a 'uniqueness’ functional which measures an integral distance between two flows. Let b be a vector field
satisfying the assumptions of Theorem 14.5. Let X and X be two regular Lagrangian flows associated to
the same vector field b. Let 4 > 0 be some small parameter. Consider the functional

(5.3) O5(t) = /log ('X(t’x) gx(t’x” + 1> dz.

B,

At t =0, &5 = 0. It is clear that if X and X are not in the same equivalence class of Lagrangian flows that
there exists a v > 0 giving the lower bound

(5.4) Ds(t) > / log (1 + %) de = LN({xz € B, : |X(t,z) — X(t,2)|> ~}) log (1 + %) ;
Brn{|X (t,2) =X (t,2)| >~}
which yields
Ds(t

(5.5) LN € Bo: [ X(6a) — X(ta)|2 1)) < —23l)__

log (1 + )
If the ratio on the right hand side goes to zero as § — 0, then we must have that X = X almost everywhere.
This is achieved if ®5 grows slower than log(1/d) as 6 — 0. This is immediate if, for instance, &5 < C. If we
differentiate (5.3) with respect to time, we can compute

/‘dXt T d)_(c(li,x) (IX(t,z) — X(t,z)|+6) ‘da /

|b(t, X (t a;) b(t,)_((t,x)|

5.6)
( | X (¢, z) — X (¢, z)|+0

Let R = 2r + T(]|b]|oo+]|0||oc). Then Lemma 5.9 implies that

() < cd/MRDb(t,X(t,x)) + MpDb(t, X (t,z))dz.
B
Using the estimates from Lemma 5.7 this gives us
®5(t) < car”VP(L+ L)||MpDb(t, )| o ()
< caf =P (L + L)|| Db(t, )| o (ge)-
Now for any 7 € [0,T], we integrate the expression for ®'(¢) over [0, 7] to recover the desired upper bound
(5.7) ®5(t) < caf™¥P(L + L)||Db|| L1 ((0,r);0 (re)) < C-

Thus any Lagrangian flow associated to a Sobolev vector field must be unique. If we broaden the approach
to account for Lagrangian flows associated to two distinct vector fields b and b, we obtain an explicit rate
on the decay of the left hand side of (5.5) as § — 0, depending on the regularity and growth of b and b.
Thus the L' stability of Lagrangian flows are controlled by the upper bound on ®;. We have the following
estimate on the L' distance of the flows in terms of the logarithmic L' distance of the vector fields.
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THEOREM 14.3. (Stability.) Let b and b be bounded vector fields belonging to L*([0,T]; W*(RN)) for
some p > 1. Let X and X be reqular Lagrangian flows associated to b and b respectively with compressibility
constants L and L. Then for every time 7 € [0,T], we have

(5-8) 1X(7,.) = X(7 )21, < Cllog(|[b = bl L1 (jo,r)x )| 7
where R =1+ T|bl|oc and C' depends only on 7,7, |b||so, |bl|sc, L, L and ||Db||11(r»).

REMARK 14.4. The constant C' depends on the regularity properties of b only and not b. The Theorem
is also valid if b is a vector field which is merely bounded, and b has the required Sobolev reqularity.

PROOF OF THEOREM 14.3. Set § = ||b — b||11((0,-)xB,) and consider the integral functional in (5.3).
Differentiating with respect to time we have the additional first term

@(t) < b(t K1) ~ Bt X)) 1205, )+/|th (t,2) = bi(t, X(t,2)|

dx.
X(t,2)— X(t,a)10

Changing variable X (t,2) + z in the first term above and using the estimate in (5.7) we have the upper
bound

L _ e _
(5.9) ®5(t) < 5 |lb— B[ L1 ((0.7)x By caF*™ P (L + L)||Db]| L1 ((0,r); Lo (1)) < Ci-
Now fix 7 > 0. Using the Chebyshev inequality, we find a measurable set K C B, such that | B, \ K|<7
and for all z € K, B
X(t,x)— X(t
<| (737) (,:L‘)|+1) Cl
n

o
We split the integral (5.8) in the following manner.

/|X7'x X(r,z)|de = / | X (7, z) — (T,%)‘d$+/‘X(T,l‘)*X(T,IE”CZZE
’V'\K

< (X )lze ) HIX (T lz=z,) +/K\X(T7$) - X(7,2)|dx

< nCs + cnr™d(exp(C1/n)) < C3(n + 5 exp(C1/n)),

where Cy,Cs,C3 depend on T,7,||b||x, ||b||ss, L, L, and ||Db||z1(rsy. We can assume § < 1. If we set
n = 2C|log§|~t=2C (- log(é))_1 we get exp(Cy/n) = 6~ /2, so that

log

/|X (1,2) (1, 2)|dx < C3(20 [log 6|1 +6/2) < Cllog 8|7,

with C depending on 7,7, ||b||cc, |[b]|cc, L, L, and || Db|| 1 (1. O

14.2. Approximate differentiability of the flow. Similar to the quantity defined in (5.3), we define
an integral to measure the Lipschitz continuity of a regular Lagrangian flow. For 0 <t < T, 0 < r < 2R,

and x € Bpg, define
X - X
Qt,z,r) = ][ log (| (t,2) (t,9)| + 1) dy.
T

B, (x)

Differentiating in time gives

aQ
dt

(5.10)

(t,z,r

) < ][ |b(taX(t7$)) _ b(t7X(tay))|d

[ X(t,x) = X(t,y)[+r
B (z)
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Setting R = 4R + 2T'||b|| .~ gives | X (t,z) — X (t,y)|< R. Applying Lemma 5.9 we have the estimate

(5.11) %(t, x,7) < cqgMpDb(t, X(t, 7)) + cq ][ MpzDb(t, X (t,y))dy.
B, (x)

Integrating (5.11) in time, and taking the supremum over 0 < r < 2R and 0 <t < T, we get

T T
(5.12) sup sup Q(t,z,r) <c+ cd/ MpgDb(t, X (t,x))dt + cd/ sup ][ MpgDb(t, X (t,y))dydt.
0<t<T 0<r<2R 0 0 0<r<2R
By ()
Observe that the latter term on the right hand side can be estimated with a composite maximal function
of MzDb. Taking the LP norm over Br we can estimate (5.12) in the same way as (5.7). This gives the
following result.

THEOREM 14.5. Let b be a bounded vector field belonging to L*([0,T]; WLP(R?)) for p > 1, and let X
be a regular Lagrangian flow associated to b. Let L be the compressibility constant of X. For every p > 1
define the integral quantity

P 1/p

Ay (R, X) = / sup  sup ][log(|X(t’x)X(t’y)+1)dy da:

0<t<T 0<r<2R r
BR(O B/,((I/)

Then
Ap(R, X) < C(R, L, || Dbl  11(Lr))-

PRrROOF. Changing variable X (¢,2) + z in (5.12) and applying Lemma 5.7 twice yields

T T
Ap(R.X) < cpp +ca / MyDb(t, X (¢, 2))dt +eq / sup ][MRDb(t,X(t,y))dydt
0 0 O<r<2R

LP(BR) BT(’E)

L?(Br)

T
< Cd,le/p|‘Db||L1((O’T)4LP(BR+R+T\\b|\m))+cd/O | Mar[(MzDVb) o (t, X (t, .))](:L‘)HLP(BR) dt
< C(R, L, [|Dbl[ 1 (zr))-
O
The bound on A,(R,X) can be used to prove the approximate differentiability of the flow associated

to a vector field satisfying the assumptions of Theorem 14.5, since it implies the Lipschitz constants of a
sequence of approximating flows are bounded up to a set of small measure.

THEOREM 14.6. Let b be a bounded vector field belonging to L*([0, T]; WLP(R®)) for some p > 1, and
let X be a regular Lagrangian flow associated to b. Then X(t,-) is approzimately differentiable L%-a.e. in
R?, for every t € [0,T].

PrOOF. Theorem 14.6 is a consequence of the following property: For every € > 0 and R > 0, we can
find a set K C Bpg such that Ed(BR\K) < e and for any 0 <t < T we have
p CdAp(R7 X)

Lip(X(t,)|k) < ex 1/
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caAp(R.X)
51/P

Fixing € > 0, R > 0, and denoting by M the constant M =
K C Bg such that £4(Bg \ K) < ¢ and

sup  sup ][ 10g<|X(t,x)—X(t,y)| —|—1> dy<M vz € K.
r

0<t<T 0<r<2R
B(x)

, we have from (5.12) existence of a set

If we fix z,y € K and set r = |z — y| then

X -X X -X
r Br(z)NBr(y)

r
< cd][ log <X(t,x) — X(%,2)] + 1) dz + cd][ log (|X(t,y) = X(%,2)] + 1) dz
Br(z) r Br(y) r
§ CdM.
We have then clearly that
Lip(X(t,-)|x) < exp(cal).
Applying Theorem 3.1.16 of [35] yields that X(¢,-) is approximately differentiable £%-a.e. O

Using this Lipschitz property of the flow, one may prove the following result on compactness of the
flows, which serves as a substitute for Ascoli Arzela when the uniform Lipschitz bounds hold up to a set of
arbitrarily small measure.

THEOREM 14.7. (Compactness.) Let b, be a sequence of uniformly bounded vector fields in L* ([0, T]; WP (R?))
for some p > 1. For each n, let X, be a regular Lagrangian flow associated to by, with uniformly bounded
compression constant L,,. Then the sequence X,, is strongly precompact in LL ([0,T] x R?).

loc

Proor. Fix 6, R > 0. Since b, is uniformly bounded we deduce that X,, is uniformly bounded in
L>=([0,T] x Bg). By Theorem 14.6, for every n we find a set K, s such that £L¢(Bgr \ K, s < §) and for
every t fixed,

A,(R, X,
(5.13) Lip(Xy(t, )|k, ;) < exp % < C‘S(R).
The uniform boundedness of X, and Lip(X,,(t, )|k, ;) in L allow us to apply (Lemma C1, [22]) to conclude
X, is precompact in measure in [0,T] x Bg, and therefore also precompact in L' ([0, T] x Bg). |

REMARK 14.8. (A more direct method to compactness.) The stability estimate in Theorem 14.3 provides
an alternate way to show compactness, without using the stronger Lipschitz property of the flow. If X, is a

sequence of regular Lagrangian flows with uniformly bounded compression constants, associated to uniformly
bounded vector fields by, in L'([0,T]; WLP(R?)), then X,, is strongly precompact in Li ([0,T] x R?). Indeed,
applying Theorem 14.3 to the flows X, (t, z) and X,,(t, xz+h)—h relative to vector fields b, (t, ) and b, (t,x+h)
for a fized parameter h € R?, we have for every t € [0,T):

1 X () = Xn(t,- 4+ h) = hl[ 18 < Cllog(|[ba(7, <) = ba (7, + B)|| L (0,1 xBm) )|

< C

= || Dby [log(h)|”

and we conclude by the Riesz Fréchet Kolmogorov theorem.
REMARK 14.9. We summarize three methods to prove compactness of the flow: the first one, using a

uniform control on the quantity A,(R, X) to gain the approzimate differentiability property, and the second,
using the more general stability estimate of two Lagrangian flows as in Remark 14.8. The third alternative
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is a variant of the first argument that works with a slightly weaker assumption than Db € LfOC(Rd) and was
considered in [22]. If we assume the regularity assumption

(5.14) YA > 0, My\Db € L'([0, T); L, . (R),
which is equivalent to Db € Llog Lioe(R?), then we can define the quantity, for R >0, 0 < r < 2R,

a(r, R, X) = / sup ]{3 log (lX(t’x) — Xyl | 1) dydz,

Bp 0<t<T r

which is smaller’ than A,(R, X) since we do not take the supremum over r. Proceeding as in the proof of
Theorem 14.5 with R = 3R + 2T'||b||s one can compute

(515) a(r, R, X) < CdL‘ |MRDb| |L1([O,T];L1(BR(0)): C(R)
By concavity of the log function , for 0 < z < R we have

log (; + 1) > bg(’{;rl)z.

Now since | X (t,x) — X (t,x + 2)|< R we get a control on the spatial increments of X (t,z) by the estimate

(5.16) ][ sup / | X (t,z) — X (t,x + z)|dxdz < #a(r, R, X) < g(r).
Br 0<t<T /B, log (% + 1)

where g(r) satisfies g(r) — 0 for r — 0. Combined with the elementary estimate
I X(t+7,2) — X(t,2)|< 7||b]|0os
one can argue with Riesz Frechet Kolmogorov theorem.

COROLLARY 14.10. (Emistence.) Let b be a bounded vector field satisfying (5.14) such that [divb]~ €
LY([0,T); L>(R%)). Then there exists a regular Lagrangian flow associated to b.

PROOF. We regularize b by convolution, and note that the regularized sequences b, and Db,, satisfy
the bounds of Remark 14.8. For the smooth flows X,, associated to b,,, we have the uniform bound on the

compression constants L,
T
L, = exp (/ [dliv by (¢, ~)]||oodt> .
0

REMARK 14.11. Following the proof of Theorem 14.3, we see that a sufficient criterion for stability of
the flows is (5.7), or in other words, that the quantity @5 is upper bounded by a constant. This happens when
the difference quotients of b are bounded in Li.., and corresponds to b € WLP(R?) for p > 1. Indeed the
argument fails for p =1 since M Db is no longer in L ., and the constant upper bound in (5.7) is no longer
possible. One might ask whether these estimates can be modified when the bound for ®5 depends in some
way on 0, but blows up slower than log(1/5). Observe that in (5.6) we have neglected the presence of the ¢

parameter in the denominator of the difference quotient of b, when in fact we have the ’smaller’ estimate
|X(t,z) — X(t,z)[+6 — 0 ’ |X(t,z) — X(t,z)] ’

This will be studied further in section 16, when we study the case in which Db is no longer in LP for p > 1.

O

(5.17)
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REMARK 14.12. The estimates derived in Chapter 5 may be relaxed for Sobolev vector fields satisfying
l;(—i]z)l belongs to L}(LL + L°)." The integral quantity in
(5.3) is then measured over a suitable set where the flow is bounded. We then have to consider the size of
the set where the flow may be large. The stability results follow, up to a modification in the proofs which will

be considered in more detail in the next section.

more a more general growth condition, namely that

15. Difference quotients for vector fields whose gradient is the singular integral of an L!
function

In this section we will review the more recent work in [16], where the vector field has a gradient given
by the singular integral of an L' function. This makes the quantity ®s(¢) introduced in Theorem 14.3 more
difficult to estimate, by the fact that the classical maximal function cannot be composed with a singular
integral operator on L!. The first step is to seek a 'milder’ approximation to the identity than the classical
function M, for instance a convolution operator, and prove that this sufficiently smooth average satisfies
cancellations in the convolution with a singular kernel K.

15.1. Cancellations in maximal functions and singular integrals. In this section we recall the
key estimate in [16] that permits the composition of a singular integral operator and maximal function.
Given two singular kernels K7 and K5 with associated operators S and S;, we can consider the composition
5951, where m = szlﬁ is a well defined operator which satisfies the estimates of Theorem 6.4. This
estimate does not arise from composition, since S;u fails to be in L'. However, the cancellations between
the kernels K7 and K> allow 5557 to be a well defined tempered distribution. The next Theorem states that
such cancellations also occur in the composition of a maximal function with a singular integral operator.
The classical maximal function is too 'rough’ for such composition, so one considers the smooth maximal
function.

DEFINITION 15.1. Given a family of functions {p*}, C LZ(RYN), for every function u € L (RY) we

loc
define the {p*}-mazimal function of u as

M vy (u)(z) = sup sup
v e>0

/RN pe(x — y)uly)dy| = supsup |(pZ * u)(x)|.

v >0
In the case when u is a measure, we take a compactly supported family {p*}, C C(RY) and define in the
distributional sense

My (u)(z) = SUp SUp (u, p (x =)o ,p| -
Vv £

The smooth averages and the absence of the absolute value within the integral allows cancellations that
take place in the composition of My ,., with operator S. This plays together with the cancellations in the
singular kernel K, giving rise to a bounded composition operator My, S : L' — M.

THEOREM 15.2. Let K be a singular kernel of fundamental type, and let Su = K x u, for every u €
L2RN). Let {p"}, € C(RYN) be a family of kernels such that

(5.18) spt p” C By and 10" |1 @~y < Q1 for every v.

Then we have the following estimates.
(1) (a) There exists a constant Cy, depending on the dimension N only, such that

(5.19) 1My (Sw)|[| a2 3y < Cw Q1 (Co + C1 + || K |oo)[ul] 1 &)

LFor vector fields which are only locally bounded, an extension of the DiPerna Lions theory for local flows was considered
in [2].



66 5. ESTIMATES FOR LAGRANGIAN FLOWS

for every u € L' N L2(RY).
(b) The estimate (5.19) holds also for all u € M(RY), where Su is defined as a distribution.
(2) If Q2 = sup, |[p”|| oo (mn)y is finite, then there exists Cn, such that

(5.20) | My (Su)]| L2 ey < Cn Qo | K ||oo 1] 12 259 -

PrOOF. The proof will rely on Lemma 6.6. The goal is to prove that the composition (pY x K)(x)
satisfies the assumptions (1)-(5) and has a decay at infinity comparable to an approximation to the identity
in Lemma 5.8.

Step 1. (Definition of the operator A%(x).)
We define a convolution operator, which, up to bounded factor, is the same as M,»S. Fix a radial function
x € C°(RY),0 < x <1, such that x(z) = 0 for |z|< 1/2, x(z) = 1 for |z|> 1, and ||[Vx||cc< 3. Let

v v x 17 T
(5.21) Aty =@+ (2) - ([, o) x (2) @)
g RN e
Notice that
AY = plx K +Ox (1) K,
where the first term on the right-hand side is the ’almost’ the composition M,»S, and the second term is
the product of K and a smooth function, and C' is some constant less than ;. We show that the operators

AY and x ( ) K are of weak type (1,1) and strong type (2,2). Observe that by the regularity assumption on
p¥ there is some constant Q5 such that for every € > 0 and every v,

(VK () * p” || oo mv) < Q3.
By (5.21) and the definition of y, we have that for every € > 0 and v, AY € C,(RY), and
Qs Q1002
eV

(522) ML) S+

for every z € RN. For |z|> 2¢, (5.21) becomes
azta) = [ 1K) = K@lp(e — )y

For every t € [0, 1],
ty + (1 = t)z|> |z|-ly — 2|> |z]—e > [z[—|z[/2 = |2|/2.
Then for every |z|> 2e,

bda
(5.23) At [ [ G+ 0= 0t - iy

< [ vt =ty sl

/]RN / [ty + (1 I|N+1|y x|pf (z — y)dtdy
Cily — | INFICL 0y
5.24 < Cly—al o 2V CQie
24 - /]RN (Jz|/2)N+1 pL(z —y)dy < PhED
Putting together (5.22) and (5.23), we get a constant Cy such that
Co+C
AV (2)]< Oy L@+ )

&N (1 - (?)NH> |
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Clearly A¥(z) € L' N L>=°(RY). Applying Lemma 5.8 yields that for any u € L (RY),

loc
(5.25) sup sup|(AY x u)(z)|< Cn(Q3 + Q1(Co + C1)) Mu(x), vz e RV,
v >0

This immediately implies the estimates
(526) |||supsu%)\Ale’*u||||M1(RN)§ CN(Q3+Q1(CO+C'1))HU||L1(RN), for every u € Ll(]RN)7

v &>

||sup SUp|A ull|lp2@m)< On(Q3 + Q1(Co + C1))l[ul |22 @), for every u € L*(RY),
v &>

so that AY is a bounded operator on L' — M?! and L? — L2

Step 2. ( Definition of the operator T’ . )
We have from (5.21) that

14 v T
(5.27) (o 10)) = A%+ ([ o) x (2) wa)
Since p” * K € L?, Plancherel’s identity implies the associativity property
(5.28) oY x (Su) = (pf * K) *u for every u € L*(RY).

For every u € L*(RY), we have the following characterization

My, (Su) = sup sup|pf * (Su)|= supsup|(pf * K) * ul,
v e>0 v e>0

which is the operator in (5.27). By step 1 and since | [ p¥(y)dy|< Q1, it remains to study the operator
(5.29) T4 (u) = sup (X <7> K) * u’ for u € L?(RY).
e>0 €

We apply the Interpolation Lemma 6.6 to this operator T'y. All assumptions except for (4) and (5) are
obvious. We postpone the proof for (4) and (4). We obtain constants P, = Cn(Cy + C1) and P =
Cn(Co+ C1 +||K||), such that

(5.30) 7T ()| ar @y < Palul| L1y for every u € L' N L*(RY).

Combining this with (5.26) proves the first statement of the theorem.

For 1(b), suppose that u € M(RY). Let (, be the standard mollifier, and denote with u, = (, * u. Now
u, € L' N L2(RY), so that 1(a) applies. Observe that Su, — Su in S'(RY). Then for fixed ¢,v,z,
(0 * (Sua)) () = (0 * (Sw))(z) as n — .

This implies that, for every A > 0,

1 {Supsup |pY * (Su)| > )\} < lim inf1 {supsup |oY * (Suy)| > )\}
v >0 n—00 v >0
We conclude using Fatou’s Lemma.
(2) follows from the inequality |p¥(2)|< Q31 5, (x) for a.e. x € RV, so that for all uw € L*(RY),
My (u)(z) < Q3L (B1)Mu(x).

Combining this with the inequality ||Sul|||z2< ||K]|so||u||.> gives the result.
Step 3. Here we verify assumption (5) of Lemma 6.6. We need to check that for any u € L?(RY) satisfying
sptu C Br(zo) and [, u = 0, there holds

(5.31) / Ty (w)de < Pylull: ).

|z—zo|>2R
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Since sptu C Br(zo) and [pn u =0 we can write for any = ¢ Bag(zo),

(@) E))@= [ [ (F) K- x () Ko -

ly—zo|<R

= / X<xy> [K(z —y) — K(z — z0)] u(y)dy

€
ly—zo|<R
T —y T —x
+ / [x( 6 ) —x(go)]K(x—xo)U(y)dy
ly—zo|<R
=1+1I.
For any s € [0, 1],
(5.32) |z — 20 + s(xo — y)|> |z — wo|—|T0 — Yy|> |7 — 20| —R > |2 — 0| | — 20| /2 = | — 20|/2.

For I we can estimate the variation as

1
\K(ff*y)*K(wfon)IS/O IVE(s(z —y) + (1 = s)(x — z0))[ly — wolds

</1 Cily — ol gs < LOR
“Jo |z =20+ s(zo —y) [N T |z — x|V
Then I has the upper bound
r—y
(5.33) X\ = ) [K(z —y) = K(z — z0)] u(y)dy
ol<R
2N R 2N R
(531 < / )y = Rl
ly—zo|<
Observe that
r—y T—x R
(5.35) () - () < i
€ € €
and the variation of y vanishes whenever
x;y’ >1 and ‘x—xo > 1.

Now since |z — zo|< 2| — y|, whenever |z — y|< € or |z — xo|< €, we have |z — x¢|/2 < €. This improves the
bound in (5.35),

T — T—z R
(5.36) ‘x( y) x( °>‘ <NVxloo ——-
5 € |x — o]

It follows that

(5.37) / [x (w - y) —X (”” ;“)] K (x — zo)u(y)dy

ly—xo|<R

6R Co 6CoR
(5.39) < | el = ey

ly—zo|<R
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This combined with the estimate for I yields

Ty (u)(z) =1+11 < (6Co + 2N+101)W|IUHLI<RN>7

for every x such that |z —z¢|> 2R. Integrating over this set |x —xzo|> 2R gives (5.31) with P, = Cn(Co+Ch1).
Step 4. We lastly verify assumption (4) of Lemma 6.6.

Fix a nonnegative convolution kernel p € C¢°(By) with [,5 p = 1. We define A. asin (5.21), with j instead
of p”. The inequality (5.25) holds, for all u € L*(RY),

(5.39) sup (A 5 u)(@)] < On(Co+ Cr + IR lloe) Mu(x)
e>
Moreover, we have also
(5.40) sup |(pe * Su)(x)] < CnM(Su)(x).
e>0

Step 2 also implies

T, (u) = sup (X (7) K) *u' < sup |A, % u| + sup |pe * Sul.
e>0 € >0 >0

Combining this with (5.39) and (5.40), and the strong estimate on L? from Propositions 5.6 and 6.4 gives

finally

T4 (@l 2@y < Cn(Co+ Cr + (1K oo) [l [ 12),
which implies assumption (4) of Lemma 6.6 with P, = Cn(Co + C1 + ||I?HOO)

16. Stability for vector fields whose gradient is the singular integral of an L' function

We review an extension of the estimates in section 14, performed under the assumption that the gradient
of b is no longer in L? (or even L'), but which is the singular integral of an L' function. In order to obtain
well-posedness results for the regular Lagrangian flow, we require growth conditions on the vector field as
well as the gradient. We first make precise the regularity setting under which the integrals in 14.1 make
sense, when the vector field is not globally bounded. Rather than truncating the integrals over B,., one
should integrate only over bounded trajectories of the flow, which we define as the sublevel G. Let

(5.41) Gy = {x e RY : |X(s,2)|< A for every s € [t,T]}.
In order to ensure that the complement of the sublevel (the superlevel of the flow) does not grow too large,
we impose the following growth condition on b.

(R1) b(t,z) can be decomposed as

with
by € LY((0,T); LY(RM)) and by € LY((0,T); L(RN)).
When the vector field is not globally bounded, the associated flow X (t,-) is not locally integrable in RZ.
Thus we describe a formulation in the renormalized sense of the ODE that makes sense under a relaxed
growth condition. Given a vector field satisfying (R1), we formalize the notion of regular Lagrangian flows
with a logarithmic summability, which are Lagrangian flows in a renormalized sense.
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DEFINITION 16.1 (Regular Lagrangian flow). Ifb is a vector field satisfying (R1), then for fizedt € [0,T),
a map
X € O([t, T)s; LY . (RN)) N B([t, T)s; 1og Lioc (RY))

loc

is a reqular Lagrangian flow in the renormalized sense relative to b starting at t if we have the following:

(1) The equation
(5.42) 0s(B(X (s,2)))= B'(X(s,2))b(s, X (s, 7))
holds in D'((t,T) x RY), for every function f € C1(RY;R) that satisfies |3(z)|< C(1+1log(1+
[2])) and |8'(2)|< %IZ\ for all z € RV,
(2) X(t,x) =x for LN-a.e v € RV,
(8) There exists a constant L > 0 such that [px ¢(X(s,z))dz < L [pn @(x)dz for all measurable
0 : RN — [0, 00).

REMARK 16.2. Note that (R1) enables the right-hand side of (5.42) to be in L*((t,T); L . (RY)). Since

we do not assume global boundedness of b, X (s,-) is not locally integrable in RYN. The log Lioc(RY) bound
comes from integrating (5.42) in s.

We remark that by now this is the usual definition of flows for weakly differentiable vector fields satisfying
the general growth condition (R1). The renormalization setting has been introduced and exploited in [25, 5]
in the Sobolev and BV settings.

The following lemma gives an estimate for the decay of the superlevels of a regular Lagrangian flow.

LEMMA 16.3. Let b: (0,T) x RN — RN be a vector field satisfying (R1) and let X : [t,T] x RY — RN
be a regular Lagrangian flow relative to b starting at time t, with compressibility constant L. Then for all
rA>0

LY(B:\ Gy) < g(r, ),
where the function g depends only on L, ||I~)1||L1((07T);L1(RN)) and ||EQHL1((O’T);LOQ(RN)) and satisfies g(r,\) 4 0
for r fized and \ 1 oo.

PrROOF. The result follows from the bound
1+ |X(s,x ~ ~
(5.43) | 1o (lj)') dr < Lol +£Y (B 1Bl 2 gy,
B,

for any r > 0. We omit the full proof, since we perform a similar estimate in section 27.2.

A second regularity assumption is that Db has the representation (R2):
(R2)

ajb = Z Sjkgjk: in DI((O,T) X RN),
k=1
where S}, are singular integral operators of fundamental type in RY and the functions gjk are in
LY((0,T) x RYN) for every j =1,..N and k= 1,...,m.
We will additionally assume that
(R3)
be L ([0,T] x RY) for some p > 1.

loc
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16.1. Estimate of difference quotients. We recall that in Section 14 in order to estimate the quantity
®s(t) in 14.1 an estimate of the difference quotients of b is given by the maximal function of Db. For this
maximal function to be integrable, we require that Db € L{. .. This not the case when Db is merely integrable,
or a measure. However, it turns out that an analogous lemma as 5.9 holds for L' functions whose derivatives

are singular integrals of measures or L' functions.

PROPOSITION 16.4. Let f € LIIOC(RN) and assume that for every j =1,...,d we have
(case b) 0;f = Z Rjigjk
k=1

in the sense of distributions, where Rji are singular integral operators of fundamental type in RY and
gjik E MRN) forj=1,...,d andk =1,...,m, and Rjrg;i, is defined in the sense of tempered distributions.
Then there exists a nonnegative function V€ MY (R™) and an L -negligible set N' C RN such that for every
z,y € RE\ N there holds

@) = I e =9l (V@) + V),

where V' is given by

N m
(5.44) Vi=V(R,g) =YY Myes cesi-1y(Rirgi)
j=1k=1
and Y83, for £ € SN=Yand j = 1,...,N, is a family of smooth functions explicitly constructed in the course

of the proof.
PrROOF. We omit the proof, since we will prove a similar Proposition in section 17. O
REMARK 16.5. Theorem 15.2 implies that the operator g — V(R, g) is bounded L* — L* and M — M*.

It is by using this result that the following stability theorem is obtained in [16]. The idea is to consider
a functional ®4(¢) in the same spirit as section 14, with the added difficulty that the operator controlling
the difference quotients of b is no longer integrable. For this issue, the interpolation estimate in Lemma 5.10
will be useful.

THEOREM 16.6. Let b and b be two vector fields satisfying assumption (R1), and assume that b also
satisfies assumptions (R2) and (R3). Fixt € [0,T) and let X and X be reqular Lagrangian flows starting
at time t associated to b and b respectively, with compressibility constants L and L. Then the following holds.
For every v > 0 and r > 0 and for every n > 0 there exist A > 0 and C, ., > 0 such that

LY (B n{|X(s,) = X(5,)|> 7}) < Cornllb = bll 101 x30) 0

for all s € [t,T]. The constants X\ and C ., also depend on:

e The equi-integrability in L*((0,T); LY(RN)) of the functions g;) associated to b as in (R2),

o The norms of the singular integral operators Sﬁw associated to b as in (R2) (i.e. the constants
Co + C1 + || K|[oos
The norm in LP((0,T) x By) of b,
The L*((0,T); L*(RN)) + L*((0,T); L(R™N)) norms of the decompositions of b and b as in (R1),
The compressibility constants L and L.

In order to improve the readability of the following (many) estimates, we will use the notation “<”
to denote an estimate up to a constant only depending on absolute constants and on the bounds assumed
in Theorem 16.6, and the notation “<,” to mean that the constant could also depend on the truncation
parameter \.
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Proor. For any §,\ <0, s € [¢,T], let

(5.45) B;5(s) = / log <1 4 X, 2) 5X(8’x)> de.

B-,J’WG,\QGA

where G and G are the sublevels of X and X. Following the line of (5.4) and because of Remark 14.11
we have

®i(s) < <b(s,-) = b(s, |1 e,y xBy)

[ b, X (s, 2) b5 X (s,2)] b, X (s5,)) — b(s, X(s.2))|
o mm{ 5 T X (s2)— X(s.2) }‘”'

|

BTQGAQGA

Integrating over s € (¢, 7) and applying Proposition 16.4 for almost every s, we have existence of a function
V(S,g) :=V € MY (R") (defined as in (5.44)) so that

bﬂ

‘bé( ) *Hb - bHLl(t TYXBy)
1

+ /t / min { |b(s,X(s,x))|—(|S—|b(s, X(s,2)) Vs, X(s,2)) + V(s,X(s,x))} dxds.

B ‘ﬁGAﬁGA

Fix € > 0. We apply Lemma 5.11 to the finite family g;, € L*((0,7) x RY). This gives a constant C. and
a set of finite measure A, such that for each j=1,.... Nand k=1,....m

gjk(‘S?x) = ggl'k(sﬂ x) + g?k(&:b‘),
with

(5.46) ||g]1‘k”L1((0,T)><RN)§ €, spt (g?k) C A, ||932'k”L2((0,T)><RN)S C..
Then we exploit sub-additivity of V' to get

V =V(S,9) =V(S,g" +¢°) <V(S.g") +V(S,¢°) = V' + V2
Plugging this into the integral gives

(A7) Bs(r) < 20— Bllis ey
(5.48) / / {'b 5 X (5, 2D+ X5 2D g s,y +V1(s,)_((s,x))}dxds

)
B, ﬁG)\ﬁGA
b(s, X b(s, X _

(5.49) / / {| 5 X(s, a:))|—(|5—| (5, X (s, x>)|,V2(S,X(3,x)) +V2(S,X(s,x))}da:ds

B, ﬁG)\ﬁGA

L -
(550) = g”b_b”Ll((t,T)XB)\)—’—Il+12'
We can disregard the first element in the minimum, change variable and estimate the second integral by
(5.51) L<(L+ L)/ ds / V2(s,2)dx < (L+ D)[(r — LN Ba)VIV2 |20y xan)
! BTOG)\OC_YV)\

(5.52) < (L+L)Po[(r = )LV (BA)]Y21|9% |l p2(1,m)xm) Sa 1.2 O
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where in the last line we have applied Theorem 15.2 to the operator V2. Applying Theorem 15.2 to V! and
using the inequality in Remark 5.4 we get

(5.53) NIV e (o xev) < Prllgt ooy ey S
We apply now the Interpolation Lemma 5.10 to the function

90(5717) min {|b($ X(S x))|j;|b(5 X(S x))|,V1(S,X(S,I)) 4 VI(S,X(S,.T))}

to estimate I;. After changing variable X (s, z) — x, we get

1 1] Lo ((t,7)x By)
(5.54) I = [|@ll a7y % (BrnGans ) SNrp L G L1 ((m) xRN [1 + log (|91|L1((0,T)><R1>\V)5 :

Plugging this into (5.47) and using (5.53) we deduce that

E T ||b||Lp ,T)XB
65 B0 Saevpn 0 Hlorrnn et e [141og (02220 ) |

Arguing as in (5.5), we can derive the upper bound

(5.56) LY (B, n{|X(r,z) — X(r,2)|> 7}) < L(T) +LN(B,\ Gy) + LY (B, \ G,).

log (1+ )

Combining this with (5.55) we obtain

591> D) Swprik ST

)_( + )Hb bHLl tT)XB,\)
o Elog(H e, T)XB)\))
lo

+ +
log(1+ %) g(1+3)
We fix n > 0. To conclude we choose A > 0 large so that by Lemma 16.3 the last two terms are smaller

than 7/2. Then choosing & > 0 small enough so that the third term is bounded, we conclude by choosing
6 > 0 small enough so that the second term is bounded. This fixes

L
o = S )

EN(B,. N{X(r,z) —
(5.57)
+ LY(B,\ Gy) + LN (B, \ Gy).

17. Anisotropic vector fields

We now consider the following splitting of space variables. We write RY = R™ x RY?, and split the
vector field b = (b1, b). We consider the case in which Dby is the tensor product of an Lp .(R™2) function
with a singular integral (in R™) of a measure, while D1b1, Doby and Dsbs are tensor product of an L (R"?)
function with singular integrals (in R™!) of integrable functions:

(S *Ll)Lf (Sy x LL)LE )
5.58 Db = 25 il
( ) ((S * M ) loc,y (S *Ll)L‘ﬁ)cy
where p > 1. Compared to [16], we are able to consider a situation in which some entries of the differential

matrix Db are measures. (From a PDE point of view, related contexts have been considered in [42, 43].
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The idea of the anisotropic functional in the spirit of (5.4) will be to weight differently the two (groups
of) directions, according to the different degrees of regularity. In our context, this can be done by considering,
instead of (5.45), a functional depending on two parameters §; and do, with d; < do, namely

59) B 0. (5) = /1og (1 N (|X1(s,x)6—1)_(1(8,33)| | |X2(S,w)5—2)_(2(8,$)|> ) dz.

Following the same strategy as before (estimate of the difference quotients and interpolation in the minimum
in (5.45)), we derive the following bound, which replaces (5.55) in this context:

4] 0. 1
Bs,50(5) % | SHID et S2Dabs 11Dt +|Datals | 106 ()

We need to gain some “smallness” in criterion (5.7). Observe that ||Daby||p1, ||[D1b1||rr and ||Dabs||p: can
be assumed to be small, by the same equi-integrability argument as in [16]. This is however not the case
for ||D1b2||am. But we can exploit the presence of the coefficient 41 /d2 multiplying this term: both d; and 9
have to be sent to zero, but we can do this with §; < ds.

One relevant technical point in the proof is the estimate for the anisotropic difference quotients showing
up when differentiating (5.59). We need an estimate of the form:

(5.60) ) - s (P52 252 v + v].

This is complicated by the fact that, as in the classical case, one expects to use a maximal function in z; and
x9 in order to estimate the difference quotients, but however this would not match (in terms of persistence of
cancellations) with the presence of a singular integral in the variable z; only. This is resolved in Section 19
by the use of tensor products of maximal functions, and will result in the proof of (5.60) together with a
bound of the form

IUN|< 01| Dy fl[ 402 D2 f]] -

Another technical issue is that a smooth isotropic maximal function cannot be composed with the ’dilated’
singular integral in x and y variables since the persistence of cancellations fails: the operator norm blows
up like (J2/01)N 1. Our estimate can however reconcile with the W11 (R¥) case since the delta distribution
does not see this dilation. This is the plan how to obtain the proof of our main Theorem 20.1. As recalled in
Section 20 we obtain as a corollary of Theorem 20.1 existence, uniqueness, stability (with an effective rate)
and compactness for regular Lagrangian flows, and well-posedness for Lagrangian solutions to the continuity
and transport equations.

18. Regularity assumptions and the anisotropic functional

We wish to consider a regularity setting of the vector field b(t,z) in which the (weak) regularity has a
different character with respect to different directions in space. We split RY as RY = R™ x R"2 with
variables 1 € R™ and zy € R". We denote by D; = D,, the derivative with respect to the first
ny variables z1, and by Dy = D,, the derivative with respect to the last no variables x2. Accordingly,
we denote b = (by,b2)(s,z1,22). For X(s,x1,x2) a regular Lagrangian flow associated to b we denote
X = (X1, X2)(s, 21, 72).

We are going to assume that D1by is “less regular” than Dby, Daby, Dobo: the derivative Dby is a
singular integral of a measure, whereas the other derivatives are singular integrals of L' functions. This is
made precise as follows:

(R2a) Assume that

[ D1by Daby\ v1Stp ’7252q
(5.61) Db_(leg D2b2>_('y353m Figae )
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where the sub-matrices have the representation

i,je{l,...,n1}: ie{l,....,n1}, je{ni+1,...,n2}:
(Dyby)j Z’m 8, 22) 5105 (s, 1) (Daby)j Z’Y]k 8, 22) 575 (s, 1)
k=1 k=1
ie{ni+1,...,n2}, je{l,...,n1}: ic€{ni+1,....,n2}, je{ni+1,...,n2}:
m
(D1b2 Z’yjk S xg)S]km (8, 21) (ngg Z%k s xg)S]kt]k(s x1).
k=1 k=1

In the above assumptions we have that:
- S JI}C, S?,i, S;’,i, S;l,i are singular integral operators associated to singular kernels of fundamental
type in R™ |
— the functions p,, g}, t%; belong to L'((0,T); L' (R™)),
- mi € LY((0,T); M(R™)),
- the functions *y],f,vfkl,*y]k ,yjk belong to L>°((0,T); L4(R™2)) for some g > 1.

We have denoted by L((0,T); M(R™)) the space of all functions ¢ — u(t,-) taking values in the space
M(IR™) of finite signed measures on R™ such that

T
[t aageos it < .

REMARK 18.1. The assumption on the functions 7]1.,’;-, ’y?,’f, fyj’,f, ’y;l,j could be relazed to L>=((0,T); L}, .
This would require the use of a localized mazximal function as in section 1/.

(™).

The alternative assumption to (R2a) is the following. Rather than considering singular integral operat-
ors on RN, we consider a vector field for which D;b, is a measure on RY, and for which all other derivatives
belong to L'(RY). This would correspond to the case of a vector field b = (by, by) such that by is BV in x4
and Wb in x5, and by is W' in both 1 and 5. Here we may discard the tensor product of functions on
R™ x R™2 in favor of L' functions on RY if we only consider the singular integral operator on L'(R™) given
by a Dirac delta distribution. It will become clear later why one cannot generalize the Dirac delta to more
general singular integral operators when we formally derive norm estimates for anisotropic dilations of such
operators.

(R2b) Assume that

_ (Diby Dgbi\ _(p» q
(5.62) Db_(le2 ngg)_(m e )

where the sub-matrices have the representation

i,je{l,...,n1}: ie{l,....,n1}, je{ni+1,...,n2}:
lel ijk 8,1, %2) D2b1 quk S, 1, %2)
’L'G{TL1+1,...7TL2}, jE{l,...,nl}l ie{ﬂ1+1,...,n2}, je{n1+l,...,n2}:

m

m
(D1b2); = Zmék(s,xl,xg) D2b2 thk S, $1,$2
k=1
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In the above assumptions we have that:
— the functions p;k, qj-k, ték belong to L*((0,T); L*(RY)),
- mé-k € LY((0,T); M(RM)).
We will additionally need to assume property (R3) as before.
As mentioned in the Introduction, the proof of our main result will exploit an anisotropic functional
(already provisionally introduced in (5.59)), which extends the functional (5.45) to the regularity setting
under investigation. Let A be the constant N x N matrix

(563) A:Diag(él,...,(51,62,...,52).
A acts on vectors in RV by a dilation of a factor §; on the first n; coordinates, and of a factor d, on the last
ng coordinates: A(z1,z2) = (0171, 6222).

Given X (t,71,72) and X(t,71,72) regular Lagrangian flows associated to b and b respectively, we de-

note by G and G the sublevels of X and X defined as in (5.41). The proof of our main theorem (see
Theorem 20.1) is based on the study of the following anisotropic functional:

(5.64) D5, .5,(8) = / log (1 + ’A_l [X(s,acl,xg) — X (s, a:hxg)]}) dx .
BTI'TGAFTG)\
19. Estimates of anisotropic difference quotients

In this section we wish to generalize the classical estimate in Lemma 5.9 for the difference quotients of a
BV function, into an analogous “anisotropic” setting for vector fields in the regularity setting of (R2a) or
(R2b). This will be a key tool in order to estimate the functional (5.64).

In the following three subsections we prove similar estimates in the anisotropic context.

19.1. Split regularity: the isotropic estimate. Given {y"(z1)}, C CX(R™), {p?(z2)}o

C®(R"2) and u € §'(RY) we define
1 T (T
(v (&) (52)) o]

We first of all prove an isotropic estimate in a regularity context related to (R2a), in contrast to case b in
Proposition 16.4.

(5.65)  Myyvgpeyu(x) = sup sup|(y”(21)p” (72))e * u(x)|= sup sup

e>0 v,o e>0 v,o

LEMMA 19.1. Let f: RN — R be a function such that for each j =1,..., N we have

(case a) 0;f = (Rjkgse) (@1)vin(w2)

k=1
where R, are singular integrals of fundamental type in R™, g;r € M(R™) and v;, € LIY(R"™), for some
qg>1.
Then there exists a nonnegative function V : RN — [0,00) and an LN -negligible set N C RY such that
for every x,y € RN\ N/
@) = F@I< e =yl (V) + V()

The function V is given by

N m
(case a) V=V(R,v,9 Z Z Mveigredy(VieRikgin) »
j=1k=1

for suitable smooth compactly supported functions Y7 and Y7, which will be introduced in the proof.
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PrOOF. We adapt the proof of Proposition 16.4 to the current regularity setting. The difficulty is that
a smooth maximal function in RY composed with the singular kernel on R™* does not enjoy suitable bounds,

and so we use a tensor product of smooth functions, as in (5.65).
Let w = (w1, w2) € RY, and let {e;}; be the standard basis for RY. We denote {w;}/ = (w1, 1,...,1) ¢,
and {wy}? = (1,...,1,w2) - €;. Define the families of functions

T () = b (§ —wi) {w )
T () = 2 (% —wn) ()
where h' € C°(R™) with [g,, hide; =1 and £ € SN71. Let h, = J¢h!(2)h*(2), set 7 = |z — y|, and write

1@ =10 = [ e (== T52) @) = genas+ [ e (== T2 () - st

We assume that f, v, and gj; are smooth and compute the following:

x4
/ h ( _ y) (f() — f()dz

2

772// < m—’_y)@jf(ert(z:c))(z-ejx~ej)dtdz.

After the change of Varlable —t(z — ) = w we get

-5 /[
o [ [ o (5 ) e
[ () ) st - e
o f (B2 ) (22 ke
33 [ (- ) R 1 et )

w1

1 — J
y [zhf (3322y2 . Uf) {21 W(wg)] (22) dt .

€i2 Y& (w?) this expression equals

w
t> 0 f(x— )tN+1j dtdw

1 ooy s

N m z—y
TZZ/ [ * Rjgju] (21) e % ikl (@) di,
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and so
r+y
[ e (2= 552 (@) = e
N
AESTIR S
<t ol 3 [ EH ¢ g () (1 s el
J=1k=1
S A supsup (Y5 Rysgye] (ra) (X7 4 1] ()]
=1 k=1 €>
N m
= |z — ylz Z Mveigredy (VieRikgin)(x) = |z — y|V ().
j=1k=1
This proves the statement in the smooth case. By a similar approximation argument as in [16], we conclude
this holds for functions of the type in (case a). O

19.2. Split regularity: the anisotropic estimate. We now modify Lemma 19.1 to obtain an estim-
ate in which distances are measured “anisotropically” through the matrix A defined in (5.63). In the next
lemma we will use the following notation:

Gij(x1) = gjr(d171), Fij(w2) = 7ij(0272)
where with g;i(d121) we denote the measure on R™ defined through
(gjk(0121),0(21)) = 07 " (gij (1), p(y1/61)), ¢ € CZ(R™).
Moreover, R?,lC denotes the singular integral operator in R™! associated to the kernel Kj}w where
(566) Kf,lc(l‘l) = 57111Ki]‘((51$1) .

LeEMMA 19.2. Let f: RY — R be a function in Ll (RN) such that for each j =1,..., N we have that
0;f is as in (case a), or (case b) with R(x) = é(x). Let A be the matriz defined in (5.63). Then there exists
a nonnegative function U : RN — [0,00), such that for LN -a.e. z,y € RV,

@) = FWI< 1A = 9l (V) + U ),

where (with the notation above)

N m
U(IL’) Z/[ , Y, g Z Z M{Tg i®TE 9} lelggjk"v)/jkAjj)KAilx) m ((JHSG a),
i=1k=1
N m
Ufx) = Z Z Mrye.i (gjn(A-)Aj)[(A™ ) in (case b).
j=1k=1

PROOF. Define the following rescaled vector field. For each z € RN, define

f(2) = f(A2).
Now Df is related to Df by the following:

NE

Vi (0222) Ringjn(0121)Aj; in (case a),

1

(5.67) 9;f(2) = 0;f(A2)Aj; = ("

NE

9(Az)Aj; in (case b).

=~
Il
_
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We now apply Lemma 19.1. This gives the existence of a function V € MILC(RN ) to estimate the
difference quotient of f:

(5.68) 1(2) = Fw)[< |z = w|(V(2) + V(w)),
with V' given by

N m
V(R, 7,9 Z Z Myyeigredy (’ij(5222)Rjkgjk(5lzl))Ajj in (case a),
(5.69) V() = ot
Z ZM{T5 i1 (95k(A))Aj;) in (case b).
j=1k=1

With a change of variable we can verify that

(Rikgir)(6121) = (ROLgk)(21) -

Thus we can rewrite V(R, 7, g) as

N m
(5.70) = [Myresgresy (RAginTieAs;)](2)
j=1k=1
By letting U(z) = V(A~1z) the proof is concluded. O

REMARK 19.3. In order to treat case b, when R(x) is a singular integral operator on RY | one should
consider the function

N m
Ulx) = = DD [IMpren Ry (gn(A)) A5))(A™ ),

j=1k=1
where R;‘} is the singular integral operator corresponding to the kernel
K;;‘(x) = |det A| K;;(Ax)

and A is the diagonal matriz defined in (5.63). This would however give a more singular estimate in
Lemma 19.4 below, since the dilation A in both variables x1,xo 'stretches’ the norm of the associated operator

by a factor (—2> and would therefore be useless for the proof of Theorem 20.1.

On the other hand it is possible to treat the case R;; = 0 in (case b), since the Dirac delta “does not see
the dilation”.

19.3. Split regularity: operator bounds. We finally establish suitable estimates on the norms of
the operators defined in Lemma 19.2.

LEMMA 19.4 (case a). Let U(R,7,g) be as in Lemma 19.2, case a. Then for any 1 < p < oo we have

IRy, )l @) < Crpm | 51> > [ikllzo@ee) e lam@ey+02 Y > vklle@e) lgirlmee | -
=1 k=1 j=n1+1 k=1

where Q, = B} x B2 C R™ x R"2, and

ny m N m
IUR, Y, )l o)< Cp | 51D nlle@ne)llgikllo@m)+02 D D Iklle@ne)lgikl Lo @)
j=1k=1 j=ni+1k=1

The constants Cy.p, m and C), also depends on the singular integral operators Rjj, in (case a) and on the space
dimension. The first constant Cy. p ., also depend on the integer m in (case a).
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PROOF. Let us start with the estimate in M!. We define B} = Bl B? = B}5, and Q, = B! x B2,
Consider first the measure of the superlevels of U(z): changing variable via the linear transformation z =
A~z we obtain

Nz e Q. |U@)|> ) =LN{z € Q, : |[V(A  z)|> \})
=011 052 LN ({2 € Q. 1 [V(2)[> A})
where V is as before given by
=61 Y [Miyesgresy(RoLgmAim)](2)
Jj=1k=1
N

b2 ) ZM{Téf@oTia}(RJkgMJk)]( )

j=ni1+1 k=1

(5.71)

(compare with (5.70) and split the sum for 1 < j <mj and ny + 1 < j < nj + ngy).

Remembering that ||| f(z1, z2)||| s

0 S H||| f(xl,x2)|\|M11 H | We estimate for fixed j =1,..., N as follows:
T2

5?15;2 Z M{T5 i@YEd} lelgg]kﬁjk)](z)

k=1

‘Ml(ﬂ )

<Cpn 5"16”22’“]\4”5;}( ikJik H’MI(BI M{Tﬁ*ﬂ'}%’fHLl(Bﬁ)

< Cp[L7? (BE)]l_l/p 67" 057 Z ngkllj\/l(]R"l) HM{Ts,jﬂijL,,(Bg)
k=1

— + - ) - ~
< Cr,p,m 52 na+na/p 5;715512 Z ngk”M(R"l) ”'ijHLp(an)
k=1

=Crpm Z ”gjk’HM(Rm) ||’ij||Lp(Rn2) :

In the above chain of inequalities we have used the fact that the norm of R?,lc as singular integral operator
coincides with the norm of R;j as singular integral operator.
Recalling (5.71) we immediately obtain the first inequality claimed in the lemma. The second one follows
with a similar argument, using the continuity of the operator
. 51«
Gjk = B G5k
from LP(R™) into itself. O

LEMMA 19.5 (case b). Let U(R, g)(z) = U(x) be defined as in Lemma 19.2, (case b), with R(z) = d(x).
Then, up to a constant C = C(N,m, Py, Py), we have the estimates

ny m N m
U Iar @< C [ 00D llginllmeny+02 > Y llgikllmen)

j=1k=1 j=n1+1k=1
for gjr € M, and

1

m N m
U@ |e@ny< C 01> Ngirller@+62 Y D llgikllLe@m)

j=1k=1 j=ni+1k=1
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for gjr € LP,p > 1.
PROOF. The proof is similar to Lemma 19.4, except that we estimate
LY({z € RY 1 |U(2)]> A}) = 67832 LY ({z € RV 1 [V (2)[> A},
with V' given by

ny m N m
(5.72) V(2) = 61> > [Myesy(gie(A)(2) + 62 Y > [Mpresy(gix(A)](2)-
J=1 k=1 j=n1+1k=1
With a change of variable it is easy to see that
(5.73) 571652 (11> Mpreay(g;n(A)) < Cn Y _llgikll Mm@y,
k=1 MU (RN) k=1

which yields the first statement of the lemma. The second is obvious by continuity of the operator

gik = Miyeiygik
from LP(RN) into itself. O

20. The fundamental estimate for flows: main theorem and corollaries
Our main theorem is the following:

THEOREM 20.1 (case a and b). Let b and b be two vector fields satisfying assumption (R1), and assume
that b also satisfies assumption (R2a) or (R2b), as well as (R3). Fizt € [0,T) and let X and X be regular
Lagrangian flows starting at time t associated to b and b respectively, with compressibility constants L and
L. Then the following holds. For every~y > 0 and r > 0 and for every n > 0 there exist A\ > 0 and Cyrn>0
such that

L™ (B n{IX(s,7) = X(5,)[>7}) < Crllb = bl 0,7y x )+
for all s € [t,T]. The constants X\ and C ., also depend on:

o The equi-integrability in L'((0,T); L*(R™)) of p,q,t in case of (R2a), the equi-integrability in
LY((0,T) x RY) of the functions p,q,t associated to b in case of (R2b), as well as ||m||p1a),
(where p, q, v and m are associated to b as in (R2a)-(R2b))

e The norms of the singular integral operators Sﬂ, as well as the norms in L>((0,T); LY(R™2)) of
Vi (associated to b as in (R2a)),

e The norm in LP((0,T) x By) of b,

e The L'((0,T); LY (RN)) + L1((0,T); L>(RY)) norms of the decompositions of b and b as in (R1),

o The compressibility constants L and L.

From this fundamental estimate, the various corollaries regarding the well posedness of the regular
Lagrangian flow and of Lagrangian solutions to the continuity and transport equations follow with the same
proofs as in Sections 6 and 7 in [16]. This will be discussed in section 21.3. In particular, we obtain:

e Uniqueness of the regular Lagrangian flow associated to a vector field satisfying (R1), (R2a) or
(R2b) and (R3),

e Stability (with an explicit rate) for a sequence X, of regular Lagrangian flows associated to vector
fields by, that converge in LL _([0,7] x RY) to a vector field satisfying (R1), (R2a) or (R2b)
and (R3), under the assumption that the decompositions of b, in (R1) and the compressibility
constants of X, satisfy uniform bounds,

e Compactness for a sequence X, of regular Lagrangian flows associated to vector fields b,, satisfying
(R1), (R2a) or (R2b) and (R3) with suitable uniform bounds,
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e Existence of a regular Lagrangian flow associated to a vector field satisfying (R1), (R2a) or (R2b)
and (R3) and such that [divb]~ € L1((0,T); L>=(RY)),

e If a vector field b satisfies (R1), (R2a) or (R2b) and (R3) and divb € L'((0,T); L=(RY)), then
there exists a unique forward and backward regular Lagrangian flow associated to b, which satisfies
the usual group property, and the Jacobian of the flow is well defined,

e Lagrangian solutions to the continuity and transport equations with a vector field b satisfying (R1),
(R2) or (R2b) and (R3) and divb € L((0,7); L°°(RY)) are well defined and stable.

REMARK 20.2. We remark that it is unclear whether an approzimate differentiability of the flow holds
as in Proposition 14.6. This is due to the fact that an estimate on the quantity A,(R,X) introduced in
section 1/ requires a ’double’ mazimal function of the derivative, or more precisely a composition of the form
Miye.3[Myyesy(Db)], which does not enjoy bounds in L' (or even M') in our regularity setting.

21. Proof of the fundamental estimate (Theorem 20.1)

The proof of Theorem 20.1 makes use of the integral functional

D5, .5,(s) = / log (1 + |A—1 [X(S,$17£L'2) — X(s,xhxg)”) dx
BTﬂG,\ﬁ(JA

already defined in (5.64). In the following proof we assume §; < ds.

We will again use the notation “<” to denote an estimate also up to a constant only depending on the
bounds assumed in Theorem 20.1. We will however write explicitly the norm of the measure m, in order to
make the reader aware of its role in the estimates.

21.1. Proof of Theorem 20.1 in case a.
Step 1: Differentiating ®s, 5,. We start by differentiating the integral functional with respect to time:

31,62 (s) < / ‘Aﬁ [b(S,X(S,SChIQ)) — b(s,X(s,xl,xQ))de

) 14+ [A-1[X (s, 21,22) — X (8,21, 22)]]
B-NG NGy

For simplicity, we drop the notation X(s,z1,z2), setting X(s,z1,72) = X and X(s,z1,72) = X. We
estimate

[ A [b(s, X) — b(s, X)]|

Bf, 5,(5) < / A b(s, X) — B(s, X)]\dz + / Sy EiTy s

BrﬂGAﬂéA BrmGkﬂé)\
After a change in variable along the flow X in the first integral, and noting that §; < &, we further obtain
5, 5,(5) < = |b(s,+) = b(s,)|L1(y)

(5.74) . . — o |ATB(s, X) — b(s, X)]|
+ / mln{|A (s, ) = bl X0, }daz.

BTI'TGAOC:V)\

il

Step 2: Decomposing the minimum. We consider the second element of the minimum. We have
bl(SaX>7bl(Sa)_() bQ(SaX)be(saX)
01 ’ O ’

A~ b(s, X) — b(s, X)] = <

and therefore
|A—1[b(s,X) 3, X)]| - i b1 (s, X) — b1(s, X)| . i |ba(s, X) — ba(s, X)|

_b(
(5.75) A-1[X — X]| 5 JAX - X)| & JATIX - X]|
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Step 3: Definition of the functions Uy, Uy, Uy and U.. We aim at estimating the difference quotients
in (5.75). We apply Lemma 19.2 and (with a slight extension of the notation) we obtain that
|b1(s, ) — b1 (s, )]
|A~ e — 7]

SUST, S9N A%p,0) (@) +UST, S2,90,9%,9,0)(2) = U q() + Uy q(2)

and
|b2(s, x) — ba(s,T)|
Az — 7|
for a.e. x and 7 € RN and s € [t, T].
It is immediate from the definition of the operator U that it is subadditive in its entries. Therefore we
can further estimate

Up,a(w) =US",8%7" 9%, p,0)(x) SUSY, 7 p)(@) +US? 2%, a)(2) = Up(a) + Ug(2)

< U(SS, S 43, 4% m, t)(x) +U(53, 54,73,74,111,1')(3—3) = Up (@) + Unm (T)

and
Un,e(2) = U(S%, 51, 7%, 71 m,v)(2) SUS?, 7%, m)(x) + US4 v) (@) =2 Un(e) + Ue()
for a.e. x € RV, implying that
[bi(s,) = bi(s,7)|
A=z — |

(5.76) < Up(x) + Uq(z) + Uy () + Uqy(Z)

and
|b2(s, 2) — ba(s, 2|
|A~ [z — z]|
for a.e. z and 7 € RY and s € [t,T). -
Step 4. Splitting of the quotient. Let Q = (t,7) x B, NG, NGy C RN*L. We return to the estimate in

(5.74) of Step 1. For any 7 € [t,T] we integrate this expression over s € (¢,7), and recall (5.75) to get
(5.78)

L _
(1)61,52 (T) < aHb(S’ ) - b(87 ')||L1((t77)><BA)

(5.77)

< Un(2) + Us(2) + Un () + Us (%)

. 1 > 1 |b1(S7X)—b1(S,X)‘ 1 |b2(S,X)—b2(S,X)‘
—|—/Qm1n{|A [b(s,X)—b(s,X)]76—1 + — }dacds

A7 [X — X]] 02 |ATHX - X]|
L _ o
= 5, 11065:) = 05l (e x )+ oy 62 (7).
We analyze the term 551752 (7). Using the estimates in (5.76) and (5.77) in Step 3, we can write
(5.79)

o . . o 1 [bi(s, X) — bi(s, X))
@51,52(T)§/Qm1n{A [b(s, X) —b(s, X)] 5 AKX }dg;ds

o L A0 as, oy LX) “ (s D
+/Qm1n{|A [b(s, X) — b( ,X)]|,52 AIX - X, }d d

< /Qmin{A—l[b(s, X) — b(s, X)), 5% ((Up + Ug) (5, X) + (Up + Uy)(s. X)) } duds

. _1 o 1 =
+ /Q min {|A [b(s, X) — b(s, X)]|, 5 (U 4+ Ue) (5, X) + (Un + Uy))(s, X)) } dxds .
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Step 5. Decomposition of the functions Uy, Uq and U.. We further decompose the functions U,, U, and
U, exploiting the equi-integrability of p, q and .

We apply the equi-integrability Lemma 5.11 in L' 4+ L9, with the same 1 < ¢ < oo as in the assumption
on the functions v in (R2). Given € > 0, we find C. > 0, a Borel set A. C (0,T") x R™ with finite measure
and decompositions A

Pi = (Pék)l + (P;’k)z =:p'+p°,
B = (@5)" + (05)° =10 + 07

and 4 , 4
U = ()" + (G)* =0 07,
so that
o'z oy xrey< e, ' lzioryxrey<e, et loiorxrn)< €,
192l a0,y xrm )< Cey 0% aqo,m)xrm)< Ces 1€ Lag(o, 1y xrm) < Ct
and

spt () € Ao, spt (47) € A, spt (vF) C AL
We then decompose the functions Uy, U, and U, from Step 3 as
=U(S' 7 p) USSP +UST AP = U,y + U,
Ug =U(S*,7%,9) SUS? 2, q") + US4, 0°) = Uy + Uj
and
Ue =U(S* 7% x) US4 ) + US4 ) = U+ U2
Applying Lemma 19.4 to Up1 and Up2 we get

(5.50) U a0,y xBy) Sa Sullv Lo (o,mysza@re ) 19M |21 0,1y xRm1)) S b1€,

1U Lo,y By) < O01llvH oo (0,102 PP Lo (0,1 xR ) S 61C%
We have a similar estimate for Uy and U.:

11U 1 ar1(0.1yx By) Sx doe U a1 (0,7 % By) Sa 62 4

1UZl| Lo (0.1 x By) S 02Cx 1U2 || Lag(o,m)x By) S 02Ck .

Note that we cannot apply such a decomposition to Uy,, since it is defined as the operator U acting on
a measure rather than integrable function. We only have the bound

(5.81)

(5.82) U [Ia1 (0,7 x Bx) S O1l[m[ 10,7y m(rm1)) -
We further split the minima according to this decomposition:

Bip(7) < [ i {|A1[b<s,X> = s, Xl - (Unls, X) + (s, X))

. -1 _b(s. X Lon s g X
+/Qm1n{|A [b(s, X) — b( ’X)”’(SQ(U‘( X))+ U (s,X))

(5.83)

. —1 Ve 1 1 1 1
+/Qm1n{|A [b(s, X) —b(s,X)]L(s—((UIJ +U.)(s,X) + (Uy + Ug)(s,X))
{|A_1[b( X) = b(s, X, ((U2+U2)( X) + Uy +U5)(s, X))

}
}
—&-/Qmin{|A‘1[b(s,X) —b(s,)‘()n,(;Z(Uf(s,xHUf(s,X))}dms
}
Je
:/QSOI(S,X,)‘()JF/Q +/Q<p3 5, X,X) /¢4(3,X,X)+ Q<p5(s,X,)_().
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Step 6. Estimating the functions @;. Let Q' = (¢t,7) x By C RN+ We estimate the first element of
each minima in LP: changing variables along the flows we obtain

_ L/p L /P 1
(5.84) s (s, X, X)) Lo ()< THbHLP(m < 5

for every j =1,...,5.
We now consider the second elements of the minima. Let us start with ;. Changing variable along the
flows and using (5.82) we obtain

_ 1 _
|||301(saXaX)|||M1(Q) < g H‘Um(&X) + Um(S’X)’HMl(Q)

(5.85)
1 01
< gmUmli(Q’) <a EHmHLl((O,T);M(]R"l))-

Consider ¢,. Using (5.81) we obtain

_ 1 _
Np2(s, X, X)lllarr o) < (TH‘Url(SvX)+Ur1(57X)mM1(Q)
2
(5.86) :
< (TmUrlli(Q’) <x €.
2

For ¢3 and @5 we neglect the first element of the minimum, since we have directly an estimate on the
LY () norm. Using (5.81) we obtain

_ 1 _

lles(s, X, X)Ly < 5*||U3(87X) +UZ(s, X))

2

(5.87) :

< (THUEHLl(Q’) <y C:.
2

Similarly, using (5.80) and (5.81), we estimate @5 as follows:
_ 1 _
llps (s, X, X))l () < EH(U’? + U, X) + (U5 + U (5, X)Ly e

%2
&

(5.88)

1
S EH(U’? + ULy Sa +C-.
Finally, using (5.80) and (5.81), we estimate 4:

_ 1 —
Ilea(s, X, X)[|lar () < al\l(Up1 +Ug)(8,X) + Uy + Ug)(s, X)lllarr (o)

1
(5.89) < EHKU; + Uy
01€ + Oae 0o
<y — < _Z
SA ) <A 516

Step 7. Interpolation. We now apply the Interpolation Lemma 5.10 to estimate the L'(£2) norms of ¢y,

w2 and @y.
Using (5.84) and (5.85) we obtain

Ol glmi |1+ os (o) |
5.90 5. X, X)) orien<x Lmll]1 410 .
(5.90) lla ( Mzt <a 52|| | g 5[]

Proceeding similarly and using (5.84), (5.86) and (5.89) we obtain

_ 1
(5.91) l2(s, X, X)||Lr ) Sa € [1 + log <61€>]
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and
> 2 1
(5.92) loa(s, X, X)|| 1) Sa =€ |1 +log | — .
51 526
Finally, we sum all the terms in (5.83). Using (5.90), (5.91), (5.87), (5.92) and (5.88), and setting

2=, we get:
P ’ '

1 _
Ds, 5, (7') <A 5*1||b(57 ') - 5(57 ')HLl(BAX(tJ))

1 1
. +alm|[|1+log{ ——— || +e|l+1log| — || + C:
(5.93) | ”[ g<51a||m|>] [ g<ale>]

1 1
+ < [1 + log ()] +—C:.
« 0o€ «

Step 8. The final estimate. By definition of ®s, s,, given v > 0 we estimate

Ds,,5,(7) = / log (1 + 7) dz
B,.n{|X (r,2)— X (7,2)|>7y}NGANG A 02

(5.94)

— log (1 + ;) N (B, N{|X(r,z) — X(r,2)|> v} NG N GA) .
2

This implies that

_ b _
(5.95)  L¥B, A {|X(r.a) - X(ra)> 1)) < 22T L pN(B @) 4 £V (B ).
log (1 + %)
Combining (5.93) and (5.95) we obtain

LY(B,N{|X (1,2) = X(,2)[> 7})

<o Liib— Bl +a||m||[l+log (seamr)] e [1+108 (5%)]

log (1+ ) log (1+ ) T g (1+3)
(5.96) L [1+10g (5 )| Lt \
log (1 + 51) log (1 + 51) log (1 + 61)

+ LN(B,\ Gy) + LY (B, \ G»)
1) +2)+3)+4)+5)+6)+7)+38).

Fix n > 0. By Lemma 16.3, we can choose A > 0 large enough so that 7) 4+ 8) < 27n/7. Choose « small
enough so that 2) < 1/7. Then choose € < a? small enough so that 3) + 4) < 2n/7, since these terms are
uniformly bounded as d1,d2 — 0 and for all € > 0.

Now A and e (and therefore C.) are fixed. Also « is fixed, but ¢; and d2 are free to be chosen so
long as the ratio equals a. Hence, we now choose d5 small enough, in particular depending on C., so that
5) + 6) < 2n/7. This fixes all parameters.

Setting

O
01 log(1 + %)
we have proved our statement. O

O%mi =
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21.2. Proof of Theorem 20.1 in case b. The proof of the theorem in case of regularity setting
(R2b) follows a similar argument.
Step 3: Definition of the functions Uy, Uy, Uy and U.. We now define the operator I/ according to
Proposition 16.4. In this case we obtain that
‘bl(S,l‘)—bl(S,f” - -
|A71[SIJ _ IEH S Z/l(p, q)(]}) +u(p7 C[)(J?) = Up,q(x) + Up,q(x)
< Up(2) + Uq(x) + Up(Z) + Uy (2)

and
|b2(s, @) — ba(s, Z)|
|A~ [z — z]|
< Un(2) + Un(z) + U(T) + Ue(2),

for a.e. z and Z € RY and s € [¢,T]. This leads to the same estimate for 551’52 (1) with a replacement of
the terms U, Uy, Uy, Uy, so that Step 4 works identically.

Step 5. Decomposition of the functions Uy, Uy and U.. We further decompose the functions Uy, Uq
and U, exploiting the equi-integrability of p, q and t, this time on RY. We apply the equi-integrability
Lemma 5.11 in LY(RY) 4+ L2(RY). Given £ > 0, we find C. > 0, a Borel set A. C (0,T) x RY with finite
measure and decompositions to obtain p!,p2, q*, g2, ¢!, % such that

<U(m,v)(z) +U(m, ) (T) =: Un (@) + U o(T)

||P1||L1((0,T)xRN)S €, ||q1||L1((o,T)xRN)S €, Hf1||L1((o,T)x]RN)S g,

192 20,7523 < Ce s 0220,y xe) < Ce s 1]l 2(0,m)xr) < Ce
and
spt (p?) C Ao, spt(q?) C Ao, spt(v?) C A..
Applying Lemma 19.5 to Ug and Up2 we get

A

U 0,1y xBy) < S1llp L1 (0. 1)xryy) S diE,

(5.97) ) )
1Ug 20 myxBy) < 01lP°|lL2(0,7)xRN) S 61C% .

The lemma gives a similar estimate for U and U,:

(5.98) U a1 0,1y % By) S 026, U (0,7)x By) < G2€
1UZ1I 20,1y xBy) S 02C U211 L2((0,7)x Bo) S 02C%

as well as the bound

(5.99) U211 ((0,7)x Bx) A 1l W[ 210, 1):m@N)) -

We then decompose the functions Uy, Uy and U, from Step 3 using this modification to get
Up =U(p) <Up") +U(p*) = U, + Ty,
Uqg=U(a) <U(") +U(g*) = Ug + U3

and
Ue=U®E) U +UR?) = UL + UZ.

Splitting the minima according to this decomposition gives (5.83).
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Step 6. Estimating the functions ;. Let Q' = (t,7) x By C RN+1 Changing variable along the
flows and using (5.99) we obtain estimates identical to (5.85)-(5.89), minus the dependence on A. Applying
Interpolation lemma 5.10 gives the same final estimate as in Step 7, so that we may conclude in the same
way. ([l

REMARK 21.1. Following the proof of Theorem 20.1, one may consider a weakened assumption to (R1).
Let (R1a) denote the following: for all reqular Lagrangian flows X : [t,T] x RN — RY relative to b starting
at time t with compression constant L, and for all r, A > 0,

(Rla) LY (B, \ Gy) < g(r,\), with g(r,\) = 0 as A\ = oo at fived r,

where G denotes the sublevel of the flow X, defined in (5.41). This assumption is implied by (R1) thanks
to Lemma 16.3 and alone is sufficient to conclude the estimate.

21.3. Lagrangian solutions to the linear transport equation. In the next chapter we apply the

result of sections 16 and 17 to proving existence of Lagrangian solutions the Euler and Vlasov Poisson
equations. These are defined as the superposition of the initial data with the regular Lagrangian flow
associated to the vector field b, which in case of the Euler equations is within the regularity setting (R2),
and in case of the Vlasov equation is within the setting (R2a). The compactness results in the previous
sections dictate that such Lagrangian solutions are well-defined almost everywhere and stable. They are
in particular renormalized solutions in the sense of definition 8.1. It was proved in [16] for general vector
fields with bounded divergence satisfying (R1)-(R3) that there exists a unique forward-backward regular
Lagrangian flow in the sense of Definition 16.1. A consequence of Theorem 20.1 is that compactness,
existence, and uniqueness of forward-backward Lagrangian flows associated to vector fields with bounded
divergence satisfying (R1), (R2a)-(R2b),(R3) follow, with little modification in the proofs. We remark
that for such vector fields it is not possible to exclude non-uniqueness of renormalized or distributional
solutions. It may happen that several weak solutions exist, with only one associated to a Lagrangian flow.
However this special class of solutions associated to flows is stable under approximation and gives rise to
existence of both Lagrangian and renormalized weak solutions to the non-linear Euler and Vlasov Poisson
equations, in particular with L' data.
We can define the Lagrangian solution to (2.2) by the push-forward of the initial datum via the flow (5.100).
This is of course equal to the classical solution in the case of smooth data. Because of the compactness
results in Theorem 20.1, these solutions are well defined and stable. One then obtains an analog of Theorem
8.2 for Lagrangian solutions.

DEFINITION 21.2 (Lagrangian solution to the linear transport equation). Assume that b satisfies (R1),
(R2), (R3) or (R1la), (R2a) or (R2b), (R3) and divb = 0. Let X be the forward-backward regular
Lagrangian flow associated to b. For u® € LY(RY), define the Lagrangian solution to the transport equation
(2.2) by

(5.100) u(t,z) = u®(X(0,t,x)).

COROLLARY 21.3 (Stability). Let b, and b be divergence free vector fields satisfying (R1), (R2a) or
(R2b), (R3) with uniform bounds such that b, — b in LL _([0,T] x RY). Let u, denote the Lagrangian

loc

solutions to (2.2) with coefficient b, and datum ul. Let 1 < q < oco. Then
(1) If u® — u® in LYRN) — w, then u, — u in C([0,T]; LYRYN) — w).
(2) If u® — u® in LI(RN) — s, then u,, — u in C([0,T]; LY(RN) — s).

PROOF. See [16]. O



CHAPTER 6

The Euler equation with L' vorticity

In this chapter we study the existence of infinite kinetic energy solutions associated to initial vorticities
belonging to L'(R?). The results from Theorem 16.6 hold for vector fields in the general regularity setting
(R1)-(R3), which in particular encompasses the properties (I)-(III) of the velocity from chapter 3, section 3,
when w € L®(L'). Existence of a Lagrangian flow associated to the velocity is a consequence. However,
there is difficulty in identifying suitable notions of the weak formulation. Due to the absence of (even local)
kinetic energy bounds, the velocity formulation (3.1) cannot be given the usual distributional meaning (see
Definition 10.1). Though, a symmetrized velocity formulation can be introduced, see Definition 22.1.

For vorticities w € L>([0, T]; L*(R?)) the decomposition

(6.1) v=K;*w+ Ky xw,

where K1 = K 1p, () € L'(R?) and Ky = K 1p,(g)c € L>(R?), gives immediately with Young’s inequality
that v € L>([0,T]; L*(R?)) + L>°([0, T]; L°°(R?)). A direct distributional formulation is not available even
for the vorticity formulation (3.3) in such a context, since the factors in the product vw are not summable
enough to define a locally integrable product. In order to circumvent this issue, one can consider three
alternate formulations of weak solutions for the vorticity equation:
(1) Renormalized solutions [25], defined by the requirement that S(w) is a distributional solution of
(3.3) in the sense of distributions for a suitable class of functions j:

0y (B(w)) + div (vB(w)) = 0
B(w(0,-) = Bw"),

(2) Symmetrized vorticity solutions [24, 63], defined by exploiting the antisymmetry of the Biot-Savart
kernel K, so that multiplying (3.3) by a test function ¢ and integrating give the formulation

(6.3) //qﬁttx txdxdt+/ //H¢t:ﬂy (t, y)w (txdydxdt+/¢0x =0,

where Hy is a suitable bounded functlon,
(3) Lagrangian solutions, i.e. solutions w transported by a suitable flow associated to the velocity v, to
be precisely defined in the sequel.

(6.2)

We will address the question whether initial vorticities in L! give rise to weak solutions which are
transported by flows. The key point of our strategy relies on a compactness property (under bounds that
are natural in our setting) for regular Lagrangian flows. The novelty of this approach, in contrast to
[24, 45, 34, 69], is that it entirely relies on the Lagrangian formulation, and therefore proves existence of
solutions which are naturally associated to flows. In this setting we also allow for velocities with locally
infinite kinetic energy.

A uniform L' bound on the vorticities is still sufficient to guarantee the L] . convergence of the smoothed
velocities, it is generally insufficient for the strong convergence in L2 , as discussed in chapter 3. However,
concentration-cancellation may still occur, for instance if the vorticity is a measure with distinguished sign
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[24]. For L' vorticities with compact support, without necessarily distinguished sign, and initial velocit-
ies with locally finite kinetic energy, the propagation of the equi-integrability guarantees concentration-
cancellations [69]. However, these solutions may not be Lagrangian, since a limiting flow may not exist.

A stability estimate for flows associated to velocity fields with gradient given by the singular integral of
an L' function was derived in chapter 5. Our regularity setting falls under this theory. From such a theory it
follows that Lagrangian flows associated to velocities whose curl are equi-integrable are strongly precompact,
and thus stable under approximation, so that the limit flow solves the ODE that involves the limit velocity.
We will therefore conclude that vorticities in L' are stable under approximation, in the sense that if wf
converge strongly in L' to w’, then (up to a subsequence) the solutions w,, of the corresponding vorticity
formulation converge strongly in L' to a Lagrangian solution w. Additionally, even for weakly convergent
initial vorticities, the flow always converges strongly.

A classical difficulty in proving strong compactness is related to time oscillations. Indeed, when dealing
with velocity formulations, the strong compactness in space follows from the L' bound on the vorticity, but
the compactness in time relies on bounds on Oiv, in L{°(D.) in order for Aubin-Lions’ lemma to apply.
Without the assumption v € L12007 we do not have such regularity in time of v and we cannot apply Aubin-
Lions’ lemma. We thus propose a refinement of the stability estimates in [16] so that weak time convergence
of the velocities is still sufficient for the stability of regular Lagrangian flows. We nevertheless prove a
posteriori the strong compactness of v in time and space.

22. Weak solutions

We summarize the vorticity and velocity formulations available in our setting when the vorticity is only
L' summable, as opposed to (3.20) and (3.19).

22.1. Symmetrized velocity solutions. In order to deal with solutions with locally infinite kinetic
energy we can propose a weaker formulation than the one in Definition 3.14. It is in the same spirit as the
2
symmetrized vorticity formulation (6.3). Using the identity div (v®v) = v- Vv = wovt + V%, that is valid
when divv = 0, we can formally rewrite (3.1) as

(6.4) v + wot + Vp' =0,

where p’ = p+ % This modified pressure p’ can be eliminated by taking suitable test functions as in (?7).
With this form (6.4) we can observe that only the quantities v1v2 and v? — v3 need to be in L', since we
can write wvt = div (v ® v — (Jv|?/2)1d), and the entries of the matrix v ® v — (Jv|?/2)1d are just these two
scalars v1vo and v? —v2. However, without such assumptions, we observe that the term wv has a priori no
pointwise meaning when w only belongs to L for some p < 4/3, since in such a case w and v would not have
conjugate summabilities. Nevertheless, with the only assumption w € L', that yields v € M? (but v ¢ L12OC in
general), we can give a meaning in distribution sense to this term by exploiting the symmetrization technique
analog to that in [24, 69], that uses the antisymmetry property K(—z) = —K(x).
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Let ¢ € C1([0,T) x R2,R?). Then using the Biot-Savart law we can write

//wv )(t, ) - (t, x) dudt
- / [ etttk -t o) dadyae

R2 R2

T
(6.5) - _/0 / / Wt y)w(t, o) K (x —y)* - o(t,y) dedydt

R2 R?

1 T
- 5/0 / / w(t, )t y) K (@ — y)* - ((t,x) — d(t,y)) dadyd

R2 R2

_ /0 ! / / w(t, 2)w(t,y) Hylt, x,y) dedydt,

R2 R2
where Hy(t,x,y) is the function on [0,T) x R? x R? given by

(6.6) Hy(t,,9) = 5Kz~ 9)* - (9(t2) — 6(,0))-

For ¢ € C([0,T) x R%,R?) we have that Hy is a bounded function, continuous outside the diagonal, that
tends to zero at infinity. Indeed we have

6.7) (Fy(t,2,9)|< - Lin(o(t, ).

Thus for vorticities belonging to L°°((0,T); L'(R?)), the last integral in (6.5) is well-defined. This motivates
the next definition of weak solutions.

DEFINITION 22.1 (Symmetrized velocity formulation). Let (w°v°%) € LY(R?) x M?(R?), with w® =
curlv®. We say that the couple (w,v) is a symmetrized velocity solution of (3.1) in [0,T) with initial datum
(0, 0%), if

(1) w e L((0,T); L'(R2)),
(2) the velocity field v is given by the convolution in (3.4),
(3) for all test functions ¢ € CL([0,T) x R?,R?) with div$ = 0, we have

(6.8) / /&d) vdxdt—/ //H¢t:ﬂy (t, 2)w(t,y) d:rdydt—i—/qﬁ()x z)dz =0,

where Hy is the function on [0,T) x R? x R? given by (6.6).

22.2. Three formulations of the vorticity equation. According to the introduction, we now define
three notions of solution to the vorticity formulation (3.3) when the vorticity is only L' summable. Since
we do not assume v° € L2 (R?), we deal with velocities that belong to M?(R?), a consequence of the
Hardy-Littlewood inequality (3.10).

DEFINITION 22.2 (Renormalized solutions). Let (w® v%) € L1(R?) x M?(R?) with w® = curlv®. We say
the couple (w,v) is a renormalized solution to (3.3) with initial data (w°,v°), if
(1) w e L=((0,T); L (R?)),
(2) the wvelocity field v is given by the convolution in (3.4),
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(3) for every nonlinearity B € C*(R) with 3 bounded, we have that
O (B(w)) + div (B(w)v) = 0,
Bw)(0,) = B(w’)

hold in the sense of distributions.

(6.9)

For smooth solutions this is equivalent to the classical notion of solution (as can be seen by multiplying
the equation by 8'(w) and applying the chain rule.) This formulation derives from the classical DiPerna-Lions
[25] framework for transport equations.

DEFINITION 22.3 (Symmetrized vorticity formulation). As mentioned in the introduction, the sym-
metrization technique for the term div (wv) provides a second formulation of the vorticity equation. Let
¢ € C?([0,T) x R?). Computations as in (6.5) give

(6.10) /OT/diV (wo)(t, z)p(t, x) dedt = /OT//H¢(t,x,y)w(t,x)w(t,y) dxdydt,
R2 B2 R?

with
(6.11) Hylt,2,9) = ~ 3 K(z —y) - (Vo(t, ) ~ Vo(t,1).

We say that (w,v) is a symmetrized vorticity solution to (3.3) if (1), (2) above are satisfied and if for all
test functions ¢ € C2([0,T) x R?) there holds

(6.12) /0 ' / Brd(t, x)w(t, ) dudt — /0 ' / / Hy(t, o, y)w(t, 2)w(t,y) dodydt + / 6(0, 2)w°(z) dz = 0.
R2 R2 R? R2

PROPOSITION 22.4. We have the following equivalence of notions of solutions to the FEuler system.

(1) Symmetrized velocity solutions (Definition 22.1) are symmetrized vorticity solutions (Defini-
tion 22.3), and conversely.

(2) If (w,v) is such that v € L>=((0,T); L2 .(R?)), then it is a symmetrized velocity solution if and only
if it is a weak velocity solution (Definition 5.14).

PrOOF. For (1), taking a test function of the form —V1¢ in (6.8) we see that a solution to the sym-
metrized velocity formulation is also a solution to the symmetrized vorticity formulation, indeed one has
H_y.4 = Hy. The converse is also true since all functions ¢ € C2([0,7T") x R?,R?) with div$ = 0 can be
written ¢ = —V=1¢ for some ¢ € C2(]0,T) x R?). For ¢ only C' one just approximates it by a C2 function.
It follows that Definitions 22.1 and 22.3 are indeed equivalent. Finally, the statement (2) follows from the
next lemma. (]

LEMMA 22.5. Let w € LY(R?), define v = K * w with K the Biot-Savart kernel (3.4), and assume that
v € L _(R?). Then for all ¢ € CL(R?,R?) with div¢$ = 0, we have

loc

(6.13) //H¢(x,y)w(x)w(y) dzxdy = —/ng(m) :(v(z) @ v(z)) dz
R2 R2 R2
where Hy is given by (6.6).
PRrROOF. For smooth w and v, the formula is just the weak form of the already mentioned identity

div(v ®v) = wot + V%, taking into account the computation (6.5). The general case follows easily by
smoothing w and v by a regularizing kernel and passing to the limit. |
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22.3. Lagrangian solutions. We describe a third class of weak solutions which are transported by
a Lagrangian flow in the renormalized sense of definition (16.1). With this notion of flow, we can define a
third class of solutions. We will consider regular Lagrangian flows X as in Definition 16.1, except that now

s € [0,T) instead of s € [t,T] (the forward-backward flow in [16]), with compression constant L independent
of t € [0,T]. We define in accordance with [16] a Lagrangian solution (w,v) to the Euler equations by
(6.14) w(t,z) = w° (X(s = O,t,x)), for all t € [0, T7.

DEFINITION 22.6 (Lagrangian solution). Let (w” v%) € L1(R?) x M?(R?) with w® = curlv®. We say the
couple (w,v) is a Langrangian solution to (3.3) in [0,T) with initial data (W°,0°), if
(1) w e L(0,T); L} (R?)),
(2) the associated velocity field v is given by the convolution in (3.4),
(8) forallt €[0,T), w is given by the formula in (6.14), where X is a reqular Lagrangian flow associated
to v.

REMARK 22.7. Theorem 16.6 gives stability and may be used to prove compactness of Lagrangian flows,
in case when v, is an approzimating sequence of velocities converging strongly to v in Li... The theory of sta-
bility and compactness of forward-backward flows applies to the reqularity setting (1)-(I11), thus the formula
(6.14) is well defined for arbitrary w® € L(R?). In particular such solutions w belong to C([0,T]; L' (R?)),

and are also renormalized.

23. Compactness of Lagrangian flows associated to infinite kinetic energy velocities

In Theorem 10.5, strong LlloC convergence of smoothed velocities was guaranteed for initial data v°
belonging to L1200 (R?). In order to allow for solutions with infinite kinetic energy, we bypass this assumption
and use the weaker M? estimate arising in (3.10). We show later that an a priori weak convergence of the
velocities v, is sufficient to obtain stability of the associated flows. Given equi-integrable initial data, it

follows a posteriori by Corollary 21.3 that the velocities converge strongly in Li . as well.

loc
To the reader’s convenience we expand in the following Theorem 23.3 a remark from [22] proving that
weak convergence is sufficient for stability, and adapt the proof from the setting of Sobolev regularity to the
regularity given by (R2). We begin with two lemmas, the first arising from standard analysis.
LEMMA 23.1. Let K be the Biot-Savart kernel in (3.4), and denote by 7, K(x) = K(x + h). Then
70 K (2) = K ()| Lr (r2) < ¢ h]*
for some o > 0 depending on p, and for any 1 < p < 2. In particular, the linear mapping T : L'(R?) —
L _(R?) defined by T : g+ K * g is a compact operator. Let K be the Biot-Savart kernel (3.4), and denote

loc

by 7, K(x) = K(x + h). Then for any 1 < p < 2 and all h € R? one has
(6.15) [T — K| Lpr2) < cplh|®
with « = 2/p —1 > 0. In particular, the linear mapping L'(R?*) — L{ (R?) defined by g — K x g is a

compact operator.

PROOF. See Lemma 29.1 in chapter 7 for the proof of the first inequality. Let g, be a bounded sequence
in L'(R?). For any 1 < p < 2 we can estimate

1m0 T g0 = Tgnll Loy = (7K (2) = K () * gn (€) || Lo g2
(6.16) < |tk — Kllpoge) 9l 2))
< cllgnllLr(may hl*
Thus 7,Tg,, — T'g, tends to zero uniformly in n as h — 0. Applying Riesz-Fréchet-Kolmogorov’s Theorem

gives a subsequence of T'g,, converging strongly in L}OC(RZ). O
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The second lemma states that given classical flows associated to Lipschitz vector fields, weak convergence
of the vector fields suffices for the associated flows to converge uniformly.

LEMMA 23.2. Let v, be a sequence of smooth vector fields uniformly bounded in L>([0,T] x R?) with
Vv, uniformly bounded in L™ ([0, T)xR?). Assume that there exists v € L* ([0, T] xR?) with Vv uniformly
bounded in L>([0,T] x R?) such that v, —* v in L([0,T] x R?) — wx. Let X, (s,t,z) and X(s,t,z) be
Lagrangian flows (in the DiPerna-Lions sense) associated to v, and v. Then X, (s,t,x) — X(s,t,x) in
L=([0, TP L, (R2)).

loc

PrOOF. It follows from the uniform bounds on v, and V,v, that V,X, is uniformly bounded on
[0, T)? x R?, since
[VaXn(s,t,2)|< exp (T[|Von| Lo (j0,1)xr2))-
As for the Lipschitz regularity in s and ¢, the ODE for X,, implies that d;X,, is uniformly bounded. The
equation

(6.17) O Xn+v, VX, =0 in D'((0,7) x R?)

implies also that 0;X,, is bounded. Thus up to modifying X, on a Lebesgue negligible set, X, is uniformly
bounded in Lip([0,7]?> x R?). By Arzela-Ascoli’s theorem there exists Y (s,t,z) € Lip([0,7]? x R?) such
that up to a subsequence X, (s,t,z) — Y (s,t,2) locally uniformly in [0,7]? x R?. Using the identity
Up - V(X)) = div (X, @ v,) — X, div vy, it follows immediately from the uniform convergence of X,, and the
weak convergence of v,, that we can pass to the limit in (6.17), so that by the uniqueness property of v we
must have Y = X. ]

Lemmas 23.1 and 23.2, together with Theorem 16.6, yield the following stability result for Lagrangian
flows, which states that weak convergence of the velocity fields implies that the associated flows converge
strongly anyway.

THEOREM 23.3. Let (v,) be a sequence of divergence free wvelocity fields uniformly bounded in
L>=([0,T); M?(R?)). Assume that v, — v in D'((0,T) x R?), where v(t,z) is a divergence free velocity
field. Assume additionally that curlv, is equi-integrable in L*([0,T) x R?). Let X,, be a sequence of regular
Lagrangian flows associated to vy, and let X be a reqular Lagrangian flow associated to v. Then X, converges
locally in measure to X, uniformly in s and t.

PRrROOF. The assumptions imply that w, = curlv,, w = curlv € L*((0,T) x R?), v,, = K *wp,, v = K *w,
thus the conditions (R1),(R2),(R3) are satisfied for v, and v, justifying the existence and uniqueness of
X, and X. We regularize v,, and v with respect to the spatial variable. Take p € C2°(R?) be the standard
mollifier with spt(p) C B;. Denote by pe(z) = e~ 2p(x/¢), and define

V5, = Up * Pe, v =V pe.
Let X and X¢ denote the DiPerna-Lions flows associated to v, and v® respectively, as in Lemma 23.2. Since
ve and v also satisfy (R1),(R2),(R3), it is easy to see that X¢ and X¢ are also the regular Lagrangian
flows in the sense of Definition 5.42. Then we write
X, —X=(X,, - X))+ (X; - X)+(X*-X)
=I+11+1I1.

By Theorem 16.6 the term I11 tends to zero locally in measure, uniformly in s,¢, as € — 0. For I, applying
also Theorem 16.6, which is possible because the w, are uniformly equi-integrable, gives that for all v > 0,
r >0, n > 0, there exist A > 0 and C' > 0 such that

(6.19) L2(Br N {IX5 (st ) = Xu(s,1,9) > 7)) < Cllvf, = vallro,myx By +0s

(6.18)



24. EXISTENCE OF LAGRANGIAN SOLUTIONS 95

for all s,t € [0,T])%. Using Minkowski’s inequality and applying Lemma 29.1, we estimate

P 1/p

T
105, — vall 22 0.1y oY) = / / / [on(t,2 — ) — vn(t, )pe(y)dy| dz|
0
2

1/p

T
< / / /|vn<t,x—y>—vn<t,x>|Pdw 192 ()l dy dt
0
B. Ir2

< ey lwnlls oo @) / 1yl |oe ()] dy
B.
< (Ce“.

Thus the first term in the right-hand side of (6.19) tends to zero as ¢ — 0, uniformly in n. We deduce
that the terms I and 711 can be made arbitrarily small independently of n, for a suitable choice of €. Once
such ¢ is chosen, we observe that we can apply Lemma 23.2 to the vector fields v$, and v®. We deduce that
X7 — X¢ locally uniformly in s,¢,z, as n — oo, which concludes the proof of the Proposition. O

24. Existence of Lagrangian solutions

We now apply the compactness results for Lagrangian flows derived in the previous section to derive
compactness and existence of Lagrangian solutions to the Fuler equations.

THEOREM 24.1 (Compactness of Lagrangian solutions). Let (wn,v,) € L°([0,T);LY(R?)) x
L>([0,T); M2(R?)) be a sequence of Lagrangian solutions to the Euler equations associated to uniformly
in n equi-integrable initial vorticity data w2. Let X,, denote the regular Lagrangian flows associated to v,.
Then, up to the extraction of a subsequence, there exists (w,v) € L°([0,T); L*(R?)) x L>([0,T); M?(R?))
such that

(1) X,, — X locally in measure, uniformly in time, and X is a regular Lagrangian flow associated to
v.
In addition,
(2) If w8 — W weakly in L*(R?), then w, — w in C([0,T]; L'(R?) — w).
(3) If w8 — WO strongly in L'(R?), then w, — w in C([0,T); L*(R?) — s).
(4) vn — v strongly in C([0,T); Li,.(R?)), where v is given by the convolution in (3.4) for a.e. (t,z) €
[0, 7] x R2.

Moreover, (w,v) is a Lagrangian solution to (3.3).

PROOF. The incompressibility of X,, implies that wy, (¢, ) inherit the equi-integrability of w®. Moreover,
vy, is equi-bounded in L ([0, 7']; M?(R?)) and after passing to a subsequence v, —* v in L>([0, T]; L{, .(R?))—
wx. Applying Theorem 23.3 to the vector fields v,, gives existence of a forward-backward regular Lagrangian
flow X (s,t,z) associated to v such that X,, — X locally in measure and uniformly in time. Indeed, from
Fatou’s lemma applied to X,, with L = liminf L,, = 1 we deduce that X has compressibility constant 1.

Arguing as in Lemma 6.3 of [16], one can pass to the limit in
s (B(Xn(s,2))) = B (Xn(s,2)) - vn(s, Xn(s, 1)) in D'((0,7) x R?),
for every test function 3 € C*(RY;R) with 3’ bounded.

It follows from weak convergence of w? that w is given by the formula in (6.14) and (w, v) is a Lagrangian
solution to (3.3) with initial datum (w®,v?). Applying Corollary 21.3 gives (2) and (3). Eventually, applying
Lemma 23.1 to the map w,, — K * w,, we obtain that v,, is strongly precompact in C([0,T]; LL _(R?)). It
also follows that v is given by the convolution in (3.4). O
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COROLLARY 24.2 (Existence). Let (w®,v°) € L' (R?) x M?(R?) with div v° = 0 and w® = curlv®. Then
there exists a Lagrangian solution (w,v) € L*([0,T]; L*(R?)) x L>=([0,T]; M?(R?)) to (3.3).

PROOF. Let p(z) € C°(R?) be the standard mollifier. Let w® = p,, * w® and set v0 = K *w®. Then
w? — WY in LY(R?) and for each n there exists a unique smooth solution (vy,,w,) to

Ow + divivw) =0
w(0,) = wy ()
v=Kx*w.

Thus for each n there exists a regular Lagrangian flow X,,(s,t,z), associated to v,, such that w,(t,z) =
w2(X,,(0,t,7)). Applying Theorem 24.1, we obtain that up to subsequences X,, converges to X locally in
measure, uniformly in time, and (w,,v,) converges strongly in C([0,T]; L*(R?)) x C([0,TY]; L, .(R?)) to a
Lagrangian solution (w,v). a

25. Existence of renormalized and symmetrized solutions

‘We have proven indirectly in Theorem 24.1 the strong compactness of smooth approximations. These give
rise to Lagrangian, renormalized, and symmetrized solutions. While compactness of Lagrangian solutions
imply the existence of symmetrized and renormalized solutions, it is generally not true that a Lagrangian
solution (w,v) is also a symmetrized solution. We therefore define solutions which are associated to Lag-
rangian flows as well as satisfying the formulation in (6.8). The following conditions are satisfied, for instance,
by a smooth solution to (3.3).

DEFINITION 25.1 (Lagrangian symmetrized velocity solution). Let (w°,v%) € L*(R?) x M?(R?) with
WO = curlv®. We say the couple (w,v) is a Langrangian symmetrized velocity solution to (3.3) in [0,T) with
initial data (w°,°), if

(1) we L=([0,T); L' (R?)),

(2) the associated velocity field v is given by the convolution in (3.4),

(8) forallt € [0,T), w is given by the formula in (6.14), where X is a reqular Lagrangian flow associated
to v, and

(4) (w,v) satisfy the formula in (6.8) where Hy is given by (6.11).

We have the following corollary.

COROLLARY 25.2. Let (wy,v,) be a sequence of Lagrangian symmetrized velocity solutions of (3.3) and
let w,, have uniformly in n equi-integrable initial data w®. Then up to subsequences, v, (t,x) — v(t, )
strongly in C([0,T); L .(R?)), where v is given by the convolution in (3.4) for a.e. (t,z) € [0,T] x R%, and

(1) If w8 — W weakly in L*(R?), then w, — w in C([0,T]; L'(R?) — w).
(2) If w8 — WO strongly in L*(R?), then w, — w in C([0,T); L*(R?) — s).
Moreover, (w,v) is a Lagrangian symmetrized velocity solution.

PROOF. Let X,, denote the flows associated to v,,. Convergence of vy, (1) and (2) follow from Theorem
24.1. Moreover, X,, converges to a regular Lagrangian flow X associated to v, and w(t,z) = w°(X(0,t, 7))
is a Lagrangian solution to (3.3) with initial datum w®. Then (w,v) is also symmetrized, since we may pass
to the limit in the equation (6.8) for (wy,v,). The linear terms clearly converge, and convergence of the
nonlinear term follows by boundedness of Hy and convergence of w, in C([0,T]; L'(R?) — w). O

Theorem 23.3 guarantees that the strong LllOC convergence of v, is not necessary to prove existence of

renormalized or symmetrized (vorticity and velocity) solutions: indeed, the compactness of the flows suffices
for the strong convergence of the approximating vorticities and therefore for passing to the limit in the
various formulations. We now show that the compactness of Lagrangian solutions implies stability of weak
solutions in all five senses defined in section 22.
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THEOREM 25.3 (Existence of renormalized, symmetrized vorticity, symmetrized velocity, and velocity
solutions). Let (w° v%) € L'(R?) x M?(R?) with w® = curlv® and dive® = 0. Then there exists a couple
(w,v) € L>=([0,T); L*(R?)) x L>([0,T); M?(R?)) such that (w,v) is a Lagrangian solution, and:

(1) (w,v) is a symmetrized velocity solution to (3.1), or symmetrized vorticity solution to (3.3),
(2) (w,v) is a renormalized solution to (3.3),
(3) Under the additional assumption (w°,v°) € L*(R?) x L?

2 (R?), (w,v) is a solution to the velocity
formulation (10.1).

ProOF. Part 1. This follows from Corollary 25.2 after mollifying (w°,v%). Extracting a subsquence,
the convergence of w,, and v,, from Theorem 24.1 implies also that one can pass to the limit in the equations
(6.8) and (6.12).

Part 2. To check that (w,v) is renormalized, we have to pass to the limit in

! e w X X ! v X w X . X X X OJO X T = U.
/Oﬂi[w, )B(wn(t, 2)) d dt+/0 / ot 2)B(wn(t,2)) - V(1 ) d dt+]¥¢< )82 (x)) dx = 0

Convergence of the first and last terms follows by Theorem 24.1. Applying Dominated Convergence we have
that B(w,) — B(w) strongly in LY. ([0,7] x R?) for any 1 < p < oo. Then since v,, — v in L>([0,T]; L}(R?)),

loc

we deduce that the product v,3(w,) — vB(w) weakly in LL ([0, T] x R?).

loc
Part 3. When vy € L2, the convergence w, — w in L'([0,7] x R?) ensures that we can pass to the

limit in the weak velocity formulation (10.1), arguing as in Theorem 10.8. ([






CHAPTER 7

The Vlasov Poisson equation with L' density

In this chapter we study existence of solutions to the Vlasov Poisson equation, in the weak sense when the
data belongs to L!. Similar to the existence result of chapter 3, we prove that the solutions are Lagrangian,
and associated to the flows of anisotropic vector fields considered in chapter 5, section 17. The weak solutions
in [46, 47, 48], where the distribution function is a measure, do not have well-defined characteristics. We
extend the existence result of [30] to initial data in L' with finite energy (in the repulsive case w = +1),
avoiding the Llog™ L assumption.

We apply the results of chapter 5, section 17 to prove existence and stability of global Lagrangian
solutions to the repulsive Vlasov-Poisson system with only integrable initial distribution function with finite
energy. These solutions have a well-defined Lagrangian flow. We will need a priori estimate on the smallness
of the superlevels of the flow in three dimensions in order to control the characteristics, analogous to Lemma
16.3. Our existence result is Theorem 29.4. It involves a well-defined flow. In this context we prove stability
results with strongly or weakly convergent initial distribution function. The flow is proved to converge
strongly anyway.

26. Regularity of the force field for L' densities

We recall results from section 12 to give estimates for the regularity and growth of the electric field
E(t,x) as defined in (4.3) Let p(t,z) € L>=((0,T); L*(RY)). We denote by

(7.1) bt ,v) = (b1, b2) (t,2,0) = (v, B(t2)) = (0, ~wVa(=A0) M (p(t,2) = () )
the associated vector field on (0,7T) x RN x R,

26.1. Local integrability. For L' densities, we have the weak estimates from the Hardy-Littlewood-
Sobolev inequality:

(7.2) |HE|||LOQ((07T);MNJL (RN))S enllp = poll Lo (0,101 (YY)

loc T

RY)) for any 1 < p < <%, since v € LY (RY x RY) for any p. Then b satisfies (R3).

loc

and using the inclusion M~ 1(RN) C LP _(RN) for 1 < p < <25 we conclude that b € L>((0,7); L} (RY x

26.2. Spatial regularity. Recall that the differential matrix of the vector field is given by (4.19) and
falls under the assumptions of (R2a): we have by (4.15)

(7.3) (DyE)ij = 05, B = —w02 , (—Az) " (p—pp)) for1<i,j <N,

so that (each component of) D, F is a singular integral of an L>°((0,7); L*(RY)) function.

26.3. Time regularity. According to (4.12), &;E belongs to L>((0,T);S’'(RY)), and is a singular
integral of the current L>°((0,7); L*(RY)) function J defined by (4.8).

We wish to extend the notion of characteristics discussed in Lemma 13.1 to non-smooth solutions. We
let R2Y = RY x RY and we denote by Z(t,z,v) = (X, V)(t,z,v) the regular Lagrangian flow in definition
(16.1) associated to b.

99
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DEFINITION 26.1. Define the sublevel of the regular Lagrangian flow Z as the set
(7.4) Gy = {2z € R?M :|Z(5,2)|< X for almost all s € [t,T]}.
27. Control of superlevels

In order to apply Theorem 20.1, we need to satisfy (R1a). Therefore, we seek an upper bound on the
size of B, \ G.

27.1. The case of low space dimension. Observe that Lemma 16.3 allows us to control the super-
levels of b in 1 or 2 dimensions.

PROPOSITION 27.1. Let b be the vector field in (4.15), with E € L>=((0,T); L2(RYN)). For N = 2 or
N =1, b satisfies (R1), hence also (R1a).

PROOF. It is clear that

v
7.5 ————— € L¥(LX),
( ) 1+|$H—|U‘ t ( m,v)
and

Et, E(t,x E(t,x - -
(7.6) tx) _ _Elio) Lyi<|Bt) + ( Liyj>|E(te)| = E1+ Ea.

L+ |z|+o] 14 |2+ 1+ |z|+|v]

Clearly Ep € L°(LS,), and if N = 2, E1 € L>((0,T); L ,)

B 2)|
v 2 dxdv
// 1—|—|m|+| | Lio<iB(t.2)]

since

(7.7) 1
/|E (t,x ( / |v|dv>d$ = 27r/|E(t,x)|2dx.
lol<| B(t.2)] R2
In the case N = 1, we have directly that E(t,z)/(1+ |v]) € L>((0,T); L2 ). O

27.2. The case of three space dimensions. The condition (R1) being not satisfied in 3 dimensions
(the above computation would require E € L}(L2)), we need an estimate on |Z| in order to control the
superlevels. For getting this we integrate in space a function growing slower at infinity than log(1 + |Z])
(this corresponding to the case (R1)).

PROPOSITION 27.2. Let b be as in (4.15) with N = 3, E € L>((0,T); L*(RY)), satisfying (4.12) with
J € L>((0,T); LY(RN)). Furthermore, assume that w = +1, p > 0, and p, € L* N LP(R?) for some p > 3/2.
Then (Rla) holds, where the function g depends only on L, T, ||E|[Le 2y, |[J||e 1y, [(=A)" pollLoe,
and one has g(r,\) = 0 as A — oo at fized r.

PROOF. Step 1.) Let Z : [t,T] x R? x R® — R3 x R? be a regular Lagrangian flow relative to b starting
at time ¢, with compression constant L and sublevel G. Denoting Z = (X, V'), we have the ODEs

{ X(s,x,v) =V(s,z,v),

(7.8) V(s,2,0) = E(s, X(s,2,0)).

Recalling that £ = —V,_U, one has

2
8SM =V (s,x,v) 05V (s,x,v) = E(s, X(s,2,v)) - 0s X (s,2,v)

(7.9) = —0s[U(s, X (s,z,v))] + 0U(s, X (s, z,v)).
This computation is indeed related to the form of the Hamiltonian for (4.1), H = |[v|?/2 + U(t, x).
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We are going to bound the superlevels of V (s, z,v). We claim that
(7.10) // sup (1 + log(l + |V(s,m,v)|2/2)> dxdv < A,
B, s€[t,T]
where 0 < a < 1/3, and for some constant A depending on L, T, r, a, and on the norms ||E|[re(r2),
[Tl LeeLrys [[(=A) " pp||Loe. Assume for the moment that this holds. From the lower bound

sup (1 + log(l + |V(s,:z:,v)|2/2>) dxdv
(7.11) /LT s€[t,T]
> LO(B, \ Gx)(1+1og(1+ A?*/2)),

with G the sublevel of V, we get that

A
(14 1log(1+ A2/2))e"
Next, we remark that by the first equation in (7.8), whenever (z,v) € G one has | X (s, z,v)|< |z|+|s — t|A,
and |Z(s,z,v)|< |z[+(1 4+ T)A. Thus for X > r, one has B, \ Gx C B, \ G(x—r)/(1+71), Which enables to

conclude the proposition (for A <7 we can just bound L£°(B,. \ G,) by £°(B,)).
Step 2.) By Step 1, it is enough to prove that we have a decomposition

(7.12) L9(B,\ Gy) <

. . 2 @
(7.13) <1 + log (1 + V(s?”» < fi+fo€ LNR3 xR3) + L®(R3 x RY),
for (z,v) € B,., where f1, f> are independent of s € [¢,T]. Let
(7.14) Bly) = (L+log(1+y))*, fory>0.
Then

a1l +log(l + y))*t

sy L los(1 )

(7.15) 1ty
' 0< —pr(y) < Lol + 1))
- (14y)?

Using (7.9), we compute

o [(57)

- (—63 [U(s, X(s,z,v))] + U(s, X (s,x, v)))ﬁ’ (W(S’W)

2
(7.16) =9, [U(S,X(s,x,v))ﬁ' <V(5;“)2>]
+U(s, X(s,2,0))8" <W> V(s,z,v) - E(s, X(s,,v))
L O,U(s, X (s,2,v))5 (W) .
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Thus, integrating between t and s,

<1+log (1+W>)a

alU(s, X (s,z,v))
(14 Do) (14 10g (1+ \V(sg,vnz))l—

o B e ey ()

+ /t {U(T,X(T,x,u))V(T,x,U) CB(r, X(1,2,v))B" ( .
+O,U (T, X (7, 7,v))5 <W> } dr.

[e3

2
Step 3.) Since E(t,-) € L*(R3), we have by the Sobolev embedding that U(t,-) € L5(R3). Thus clearly
(7.18) U(tlxlz LO(R3 x R%) ¢ LY(R3 x R%) + L=®(R3 x R3).
1+ £

Next, since w = +1 and p > 0, one has U = U, — U,,,, with U, = 47r| pxp >0 Thus U > — —|Up, || oo . Thus

the first three terms in the expansion (7.17) are upper bounded in L'(R3 x R3) + L>°(R2 x R?). It remains
to estimate the integral. We can bound it by ®; + ®5, with

(7.19) o) = /tT Ulr, X (r,2,0))V (7, 2,0) - E(r, X (1, 2,v))5" <V(T§“)2> ‘ dr,
(7.20) By = /tT 8U (r, X (r,z,v)) 5 (W)‘dr.

Note that ®;, ®, are independent of s. We estimate ®; in L3/2(R3 x R?) C L'(R2 x R3) + L®°(R2 x R3).
Passing the L3/2 norm under the integral and changing (X (7,z,v), V(,z,v)) to (x,v), this gives (up to a
factor L)

3/2

// U(r,z)v- E(T,x) | dedo
1 + log (1 + %))

R3 R3 Jrl‘

23/4 dy
S]RZ|U(T, x)E(T, fc)|3/2d;cRZ (1+ %)9/ (1 - log (1 R lv‘2>)3(1fa)/2

< e||U (7, )| oggun B () [
Thus ®; € L3/2(R3 x R3).
Step 4.) For @5, we notice that E satisfies (4.12) and E = —V,U, thus
(7.21) KU = —w(—A,) tdiv . J.
Since J(7,-) € L'(R2), we deduce by the Hardy Littlewood Sobolev inequality that
(7.22) 10 (7, Ml ags/2ey< el () s
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Therefore, we estimate

U (1, X (1, 2,v))

11—«
(1 + 7“/(7’;’”)‘2) (1 + log (1 + 7“/“;’”)'2))

M?3/2(R3 xR3)

< [2/3 GL) I—a
(1 + @) (1 + log (1 + %)) M3/2 (R xR3)
(7.23) < g3 0U(r, ) —
<1A+,tgi) <14%10g (1—% E%3)> L3/2(R3;M3/2(R2))

2/3

dv
< L0 Mgy | [ a7 o
(1) (14 10g (14 12))
SCHJ(T,')HLl(R?,),

where the last integral is convergent since 3(1 — a)/2 > 1. From the inclusion M3/2(R3 x R?) ¢ L'(R3 x
R3) + L>°(R3 x R3), and integrating (7.20) over B,., we get (7.13) as desired. O

28. Renormalized solutions and Lagrangian solutions to the VP system

We recall the different notions of weak solutions for the Vlasov-Poisson system. We shall always assume
that 1 < N < 3, and we consider an initial datum f° € L1(RY xRY), fO > 0. We introduce first renormalized
solutions, following [30, 31].

DEFINITION 28.1. We say that f € L>=((0,T); L*(RY xRY)), f >0, is a solution to the Vlasov equation
(4.1) in the renormalized sense if for all test functions 3 € C1([0,00)) with B bounded, we have that

(7.24) KB(S) +v-VuB(f) + div, (Bt 2)B()) =0,
in D'((0,T) x RY x RN).
We next introduce the notion of Lagrangian solutions.

DEFINITION 28.2. Let be given a vector field b(t,z,v) = (v,E(t,z)) as in (4.15) for some p €
L=((0,T); LY(RN)), p > 0, and p, € L*(RY). We assume that E € L>((0,T); L>(RY)), and that (4.12)
holds with J € L*((0,T); LY(RY)). We assume furthermore that either N =1 or 2, or N = 3 and w = +1,
pp € LP(R3) for some p > 3/2. We consider regular Lagrangian flows Z as in definition 16.1, except that
now s € [0,T] instead of s € [t,T] (forward-backward flow), and with compression constant L independent of
t € [0,T). According to subsections 26.1, 26.2, Proposition 27.1, Proposition 27.2, the vector field b satisfies
assumptions (R1la), (R2a), (R3). Therefore, Theorem 20.1 yields the existence and uniqueness of the
forward-backward regular Lagrangian flow Z = (X, V), with compression constant 1. We can thus define in
accordance with [16] a Lagrangian solution f to the Vlasov equation (4.1) by

(7.25) flt,z,v) = f° (X(s =0,t,z,v),V(s = O,t,x,v)), for all t € 10,7,

for arbitrary f0 € LY(RY x RY). It verifies in particular f € C([0,T]; LY(RY x RY)), and it is indeed also
a renormalized solution.
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DEFINITION 28.3. We define a Lagrangian solution to the Viasov-Poisson system as a couple (f, E) such
that
(1) f € C0. T} LI (BY x BY)), [ > 0, [of2f € L((0.T): L(RY x BY)),
(2) E(t,z) is given by the convolution (4.6) with p(t,z) = [ f(t,x,v)dv, p, € L*(RN), p, > 0 (and if
N =3, w=+1, p, € LP(R3) for some p > 3/2),
(3) E e L=((0,T); I(RY)),
(4) The relation (4.12) holds with J(t,x) = [vf(t,z,v)dv,
(5) [ is a Lagrangian solution to the Viasov equation, in the sense of (7.25).

29. Existence of Lagrangian solutions

29.1. Compactness. In this subsection we prove two compactness results, Theorems 29.2 and 29.3,
for families of Lagrangian solutions to the Vlasov-Poisson system, with strongly or weakly convergent initial
data.

LEMMA 29.1. Let g(x) = ﬁ for x € RN and denote by 1,9(x) = g(x+h). Then for any1 < p < %,
(7.26) I7g(x) — g(2) || e @) < c|h],
with « =1— N + N/p > 0, and where ¢ depends on N, p.

PRrOOF. Fix h € RY, h # 0. For |z|> 2|h|, we have for all 0 < 6 < 1, |z + 6h|> |z|—0|h|> |z|/2, thus
we have
[Thg(x) = g(x)|< [h] sup [Vg(z + 60h)]
(7.27) e 1
. CN
<|h| sup ———— <evv-
<| |0g021 @+ OR[N = "N 2N

Then we estimate

|h|P i N-1-N (2[R[)N P —Np+N
/ |$|dix:cN|h|p T Pdr = en|h|P Np N = cnplh|PTPT.
=] >2]h| 2|
Next, for |z|< 2|h|, we write
1 1
(7.28) IThg(x) — g(z)|< |z + A1 + 2[N-1
and clearly
1 1
/ <|ac + h|(N-Dp + |3;|(N—1)p> dz
|z|<2[h]|
(7.29) 3|h|
dy N—Np+p—1 N—Np+
=2 / | &—p — N )T T dr = e AT,
ly|<3|h| 0
since the last integral is convergent for p < % O

THEOREM 29.2. Let (fn, E,) be a sequence of Lagrangian solutions to the Viasov-Poisson system satis-
JTying
(7.30) I = % in LYRY x R)),

and

(7.31) //|U|2fn(t, x,v)dxdv + /|En(t, x)2de < C, for allt € 10,T7.
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Then, up to a subsequence f, converges strongly in C([0,T); LY(RY x RN)) to f, E, converges in
C([0,T); LL.RN)) to E, and (f,E) is a Lagrangian solution to the Vlasov-Poisson system with initial
datum f°. Moreover, the regular forward-backward Lagrangian flow Z,(s,t,x,v) converges to Z(s,t,x,v)

locally in measure in RY x RN uniformly in s,t € [0,T).

PRrROOF. Step 1. (Equi-integrability)
Because of (7.25) and (7.30) we have

(7'32) ”fn(tv K ')||L1(RN><]RN): ||f2||L1(RN><RN)§ M.
Then because of the bounds (7.32), (7.31), and applying Propositions 27.1, 27.2, one has for any r > 0
(7.33) L*N{(z,v) € B, : sup |Zu(s,t,z,v)|>~} = 0, as v — oo, uniformly in ¢, n.

0<s<T

Since the sequence f° is uniformly equi-integrable, and since Z,, is measure-preserving, we have by (7.25)
and (7.33) that f,(t,-) is equi-integrable, uniformly in ¢,n. Consequently, p,(¢,-) is also equi-integrable,
uniformly in ¢,n. Using the bound (7.31), vf,(¢,-) is also equi-integrable, and therefore .J,(t,-) is also
equi-integrable, uniformly in ¢, n.

Step 2. (Spatial compactness of the field)
In order to prove that E, — Ein LL _((0,T) x RLY), we first look at the compactness in x. Denote by
ThEn(t,2) = E,(t,z + h). Then using (4.6),

0 En(t, ) = En(t,)l|Le @)

7.34 T
720 <e|mity = ol llen(t,) = Ol
|z || Lp(RN)
Thus according to Lemma 29.1, we get for any 1 < p < 1~ that
(7.35) [[En(t,z + h) — En(t, x)|| pr@yy)— 0, as h — 0, uniformly in ¢, n.

Step 3. (Time continuity of E,,)

To prove compactness in time, we check continuity. Denote by (-,-) the L? inner product. Let ¢ € H*(RY)
with s > N/2, and define ¢,, as the mapping ¢y, : t — (E,(t,-), ). Then
n - ¥n . En s ') T Hn ta
(7.36) lim ot 7) ¢(Lﬂm< t+r) <)¢>=Mﬂﬁﬂm%
7—0 T T—0 T

We have from (4.12) that 9;F,, is uniformly bounded in L*°((0,T); H*(RY)), since
(OrEn, @) p—=,1s = (Sn(t;-), O) -+, 1s
< lgn (@)l 2 @) 1Sl oo m)
< OISl - @< C,
so that 0,(E,(t,-), ) € L>(0,T), for every ¢ € H*(RY), and the above bracket in (7.36) is well defined. It

is clear that this estimate is uniform in time, hence ¢” exists almost everywhere in [0, 7T]. Fix n. Then for

a.e. t € [0,77], we have

(7.37) sup (En(t+7,-),0) = (Enlt,), o)) <7 sup [(O:En(t,-), )|< O,
pEH*(RN),||¢]|ms <1 0<t<T

Since this estimate is uniform in n, we get

(7.38) sup sup KE.(t+7,),0) — (En(t,"), )] — 0, as T — 0,
n peH(RY) [|p|[ms <1
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uniformly in time. We proceed with the following localization argument. Fix B, € RY, and let x(x) €
Cg°(B,/2) be a cutoff function. (7.38) implies that

(739) sup sup ||<X()En(t +7, ) - X()En(t7 ')7 <)0>HL1((O,T))_> 0, as 7 — 0.
" peH*(RN),[|¢llms <1

Step 4. (Compactness in time)
Using step 2, we check the local time translations of E,. Let £ € C°(B,) be the standard mollifier and set
§e = e "E(x/e) with [ & =1, [¢]| g« n)< ¢, and denote by

Evaz,x = (XEn) kg §e = <X(')En(t7 ')7€€($ - )>

We have spt By, | C sptx +sptée C Brye, and || (2 — )| gs @y < e7°[[¢]
uniform in n and x convergence holds:

1By, (t+72) — B (62|21 0,1))

<supl|(x()En(t +7,1) = x()En(t, ), &e(@ = )| r o.r)

<e~*esupl|(X() Bt +7,) = XV Ea(t, ), €l el = Wloiorn— 0, as 70,

me(rN)- For fixed €, the following

(7.40)

Next we write
X@E(t2) ~ oy (1) = [ [x(@)Balt.) = X~ ) Bt — 1)} 5)dy.
R
Using step 1 we may estimate this as
IXEn — B\ lzro.ryc2@vy < sup {|[xll=[|En(t, 2) — En(t, 2 = y)l|L10.1):22 @)
(7.41) lyl<e
HEn(t, )| L 0.1y 2@y X (@) = x(@ = 9)||L2@yy } <,

for some ¢ sufficiently small.

Step 5. Let n > 0. First choose € > 0, and then 7 > 0 sufficiently small so that by (7.40) and (7.41), we
have

Ix(2)En(t + 7,2) — x(2) En(t, 2)|| L1 (0,1) xRN
<2l|x(z)En(t,z) — By (& 2)|| 1 0,m);00 @y ) T En oy (E+7,2) — B (8,2)]| 0,700 YY)
< 3.

Combining this with step 2 and applying Riesz-Fréchet-Kolmogorov, we conclude that up to a subsequence
E, — E strongly in L'((0,T); L .(RY)).
Step 6. (Convergence of the flow)
Because of the bound (7.31), one has E € L>((0,T), L*>(R™)). Also, using the uniform bounds on p,, J,
in L>((0,T); L*(R™)) and the uniform equi-integrability obtained in Step 1, one has up to a subsequence
pn — p, Jn — J in the sense of distributions, with p, J € L>((0,7T); L' (RY)). We can pass to the limit
in (4.6) and (4.12). Therefore, b = (v, E) satisfies the assumptions (Rla), (R2a), (R3) and Definition
28.2 applies. According to Theorem 20.1, since (7.33) holds, we deduce the convergence of Z,, to Z locally
in measure in RY x RY, uniformly with respect to s,t € [0,T], where Z is the regular forward-backward
Lagrangian flow associated to b.

Step 7. (Convergence of f)
Using the convergence (7.30), we can apply Corollary 21.3, and we conclude that f, — f in C([0,T]; L*(RY x
R2)), where f is the Lagrangian solution to the Vlasov equation with coefficient b and initial datum f°. Tt
follows that p,, — p = [ fdv in C([0,T]; L}(RL)). By lower semi-continuity, we get from (7.31) that

(7.42) //\v|2f(t,a:,v)dxdv + /|E(t,z)|2daz <C, for all t € [0,T7.
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The bound (7.31) gives also that J, — J = [vfdv in C([0,T]; L*(RY)). Therefore, (f, E) is a Lagrangian
solution to the Vlasov-Poisson system. Using (4.6), we get that E, — E in C([0,77]; L{,.(R")), which
concludes the proof. O

THEOREM 29.3. Let (fn, En) be a sequence of Lagrangian solutions to the Viasov-Poisson system satis-
Jying
(7.43) 19— O weakly in L*(RY x RY),

and the bound (7.31). Then, up to a subsequence f, converges in C([0,T]; weak — L'(RY x RN)) to f,
E,, converges in C([0,T]; L;OC(RN)) to E, and (f, E) is a Lagrangian solution to the Vlasov-Poisson system
with initial datum f°. Moreover, the reqular forward-backward Lagrangian flow Z,(s,t,x,v) converges to

Z(s,t,z,v) locally in measure in RN x RN uniformly in s,t € [0, T].

PROOF. It is the same as that of Theorem 29.2, except the last step 7. Instead we apply Corollary 21.3
and conclude that f,, — f in C([0, T]; weak — L' (RY x RY)), where f is the Lagrangian solution to the Vlasov
equation with coefficient b and initial datum f°. It follows that p, — p = [ fdv in C([0, T; weak — L*(RY)).
By lower semi-continuity, we get again from (7.31) the energy bound (7.42). The bound (7.31) also enables
to conclude that J,, = J = [vfdv in C([0,T];weak — L'(RY')). Therefore, (f, E) is a Lagrangian solution
to the Vlasov-Poisson system. Using (4.6) and the compactness estimate (7.35), we get that F,, — E in
C([0,T); L, .(RY)), which concludes the proof. O

29.2. Existence. We conclude this section by the existence of Lagrangian solutions to the Vlasov-
Poisson system for initial datum in L' with finite energy, in the repulsive case.

THEOREM 29.4. Let N = 1,2 or 3, and let f* € LY(RY x RY), f° > 0. Define p° and E° by

w xT

(7.44) P°(x) = /fo(x,v)dv, E°x) = ST Ta[¥ * (p°(x) — pp(2)),

with w = +1 (repulsive case), p, € LY(RY), pp > 0, and in the case N = 3 p, € LP(R?) for some p > 3/2.
Assume that the initial energy is finite,

(7.45) //|v|2f0(x,v)dxdv + /|E0(m)|2dw < 0.

Then there exists a Lagrangian solution (f, E) to the Vlasov-Poisson system defined for all time, having f°
as initial datum, and satisfying for allt >0

(7.46) //|v|2f(t,x7v)dxdv+/|E(t,x)|2dx < //\v|2f0(x,v)dxdv+/|E0(ac)|2dx.

PROOF. We use the classical way of getting global weak solutions to the Vlasov-Poisson system, i.e.
we approximate the initial datum fY by a sequence of smooth data f? > 0 with compact support. We
approximate also p, by smooth pf > 0 with compact support (with [(p% — p)dz = 0 if N = 1,2). It is
possible to do that with the upper bounds

limsup //\v|2f2(w,v)dxdv §/ lv2f°(z, v)dzdv,
(7.47) nTreo

limsup/\ES(as)de < /|E0(a:)|2dx.

n—o0
Then, for each n, there exists a smooth classical solution ( f,,, F,,) with initial datum f2, to the Vlasov-Poisson
system, defined for all time ¢ > 0. Note that we can alternatively consider a regularized Vlasov-Poisson
system with energy identity, as in [18]. Since w = +1, the conservation of energy (4.14) gives for all ¢ > 0,

(7.48) //|11| fntxvdxdv+/|E (t,2)] da:—//|v| fnxvda:dv+/|E°( )[2dz.
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The couple (f,, E,) is in particular a Lagrangian solution to the Vlasov-Poisson system, for all intervals
[0,T]. We can therefore apply Theorem 29.2. Extracting a diagonal subsequence, we get the convergence of
(fn, Epn) to (f,E) as stated in Theorem 29.2, where (f, E) is a Lagrangian solution to the Vlasov-Poisson
system defined for all time, with f° as initial datum. The bound (7.42), together with (7.47), gives (7.46). [

Let us end with a remark on measure densities. In step 6 of Theorem 29.2 we do not require the
assumption that the densities are equi-integrable. When considering a sequence of solutions to the Vlasov-
Poisson system, if we require only that D;b? converges in the sense of distributions to D1b? = S(p — py), for
some measure p € M(R™), then Theorem 20.1 still applies. If p,, is uniformly bounded in L*((0, T); M(RM)),
and b,, — b strongly in L'((0,T); LL .(RY x RY)) with b satisfying (5.62), we conclude that Z,, — Z strongly,
where Z is the regular Lagrangian flow associated to b. However, we are not able to define the push forward
(7.25) of a measure f°. This prevents from applying fully the context of section 5.59 to the Vlasov-Poisson

system with measure data.
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