LOWER SEMICONTINUITY OF A CLASS OF INTEGRAL FUNCTIONALS ON THE SPACE OF FUNCTIONS OF BOUNDED DEFORMATION

GIANNI DAL MASO, GIANLUCA ORLANDO, AND RODICA TOADER

Abstract. We study the lower semicontinuity of some free discontinuity functionals with linear growth defined on the space of functions with bounded deformation. The volume term is convex and depends only on the Euclidean norm of the symmetrized gradient. We introduce a suitable class of surface terms, which make the functional lower semicontinuous with respect to L^1 convergence.

Keywords: free discontinuity problems, lower semicontinuity, functions of bounded deformation

MSC 2010: 49J45, 26B30

1. Introduction

Free discontinuity functionals, depending on a function u and on its jump set J_u, have an increasing importance for several problems in the Calculus of Variations, with applications to image processing, liquid crystals, and fracture mechanics (see [16, 22, 20, 3, 10]). A large literature is devoted to the study of the lower semicontinuity properties of free discontinuity functionals (see [1, 6, 12, 13, 9, 5, 8, 14, 17]). The techniques used in the proofs of the lower semicontinuity results strongly depend on the assumptions on the volume term of the functional, which typically involves the gradient ∇u. In the case of superlinear growth in ∇u, the volume and the surface term do not interact, while in the case of linear growth, which occurs in connection with elasto-plasticity problems, there is a strong interaction, which requires a different treatment.

The prototype of free discontinuity functionals with linear growth is

$$\int_\Omega f(|\nabla u|) \, dx + C |D^c u| (\Omega) + \int_{J_u} g([u]) \, dH^{n-1},$$

where $u \in BV(\Omega)$, the space of functions of bounded variation, ∇u is the density of the absolutely continuous part of the distributional gradient of u, $D^c u$ is its Cantor part, J_u is the jump set of u, $[u]$ is the difference between the traces of u on both sides of J_u, and H^{n-1} is the $(n-1)$-dimensional Hausdorff measure. We refer to the book [3] for the definition and properties of BV functions. The lower semicontinuity of (1.1) with respect to the weak* convergence in BV has been proved in [6] under the following assumptions: $f: [0, +\infty) \to [0, +\infty)$ is convex and nondecreasing, $g: \mathbb{R} \to [0, +\infty)$ is even and subadditive, and

$$\lim_{t \to +\infty} \frac{f(t)}{t} = \lim_{t \to 0^+} \frac{g(t)}{t} = C \in (0, +\infty).$$

In Remark 2.3 we shall see that an even subadditive function satisfying (1.2) is continuous. Note that all terms in (1.1) interact and equality (1.2) is also necessary for lower semicontinuity.

The purpose of this paper is to extend this result to functionals defined in the space $BD(\Omega)$ of functions of bounded deformation. We refer to the book [21] for the general properties of this space and to [2] for the fine properties of BD functions.

The natural extension of (1.1) to $BD(\Omega)$ is the functional

$$\int_\Omega f(|E^c u|) \, dx + C |E^c u| (\Omega) + \int_{J_u} g([u]) \, dH^{n-1},$$

1
where $E_u = \frac{1}{2}(Du + Du^T)$ is the symmetric part of the distributional gradient of u, $\mathcal{E}u$ is the density of the absolutely continuous part of E_u, while $E^c u$ is the Cantor part of E_u (defined in [2, Definition 4.1]). Here and in the rest of the paper, the space $\mathcal{M}^n_{\text{sym}}$ of $n \times n$ symmetric matrices is endowed with the Euclidean (or Frobenius) norm defined by

$$|A| = \left(\sum_{i,j=1}^n A^2_{ij} \right)^{\frac{1}{2}},$$

and the variation of the measure $|E^c u|$ is defined accordingly.

We shall see in Proposition 3.1 that the functional (1.3) cannot be lower semicontinuous. The main reason is that the last term in (1.3) does not take into account the orientation of the jump set J_u. A possible way to overcome this drawback is to consider the restriction to J_u of the measure E_u which is given by

$$E_u| J_u = [u] \odot \nu_u \mathcal{H}^{n-1},$$

where ν_u is the approximate unit normal to J_u and, for every pair of vectors $a, b \in \mathbb{R}^n$, $\alpha \circ b$ is the matrix whose components are $\frac{1}{2}(a_i b_j + a_j b_i)$. The matrix $[u] \odot \nu_u$ encodes the behavior of the jump of u, taking into account also the orientation of the jump set. This suggests that a natural extension of (1.1) to $BD(\Omega)$ is

$$\int f(|\mathcal{E}u|) \, dx + C|E^c u|(\Omega) + \int_{J_u} g([u] \odot \nu_u) \, d\mathcal{H}^{n-1}. \tag{1.4}$$

We shall see in Proposition 3.2 that, if $g(t) = \min\{C|t|, 1\}$, then the functional given by (1.4) is not lower semicontinuous because the 1-homogeneous extension of the function $\nu \mapsto g([z \circ \nu])$ is not convex on \mathbb{R}^n.

The functional we propose as extension of (1.1) to $BD(\Omega)$ has the form

$$\mathcal{F}(u) = \int_{\Omega} f(|\mathcal{E}u|) \, dx + C|E^c u|(\Omega) + \int_{J_u} G([u] \circ \nu_u) \, d\mathcal{H}^{n-1}, \tag{1.5}$$

where the function $G(z, \nu)$ has a specific structure and, in general, does not depend only on $|z \circ \nu|$. To explain the hypothesis we will consider on G, it is convenient to anticipate the technique of the proof. This will be based on a slicing argument which relies on the following well-known formula for the Euclidean norm of a symmetric $n \times n$ matrix A:

$$|A|^2 = \sup_{(\xi^1, \ldots, \xi^n)} \sum_{i=1}^n |A\xi^i \cdot \xi^i|^2, \tag{1.6}$$

where the supremum is taken over all orthonormal bases (ξ^1, \ldots, ξ^n) of \mathbb{R}^n (see Proposition 2.1). This method suggests that the lower semicontinuity of \mathcal{F} can be proved when G satisfies the following condition: there exists a function $g: \mathbb{R} \mapsto [0, +\infty)$ such that

$$G(z, \nu) = \sup_{(\xi^1, \ldots, \xi^n)} \left(\sum_{i=1}^n g(z \cdot \xi^i)^2 |\nu \cdot \xi^i|^2 \right)^{\frac{1}{2}}, \tag{1.7}$$

where the supremum is taken over all orthonormal bases (ξ^1, \ldots, ξ^n) of \mathbb{R}^n. Note that, in the particular case $g(t) = C|t|$, the function in (1.7) takes the form $G(z, \nu) = C|z \circ \nu|$. The main result of the paper (Theorem 4.1) is that the functional \mathcal{F} is L^1-lower semicontinuous on $BD(\Omega)$ under the following assumptions: f is convex and nondecreasing, G is given by (1.7), with g even and subadditive, and

$$\lim_{t \to +\infty} \frac{f(t)}{t} = \lim_{t \to 0^+} \frac{g(t)}{t} = C \in (0, +\infty), \quad \liminf_{t \to +\infty} g(t) > 0. \tag{1.8}$$

The last assumption on g in (1.8) is used only to prove the semicontinuity in L^1 rather than in the weak* topology of BD.

The function $G(z, \nu)$ defined in (1.7) is computed explicitly in Section 6 when $g(t) = \min\{t, 1\}$ and $n = 2$. In particular, we find that in this case $G(z, \nu) = |z \circ \nu|$ if $|z| \leq 1$, $G(z, \nu) = 1$ if $|z| \geq \sqrt{2}$, while there is a region in the annulus $1 < |z| < \sqrt{2}$ where $G(z, \nu) < \min\{|z \circ \nu|, 1\}$.

The results in Section 4 are used to prove a relaxation theorem for functionals of the form
\[
F(u) = \int_\Omega f((\mathcal{E}u)) \, dx + C|\mathcal{E}^*u|(\Omega) + \int_{J_{\omega}} \psi([u], \nu_\omega) \, d\mathcal{H}^{n-1},
\]
assuming that \(f \) is convex and nondecreasing and that there exists an even and subadditive function \(g: \mathbb{R} \to [0, +\infty) \) satisfying (1.8) such that
\[
\psi(z, \nu) \geq \left(\sum_{i=1}^n g(z \cdot \xi^i)|\nu \cdot \xi^i|^2 \right)^{1/2},
\]
for every orthonormal basis \((\xi^1, \ldots, \xi^n)\) of \(\mathbb{R}^n \). In this case, the lower semicontinuous envelope \(\text{sc}^{-} \mathcal{F} \) takes the form
\[
\text{sc}^{-} \mathcal{F}(u) = \int_\Omega f((\mathcal{E}u)) \, dx + C|\mathcal{E}^*u|(\Omega) + \int_{J_{\omega}} \overline{\psi}([u], \nu_\omega) \, d\mathcal{H}^{n-1},
\]
for a suitable function \(\overline{\psi} \). Note that the function \(f \) and the constant \(C \) do not change in the relaxation process.

2. Notation and preliminary results

Throughout the paper \(\Omega \) is a bounded open set in \(\mathbb{R}^n \), \(\mathcal{A}(\Omega) \) is the class of open sets contained in \(\Omega \), and \(\mathcal{B}(\Omega) \) is the class of Borel sets contained in \(\Omega \). The notation \(A \in B \) means that \(A \) is relatively compact in \(B \). The Lebesgue measure on \(\mathbb{R}^n \) is denoted by \(\mathcal{L}^n \), and the \((n-1)\)-dimensional Hausdorff measure by \(\mathcal{H}^{n-1} \). The set \(S^{n-1} \) is the unit sphere \(\{x \in \mathbb{R}^n : |x| = 1\} \), while \(O(n) \) stands for the group of \(n \times n \) orthogonal matrices.

For every \(n \times n \) matrix \(A \), the Euclidean norm of \(A \) is defined by
\[
|A| := \left(\sum_{i,j=1}^n A_{ij}^2 \right)^{1/2}.
\]

The following property will be used in the proof of the lower semicontinuity result. It is a well-known formula, but we include a proof for completeness of the presentation. The proof is based on the fact that the Euclidean norm is unitary invariant (see, e.g., [18]).

Proposition 2.1. For every \(n \times n \) symmetric matrix \(A \) we have
\[
(2.1) \quad |A| = \sup_{(\xi^1, \ldots, \xi^n)} \left(\sum_{i=1}^n |A \xi^i \cdot \xi^i|^2 \right)^{1/2},
\]
where the supremum is taken over all orthonormal bases \((\xi^1, \ldots, \xi^n)\) of \(\mathbb{R}^n \).

Proof. Let \(A \) be a symmetric matrix, let \((\xi^1, \ldots, \xi^n)\) be an orthonormal basis and let \(R \in O(n) \) be a rotation such that \(\xi^i = Re_i \), where \((e_1, \ldots, e_n) \) is the standard basis in \(\mathbb{R}^n \). Then
\[
\sum_{i=1}^n |A \xi^i \cdot \xi^i|^2 = \sum_{i=1}^n |AR e_i \cdot Re_i|^2 = \sum_{i=1}^n |R^T A Re_i \cdot e_i|^2 \leq |R^T A R|^2 = |A|^2.
\]

To show that the supremum in (2.1) is attained, let \(S \in O(n) \) be a rotation such that \(S^T AS \) is a diagonal matrix with entries \(\lambda_1, \ldots, \lambda_n \), and let \(\xi^i := Se_i \) for \(i = 1, \ldots, n \). Then \((\xi^1, \ldots, \xi^n)\) is an orthonormal basis of \(\mathbb{R}^n \) and we have that
\[
\sum_{i=1}^n |A \xi^i \cdot \xi^i|^2 = \sum_{i=1}^n |AS e_i \cdot Se_i|^2 = \sum_{i=1}^n |S^T AS e_i \cdot e_i|^2 = \sum_{i=1}^n \lambda_i^2 = |S^T AS|^2 = |A|^2.
\]
This concludes the proof. \(\square \)

Remark 2.2. We note that taking the supremum over all orthonormal bases \((\xi^1, \ldots, \xi^n)\) of \(\mathbb{R}^n \) is equivalent to taking the supremum over the columns of all rotations \(R \in O(n) \). Therefore the supremum in (2.1) does not change if we consider only a countable dense family in \(O(n) \).

We recall that a function \(g: \mathbb{R} \to [0, +\infty) \) is subadditive if
\[
g(s + t) \leq g(s) + g(t) \quad \text{for every } s, t \in \mathbb{R}.
\]
Remark 2.3. It is known (see, for instance, [19, Theorem 16.3.3]) that for a subadditive function we have
\[
\lim_{t \to 0^+} \frac{g(t)}{t} = \sup_{t > 0} \frac{g(t)}{t}
\]
provided the right-hand side is finite. Moreover, if \(g\) is even, subadditive, and the right-hand side of the previous formula is finite, then \(g(0) = 0\) and \(g\) is continuous at 0, hence at every point of \(\mathbb{R}\) (see, for instance, [19, Theorem 16.2.1]).

Remark 2.4. If \(g\) is a subadditive function satisfying (1.8) and \(0 < c < C\), then there exists a constant \(b > 0\) such that
\[
g(t) \geq \min\{ct, b\} \quad \text{for every } t \geq 0.
\]
Indeed, the first assumption in (1.8) implies that there exists \(\delta > 0\) such that \(g(t) \geq ct\), for every \(t \in [0, \delta]\). The second assumption in (1.8) implies that there exist \(\eta > 0\) and \(M > \delta\) such that \(g(t) \geq \eta\) for every \(t \geq M\). We claim that
\[
\inf_{t \in [M, M]} g(t) > 0.
\]
To prove the claim, we fix an integer \(n \geq \frac{M}{\eta}\) and a constant \(\varepsilon > 0\) such that \(n \varepsilon < \eta\). If (2.3) does not hold, then there exists \(t \in [\delta, M]\) such that \(g(t) < \varepsilon\). By subadditivity we have \(g(nt) \leq n \varepsilon < \eta\). On the other hand \(nt \geq n \delta \geq M\), hence \(g(nt) \geq \eta\). This contradiction proves (2.3). To obtain (2.2) it is enough to take a constant \(b\) less than the infimum in (2.3) and with \(0 < b < \min\{c\delta, \eta\}\).

Remark 2.5. Let \(g\) be an even subadditive function satisfying (1.8) and let \(a \in [0, C]\). Let us define the function
\[
g^a(t) := \inf_{s \in \mathbb{R}} \{g(s) + a|t - s|\}.
\]
It is easy to see that the function \(g^a\) is even, subadditive, and that \(g^a \nrightarrow g\) as \(a \nrightarrow C\). Moreover, using Remark 2.4, we can prove that there exists \(\delta_0 > 0\) such that \(g^a(t) = at\) for every \(t \in [0, \delta_0]\).

Given a metric space \(X\) and a functional \(F : X \to [0, +\infty]\), we recall that \(F\) is lower semicontinuous if for every sequence \(x_k \in X\) such that \(x_k \to x\) we have
\[
F(x) \leq \liminf_{k \to +\infty} F(x_k).
\]
The following localization lemma is a classical tool useful to prove the lower semicontinuity of integral functionals. Its proof can be found, e.g., in [11, Lemma 15.2].

Lemma 2.6. Let \(\Lambda\) be a function defined on the family of open subsets of \(\Omega\), which is superadditive on open sets with disjoint compact closure. Let \(\Lambda\) be a positive measure on \(\Omega\), let \(\varphi_j, j \in \mathbb{N}\), be nonnegative Borel functions such that
\[
\int_K \varphi_j \, d\Lambda \leq \Lambda(A)
\]
for every open set \(A \subset \Omega\), for every compact set \(K \subset A\), and for every \(j \in \mathbb{N}\). Then
\[
\int_K \sup_j \varphi_j \, d\Lambda \leq \Lambda(A)
\]
for every open set \(A \subset \Omega\) and for every compact set \(K \subset A\). Moreover, if \(A \subset \Omega\) is an open set with \(\Lambda(A) < +\infty\), then
\[
\int_K \sup_j \varphi_j \, d\Lambda = \sup \left\{ \sum_{j=1}^r \int_{K_j} \varphi_j \, d\Lambda : (K^j)_{j=1}^r \text{ disjoint compact subsets of } K, r \in \mathbb{N} \right\}
\]
for every compact set \(K \subset A\).

We now recall some lower semicontinuity results about one dimensional functionals defined on the space \(BV(U)\), where \(U\) is a bounded open subset of \(\mathbb{R}\). Let us consider the functional \(\Phi : BV(U) \times \mathcal{A}(U) \to [0, +\infty]\) defined by
\[
\Phi(u, A) := \int_A f(|\nabla u|) \, dt + C|D^\ast u|(A) + \sum_{t \in \mathcal{A} \cap A} g(|u|(t)),
\]
We claim that First of all we observe that enough, we have that Properties are satisfied: The functional is lower semicontinuous with respect to the weak* topology in \(BV(U)\). This implies that for every \(u \in BV(U)\) such that \(u_k \to u\) in \(L^1(U)\).

\[\Phi(u, U) \leq \liminf_{k \to +\infty} \Phi(u_k, U),\]

for every \(u_k, u \in BV(U)\) such that \(u_k \to u\) in \(L^1(U)\).

Proof. It is enough to prove the result when \(U\) is a bounded open interval, denoted by \(I\). Let us fix \(u_k, u \in BV(I)\) such that \(u_k \to u\) in \(L^1(I)\). Up to extracting a subsequence, we can assume that \(u_k \to u\) a.e. in \(\Omega\), that the \(\liminf\) in (2.5) is finite, and that it is actually a limit. Therefore

\[\Phi(u_k, I) \leq M\]

for some positive constant \(M\).

We start by proving that the number of large jumps of the functions \(u_k\) is equibounded. By Remark 2.4, there exist a constant \(c > 0\) such that \(g(t) \geq c \min(t, 1)\). By (2.6), this implies that there exists a constant \(M' > 0\) such that

\[|Du_k|(I \setminus J_k^1) + |H^0(J_k^1)| \leq M',\]

where \(J_k^1 := \{ t \in J_{u_k} : |u_k|(t) \geq 1 \}\) and \(H^0\) is the counting measure. Hence, up to a subsequence, we can assume that there exists an integer \(m \geq 1\) such that \(J_k^1 = \{t_1^k, \ldots, t_m^k\}\), with \(t_1^k < \cdots < t_m^k\). We can also assume that \(t_i^k \to t_i\) as \(k \to +\infty\), for \(i = 1, \ldots, m\), where \(t_1 \leq \cdots \leq t_m\). Let us consider \(s_1 < \cdots < s_\ell\) such that \(\{s_1, \ldots, s_\ell\} = \{t_1, \ldots, t_m\}\). Let us fix \(\delta > 0\) such that the following properties are satisfied:

- the intervals \([s_i - \delta, s_i + \delta]\), \(i = 1, \ldots, \ell\), are pairwise disjoint;
- \(s_i - \delta\) and \(s_i + \delta\) do not belong to \(\bigcup_k J_{u_k} \cup J_u\);
- \(u_k(s_i - \delta) \to u(s_i - \delta)\) and \(u_k(s_i + \delta) \to u(s_i + \delta)\) as \(k \to +\infty\), for \(i = 1, \ldots, \ell\).

Let us consider the open set \(A_0 := I \setminus \bigcup_{i=1}^\ell [s_i - \delta, s_i + \delta]\). First of all, we notice that, for \(k\) large enough, we have that \(|u_k|(t) < 1\) for all \(t \in J_{u_k} \cap A_0\), i.e., \(J_{u_k} \cap A_0 = \emptyset\). Hence, by (2.7), we have that \(|Du_k|(A_0) \leq M'\) for all \(k\). This implies that \(u_k \rightharpoonup u\) in \(BV(A_0)\), and by the lower semicontinuity of \(\Phi(\cdot, A_0)\) with respect to the weak* convergence of \(BV(A_0)\), we deduce that

\[\Phi(u, A_0) \leq \liminf_{k \to +\infty} \Phi(u_k, A_0).\]

Let us now fix \(i \in \{1, \ldots, \ell\}\) and let \(I'_i := (s_i - \delta, s_i + \delta)\). By (1.2), given \(\varepsilon > 0\) there exists \(t_\varepsilon > 0\) such that for every \(t \geq t_\varepsilon\) we have that

\[f(t) \geq (C - \varepsilon)t.\]

We claim that

\[g(u_k(s_i + \delta) - u_k(s_i - \delta)) \leq \frac{C}{C - \varepsilon} \Phi(u_k, I'_i) + 2C\delta t_\varepsilon.\]

First of all we observe that

\[u_k(s_i + \delta) - u_k(s_i - \delta) = Du_k(I'_i) = \int_{I'_i} \nabla u_k \, dt + D^*u_k(I'_i) + \sum_{t \in J_{u_k} \cap I'_i} |u_k|(t).\]
By the subadditivity and the continuity of \(g \) and by the inequality \(g(t) \leq C|t| \), we have that
\[
g(uk(s_i + \delta) - uk(s_i - \delta)) \leq C \left(\int_{I_k^0} \nabla uk dt + g(D^s uk(I_k^0)) + \sum_{i \in J_u \cap I_k^0} g(uk(t)) \right)
\]
(2.11)
\[
\leq C \int_{I_k^0} |\nabla uk| dt + C|D^s uk|(I_k^0) + \sum_{i \in J_u \cap I_k^0} g(uk(t)).
\]
By (2.11) and (2.9) we get
\[
\frac{C}{C - \varepsilon} \Phi(u_k, I_k^0) \geq \frac{C}{C - \varepsilon} \int_{I_k^0} f(|\nabla uk|) dt + C|D^s uk|(I_k^0) + \sum_{i \in J_u \cap I_k^0} g(uk(t))
\]
\[
\geq \frac{C}{C - \varepsilon} \int_{I_k^0} f(|\nabla uk|) dt + g(uk(s_i + \delta) - uk(s_i - \delta)) - C \int_{I_k^0} |\nabla uk| dt
\]
\[
\geq \frac{C}{C - \varepsilon} \int_{\{\nabla uk |> \varepsilon\} \cap I_k^0} f(|\nabla uk|) dt + \int_{\{\nabla uk |< \varepsilon\} \cap I_k^0} |\nabla uk| dt
\]
\[
\geq g(uk(s_i + \delta) - uk(s_i - \delta)) - C L^1(I_k^0)t_k.
\]
Since \(L^1(I_k^0) = 2\delta \), this proves (2.10).

Letting \(k \to +\infty \) in (2.10) we obtain
\[
g(uk(s_i + \delta) - uk(s_i - \delta)) \leq \liminf_{k \to +\infty} \frac{C}{C - \varepsilon} \Phi(u_k, I_k^0) + 2C\delta t_k.
\]
Summing (2.8) and (2.12) for \(i = 1, \ldots, \ell \), it follows that
\[
\Phi(u, A_k) + \sum_{i=1}^\ell g(uk(s_i + \delta) - uk(s_i - \delta)) \leq \frac{C}{C - \varepsilon} \liminf_{k \to +\infty} \Phi(u_k, I) + 2C\ell\delta t_k.
\]
Letting \(\delta \to 0 \) and then \(\varepsilon \to 0 \), we conclude the proof of (2.5). \(\square \)

3. Some examples

In this section we show that, in general, the functionals defined in (1.3) and in (1.4) are not \(L^1 \)-lower semicontinuous on \(BD(\Omega) \).

We start by studying the functional \(\mathcal{G}_1 : BD(\Omega) \to [0, +\infty) \) defined by
\[
\mathcal{G}_1(u) := \int_{\Omega} f(|E u|) dx + C|E^c u(\Omega)| = \int_{J_u} g(|[u]|) d\mathcal{H}^{n-1}.
\]
where \(f : [0, +\infty) \to [0, +\infty) \) is a convex nondecreasing function such that
\[
0 < \lim_{t \to +\infty} \frac{f(t)}{t} < +\infty,
\]
\(C \in (0, +\infty) \), and \(g : \mathbb{R} \to [0, +\infty) \) is a Borel function. As we shall see in the following proposition, the reason why the functional \(\mathcal{G}_1 \) fails to be lower semicontinuous is the fact that the surface density only depends on \(|[u]| \).

Proposition 3.1. The functional \(\mathcal{G}_1 \) defined in (3.1) is not \(L^1 \)-lower semicontinuous on \(BD(\Omega) \).

Proof. For the sake of simplicity, we give the proof only when \(\Omega \) is the unit cube in \(\mathbb{R}^n \) centered at the origin, i.e., \(\Omega = (-\frac{1}{2}, \frac{1}{2})^n \). Let \(Q' \) be the unit cube in \(\mathbb{R}^{n-1} \), i.e., \(Q' = (-\frac{1}{2}, \frac{1}{2})^{n-1} \). For every \(x \in \Omega \), let \(x' \) be the vector in \(Q' \) with components \((x_1, \ldots, x_{n-1}) \). Let us assume, by contradiction, that the functional \(\mathcal{G}_1 \) is \(L^1 \)-lower semicontinuous on \(BD(\Omega) \).

Let us start by proving that
\[
\liminf_{s \to 0^+} \frac{2(s)}{s} \geq \lim_{t \to +\infty} \frac{f(t)}{t}.
\]
Let us fix $t > 2$, $z \in \mathbb{R}^n$, $z \neq 0$, and let us define the function u which connects linearly the vector 0 and the vector z in the rectangle $Q' \times [0, \frac{1}{t}]$:

$$u(x', x_n) := \begin{cases}
z & \text{if } \frac{1}{t} \leq x_n < \frac{1}{4}, \\
\frac{1}{t} x_n & \text{if } 0 < x_n < \frac{1}{2}, \\
0 & \text{if } -\frac{1}{2} < x_n \leq 0.
\end{cases}$$

We now define a sequence of pure jump functions u_k which approximate in L^1 the function u. Let $t_k \to 0^+$ be a sequence such that the liminf in (3.3) is equal to $\liminf_{t_k \to 0^+} g(t_k|z|) / t_k$. For every $k \in \mathbb{N}$ let $h_k \in \mathbb{N}$ be such that $h_k \leq t_k < h_k + 1$. We define the function

$$\alpha_k(s) := \sum_{j=1}^{h_k} (j-1) t_k \mathbf{1}_{[\frac{j-1}{h_k t_k}, \frac{j}{h_k t_k})}(s), \quad s \in (0, \frac{1}{t_k}),$$

where $\mathbf{1}_I$ is the indicator function of the interval I. Let $u_k(x', x_n) := \begin{cases}
z & \text{if } \frac{1}{t} \leq x_n < \frac{1}{4}, \\
2\alpha_k(x_n) & \text{if } 0 < x_n < \frac{1}{2}, \\
0 & \text{if } -\frac{1}{2} < x_n \leq 0.
\end{cases}$

![Figure 1. Graph of the function α_k.](image)

It is easy to see that $u_k \to u$ in $L^1(\Omega; \mathbb{R}^n)$. Therefore, by the lower semicontinuity of G_1 we get

$$\frac{f(t|z \odot e_n|)}{t} = \int f(|\mathcal{E}u|) \, dx = G_1(u) \leq \liminf_{t \to +\infty} \frac{1}{t} \int g(|u_k|) \, d\mathcal{H}^{n-1}$$

$$= \liminf_{k \to +\infty} h_k g(t_k|z|) = \lim_{k \to +\infty} \frac{g(t_k|z|)}{t_k} = |z| \liminf_{s \to 0^+} \frac{g(s)}{s}.$$

Letting $t \to +\infty$ in the inequality above, by (3.2) we get

$$|z \odot e_n| \lim_{t \to +\infty} \frac{f(t)}{t} \leq |z| \liminf_{s \to 0^+} \frac{g(s)}{s}.$$

If we choose $z = e_n$, this proves (3.3).

Let us now prove that

$$\limsup_{s \to 0^+} \frac{g(s)}{s} \leq \frac{1}{\sqrt{2}} \lim_{t \to +\infty} \frac{f(t)}{t}.$$

Taking (3.2) into account, this contradicts (3.3). To prove (3.4) we fix $z \in \mathbb{R}^n$, with $z \neq 0$, and we consider the pure jump function v defined by

$$v(x', x_n) := \begin{cases}
z & \text{if } 0 < x_n < \frac{1}{2}, \\
0 & \text{if } -\frac{1}{2} < x_n \leq 0.
\end{cases}$$
We now construct a sequence of piecewise affine functions v_k which approximate v in L^1. For every $k \in \mathbb{N}$, $k \geq 2$, let

$$v_k(x', x_n) := \begin{cases} z & \text{if } \frac{1}{2} \leq x_n < \frac{1}{2}, \\ kx_n & \text{if } 0 < x_n < \frac{1}{2}, \\ 0 & \text{if } -\frac{1}{2} < x_n \leq 0. \end{cases}$$

By the lower semicontinuity of G_1 and by (3.2), we have that

$$g(|z|) = \int_{\Omega} g(|v|) \, dH^{n-1} = G_1(v) \leq \liminf_{k \to +\infty} G_1(v_k) = \liminf_{k \to +\infty} \frac{\int_{\Omega} |\mathcal{E}v_k| \, dx}{\int_{\Omega} v_k \, dx}.$$

By choosing z of the form $z = \delta e_1 = (\delta, 0, \ldots, 0)$ we get

$$\frac{g(|\delta e_1|)}{\delta} \leq |e_1 \circ e_n| \lim_{t \to +\infty} \frac{f(t)}{t} = \frac{1}{\sqrt{2}} \lim_{t \to +\infty} \frac{f(t)}{t},$$

and therefore, by letting $\delta \to 0^+$, we obtain (3.4). This concludes the proof. \qed

Let us now consider the functional $G_2 : BD(\Omega) \to [0, +\infty)$ defined by

$$G_2(u) := \int_{\Omega} (|\mathcal{E}u| + C|\mathcal{E}^n u|) \, dx + \int_{\Omega} g(|u \circ e_n|) \, dH^{n-1},$$

where $f : [0, +\infty) \to [0, +\infty)$ is a convex nondecreasing function such that

$$\lim_{t \to +\infty} \frac{f(t)}{t} = C,$$

with $0 < C < +\infty$, and $g(t) = \min\{C|t|, 1\}$. In the next proposition, we prove that G_2 is not lower semicontinuous. In this case, the main issue is the fact that the surface density does not satisfy a necessary condition for the lower semicontinuity of the functional. Indeed, the function

$$\psi(z, \nu) := g(|z \circ \frac{\nu}{|\nu|}|) |\nu|$$

is not convex in the variable ν.

Proposition 3.2. The functional G_2 defined in (3.5) is not L^1-lower semicontinuous on $BD(\Omega)$.

Proof. For simplicity, we assume $C = 1$. Let us show that ψ is not convex with respect to the variable ν, i.e., there exist $z, \nu_0, \nu_1, \nu_2 \in \mathbb{R}^n$ such that $\nu_0 = \lambda \nu_1 + (1 - \lambda) \nu_2$ for some $0 < \lambda < 1$ and

$$\psi(z, \nu_0) > \lambda \psi(z, \nu_1) + (1 - \lambda) \psi(z, \nu_2).$$

Indeed, let $z = \rho \nu_1 = (\rho, 0, \ldots, 0)$, with $\rho > 0$. Then, if $\nu = (a_1, a_2, 0, \ldots, 0)$, we have that

$$\psi(z, \nu)^2 = \min\{\rho^2(a_1^2 + \frac{1}{2} a_2^2), a_1^2 + a_2^2\}.$$

For $1 < \rho < \sqrt{2}$, the set $\psi(z, \nu) \leq 1$ is not convex, and it is possible to find $\nu_0, \nu_1, \nu_2 \in \mathbb{R}^n$ such that $\nu_0 = \lambda \nu_1 + (1 - \lambda) \nu_2$ for some $0 < \lambda < 1$, $\psi(z, \nu_1) = \psi(z, \nu_2) = 1$ and $\psi(z, \nu_0) > 1$ (see Figure 2). This concludes the proof of (3.7).
Let us consider the functional \(\Phi \) defined on the collection of sets of finite perimeter in \(\Omega \) by
\[
\Phi(E) := G_2(1_E z) = \int_{\partial^* E} \psi(z, \nu_E) \, d\mathcal{H}^{n-1},
\]
where \(\partial^* E \) is the reduced boundary of \(E \) and \(\nu_E \) is the approximate unit normal to \(E \). Since \(\psi(z, \cdot) \) is not convex, the functional \(\Phi \) is not \(L^1 \)-lower semicontinuous (see [3, Theorem 5.11]), and therefore \(G_2 \) is not \(L^1 \)-lower semicontinuous.

4. Semicontinuity by slicing

In this section we prove the lower semicontinuity of the functional \(F: BD(\Omega) \to [0, +\infty) \) defined by
\[
F(u) = \int_{\Omega} f(|E u|) \, dx + C |E^c u|(\Omega) + \int_{J_u} G([u], \nu_u) \, d\mathcal{H}^{n-1},
\]
under the following assumptions:

(H1) \(f: [0, +\infty) \to [0, +\infty) \) is a convex nondecreasing function;

(H2) there exists an even subadditive function \(g: \mathbb{R} \to [0, +\infty) \) such that the function \(G: \mathbb{R}^n \times S^{n-1} \to [0, +\infty) \) can be written as
\[
G(z, \nu) = \sup_{(\xi^1, \ldots, \xi^n)} \left(\sum_{i=1}^n g(z \cdot \xi^i)^2 |\nu \cdot \xi^i|^2 \right)^{\frac{1}{2}} \quad \text{for every } z \in \mathbb{R}^n, \nu \in S^{n-1},
\]
where the supremum is taken over all orthonormal bases \((\xi^1, \ldots, \xi^n) \) of \(\mathbb{R}^n \);

(H3) \(0 < C < +\infty \) and
\[
\lim_{t \to +\infty} \frac{f(t)}{t} = \lim_{t \to 0^+} \frac{g(t)}{t} = C, \quad \lim\inf_{t \to +\infty} g(t) > 0.
\]

The following theorem is the main result of the paper.

Theorem 4.1. Under assumptions (H1)-(H3), the functional \(F \) defined in (4.1) is \(L^1 \)-lower semicontinuous on \(BD(\Omega) \), i.e.,
\[
F(u) \leq \liminf_{k \to \infty} F(u_k)
\]
for every sequence \(u_k \in BD(\Omega) \) and \(u \in BD(\Omega) \) such that \(u_k \to u \) in \(L^1(\Omega; \mathbb{R}^n) \).

In the proof of Theorem 4.1 it is convenient to consider the functional \(F: BD(\Omega) \times \mathcal{A}(\Omega) \to [0, +\infty) \) defined by
\[
F(u, A) := \int_A f(|E u|) \, dx + C |E^c u|(A) + \int_{J_u \cap A} G([u], \nu_u) \, d\mathcal{H}^{n-1}
\]
for every \(u \in BD(\Omega) \) and \(A \in \mathcal{A}(\Omega) \). Clearly we have \(F(u) = F(u, \Omega) \).

The proof is based on a slicing argument, which allows us to reduce the problem to the one-dimensional setting. We recall here some notation and some preliminary results about slicing. For every \(\xi \in \mathbb{S}^{n-1} \) and for every set \(B \subset \mathbb{R}^n \), we define

\[
P_{\xi} := \{ z \in \mathbb{R}^n : z \cdot \xi = 0 \}
\]

and \(B_{\xi} := \{ t \in \mathbb{R} : y + t\xi \in B \} \) for every \(y \in P_{\xi} \).

If \(w: \Omega \to \mathbb{R} \) is a scalar function and \(v: \Omega \to \mathbb{R}^n \) is a vector function, we define their slices \(w_{\xi}^t : \Omega_{\xi}^t \to \mathbb{R} \) and \(v_{\xi}^t : \Omega_{\xi}^t \to \mathbb{R}^n \) by

\[
w_{\xi}^t(t) := w(y + t\xi) \quad \text{and} \quad v_{\xi}^t := (v \cdot \xi)_y^t,
\]

respectively. If \(u_k \) is a sequence in \(L^1(\Omega; \mathbb{R}^n) \) such that \(u_k \to u \) in \(L^1(\Omega; \mathbb{R}^n) \), using Fubini Theorem we can prove that for every \(\xi \in \mathbb{S}^{n-1} \) there exists a subsequence \(u_{k_j} \) such that \((u_{k_j})_{\xi}^t \to u_{\xi}^t \) in \(L^1(\Omega_{\xi}^t) \) for \(\mathcal{H}^{n-1}\)-a.e. \(y \in P_{\xi} \).

We recall that a function \(u \in L^1(\Omega; \mathbb{R}^n) \) belongs to \(BD(\Omega) \) if and only if we have

\[
\dot{u}_{\xi}^t \in BV(\Omega_{\xi}^t) \quad \text{for every \(\xi \in \mathbb{S}^{n-1} \) and} \quad \int_{P_{\xi}} |D\dot{u}_{\xi}^t| d\mathcal{H}^{n-1} < +\infty,
\]

for every direction \(\xi \in \mathbb{S}^{n-1} \). Moreover, we have that \((E u_{\xi} \cdot \xi)^t \) coincides \(L^1\)-a.e. in \(\Omega_{\xi}^t \) with the density \(\nabla u_{\xi}^t \) of the absolutely continuous part of the distributional derivative of \(u_{\xi}^t \); as for the Cantor part, we have

\[
E^u(B)\xi \cdot \xi = \int_{P_{\xi}} D^-u_{\xi}^t(B_{\xi}^t) d\mathcal{H}^{n-1}
\]

for every Borel set \(B \subset \Omega \); finally, for \(\mathcal{H}^{n-1}\)-a.e. \(\xi \in P_{\xi} \) we have that \((J_{\xi}^t)^t = J_{u_{\xi}^t} \) and \(\{ u \}(y + t\xi) \cdot \xi = [u_{\xi}^t](t) \), where \(J_{\xi}^t = \{ x \in J_u : [u](x) \cdot \xi \neq 0 \} \). For more details about slicing of \(BD \) functions, we refer to [2].

The first step of the proof of Theorem 4.1 is a result about the lower semicontinuity of the functional \(F_\xi : BD(\Omega) \times \mathcal{A}(\Omega) \to [0, +\infty) \) defined for every \(\xi \in \mathbb{S}^{n-1} \) by

\[
F_\xi(u, A) := \int_{\Omega} f(|E u_{\xi} \cdot \xi|) dx + C|E u_{\xi} \cdot \xi|(A) + \int_{J_{u_{\xi}^t} \cap A} g(|u_{\xi}^t|) d\mathcal{H}^{n-1}
\]

for every \(u \in BD(\Omega) \) and for every open set \(A \subset \Omega \). In the previous formula, \(|E u_{\xi} \cdot \xi| \) is the total variation of the scalar measure \(E u_{\xi} \cdot \xi \) defined by \((E u_{\xi} \cdot \xi)(B) := E^u(B)\xi \cdot \xi \) for every Borel set \(B \subset \Omega \).

Remark 4.2. Let us consider, for every \(\xi \in \mathbb{S}^{n-1} \) and for \(\mathcal{H}^{n-1}\)-a.e. \(\xi \in P_{\xi} \), the one dimensional functional \(\Phi_{\xi,y} : BV(\Omega_{\xi}^t) \times \mathcal{A}(\Omega_{\xi}^t) \to [0, +\infty) \) defined by

\[
(4.3) \quad \Phi_{\xi,y}(v, U) := \int_U f(|\nabla v|) dt + C|D^\nu v|(U) + \sum_{t \in J_{v(t)} \cap U} g(|v(t)|)
\]

for every \(v \in BV(\Omega_{\xi}^t) \) and for every open set \(U \subset \Omega_{\xi}^t \). Using the Coarea Formula and the slicing properties mentioned above, it is easy to see that

\[
(4.4) \quad F_\xi(u, A) = \int_{\Omega} \Phi_{\xi,y}(u_{\xi}^t, A_{\xi}^t) d\mathcal{H}^{n-1}(y)
\]

for every \(u \in BD(\Omega) \) and for every open set \(A \subset \Omega \).

Under assumptions (H1)–(H3), the lower semicontinuity of the functional \(F_\xi \) is easily obtained from the lower semicontinuity of the one dimensional functionals \(\Phi_{\xi,y} \) proved in Proposition 2.7 and from formula (4.4), as the following lemma shows.

Lemma 4.3. Let \(\xi \in \mathbb{S}^{n-1} \) and let \(u_k, u \in BD(\Omega) \) be such that \(u_k \to u \) in \(L^1(\Omega; \mathbb{R}^n) \). Assume that (H1)–(H3) hold. Then

\[
(4.5) \quad F_\xi(u, A) \leq \liminf_{k \to +\infty} F_\xi(u_k, A)
\]

for every open set \(A \subset \Omega \).
Proof. Let \(A \) be an open set contained in \(\Omega \). Up to a subsequence, we can assume that the liminf in (4.5) is actually a limit and that \(\bar{u}_{k_i} \to \bar{u}_y \) in \(L^1(\Omega_0^y) \) for \(\mathcal{H}^{n-1}\)-a.e. \(y \in \mathbb{I}^k \). Since by Proposition 2.7 the one dimensional functional \(\Phi_{\xi,y} \) defined in (4.3) is \(L^1 \)-lower semicontinuous, we obtain that
\[
\Phi_{\xi,y}(\bar{u}_y^A, A_y^\xi) \leq \liminf_{k 	o +\infty} \Phi_{\xi,y}(\bar{u}_{k_i}^A, A_{k_i}^\xi)
\]
for \(\mathcal{H}^{n-1}\)-a.e. \(y \in \mathbb{I}^k \). Integrating (4.6) with respect to the measure \(d\mathcal{H}^{n-1}(y) \), we deduce that
\[
\int A \Phi_{\xi,y}(\bar{u}_y^A, A_y^\xi) d\mathcal{H}^{n-1}(y) \leq \liminf_{k 	o +\infty} \int A \Phi_{\xi,y}(\bar{u}_{k_i}^A, A_{k_i}^\xi) d\mathcal{H}^{n-1}(y).
\]

Inequality (4.5) simply follows from the inequality above and from (4.4). \(\square \)

We prove now a lower semicontinuity result for functionals which are less than or equal to the original functional \(\mathcal{F} \), but which have a much simpler structure. For every \(a \in [0, C] \), we consider the function
\[
g_a(t) := \inf_{s \in \mathbb{R}} [g(s) + a|t - s|]
\]
and we define the function \(G^a : \mathbb{R}^n \times \mathbb{S}^{n-1} \to [0, +\infty) \) by
\[
G^a(y, \nu) := \sup_{(\xi_1, \ldots, \xi_n)} \left(\sum_{i=1}^n |g^a(y \cdot \xi^i)^2| |\nu \cdot \xi^i|^2 \right)^{\frac{1}{2}},
\]
where the supremum is taken over all orthonormal bases \((\xi_1, \ldots, \xi_n)\) of \(\mathbb{R}^n \). In the following two lemmas, we shall study the functional
\[
a \int A |\mathcal{E}u| dx + a|\mathcal{E}^c u|(A) + \int_{J_\nu \cap A} G^a([u], \nu) d\mathcal{H}^{n-1}.
\]

Note that, if \(b \geq 0 \) is such that \(at - b \leq f(t) \) for every \(t \in [0, +\infty) \), then
\[
\int A (a|\mathcal{E}u| - b) dx + a|\mathcal{E}^c u|(A) + \int_{J_\nu \cap A} G^a([u], \nu) d\mathcal{H}^{n-1} \leq \mathcal{F}(u, A)
\]
for every open set \(A \) contained in \(\Omega \). We will deduce the lower semicontinuity of \(\mathcal{F} \) from the lower semicontinuity of the functional defined in (4.9) by passing to the supremum among all possible \(a, b \geq 0 \) such that \(at - b \leq f(t) \).

We start with a technical lemma.

Lemma 4.4. Let \(a \in [0, C] \), let \((\xi_1, \ldots, \xi_n)\) be an orthonormal basis of \(\mathbb{R}^n \), and let \(u \in BD(\Omega) \). Then, for every open set \(A \subset \Omega \),
\[
a \left(\sum_{i=1}^n \left(\int_A |\mathcal{E}_u \xi^i| dx \right)^2 \right)^{\frac{1}{2}} \leq a \int_A |\mathcal{E}u| dx,
\]
\[
a \left(\sum_{i=1}^n |\mathcal{E}^c u \xi^i| (A) \right)^{\frac{1}{2}} \leq a|\mathcal{E}^c u|(A),
\]
\[
\left(\sum_{i=1}^n \left(\int_{J_\nu \cap A} g^a([u] \cdot \xi^i) |\nu \cdot \xi^i| d\mathcal{H}^{n-1} \right)^2 \right)^{\frac{1}{2}} \leq \int_{J_\nu \cap A} G^a([u], \nu) d\mathcal{H}^{n-1}.
\]

Proof. Let us prove (4.10). By the Hölder inequality with respect to the measure \(|\mathcal{E}u| \mathcal{L}^n \), we get
\[
\left(\int_A |\mathcal{E}_u \xi^i| dx \right)^2 = \left(\int_A \frac{\mathcal{E}_u}{|\mathcal{E}u|} \xi^i \cdot |\mathcal{E}u| dx \right)^2 \leq \int_A \frac{\mathcal{E}_u}{|\mathcal{E}u|} \xi^i \cdot |\mathcal{E}u| dx \right)^2 \int_A |\mathcal{E}u| dx.
\]

Summing with respect to \(i \), from (2.1) it follows that
\[
\left(\sum_{i=1}^n \left(\int_A |\mathcal{E}_u \xi^i| dx \right)^2 \right)^{\frac{1}{2}} \leq \left(\sum_{i=1}^n \left(\int_A \frac{\mathcal{E}_u}{|\mathcal{E}u|} \xi^i \cdot \mathcal{E}_u dx \right)^2 \left(\int_A |\mathcal{E}u| dx \right)^2 \right)^{\frac{1}{2}} \leq \int_A |\mathcal{E}u| dx,
\]
which proves (4.10).
To prove (4.11), we use the Hölder inequality with respect to the measure $|E^n u|$ and we obtain
\[
|E^n u|(|A|^2 = \left(\int_A \frac{dE^n u}{d|E^n u|} \cdot |\xi| d|E^n u| \right)^2 \leq \left(\int_A \frac{dE^n u}{d|E^n u|} \cdot |\xi|^2 d|E^n u| \right) \leq |E^n u|(A).
\]
Therefore, by (2.1),
\[
\left(\sum_{i=1}^n |E^n u_i \cdot \xi_i| |A|^2 \right)^\frac{1}{2} \leq \left(\sum_{i=1}^n \left| \frac{dE^n u}{d|E^n u|} \cdot |\xi_i|^2 \right| d|E^n u| \right)^\frac{1}{2} \leq |E^n u|(A) \leq |E^n u|(A) = 1 \text{ on } \Omega.
\]

The strategy to prove (4.12) is the same. By the Hölder inequality with respect to the measure $G^n([u], \nu_u) d\mathcal{H}^{n-1}$ we have
\[
\left(\int_{J_n \cap A} \frac{g^n([u] \cdot |\xi|)\nu_u \cdot |\xi|} {G^n([u], \nu_u)} d\mathcal{H}^{n-1} \right)^2 \leq \int_{J_n \cap A} \frac{g^n([u] \cdot |\xi|^2)\nu_u \cdot |\xi|^2} {G^n([u], \nu_u)} d\mathcal{H}^{n-1} \int_{J_n \cap A} G^n([u], \nu_u) d\mathcal{H}^{n-1}
\]
and hence, by (4.8) we obtain
\[
\left(\sum_{i=1}^n \left(\int_{J_n \cap A} \frac{g^n([u] \cdot |\xi|)\nu_u \cdot |\xi|} {G^n([u], \nu_u)} d\mathcal{H}^{n-1} \right)^2 \right)^\frac{1}{2} \leq \left(\sum_{i=1}^n \int_{J_n \cap A} \frac{g^n([u] \cdot |\xi|^2)\nu_u \cdot |\xi|^2} {G^n([u], \nu_u)} d\mathcal{H}^{n-1} \right)^\frac{1}{2} \int_{J_n \cap A} G^n([u], \nu_u) d\mathcal{H}^{n-1}
\]
This concludes the proof.

In the following lemma, we prove a preliminary result which is strongly connected with the lower semicontinuity of the functional defined in (4.9). The main idea of the proof is based on the following remark: by Proposition 2.1 we have that
\[
|\xi u| = \sup_j \left(\sum_{i=1}^n |\xi u_{\xi_i} \cdot |E^n u_{\xi_i}|^2 \right)^\frac{1}{2},
\]
where $\{\xi_1, \ldots, \xi_n\} : j \in \mathbb{N}$ is a suitable countable collection of orthonormal bases of \mathbb{R}^n. Therefore we can apply a localization argument based on Lemma 2.6 which leads to
\[
\int |\xi u| dx = \sup \left\{ \sum_{j=1}^r \left(\sum_{i=1}^n |\xi u_{\xi_i} \cdot |E^n u_{\xi_i}|^2 \right)^\frac{1}{2} dx : (K_j)_{j=1}^r \text{ disjoint compact subsets of } K, \ r \in \mathbb{N} \right\}.
\]
This will allow us to use the semicontinuity result already proved for $J^n_{\xi_j}$ defined in (4.17) below.

Lemma 4.5. Let $a \in [0, C]$, let $u_k, u \in BD(\Omega)$ be such that $u_k \to u$ in $L^1(\Omega; \mathbb{R}^n)$, and let
\[
(4.13) \quad \Lambda(A) := \liminf_{k \to +\infty} a \int_A |\xi u_k| dx + a|E^n u_k|(A) + \int_{J_n \cap A} G^n([u_k], \nu_{u_k}) d\mathcal{H}^{n-1}
\]
for every open set $A \subset \Omega$. Then
\[
(4.14) \quad a \int_K |\xi u| dx \leq \Lambda(A),
(4.15) \quad a|E^n u|(K) \leq \Lambda(A),
(4.16) \quad \int_{J_n \cap K} G^n([u], \nu_u) d\mathcal{H}^{n-1} \leq \Lambda(A)
\]
for every compact set K and for every open set A such that $K \subset A \subset \Omega$.
Proof. Let us fix an orthonormal basis \(\{\xi^1, \ldots, \xi^n\} \) of \(\mathbb{R}^n \). For every \(i = 1, \ldots, n \), let us consider the functional \(F^n_{\xi^i} : BD(\Omega) \times \mathcal{A}(\Omega) \to [0, +\infty) \) defined by
\[
F^n_{\xi^i}(u) := a \int_{\Omega} |\mathcal{E}u\xi^i \cdot \xi^i| \, dx + a|E^u\xi^i \cdot \xi^i|(A) + \int_{J_u \cap A} g^\nu([u] \cdot \xi^i)|\nu_u \cdot \xi^i| \, d\mathcal{H}^{n-1},
\]
for every \(u \in BD(\Omega) \) and for every open set \(A \subset \Omega \). Since \(F^n_{\xi^i} \) satisfies the hypotheses of Lemma 4.3 (see Remark 2.5), we have that
\[
F^n_{\xi^i}(u, A) \leq \liminf_{k \to +\infty} F^n_{\xi^i}(u, A),
\]
for every \(i = 1, \ldots, n \) and for every open set \(A \subset \Omega \).

In order to prove (4.14), we observe that by (4.18)
\[
a \int_K |\mathcal{E}u\xi^i \cdot \xi^i| \, dx \leq F^n_{\xi^i}(u, A) \leq \liminf_{k \to +\infty} F^n_{\xi^i}(u, A)
\]
for every compact set \(K \subset A \). From this inequality and from the superadditivity of the liminf, it follows that
\[
a \left(\sum_{i=1}^n \left(\int_K |\mathcal{E}u\xi^i \cdot \xi^i| \, dx \right)^2 \right)^{\frac{1}{2}} \leq \liminf_{k \to +\infty} \left(\sum_{i=1}^n F^n_{\xi^i}(u, A)^2 \right)^{\frac{1}{2}}.
\]
By the triangle inequality of the Euclidean norm in \(\mathbb{R}^n \) and by Lemma 4.4, we obtain
\[
\left(\sum_{i=1}^n F^n_{\xi^i}(u, A)^2 \right)^{\frac{1}{2}} \leq a \left(\sum_{i=1}^n \left(\int_{A} |\mathcal{E}u\xi^i \cdot \xi^i| \, dx \right)^2 \right)^{\frac{1}{2}} + a \left(\sum_{i=1}^n |E^u\xi^i \cdot \xi^i|(A)^2 \right)^{\frac{1}{2}}
\]
\[
+ \left(\sum_{i=1}^n \left(\int_{J_u \cap A} g^\nu([u] \cdot \xi^i)|\nu_u \cdot \xi^i| \, d\mathcal{H}^{n-1} \right)^2 \right)^{\frac{1}{2}}
\]
\[
\leq a \int_{A} |\mathcal{E}u| \, dx + a|E^u|(A) + \int_{J_u \cap A} G^\nu([u], \nu_u) \, d\mathcal{H}^{n-1}.
\]
Hence, by (4.19) and (4.20) it follows that
\[
a \left(\sum_{i=1}^n \left(\int_{K} |\mathcal{E}u\xi^i \cdot \xi^i| \, dx \right)^2 \right)^{\frac{1}{2}} \leq \Lambda(A)
\]
for every compact set \(K \), for every open set \(A \) such that \(K \subset A \subset \Omega \), and for every orthonormal basis \(\{\xi^1, \ldots, \xi^n\} \).

Let us fix a sequence \(R_j \) dense in \(O(n) \) and let \(\xi^1_j, \ldots, \xi^n_j \) be the column vectors of \(R_j \). Let us define the vector functions \(\varphi^j = (\varphi^j_1, \ldots, \varphi^j_n) \) with components given by \(\varphi^j_i = |\mathcal{E}u\xi^j_i| \), \(i = 1, \ldots, n \).

By the previous inequality, under the same assumptions on \(K \) and \(A \), we have
\[
a \left| \int_{K} \varphi^j \, dx \right| \leq \Lambda(A)
\]
for every \(j \). Since \(\Lambda \) is superadditive, we obtain
\[
a \int_{K} |\varphi^j| \, dx = \sup \left\{ \sum_{h=1}^r a \left| \int_{K^h} \varphi^j \, dx \right| : (K^h)_{h=1}^r \text{ disjoint compact subcets of } K, \ r \in \mathbb{N} \right\}
\]
\[
\leq \sup \left\{ \sum_{h=1}^r \Lambda(A^h) : (A^h)_{h=1}^r \text{ disjoint open subsets of } A, \ r \in \mathbb{N} \right\} \leq \Lambda(A)
\]
for every compact set \(K \) and for every open set \(A \) such that \(K \subset A \subset \Omega \). By Lemma 2.6 we deduce that
\[
a \int_{K} \sup_j |\varphi^j| \, dx \leq \Lambda(A).
\]
On the other hand, by Proposition 2.1 and by Remark 2.2, we have that \(\sup_j |\varphi^j| = |\mathcal{E}u| \). Together with the previous inequality, this concludes the proof of (4.14).
Let us now prove (4.15). Arguing as in the first part of the proof, we obtain that
\[a \left(\sum_{i=1}^{n} |E^a u \xi_i \cdot (K)^2 \right)^{\frac{1}{2}} \leq \Lambda(A) \]
for every compact set \(K \), for every open set \(A \) such that \(K \subset A \subset \Omega \), and for every orthonormal basis \((\xi_1, \ldots, \xi_n) \). Let \((\xi_1, \ldots, \xi_j) \) be the sequence of orthonormal bases introduced above. We now define a sequence of vector functions \(\varphi_j = (\varphi_1^j, \ldots, \varphi_n^j) \) with components given by
\[
\varphi_i^j = \left| \frac{dE^a u}{d|E^a u|} \xi_i \cdot \xi_j \right|.
\]
The inequality above gives, under the same assumptions on \(K \) and \(A \),
\[a \left(\int_K \varphi_j^j d|E^a u| \right) \leq \Lambda(A) \]
for every \(j \). As in (4.21), we obtain that
\[a \left(\int_K |\varphi_j| d|E^a u| \right) \leq \Lambda(A) ,
\]
hence, by Lemma 2.6, we deduce that
\[a \left(\sup_j \| \varphi_j \| d|E^a u| \right) \leq \Lambda(A) \]
for every compact set \(K \) and for every open set \(A \) such that \(K \subset A \subset \Omega \). On the other hand, since \(\| \frac{dE^a u}{d|E^a u|} \| = 1 \) \(|E^a u| \)-a.e. in \(\Omega \), we have \(\sup_j |\varphi_j| = 1 \) \(|E^a u| \)-a.e. in \(\Omega \), by Proposition 2.1 and by Remark 2.2. Together with the previous inequality, this concludes the proof of (4.15).

The proof of (4.16) follows the same steps. Arguing as in the first part of the proof we obtain that
\[\left(\sum_{i=1}^{n} \int_J g^a ([u] \cdot \xi_i) |u_n \cdot \xi_i| \, d\mathcal{H}^{n-1} \right)^{\frac{1}{2}} \leq \Lambda(A) \]
for every compact set \(K \), for every open set \(A \) such that \(K \subset A \subset \Omega \), and for every orthonormal basis \((\xi_1, \ldots, \xi_n) \). We now continue as in the previous step, replacing the measure \(|E^a u| \) by \(\mathcal{H}^{n-1} L J_u \) and defining \(\varphi_i^j := g^a ([u] \cdot \xi_j) |u_n \cdot \xi_j| \). Since now \(\sup_j |\varphi_j| = G^n ([u], \nu_u) \), we finally obtain (4.16). \(\square \)

Remark 4.6. In order to treat separately the three terms of the functional \(F \), given \(u \in BD(\Omega) \), it is useful to consider a partition of \(\Omega \) into three Borel sets \(B_1, B_2, B_3 \) such that
\begin{align*}
(4.22) & \quad \mathcal{L}^n (\Omega \setminus B_1) = 0, \\
(4.23) & \quad |E^a u| (\Omega \setminus B_2) = 0, \\
(4.24) & \quad \mathcal{H}^{n-1} (J_u \setminus B_3) \cup (B_3 \setminus J_u) = 0.
\end{align*}

Let \(\varepsilon > 0 \) and let \(K_1, K_2, K_3 \) be three pairwise disjoint compact sets such that \(K_h \subset B_h \) for \(h = 1, 2, 3 \) and
\begin{align*}
(4.25) & \quad \int_{B_1 \setminus K_1} f(|E u|) \, dx < \varepsilon, \\
(4.26) & \quad C |E^a u| (B_2 \setminus K_2) < \varepsilon, \\
(4.27) & \quad \int_{B_3 \setminus K_3} G ([u], \nu_u) \, d\mathcal{H}^{n-1} < \varepsilon.
\end{align*}

Finally, let \(A_1, A_2, A_3 \) be three pairwise disjoint open subsets of \(\Omega \) such that \(K_h \subset A_h \) for \(h = 1, 2, 3 \).

We now exploit the property that a convex function can be written as the supremum of affine functions, which combined with Lemma 4.5 gives the following result.
Lemma 4.7. Let $u_k,u \in BD(\Omega)$ be such that $u_k \to u$ in $L^1(\Omega;\mathbb{R}^n)$ and let K_1,K_2,K_3 and A_1,A_2,A_3 be as in Remark 4.6. Then

\begin{align}
(4.28) \quad & \int_{K_1} f(|\mathcal{E}u|) \, dx \leq \liminf_{k \to +\infty} F(u_k,A_1), \\
(4.29) \quad & C|E^n u|(K_2) \leq \liminf_{k \to +\infty} F(u_k,A_2), \\
(4.30) \quad & \int_{K_3} G([u],\nu_u) \, dH^{n-1} \leq \liminf_{k \to +\infty} F(u_k,A_3).
\end{align}

Proof. Without loss of generality, we can assume $f(0) = 0$. Since f is convex and nonnegative, there exists a sequence of functions $f_j(t) = (a_j t - b_j)^+ = \max\{a_j t - b_j,0\}$, with $a_j, b_j \geq 0$, such that $f_j \leq f$ and $f(t) = \sup_j f_j(t)$, for every $t \in [0, +\infty)$. Hence, by Lemma 2.6, given $\delta > 0$ there exists a finite family of disjoint compact sets K_1,\ldots, K_1' contained in K_1 such that

\begin{equation}
(4.31) \quad \int_{K_1} f(|\mathcal{E}u|) \, dx \leq \sum_{j=1}^r \int_{K_1'} (a_j|\mathcal{E}u| - b_j)^+ \, dx + \delta.
\end{equation}

For every $j = 1,\ldots, r$, let us fix a compact set $\tilde{K}_j \subset K_1 \cap \{a_j|\mathcal{E}u| - b_j \geq 0\}$ such that

\begin{equation}
(4.32) \quad \int_{K_1'} (a_j|\mathcal{E}u| - b_j)^+ \, dx \leq \int_{\tilde{K}_j} (a_j|\mathcal{E}u| - b_j) \, dx + \frac{\delta}{r}.
\end{equation}

Let us consider a family of pairwise disjoint open sets A_1',\ldots, A_1' such that $\tilde{K}_j \subset A_1' \subset A_1$ and $b_j L^n(A_1' \setminus \tilde{K}_j) \leq \delta/r$. Indeed, given $\delta > 0$, by (H3) there exists $T > 0$ such that $C < f(T)/T + \delta$. Since $f(T) = \sup_j f_j(T)$, there exists a j such that $f(T) < f_j(T) + \delta T \leq a_j T + \frac{\delta T}{r}$. Therefore $C < a_j + \frac{\delta}{r}$. Letting $\delta \to 0$, we conclude that $\sup_j a_j = C$.

Since $L^n(K_2) = 0$, for every $\delta > 0$ and for every j there exists an open set A_2' such that $K_2 \subset A_2' \subset A_2$ and $b_j L^n(A_2' \setminus A_2') \leq \delta$. Applying (4.15) we have that

\begin{align}
(4.33) \quad & a_j|E^n u|(K_2) \leq \liminf_{k \to +\infty} \left[a_j \int_{A_2'} |\mathcal{E}u| \, dx + a_j|E^n u|([A_2')^c] + \int_{\partial A_2'} G^{\nu_{u}}([u],\nu_{u}) \, dH^{n-1} \right] \\
& \leq \liminf_{k \to +\infty} F(u_k,A_2') + b_j L^n(A_2' \setminus A_2') \leq \liminf_{k \to +\infty} F(u_k,A_2) + \delta.
\end{align}

Recalling that $\sup_j a_j = C$, we obtain

\begin{equation}
(4.34) \quad C|E^n u|(K_2) \leq \liminf_{k \to +\infty} F(u_k,A_2) + \delta
\end{equation}

and by the arbitrariness of δ, we deduce (4.29).
Letting \(\delta > 0 \) and from (4.22)–(4.27) we obtain disjoint open sets \(A \) the three disjoint Borel sets \(B \) in Remark 4.6. and we obtain (4.30). □

Finally, let us prove (4.30). Arguing as in the previous step, for every \(\delta > 0 \) and for every \(j \) we have that

\[
\int_{K_3} G^{a_j}(|u|, \nu_u) \, d\mathcal{H}^{n-1} \leq \liminf_{k \to +\infty} F(u_k, A_3) + \delta.
\]

Letting \(\delta \to 0 \), we obtain

(4.32) \[
\int_{K_3} G^{a_j}(|u|, \nu_u) \, d\mathcal{H}^{n-1} \leq \liminf_{k \to +\infty} F(u_k, A_3).
\]

Since \(\sup a_j = C \), either there exists \(j_0 \) such that \(a_{j_0} = C \) or there exists a strictly increasing subsequence \(a_{j_k} \), converging to \(C \). In the first case, we have \(g^{a_{j_0}} = g \), hence \(G^{a_{j_0}} = G \), and (4.32) with \(j_0 \) coincides with (4.30). In the other case, \(g^{a_{j_k}} \) is an increasing sequence and converges to \(g \) (see Remark 2.5). Consequently, \(G^{a_{j_k}} \) is an increasing sequence and converges to \(G \). Therefore, we can pass to the limit in (4.32) along the sequence \(j_k \) using the monotone convergence theorem, and we obtain (4.30).

Theorem 4.1 is now a simple consequence of Lemma 4.7, thanks to the choice of \(K_1, K_2, K_3 \) made in Remark 4.6.

Proof of Theorem 4.1. Let us fix \(u_k, u \in BD(\Omega) \) such that \(u_k \to u \) in \(L^1(\Omega; \mathbb{R}^n) \). Let us consider the three disjoint Borel sets \(B_1, B_2, B_3 \), the three disjoint compact sets \(K_1, K_2, K_3 \), and the three disjoint open sets \(A_1, A_2, A_3 \) as in Remark 4.6. By Lemma 4.7 and by the superadditivity of the liminf, we have

\[
\int_{K_1} f(|\mathcal{E} u|) \, dx + C|\mathcal{E}^c u|(K_2) + \int_{K_3} g(|u|, \nu_u) \, d\mathcal{H}^{n-1} \leq \liminf_{k \to +\infty} F(u_k, \Omega).
\]

From this inequality and from (4.22)–(4.27) we obtain

\[
F(u, \Omega) = \int_{B_1} f(|\mathcal{E} u|) \, dx + C|\mathcal{E}^c u|(B_2) + \int_{B_3} g(|u|, \nu_u) \, d\mathcal{H}^{n-1}
\[
\leq \int_{K_1} f(|\mathcal{E} u|) \, dx + C|\mathcal{E}^c u|(K_2) + \epsilon + \int_{K_3} g(|u|, \nu_u) \, d\mathcal{H}^{n-1} + \epsilon
\[
\leq \liminf_{k \to +\infty} F(u_k, \Omega) + 3\epsilon.
\]

Letting \(\epsilon \to 0 \), we conclude the proof of Theorem 4.1. □

5. A RELAXATION RESULT FOR FUNCTIONALS DEFINED ON \(BD(\Omega) \)

The aim of this section is to obtain an integral representation for the relaxation of the functional \(F : BD(\Omega) \to [0, +\infty) \) defined by

(5.1) \[
F(u) := \int_\Omega f(|\mathcal{E} u|) \, dx + C|\mathcal{E}^c u|(\Omega) + \int_{J_u} \psi(|u|, \nu_u) \, d\mathcal{H}^{n-1},
\]

for every \(u \in BD(\Omega) \). We assume that:

\((H1') \) \(f : [0, +\infty) \to [0, +\infty) \) is a convex nondecreasing function;

\((H2') \) \(\psi : \mathbb{R}^n \times S^{n-1} \to [0, +\infty) \) is a Borel function and there exist a constant \(c_1 > 0 \) and an even subadditive function \(g : \mathbb{R} \to [0, +\infty) \) such that for every orthonormal basis \((\xi_1, \ldots, \xi_n) \)

\[
\sum_{i=1}^n g(z \cdot \xi_i)^2 |\nu \cdot \xi_i|^2 \leq \psi(z, \nu) \leq c_1 \min\{|z|, 1\},
\]

for every \(z \in \mathbb{R}^n \) and \(\nu \in S^{n-1} \);

\((H3') \) \(0 < C < +\infty \) and

\[
\lim_{t \to +\infty} \frac{f(t)}{t} = \lim_{t \to 0^+} \frac{g(t)}{t} = C, \quad \liminf_{t \to +\infty} g(t) > 0.
\]
Remark 5.1. Note that, by assumption (H3'), there exist two constants $\alpha, \beta > 0$ such that

$$\text{at} - \beta \leq f(t) \leq \beta(t + 1)$$

for every $t \geq 0$. Moreover, we claim that there exists a constant $c_2 > 0$ such that

$$c_2 \min\{|z|, 1\} \leq \psi(z, \nu).$$

Indeed, let $c > 0$ be such that $g(t) \geq c \min\{|t|, 1\}$ (see Remark 2.4). Let ξ^1 be the unit vector lying on the plane spanned by z and ν with the direction of the bisection of the angle in $[0, \pi]$ between the directions $\pm \nu$ and $\frac{z}{|z|}$. Note that $|z \cdot \xi^1| \geq \frac{|z|}{2}$ and $|\nu \cdot \xi^1| \geq \frac{|\nu|}{2}$. Let $\xi^2, \ldots, \xi^n \in \mathbb{S}^{n-1}$ be such that (ξ^1, \ldots, ξ^n) is an orthonormal basis of \mathbb{R}^n. Then, by (H2'), we have

$$\psi(z, \nu) \geq \left(\sum_{i=1}^n |g(z \cdot \xi^i)| |\nu \cdot \xi^i|^2 \right)^{\frac{1}{2}} \geq c \min\{|z \cdot \xi^1|, 1\} |\nu \cdot \xi^1|$$

for a suitable constant $c_2 > 0$.

The L^1-lower semicontinuous envelope of F is the functional $\text{sc}^{-} F: BD(\Omega) \to [0, +\infty)$ defined by

$$\text{sc}^{-} F(u) := \inf \left\{ \liminf_{k \to +\infty} F(u_k) : u_k \in BD(\Omega), u_k \to u \in L^1(\Omega; \mathbb{R}^n) \right\}.$$

We are now in a position to state our relaxation result.

Theorem 5.2. Under assumptions (H1')-(H3'), there exists a Borel function $\overline{\psi}: \mathbb{R}^n \times \mathbb{S}^{n-1} \to [0, +\infty)$ such that

$$\text{sc}^{-} F(u) = \int_{\Omega} f(|\mathcal{E}u|) \, dx + C|\mathcal{E}u|u|\Omega) + \int_{\Omega} \overline{\psi}(|u|, \nu) \, d\mathcal{H}^{n-1},$$

for every $u \in BD(\Omega)$.

To prove the theorem, we localize the problem and consider the functional $F: L^1(\Omega; \mathbb{R}^n) \times \mathcal{A}(\Omega) \to [0, +\infty]$ defined by

$$F(u, A) := \int_{A} f(|\mathcal{E}u|) \, dx + C|\mathcal{E}u|u|A) + \int_{\mathcal{J}u \cap A} \psi(|u|, \nu) \, d\mathcal{H}^{n-1},$$

if $u|A \in BD(A)$, and $F(u, A) := +\infty$ otherwise in $L^1(\Omega; \mathbb{R}^n)$. Its L^1-lower semicontinuous envelope is the functional $\text{sc}^{-} F: L^1(\Omega; \mathbb{R}^n) \times \mathcal{A}(\Omega) \to [0, +\infty)$ defined by

$$\text{sc}^{-} F(u, A) := \inf \left\{ \liminf_{k \to +\infty} F(u_k, A) : u_k \to u \in L^1(\Omega; \mathbb{R}^n) \right\},$$

for every $u \in L^1(\Omega; \mathbb{R}^n)$ and $A \in \mathcal{A}(\Omega)$. Let us notice that $\text{sc}^{-} F(u, \Omega) = \text{sc}^{-} F(u)$ for every $u \in BD(\Omega)$.

One of the main tools used to prove Theorem 5.2 is the following integral representation result for the surface part of functionals defined on the space $BD(\Omega)$. We recall that a functional $\mathcal{G}: BD(\Omega) \times \mathcal{A}(\Omega) \to [0, +\infty)$ is said to be local if for every $A \in \mathcal{A}(\Omega)$ and for every $u, v \in BD(\Omega)$ such that $u = v$ a.e. in A, we have $\mathcal{G}(u, A) = \mathcal{G}(v, A)$. In the following statement, Q^ν_ε denotes a cube of side ε centered at the origin with two faces orthogonal to ν and u^ν_ε is the pure jump function defined by

$$u^\nu_\varepsilon(x) := \begin{cases} z & \text{if } x \cdot \nu > 0, \\ 0 & \text{if } x \cdot \nu < 0. \end{cases}$$

Theorem 5.3. Assume that $\mathcal{G}: BD(\Omega) \times \mathcal{A}(\Omega) \to [0, +\infty)$ satisfies the following properties:

(a) \mathcal{G} is local;
(b) $\mathcal{G}(\cdot, A)$ is L^1-lower semicontinuous, for every $A \in \mathcal{A}(\Omega)$;
(c) there exists a constant $c > 0$ such that $\frac{1}{2}|Eu(A)| \leq \mathcal{G}(u, A) \leq c(|Eu(A)| + \mathcal{L}^n(A))$, for every $u \in BD(\Omega)$ and for every $A \in \mathcal{A}(\Omega)$;
(d) for every $u \in BD(\Omega)$, $\mathcal{G}(u, \cdot)$ is the restriction to $\mathcal{A}(\Omega)$ of a Radon measure;
(e) $\mathcal{G}(u(\cdot - x_0) + b, x_0 + A) = \mathcal{G}(u, A)$ for all $b \in \mathbb{R}^n$ and $x_0 \in \mathbb{R}^n$ such that $x_0 + A \subset \Omega$.

Then, for every \(u \in BD(\Omega)\) and for every \(A \in \mathcal{A}(\Omega)\), we have that
\[
(5.4) \quad \mathcal{G}(u, J_u \cap A) = \int_{J_u \cap A} \overline{\nu}([u]_\varepsilon, v_\varepsilon) \, d\mathcal{H}^{n-1},
\]
where
\[
(5.5) \quad \overline{\nu}(z, v) = \limsup_{\varepsilon \to 0} \left[\frac{1}{\varepsilon} \inf \{ \mathcal{G}(v, Q^\varepsilon_\nu) : v \in BD(Q^\varepsilon_\nu), \, v(x) = u_\varepsilon^*(x) \text{ on } \partial Q^\varepsilon_\nu \} \right].
\]

Proof. The proof can be obtained by adapting the arguments of the proof of [4, Proposition 5.1], which is originally stated for the relaxation of a functional defined on \(W^{1,1}(\Omega; \mathbb{R}^n)\). A careful inspection of the proof shows that the integral representation result still holds for a functional satisfying properties (a)–(c). In particular [4, Lemma 3.10], only uses assumptions (a), (c), and (d). Under assumptions (a)–(d) it is easy to check that [4, Lemma 3.11] holds for \(\mathcal{G}\). Using these results, the proof of [4, Proposition 5.1] for \(\mathcal{G}\) can be easily extended from the case \(u \in SBD(\Omega)\) to the case \(u \in BD(\Omega)\). As for (5.5), it is a consequence of the formula for the integrand given in [4, Proposition 5.1] and of the invariance properties due to (e).

Another tool used in the proof of Theorem 4.1 regards the jump set of the sum of \(BD\) functions.

Proposition 5.4. For every \(u, v \in BD(\Omega)\) we have that \(\mathcal{H}^{n-1}(J_{u+v} \cap (J_u \cup J_v)) = 0\).

Proof. The difficulty in the proof of this result is due to the fact that, for \(u \in BD(\Omega)\), the Lebesgue discontinuity set \(S_u\) and the jump set \(J_u\) may be different (see [2, page 206] for the definitions). While it is easy to see that \(J_u \subset S_u\), it is not known whether \(\mathcal{H}^{n-1}(S_u \setminus J_u) = 0\). However, it is proved in [2, Remark 6.3] that \(S_u \setminus J_u\) is purely \((\mathcal{H}^{n-1}, n-1)\)-unrectifiable, i.e., \(\mathcal{H}^{n-1}((S_u \setminus J_u) \cap M) = 0\) for every \((\mathcal{H}^{n-1}, n-1)\)-rectifiable set \(M\). Since \(J_{u+v} \subset S_{u+v} \subset S_u \cup S_v\), we have that \(J_{u+v} \cap (J_u \cup J_v) \subset (S_u \setminus J_u) \cup (S_v \setminus J_v)\). Since \(J_{u+v} \cap (J_u \cup J_v)\) is \((\mathcal{H}^{n-1}, n-1)\)-rectifiable, by the pure \((\mathcal{H}^{n-1}, n-1)\)-unrectifiability of \(S_u \setminus J_u\) and \(S_v \setminus J_v\), we conclude that \(\mathcal{H}^{n-1}(J_{u+v} \cap (J_u \cup J_v)) = 0\).

Corollary 5.5. Let \(u, v \in BD(\Omega)\), let \(\varphi \in C^\infty(\Omega)\) with \(0 \leq \varphi \leq 1\), and let \(w := \varphi u + (1 - \varphi)v\). Then
\[
\int_{J_w} \min\{[|u|], 1\} \, d\mathcal{H}^{n-1} \leq \int_{J_u} \min\{[|u|], 1\} \, d\mathcal{H}^{n-1} + \int_{J_v} \min\{[|v|], 1\} \, d\mathcal{H}^{n-1}.
\]

Proof. Let us define \([u]^* : J_w \to \mathbb{R}^n\) by \([u]^* = [u]\) on \(J_u \cap J_v\) and \([u]^* = 0\) on \(J_u \setminus J_v\). Similarly we define \([v]^* : J_w \to \mathbb{R}^n\) by \([v]^* = [v]\) on \(J_u \cap J_v\) and \([v]^* = 0\) on \(J_u \setminus J_v\). Using the sets \(S_u \) and \(S_v\), considered in the proof of Proposition 5.4 and taking into account the pure \((\mathcal{H}^{n-1}, n-1)\)-unrectifiability of \(S_u \setminus J_u\) and \(S_v \setminus J_v\), we obtain that \(\mathcal{H}^{n-1}(S_u \setminus J_u) = \mathcal{H}^{n-1}(S_v \setminus J_v) = 0\). This implies that \(w = \varphi u + (1 - \varphi)v\) is \((\mathcal{H}^{n-1}, n-1)\)-a.e. on \(J_u\). The conclusion follows easily.

We will show that the lower semicontinuous envelope of \(\mathcal{F}\) satisfies the subadditivity condition for \(sc^- \mathcal{F}\).

Lemma 5.6. Let \(A, B \in \mathcal{A}(\Omega)\) and \(A' \in \mathcal{A}(\Omega)\) such that \(A' \subset A\). Then
\[
(5.6) \quad \text{sc}^- \mathcal{F}(u, A' \cup B) \leq \text{sc}^- \mathcal{F}(u, A) + \text{sc}^- \mathcal{F}(u, B),
\]
for every \(u \in L^1(\Omega; \mathbb{R}^n)\).

Proof. Let us fix \(u \in L^1(\Omega; \mathbb{R}^n)\) and let us consider two sequences \(u_k^A\) and \(u_k^B\) in \(L^1(\Omega; \mathbb{R}^n)\) converging to \(u\) in \(L^1(\Omega; \mathbb{R}^n)\) to the function \(u\) such that
\[
(5.7) \quad \text{sc}^- \mathcal{F}(u, A) = \lim_{k \to +\infty} \mathcal{F}(u_k^A, A) \quad \text{and} \quad \text{sc}^- \mathcal{F}(u, B) = \lim_{k \to +\infty} \mathcal{F}(u_k^B, B).
\]
It suffices to prove (5.6) when the right hand side is finite. Hence we can assume that \(\mathcal{F}(u_k^A, A)\) and \(\mathcal{F}(u_k^B, B)\) are equibounded sequences. In particular, we have that \(u_k^A \in BD(A)\) and \(u_k^B \in BD(B)\).

We now use the De Giorgi slicing and averaging argument to construct a suitable sequence \(v_k \in BD(A \cup B)\) converging to \(v\) in \(L^1(\Omega; \mathbb{R}^n)\). Let \(d := \text{dist}(A', \partial A) > 0\) and let \(h \in \mathbb{N}\). Let \(A_0 := A'\) and \(A_{h+1} := \emptyset\). We consider a chain of open sets \(A_1, \ldots, A_h\) such that \(A_i \subset A_{i+1}\) and \(\text{dist}(A_i, \partial A_{i+1}) \geq d/(h+1)\) for every \(0 \leq i \leq h\). Let \(\varphi_i \in C^\infty(\Omega)\) be such that \(0 \leq \varphi_i \leq 1,\)
Finally, using the bounds

\[c > 0 \]

where \(C\). We assume in addition that \(\|\nabla \varphi_i\|_{L^\infty(\Omega)} \leq 2(h + 1)/d \). We set

\[u_i^k := \varphi_i u_i^A + (1 - \varphi_i) u_i^B \in BD(A \cup B), \]

for \(i = 0, \ldots, h \). By the locality of \(F \), we obtain

\[
F(u_k, A' \cup B) \leq F(u_k^A, A_i) + F(u_k^B, B \cap (A_{i+1} \setminus A_i)) + F(u_k, B \setminus A_{i+1})
\]

\[
= F(u_k^A, A_i) + F(u_k^B, B \cap (A_{i+1} \setminus A_i)) + F(u_k^B, B \setminus A_{i+1})
\]

(5.9)

since \(u_k^A = u_k^A \) on \(A_i \) and \(u_k^B = u_k^B \) in a neighborhood of \(\mathbb{R}^n \setminus A_{i+1} \). Let \(S_i := B \cap (A_{i+1} \setminus A_i) \) and let us estimate \(F(u_k^A, S_i) \). From (5.8) we deduce that

\[Eu_k^A = \varphi_i Eu_k^A + (1 - \varphi_i) Eu_k^B + \nabla \varphi_i \circ (u_k^A - u_k^B) \]

and therefore

\[
F(u_k^A, S_i) = \int_{S_i} \left(c_i\varphi_i Eu_k^A + (1 - \varphi_i) Eu_k^B + \nabla \varphi_i \circ (u_k^A - u_k^B) \right) \, dx +
\]

(5.10)

By (5.2) we have that

\[
\int_{S_i} \left(c_i\varphi_i Eu_k^A + (1 - \varphi_i) Eu_k^B + \nabla \varphi_i \circ (u_k^A - u_k^B) \right) \, dx
\]

\[
\leq \beta \int_{S_i} \left(c_i\varphi_i Eu_k^A + (1 - \varphi_i) Eu_k^B + \nabla \varphi_i \circ (u_k^A - u_k^B) \right) \, dx + \beta C_i^\alpha(S_i)
\]

(5.11)

where \(c_i > 0 \) is a suitable constant. Moreover

(5.12)

Finally, using the bounds \(c_i \min\{|z|, 1\} \leq \psi(z, r) \leq c_i \min\{|z|, 1\} \), from (5.8) and Corollary 5.5, we deduce that

\[
\int_{J_{u_k^A \cap S_i}} \psi([u_k^A], \nu_{u_k^A}) \, dH^{n-1} \leq c_1 \int_{J_{u_k^A \cap S_i}} \min\{|[u_k^A]|, 1\} \, dH^{n-1}
\]

(5.13)

where \(c_1 > 0 \) is a suitable constant. Summing (5.11)–(5.13), by (5.9) and (5.10) we get

\[
F(u_k^A, A' \cup B) \leq F(u_k^A, A_i) + F(u_k^B, B) + c[F(u_k^A, S_i) + F(u_k^B, S_i) + C_i^\alpha(S_i)]
\]

\[
+ c(h+1) \int_{S_i} |u_k^A - u_k^B| \, dx.
\]
We are now able to prove that the functional \(sc^{-} F \) satisfies all the hypotheses of Theorem 5.3.

Lemma 5.7. The functional \(sc^{-} F \) satisfies the following properties:

- \(sc^{-} F \) is local;
- \(sc^{-} F(\cdot, A) \) is \(L^1 \)-lower semicontinuous, for every \(A \in \mathcal{A}(\Omega) \);
- \(sc^{-} F(u, A) \leq C|Eu| + f(0)\mathcal{L}^n(A) \), for every \(u \in BD(\Omega) \) and for every \(A \in \mathcal{A}(\Omega) \);
- for every \(u \in BD(\Omega) \), \(sc^{-} F(\cdot, \cdot) \) is the restriction to \(\mathcal{A}(\Omega) \) of a Radon measure;
- \(sc^{-} F(u(\cdot - x_0) + b, x_0 + A) = sc^{-} F(u, A) \) for all \(b \in \mathbb{R}^n \) and \(x_0 \in \mathbb{R}^n \) such that \(x_0 + A \subset \Omega \).

Proof. The proofs of the lower semicontinuity, of the upper bound, and of the translation invariance are immediate. The functional \(sc^{-} F \) is local by \cite[Proposition 16.15]{15}.

In order to prove that \(sc^{-} F(u, \cdot) \) is a measure, it is convenient to introduce the inner regular envelope of \(sc^{-} F \), i.e., the functional \(\mathfrak{F} : L^1(\Omega; \mathbb{R}^n) \times \mathcal{A}(\Omega) \to [0, +\infty] \) defined by

\[
\mathfrak{F}(u, A) := \sup\left\{ (sc^{-} F)(u, U) : U \in \mathcal{A}(\Omega), \, U \subset A \right\},
\]

for every \(u \in L^1(\Omega; \mathbb{R}^n) \) and \(A \in \mathcal{A}(\Omega) \). Note that \(\mathfrak{F}(u, A) \leq sc^{-} F(u, A) \). Let us fix \(u \in BD(\Omega) \). We claim that

\[
\mathfrak{F}(u, A) = sc^{-} F(u, A),
\]

for every \(A \in \mathcal{A}(\Omega) \). Indeed, let \(\varepsilon > 0 \). There exists a compact set \(K \subset A \) such that \(F(u, A \setminus K) < \varepsilon \). Let us fix \(A', A' \in \mathcal{A}(\Omega) \) such that \(K \subset A' \subset A' \in \mathcal{A}(\Omega) \). Then, by Lemma 5.6, we have that

\[
sc^{-} F(u, A) = sc^{-} F(u, A' \setminus (A' \setminus K)) \leq sc^{-} F(u, A') + sc^{-} F(u, A \setminus K) \leq \mathfrak{F}(u, A) + \mathfrak{F}(u, A') + \varepsilon.
\]

Letting \(\varepsilon \to 0 \), we conclude the proof of (5.14). This implies that \(sc^{-} F(u, \cdot) \) is inner regular on \(\mathcal{A}(\Omega) \), for every \(u \in BD(\Omega) \). By \cite[Proposition 16.12]{15}, \(sc^{-} F(u, \cdot) \) is superadditive. The subadditivity of \(sc^{-} F(u, \cdot) \) follows from Lemma 5.6 and from the inner regularity. Hence, we can apply \cite[Theorem 14.23]{15} to extend \(sc^{-} F(u, \cdot) \) to a Borel measure. Actually, it is a bounded measure thanks to the upper bound \(sc^{-} F(u, A) \leq C|Eu|(A) + f(0)\mathcal{L}^n(A) \).

In order to prove Theorem 5.2, it is useful to bound from below the functional \(F \) with the functional \(F_G : L^1(\Omega; \mathbb{R}^n) \times \mathcal{A}(\Omega) \to [0, +\infty] \) defined by

\[
F_G(u, A) := \int_{A} f(|E u|) \, dx + C|E u|(A) + \int_{J_n \cap A} G(|u|, \nu_u) \, d\mathcal{H}^{n-1}.
\]

if \(u \in BD(A) \), and \(F_G(u, A) := +\infty \) otherwise, where \(G \) is the function introduced in (1.7). Note that, by Theorem 4.1, for every \(A \in \mathcal{A}(\Omega) \) the functional \(F_G(\cdot, A) \) is \(L^1 \)-lower semicontinuous in \(BD(A) \).

Proof of Theorem 5.2. Let us fix \(u \in BD(\Omega) \). By (H2'), we have that \(G \leq \psi \) and hence

\[
F_G(\cdot, A) \leq \mathcal{F}(\cdot, A),
\]

for every open set \(A \subset \Omega \). Therefore, by the lower semicontinuity of \(F_G(\cdot, A) \),

\[
F_G(u, A) \leq sc^{-} F(u, A) \leq F(u, A),
\]
for every open set $A \subset \Omega$. By Lemma 5.7, $\text{sc}^{-}\mathcal{F}(u, \cdot)$ is the restriction to $\mathcal{A}(\Omega)$ of a Radon measure defined on $\mathcal{A}(\Omega)$, still denoted by $\text{sc}^{-}\mathcal{F}(u, \cdot)$. Hence

$$\mathcal{F}_{\mathcal{C}}(u, B) \leq \text{sc}^{-}\mathcal{F}(u, B) \leq \mathcal{F}(u, B),$$

for every Borel set $B \subset \Omega$. Let us consider the sets $B_1, B_2, B_3 \in \mathcal{B}(\Omega)$ as in Remark 4.6. We recall that B_1, B_2, B_3 are pairwise disjoint and $B_1 \cup B_2 \cup B_3 = \Omega$. Moreover, \mathcal{L}^n is concentrated on B_1, E^u is concentrated on B_2, and $\mathcal{H}^{n-1}(\{J \setminus B_1 \cup (B_3 \setminus J)\}) = 0$. Then

$$\int_{B_1} f(\mathcal{E}u) \, dx = \mathcal{F}_{\mathcal{C}}(u, B_1) \leq \text{sc}^{-}\mathcal{F}(u, B_1) \leq \mathcal{F}(u, B_1) = \int_{B_1} f(\mathcal{E}u) \, dx,$$

and therefore

$$\text{sc}^{-}\mathcal{F}(u, B_1) = \int_{\Omega} f(\mathcal{E}u) \, dx,$$

(5.16)

$$\text{sc}^{-}\mathcal{F}(u, B_2) = \mathcal{F}(u, B_2).$$

(5.17)

On the other hand, for every $\delta > 0$ we can apply Theorem 5.3 to the functional $\mathcal{G}_\delta (u; A) := \text{sc}^{-}\mathcal{F}(u; A) + \delta |Eu|(A)$. Thus we have

$$\text{sc}^{-}\mathcal{F}(u, B_3) + \delta |Eu|(B_3) = \text{sc}^{-}\mathcal{F}(u, J_u) + \delta |Eu|(J_u) = \int_{J_u} \mathcal{G}_\delta (u; J_u) \, d\mathcal{H}^{n-1},$$

where

$$\mathcal{E}_\delta (z, \nu) := \limsup_{\delta \to 0} \frac{1}{\mathcal{H}^{n-1}(\Omega)} \inf \left\{ \mathcal{G}_\delta (v; Q^\nu) : v \in BD(Q^\nu), \, \nu(x) = u^*_x(x) \text{ on } \partial Q^\nu \right\}.$$

Defining $\mathcal{E}(z, \nu) := \lim_{\delta \to 0} \mathcal{E}_\delta (z, \nu)$, we infer

$$\text{sc}^{-}\mathcal{F}(u; B_3) = \int_{J_u} \mathcal{E}(u; J_u) \, d\mathcal{H}^{n-1}. $$

(5.18)

Summing (5.16), (5.17), and (5.18) we obtain (5.3).

\[\square \]

6. AN EXAMPLE OF SURFACE DENSITY

In this section we provide the explicit expression of the surface density $G(z, \nu)$ defined in (1.7) when $g(t) = \min\{|t|, 1\}$, i.e.,

$$G(z, \nu) := \sup_{(\xi_1, \ldots, \xi^n)} \left(\sum_{i=1}^{n} \min\{|z \cdot \xi^i|, 1\}^2 |\nu \cdot \xi^i| \right)^{\frac{1}{2}},$$

(6.1)

where the supremum is taken over all orthonormal bases (ξ^1, \ldots, ξ^n) of \mathbb{R}^n.

First of all we prove that the function G in (6.1) is invariant under rotations.

\[\text{Lemma 6.1.} \]

Let G be the function defined in (6.1). Then for every $z \in \mathbb{R}^n$, $\nu \in S^{n-1}$, and $R \in O(n)$ we have that $G(z, \nu) = G(Rz, R\nu)$. Moreover $G(z, \nu) = G(-z, -\nu)$.

\[\text{Proof.} \]

Let us fix $z \in \mathbb{R}^n$, $\nu \in S^{n-1}$, and $R \in O(n)$. For every orthonormal basis (ξ^1, \ldots, ξ^n) we have that $(R^T \xi^1, \ldots, R^T \xi^n)$ is an orthonormal basis. Moreover, for every orthonormal basis $(\zeta^1, \ldots, \zeta^n)$ there exists an orthonormal basis (ξ^1, \ldots, ξ^n) such that $\zeta^i = R^T \xi^i$, $i = 1, \ldots, n$. Therefore

$$G(Rz, R\nu) = \sup_{(\xi_1, \ldots, \xi^n)} \left(\sum_{i=1}^{n} g(Rz \cdot \xi^i)^2 |R\nu \cdot \xi^i|^2 \right)^{\frac{1}{2}} = \sup_{(\xi_1, \ldots, \xi^n)} \left(\sum_{i=1}^{n} g(z \cdot R^T \xi^i)^2 |\nu \cdot R^T \xi^i|^2 \right)^{\frac{1}{2}} = \sup_{(\zeta_1, \ldots, \zeta^n)} \left(\sum_{i=1}^{n} g(z \cdot \zeta^i)^2 |\nu \cdot \zeta^i|^2 \right)^{\frac{1}{2}} = G(z, \nu).$$

The symmetry of the function G stated in the lemma is a straightforward consequence of (6.1).

\[\square \]
We study the function G in the two dimensional case, i.e., when $n = 2$. Let us fix $\nu \in S^1$. Thanks to Lemma 6.1, we can reduce to the case $\nu = (1,0)$ by applying a suitable rotation. To study the function $z \mapsto G(z, \nu)$, it is convenient to express the vector $z \in \mathbb{R}^2$ in polar coordinates. Let ρ be the norm of z and let φ be the angle between ν and z. By Lemma 6.1, it is enough to study the case $\varphi \in [0, \frac{\pi}{2}]$. In this way $z = (\rho \cos \varphi, \rho \sin \varphi)$.

Proposition 6.2. Let $\nu = (1,0)$. Let $\rho > 0$, $\varphi \in [0, \frac{\pi}{2}]$, and $z = (\rho \cos \varphi, \rho \sin \varphi)$. Then

$$G(z, \nu) = \begin{cases}
\rho \left(\cos^2(\frac{\varphi}{2}) + \sin^2(\frac{\varphi}{2})\right)^{\frac{1}{2}} & \text{if } \rho \cos(\frac{\varphi}{2}) \leq 1, \\
(\cos^2(\theta) + (\rho^2 - 1) \sin^2(\theta))^\frac{1}{2} & \text{otherwise},
\end{cases}$$

where $\theta = \varphi - \arccos(\frac{1}{\rho}) \in [0, \frac{\pi}{2}]$.

Proof. By (6.1) we have that

$$G(z, \nu)^2 = \sup_{(\xi^1, \xi^2)} (g(z \cdot \xi^1)^2|\nu \cdot \xi^1|^2 + g(z \cdot \xi^2)^2|\nu \cdot \xi^2|^2),$$

where the supremum is taken over all orthonormal bases of \mathbb{R}^2. If we write ξ^1 in polar coordinates, it is easy to see that (6.3) is equivalent to

$$G(z, \nu)^2 = \sup_{\varphi - \frac{\pi}{2} < \theta \leq \varphi} \gamma(\theta).$$

where

$$\gamma(\theta) := \min\{\rho(\cos(\varphi - \theta)|, 1\}^2 \cos^2(\theta) + \min\{\rho(\sin(\varphi - \theta)|, 1\}^2 \sin^2(\theta).$$

Indeed, it is sufficient to take the supremum in (6.3) for θ ranging in an interval of length $\frac{\pi}{2}$. Note that $G(z, \nu) \leq 1$, because $\gamma(\theta) \leq 1$ for $\varphi - \frac{\pi}{2} < \theta \leq \varphi$.

Let us assume that $\rho \cos(\frac{\varphi}{2}) \leq 1$. Then, for $\varphi - \frac{\pi}{2} < \theta < \varphi$, we have that

$$\gamma(\theta) \leq \rho^2 \cos^2(\varphi - \theta) \cos^2(\theta) + \rho^2 \sin^2(\varphi - \theta) \sin^2(\theta)$$

$$= \frac{1}{2} \rho^2 \cos(2\varphi - 4\theta) + \rho^2 \cos^4(\frac{\varphi}{2}) + \rho^2 \sin^4(\frac{\varphi}{2}) - \frac{1}{2} \rho^2.$$

Since $-\pi < -2\varphi < 2\varphi - 4\theta < 2\pi - 2\varphi < 2\pi$, the function $\theta \mapsto \cos(2\varphi - 4\theta)$ attains its maximum at $\theta = \frac{\varphi}{2}$. Since $\rho \cos(\frac{\varphi}{2}) \leq 1$ and $0 \leq \frac{\varphi}{2} \leq \frac{\pi}{4}$, we also have that $\rho \sin(\frac{\varphi}{2}) \leq 1$. This implies that $\gamma(\theta)$ attains its maximum at $\theta = \frac{\varphi}{2}$ and therefore $G(z, \nu)^2 = \rho^2 \cos^2(\frac{\varphi}{2}) + \rho^2 \sin^2(\frac{\varphi}{2})$. This concludes the study of the case $\rho \cos(\frac{\varphi}{2}) \leq 1$.

We therefore suppose that $\rho \cos(\frac{\varphi}{2}) > 1$ in what follows.

Let us assume that $\rho \cos \varphi \geq 1$ first. We simply note that in this case the maximum of $\gamma(\theta)$ is attained at $\theta = 0$ and $\gamma(0) = 1$.

Hence, let $\rho \cos \varphi < 1$ and $\rho \leq \sqrt{2}$. We claim that the maximum in (6.4) is attained at $\theta = \bar{\theta} = \varphi - \arccos(\frac{1}{\rho})$. Note that $0 < \bar{\theta} < \frac{\pi}{2}$, since $\rho \cos \varphi < 1$ and $\rho \cos(\frac{\varphi}{2}) > 1$. For $0 \leq \bar{\theta} \leq \varphi$, we have that $\rho \cos(\varphi - \theta) \geq 1$, and therefore $\rho^2 \sin^2(\varphi - \theta) \leq \rho^2 - 1$. This implies that

$$\gamma(\theta) \leq \cos^2(\theta) + \rho^2 \sin^2(\varphi - \theta) \sin^2(\theta) \leq \cos^2(\theta) + (\rho^2 - 1) \sin^2(\theta)$$

$$= (\rho^2 - 1) + (2 - \rho^2) \cos^2 \theta.$$

The function $\theta \mapsto (\rho^2 - 1) + (2 - \rho^2) \cos^2 \theta$ is nonincreasing for $\theta \in [\bar{\theta}, \varphi]$, and therefore its maximum in the interval $[\bar{\theta}, \varphi]$ is attained at $\theta = \bar{\theta}$. Since $\rho \cos(\varphi - \bar{\theta}) = 1$ and $\rho \sin(\varphi - \bar{\theta}) \leq 1$, we get that the maximum of the function $\gamma(\theta)$ in the interval $[\bar{\theta}, \varphi]$ is attained at $\theta = \bar{\theta}$. For $\varphi - \frac{\pi}{2} < \theta < \bar{\theta}$, the maximum of the function $\theta \mapsto \cos(2\varphi - 4\theta)$ is attained at $\theta = \bar{\theta}$, since $0 \leq 2\varphi - 4\theta < 2\pi - 2\varphi \leq 2\pi$ and $\bar{\theta} > 0$. Hence, by inequality (6.5), we have that the maximum of the function $\gamma(\theta)$ in the interval $(\varphi - \frac{\pi}{2}, \bar{\theta})$ is attained at $\theta = \bar{\theta}$. This concludes the study of the case $\rho \cos \varphi < 1$ and $\rho \leq \sqrt{2}$.

We conclude the proof by observing that if $\rho \cos \varphi < 1$ and $\rho > \sqrt{2}$, then $\gamma(\bar{\theta}) = 1$. Indeed, $\rho \cos(\varphi - \bar{\theta}) = 1$ and $\rho^2 \sin^2(\varphi - \bar{\theta}) = \rho^2 - \rho^2 \cos^2(\varphi - \bar{\theta}) = \rho^2 - 1 \geq 1$. □
Remark 6.3. Let us fix \(\nu \in S^{n-1} \). For every \(z \in \mathbb{R}^n \) we have that
\[
|z \circ \nu| = |z| \left(\cos^4 \left(\frac{\varphi}{2} \right) + \sin^4 \left(\frac{\varphi}{2} \right) \right)^{\frac{1}{2}},
\]
where \(\varphi \in [0, \pi] \) is the angle formed by the directions \(\pm \nu \) and \(\frac{z}{|z|} \). Hence, by formula (6.2), for \(|z| \cos \left(\frac{\varphi}{2} \right) \leq 1 \), i.e., in the region colored in light gray in Figure 3, we have that \(G(z, \nu) = |z \circ \nu| \).

For \(|z| \geq \sqrt{2} \) or \(|z| \cos \varphi \geq 1 \), i.e., outside the colored regions in Figure 3, by (6.2) we obtain \(G(z, \nu) = 1 \). In the remaining part of \(\mathbb{R}^2 \), i.e., in the region colored in dark gray in Figure 3, the function \(z \mapsto G(z, \nu) \) makes a transition between the function \(z \mapsto |z \circ \nu| \) and the function with constant value 1.

Acknowledgements. This material is based on work supported by the Italian Ministry of Education, University, and Research under the Project “Calculus of Variations” (PRIN 2010-11) and by the European Research Council under Grant No. 290888 “Quasistatic and Dynamic Evolution Problems in Plasticity and Fracture”. The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References