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1. Introduction

Self-contracted curves were introduced in [3, Definition 1.2.] to capture the behaviour of gra-
dient orbits of a quasiconvex potential ẋ = −∇f(x), of polygonal curves generated by a proximal
algorithm applied to a convex function, or finally of generalized orbits (continuous curves) of a
convex foliation. The definition of self-contractedness —recalled below in a more general set-
ting (Riemannian manifolds)— is purely metric, without requiring prior smoothness/continuity
assumption on the curve. Although self-contracted curves can be discontinuous (without admit-
ting a continuous self-contracted extension) the left and right limits at each point always exist
[3, Proposition 2.2]. In a Euclidean setting it has been established in [4, Section 3] (and inde-
pendently in [7] for continuous curves) that self-contracted curves are rectifiable. In both cases
the proof was based on an old result of Manselli-Pucci [9] which allows to deduce that all self-
contracted curves lying in a given ball have lengths which are uniformly bounded. Applications
of this fact have been discussed in [4, Section 4], [2].

The results of [9], [3], [4], [7] are all heavily based on the Euclidean structure. In [5] the
authors consider (under a different terminology) absolutely continuous self-contracted curves in
a bounded convex subset of a two-dimensional complete surface of constant Gaussian curvature,
and provide an upper bound for the length, but in case of a surface of positive curvature (sphere),
they made the additional assumption that the diameter of this subset was strictly less than π/2.
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In this work we establish that any (possibly discontinuous) self-contracted curve in a compact
set of a smooth Riemannian manifold has finite length. This result generalizes the results men-
tioned above. In particular, contrary to [5] it does not require any assumption on the curvature
or on the dimension of the manifold. Moreover, our result holds in the case of discontinuous
self-contracted curves. The proof relies on an appropriate localization argument which allows
to define a finite family of Lyapunov functions.

2. Main result

Let (M, g) be a smooth complete Riemannian manifold whose geodesic distance is denoted
by dg. This work is devoted to the study of self-contrated curves.

Definition 2.1 (self-contracted curve). Given an interval I = [0, T∞) with T∞ ∈ [0,∞)∪ {∞},
a curve γ : I →M is called self-contracted, if for every t1 ≤ t2 ≤ t3 in I we have

dg(γ(t1), γ(t3)) ≥ dg(γ(t2), γ(t3)). (2.1)

In other words, for every t3 ∈ [0, T∞) the function t 7→ dg(γ(t), γ(t3)) is nonincreasing on [0, t3].

Given an interval I = [0, T∞) with T∞ ∈ [0,∞) ∪ {∞}, the length of a curve γ : I → M is
defined as

`(γ) := sup

{
m−1∑
i=0

dg(γ(ti), γ(ti+1))

}
, (2.2)

where the supremum is taken over all finite increasing sequences t0 < t1 < · · · < tm that lie
in the interval I. We say that a (possibly discontinuous) curve γ : I → M has finite length if
`(γ) is finite. Any continuous curve γ : I →M with finite length can be reparametrized into a
Lipschitz curve on [0, `(γ)] with speed of constant norm a.e. equal to 1. The following extends
previous results by [5], [4], [7].

Theorem 2.2 (Main result). Let (M, g) be a smooth Riemannian manifold, K be a compact
subset of M and γ : I → K be a self-contracted curve. Then γ has finite length.

The rest of the paper is devoted to the proof of Theorem 2.2.

3. Proof

3.1. Notation. The symbol M will always stand for a smooth manifold of dimension d ≥ 2
whose tangent bundle is denoted by TM. An element of TM is denoted by ξ := (x, vx) with
vx ∈ TxM (for simplicity we often drop the index x from vx when no confusion arises). Given
a smooth Riemannian metric g, we denote the metric at x ∈M alternatively as gx(·, ·) or 〈·, ·〉x
and its norm by | · |x. We sometimes omit x if no ambiguity arises. The geodesic distance is
denoted by dg and the open geodesic ball centered at x of radius r ≥ 0 is denoted by Bg(x, r).
For every x ∈ M, we denote by expx : TxM →M the exponential mapping at x. We denote

by B̂x the balls in TxM (with respect to the Euclidean metric gx in TxM). We denote the unit
tangent bundle associated with g by UM, that is,

UM := {ξ = (x, u) ∈ TM : |u|x = 1} .
We consider a canonical Riemannian metric on the unit bundle, whose associated distance is
denoted by Dg. We may assume that for every ξ = (x, u), ξ̄ = (x̄, ū) in UM it holds

Dg(ξ, ξ̄) ≥ dg(x, x̄). (3.1)

We refer to [1], [6] for prerequisites on Riemannian manifolds.



3

3.2. Exponential map - Cosine law. We first notice that for every x ∈ M, there exists
r > 0, such that the exponential function expx (that we sometimes denote by φx, especially
when we want to abbreviate notation for its inverse φ−1

x or its differential dφx) is a smooth

diffeomorphism between the open ball B̂x(0, r) of TxM onto the open geodesic ball Bg(x, r) in
M . The following lemma is an easy consequence of the compactness of K and the smoothness
of the geodesic flow.

Lemma 3.1. There exists ρ > 0 such that for every x ∈ K, φx := expx is a smooth diffeomor-

phism from the ball B̂x(0, 2ρ) to its image Bg(x, 2ρ).

Given two unit vectors v, w ∈ TxM (we denote this by v, w ∈ UxM), we define the function
Φv,w
x : (−ρ, ρ)× (−ρ, ρ)→ R by

Φv,w
x (t1, t2) = dg (expx(t1v), expx(t2w))2 , ∀t1, t2 ∈ (−ρ, ρ). (3.2)

The following result asserts that small geodesic triangles almost satisfy the classical law of
cosines, see Fig. 1 for an illustration.

Figure 1. Cosine law in Riemannian manifolds.

Lemma 3.2 (Cosine law in manifolds). There is K > 0 such that for every x ∈ K and every
v, w ∈ UxM,∣∣Φv,w

x (t1, t2)− t21 − t22 + 2 t1 t2 〈v, w〉x
∣∣ ≤ K t21 t

2
2 , ∀ t1, t2 ∈ (−ρ, ρ). (3.3)

Proof. Let x ∈ K and v, w ∈ UxM be fixed. We check easily that for every t1, t2 ∈ (−ρ, ρ),

Φv,w
x (t1, 0) = t21 , Φv,w

x (0, t2) = t22 ,

and
∂Φv,w

x

∂t1
(0, t2) = −2 t2 〈v, w〉x ,

∂Φv,w
x

∂t2
(t1, 0) = −2 t1 〈v, w〉x .

Then we infer that
∂2Φv,w

x

∂t1∂t2
(0, 0) = −2 〈v, w〉x

and for every integer k ∈ {2, 3},
∂k+1Φv,w

x

∂tk1∂t2
(0, 0) =

∂k+1Φv,w
x

∂t1∂tk2
(0, 0) = 0.
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We conclude by considering the Taylor expansion formula of order 4 for the function Φv,w
x

together with compactness of K. �

Remark 3.3 (Adapting the constant ρ). Let K > 0 be given by Lemma 3.2. We may always
shrink ρ > 0 of Lemma 3.1 to ensure

ρ ≤
√

1

K
⇐⇒ K ρ2 ≤ 1 . (3.4)

The above will be used in Section 3.5.2 where we derive some technical estimations. Therefore
we shall eventually assume that (3.4) holds true.

3.3. Dealing with discontinuities. Let I = [0, T∞) (T∞ ∈ [0,∞) ∪ {∞}) and let γ : I →M
be a self-contracted curve. For every τ ∈ I, we define the set Γ(τ) (tail of γ at x = γ(τ)) by

Γ(τ) :=
{
γ(t) | t ≥ τ

}
.

We also denote by γ(τ−) the left limit of γ at τ , that is,

γ(τ−) := lim
s↗τ

γ(s), (3.5)

where the notation s ↗ τ means that s ≤ τ and s → τ . Notice that this limit always exists
as consequence of Definition 2.1 (self-contractedness) —the same proof as in the Euclidean case
applies (c.f. [3, Proposition 2.2]).

We further denote by

D− := {τ ∈ I : γ(τ) 6= γ(τ−)} ,
that is, the set of points where γ is not left continuous. Notice that

D− =
⋃
n∈N

D−n , where D−n :=

{
τ ∈ I : dg(γ(τ), γ(τ−)) >

4

n

}
.

For the needs of the following lemma, let us denote by |S| the cardinality of a set S.

Lemma 3.4 (Local count of left discontinuities). For any ball Bg(x,
1
n) of M we have:∣∣γ(D−n ) ∩Bg (x, 1/n)

∣∣ ≤ 2. (3.6)

In particular, D− is at most countable.

Proof. Let τ1, τ2, τ3 ∈ D−n with τ1 < τ2 < τ3, be such that {γ(τi)}3i=1 ⊂ Bg(x,
1
n). Set xi = γ(τi)

and x′i = γ(τ−i ), i ∈ {1, 2, 3}. It follows that {xi}3i=1 ⊂ Bg(x,
1
n) and {x′i}3i=1 ⊂ M \ Bg(x, 1

n).
Since γ is self-contracted, we obtain a contradiction:

2

n
< dg(x

′
2, x2)− dg(x2, x3) ≤ dg(x′2, x3) ≤ dg(x1, x3) ≤ 2

n
.

The assertion of the lemma follows. �

Remark 3.5 (Cardinality of D−n ). As a consequence of self-contractedness, the sets D−n (subset
of (0, T∞)) and γ(D−n ) (subset of K) have the same cardinality, for every n ∈ N. Compactness
of K together with Lemma 3.4 yield that this cardinality is bounded by 2N , where N is the
number of balls of radius 1/n that can cover K.
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Analogous results hold for right discontinuities, that is, points τ ∈ [0, T∞) such that

γ(τ+) := lim
t↘τ

γ(t) 6= γ(τ),

where the notation t ↘ τ means that t > τ and t → τ . In order to establish forthcoming
intermediate results concerning behaviour/properties of the curve γ around a point γ(τ), we
shall be led to consider separately the case where γ is left continuous at τ and the case where
it is not, but the jump is within a certain threshold. The question of whether or not γ is
right continuous at τ will not appear until the very last section (see Corollary 3.22) where we
shall evoke both a left and a right-discontinuity threshold. Let us record this notation for later
reference.

Remark 3.6 (Thresholding left discontinuities). Let η > 0 (it will be fixed in Section 3.7).
Then the following sets of left/right discontinuities with jump beyond the η-threshold are finite:

(i) (left-η-threshold)

D−(η) :=
{
τ ∈ (0, T∞) : dg(γ(τ), γ(τ−)) ≥ η

}
. (3.7)

(ii) (right-η-threshold)

D+(η) :=
{
τ ∈ (0, T∞) : dg(γ(τ), γ(τ+)) ≥ η

}
. (3.8)

In both cases, the cardinality of the set is bounded by 2N , where N is the minimal number of
balls of radius η/4 that need to be used to cover the compact set K.

3.4. Describing backward secants. Before we proceed, we introduce some extra notation.
For any x ∈ K, and z ∈ Bg(x, ρ) we set

vx(z) := φ−1
x (z) ∈ TxM and ux(z) :=

vx(z)

|vx(z)|x
∈ UxM (provided z 6= x). (3.9)

By construction, vx(z) is the initial velocity of the geodesic θ : [0, 1] → M joining x to z, so
we have |vx(z)|x = dg(x, z). Let us now fix τ ∈ (0, T∞) and let us define the set of all possible
limits of backward secants at x = γ(τ) as follows:

sec−(τ) :=

{
q ∈ UxM : q = lim

sk↗τ
ux
(
γ(sk)

)}
,

where {sk}k ↗ τ indicates that {sk}k → τ and sk < τ for all k. Notice that sec−(τ) 6= ∅ for
every τ > 0 (c.f. compactness of the unit sphere).

Let us now introduce for ease reference the notion of truncated (localized) tail of the curve:
given τ ∈ (0, T∞) and an open neighborhood U of x = γ(τ), the U-truncated tail of γ at x is
defined by

ΓU (τ) := Γ(τ) ∩ U . (3.10)

The next result is important for our purposes: it asserts that every backward secant at a point
x = γ(τ) where the curve is left continuous, is normal to all tangent vectors in TxM generated
by the truncated tail ΓU (τ) via the inverse exponential mapping.

Lemma 3.7 (Backward secants). Let U be an open neighborhood of x = γ(τ) with diamU ≤ ρ.
Set x′ = γ(τ−) and recall the notation of (3.10).

(I) If x = x′ (that is, γ is left continuous at τ), then

sec−(τ) ⊂ Nexp−1
x (ΓU (τ)) (x) (3.11)
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that is,

〈q, ux(z)〉x ≤ 0 , for all q ∈ sec−(τ) and z ∈ ΓU (τ) \ {x}.

Figure 2. sec−(τ) := {ux(x′)} * Nexp−1
x (ΓU (τ)) (x)

(II) If x 6= x′ and x′ ∈ Bg(x, 2ρ) then

sec−(τ) = {ux(x′)}.

Proof. (I) Let q ∈ sec−(τ). Then for some sk ↗ τ we have

vk := exp−1
x (γ(sk)) and q = lim

k→∞

vk
|vk|x

(in TxM).

Clearly U ⊂ Bg(x, 2ρ). We may also assume that ΓU (τ) \ {x} 6= ∅ (else the conclusion follows
trivially) and {γ(sk)}k ⊂ U . Pick any z ∈ Γρ(τ) \ {x} and notice that since γ is self-contracted,
we have for all k ∈ N

dg (expx(vk), z) ≥ dg
(
x, z
)
.

Applying (3.3) for u := ux(γ(sk)), w := ux(z), t1 := dg(x, γ(sk)) = |vk|x and t2 := dg(x, z) =
|vx(z)|x we infer that

−|vk|2x + 2 dg(x, z) 〈vk, ux(z)〉x ≤ K |vk|2x dg(x, z)2.

Dividing by |vk| and passing to the limit as k →∞ we conclude easily.

(II) It is straightforward since x 6= x
′

and x′ is the limit of γ(s) as s↗ τ . �

Figure 3. sec−(τ) := {ux(x′)} * Nexp−1
x (ΓU (τ)) (x)
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Remark 3.8. Notice that for τ ∈ D−, the backward secant is unique (c.f. Lemma 3.7 (II)),
but (3.11) may fail. An illustration is given in Fig. 3.

3.5. Aperture of the truncated tail. Given any subset C of the unit sphere of Rd, we define
its aperture A(C) as follows:

A(C) := inf { 〈u1, u2〉 : u1, u2 ∈ C } . (3.12)

More generally, for every y ∈M and Γ ⊂ Bg(x, 2ρ), setting

C := {uy(z) : z ∈ Γ, z 6= x},
we define (the aperture of Γ ⊂M at y ∈M):

Ay(Γ) :=
(
A(C) =

)
inf
{
〈uy(z1), uy(z2)〉x : z1, z2 ∈ Γ \ {y}

}
. (3.13)

Roughly speaking, the aperture of a subset Γ of a manifoldM (with respect to a point y ∈M)
measures the size of the cone generated by the unit tangents u ∈ TyM at y corresponding to
all points z ∈ Γ \ {y} via the mapping φ−1

x := exp−1
x (that is, u = uy(z), according to the

notation (3.9)).

The aperture will play a major role in the sequel. The set Γ will be taken to be the (truncated)
tail ΓU (τ) of the self-contracted curve γ (determined by τ ∈ (0, T∞) and an open neighborhood
U of x = γ(τ)), and the point y ∈M at which the aperture is taken will be either:

(i) the point x = γ(τ) ∈ ΓM(τ) if the curve γ is continuous at τ ; or

(ii) a point x̄ lying in the minimal geodesic joining x = γ(τ) to x′ = γ(τ−) (see (3.5)),
if γ is left discontinuous at τ .

3.5.1. Left-continuous case. Let us assume τ ∈ (0, T∞)\D−, and let us set x = γ(τ) and consider
any open neighborhood U of x with diamU ≤ ρ. We set

Cx,U :=
{
ux(z) : z ∈ ΓU (τ) \ {x}

}
⊂ UxM . (3.14)

Lemma 3.9 (Aperture of ΓU (τ) at x). Let r ∈ (0, ρ) and U be any nonempty open subset of M
with diamU ≤ r. Then for every τ ∈ (0, T∞) with x = γ(τ) ∈ U the following property holds:

Ax(ΓU (τ))
(

= A(Cx,U )
)
≥ − Kr

2

2
. (3.15)

Proof. Set x := γ(τ) and for i ∈ {1, 2} let zi = γ(ti) ∈ ΓU (τ) \ {x} with τ < t1 ≤ t2.
Self-contractedness of γ yields that dg (x, z2) ≥ dg (z1, z2), or equivalently,

|vx(z2)|2x = dg (x, expx(vx(z2)))2 ≥ dg (expx(vx(z1)), expx(vx(z2)))2

= Φux(z1),ux(z2)
x (dg(x, z1), dg(x, z2)) .

where we use the notations introduced in (3.2) and (3.9). Therefore, applying (3.3) with

ti := dg(x, zi) = |vx(zi)| , i ∈ {1, 2}
we get

− |vx(z1)|2x + 2 〈vx(z1), vx(z2)〉x ≥ −K |vx(z1)|2x |vx(z2)|2x ,
which yields

〈ux(z1), ux(z2)〉x ≥ −
Kr2

2
.

This proves the assertion. �
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Remark 3.10. Roughly speaking, the above result asserts that the cone generated by the
U-truncated tail ΓU (τ) at TxM has angle almost equal (a bit more than) π/2, for any open
neighborhood U of x of sufficiently small diameter. This is the Riemannian analogue of [9,
Section 3, Formula (2)] (see also [4, Fig. 1]).

3.5.2. Left-discontinuous case. Let τ ∈ D− (that is, γ is left-discontinuous at x = γ(τ)). In
this case, for reasons that will become transparent in Section 3.6 (see also Remark 3.8), we
need to consider the aperture of the truncated tail ΓU (τ) with respect to a different point x̄
(other than x = γ(τ)). This point will be taken on the minimal geodesic joining x to x′ and
relatively close to x′ := γ(τ−). To define this geodesic, notice that q̂ := ux(x′) is the (unique)
left secant of γ at τ (c.f. Lemma 3.7 (II)), that is, the initial velocity of the unit speed geodesic
θ : [0, dg(x, x

′)]→M joining x to x′. For any β ∈ (0, 1/2) we set

x̄ = θ
(
(1− β) dg(x, x

′)
)

and q̄ = θ̇
(
(1− β) dg(x, x

′)
)

= ux̄(x′). (3.16)

(The exact location of the point x̄ will be determined in a uniform manner in Lemma 3.17 where
we fix a common value β̄ for all points of left discontinuity τ ∈ D−.)

Assuming for the moment that this has been done (therefore, given x (and x′) the point x̄ is
determined unambiguously), we set

Cx̄,U :=
{
ux̄(z) : z ∈ ΓU (τ)

}
⊂ Ux̄M . (3.17)

We seek for good lower bound estimations for the aperture Ax̄(ΓU (τ)) := A(Cx̄,U ).

This would not be an easy task though: Indeed, since x̄ is not a point of γ, the previous
argument (c.f. proof of Lemma 3.9), based on self-contractedness, is no longer valid. Our new
task will require several technical estimations (see forthcoming Lemma 3.12 and Lemma 3.13),
the adaptation of the constant ρ (given in Remark 3.3) as well as estimating the aperture of
ΓU (τ) at the point x′ (which might not be a point of the curve, but belongs to its closure).

Lemma 3.11 (Aperture of ΓU (τ) at x′). Let U be an open subset of M with diameter r :=
diam U ∈ (0, ρ) and let τ ∈ D− be such that both x = γ(τ) and x′ := γ(τ−) are in U . It holds:

Ax′(ΓU (τ)) ≥ − Kr
2

2
. (3.18)

Proof. The proof is essentially the same as in Lemma 3.9. Since x′ := lims↗τ γ(s) is a limit of
points of γ, the estimation (3.15) holds true for the aperture of ΓU (τ) at γ(s) for all s ∈ (0, τ)
sufficiently close to τ so that U ⊂ Bg(γ(s), ρ). We conclude easily by a standard continuity
argument. �.

Lemma 3.12 (Technical estimations - I). Let U be an open neighborhood of x = γ(τ), where
τ ∈ D−. Fix any β ∈ (0, 1/2), set x′ = γ(τ−) and x̄ = θ ((1− β) dg(x, x

′)) . Then for every
z ∈ ΓU (τ) one has: (

1− 2β

2

)
dg(x, x

′) ≤ dg(x̄, z) (3.19)

and (
1− 4β

1− 2β

)
≤ dg(x

′, z)

dg(x̄, z)
≤
(

1

1− 2β

)
. (3.20)

Proof. Since γ is self-contracted, it follows easily that dg(x, z) ≤ dg(x′, z). Therefore

dg(x, x
′) ≤ dg(x, z) + dg(x

′, z) ≤ 2dg(x
′, z).
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It follows by (3.16) that dg(x̄, x
′) = βdg(x, x

′). Thus, we deduce

1

2
dg(x, x

′) ≤ dg(x′, z) ≤ dg(x̄, z) + dg(x̄, x
′) = dg(x̄, z) + βdg(x, x

′).

which yields (3.19). On the other hand

dg(x̄, z) ≤ dg(x̄, x′) + dg(x
′, z) = βdg(x, x

′) + dg(x
′, z),

which combined with (3.19) yields(
1− 4β

2

)
dg(x, x

′) ≤ dg(x′, z). (3.21)

Therefore we get

dg(x̄, z) ≤ dg(x̄, x′) + dg(x
′, z) ≤ βdg(x, x′) + dg(x

′, z) ≤
(

1− 2β

1− 4β

)
dg(x

′, z).

In an analogous way, using (3.19) again, we deduce

dg(x
′, z) ≤ dg(x′, x̄) + dg(x̄, z) ≤ βdg(x, x′) + dg(x̄, z) ≤

(
1

1− 2β

)
dg(x̄, z).

We conclude easily. �

Lemma 3.13 (Technical estimations - II). Let r ∈ (0, ρ), β ∈ (0, 1/8) and τ ∈ D− and set
x = γ(τ), x′ = γ(τ−) and x̄ = θ ((1− β) dg(x, x

′)) (according to the notation of (3.16)). Then
for every open subset U of M with diamU ≤ r and {x, x̄, x′} ⊂ U and every z ∈ ΓU (τ) we have

dg(x̄, z)
2 − dg(x′, x)2 ≥ −(1 +Kr2)dg(x̄, x

′)2 − 2dg(x̄, x
′)dg(x̄, z), (3.22)

and

dg(x̄, z)
2 − dg(x′, x)2 ≤ 2dg(x̄, x

′)2 + dg(x̄, x
′)dg(x

′, z)Kr2. (3.23)

Proof. Let z ∈ ΓU (τ). Since x ∈ ΓU (τ) and x 6= x′ we deduce by Lemma 3.11 that

c′(x, z) := 〈ux′(x), ux′(z)〉x′ ≥ −
Kr2

2
. (3.24)

Let us set σ := dg(x, x
′) (so that dg(x̄, x

′) = βσ),

d̄ := dg(x̄, z) and d′ := dg(x
′, z).

We also set

c̄(x′, z) := 〈ux̄(x′), ux̄(z)〉x̄
(
≥ −1

)
.

Let us first apply Lemma 3.2 for the function Φ
ux̄(x′),ux̄(z)
x̄ , with t1 = dg(x̄, x

′) = βσ and t2 =
d̄ := dg(x̄, z). Observing that

d′ = dg(x
′, z) =

[
Φ
ux̄(x′),ux̄(z)
x̄ (βσ, d̄)

]1/2
,

we deduce readily ∣∣∣d′2 − (βσ)2 − d̄2 + 2βσ d̄ c̄(x′, z)
∣∣∣ ≤ K (βσ)2 d̄2.

Since c̄(x′, z) ≥ −1 and d̄ ≤ r (recall that x̄, z ∈ U) we deduce

d̄2 − d′2 ≥ −K (βσ)2 d̄2 − (βσ)2 + 2βσ d̄ c̄(x′, z) ≥ −(1 +Kr2) (βσ)2 − 2 (βσ) d̄,

thus (3.22) holds.
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To establish (3.23), we apply Lemma 3.2 for Φ
ux′ (x̄),ux′ (z)
x′ , with t1 = dg(x̄, x

′) = βσ and t2 =
d′ := dg(x

′, z). In this case we have

d̄ := dg(x̄, z) =
[
Φ
ux′ (x̄),ux′ (z)
x′ (βσ, d′)

]1/2
.

Setting

c′(x̄, z) := 〈ux′(x̄), ux′(z)〉x′ = 〈ux′(x), ux′(z)〉x′
(
≥ − Kr

2

2

)
(3.25)

we obtain readily ∣∣∣d̄− (βσ)2 − d′2 + 2 (βσ) d′ c′(x̄, z)
∣∣∣ ≤ K (βσ)2 d′2.

In view of (3.25) the above yields

d̄2 − d′2 ≤ (1 +Kd′2) (βσ)2 + (βσ) d′Kr2.

Since d′ ≤ r and Kr2 ≤ 1 (c.f. (3.4)) we conclude easily. �

We are now ready to state the following quantitative result for the aperture of ΓU (τ) with
respect to x̄. Let now τ ∈ D− and let U be open subset of M with diamU ≤ r̄ containing
θ([0, dg(x, x

′]) (c.f. notation of (3.16)).

Proposition 3.14 (Aperture of ΓU (τ) at x̄). Let r ∈ (0, ρ), β ∈ (0, 1/8) and τ ∈ D− and set
x = γ(τ), x′ = γ(τ−) and x̄ = θ ((1− β) dg(x, x

′)) (according to the notation of (3.16)). Then
for every open subset U of M with diamU ≤ r and {x, x̄, x′} ⊂ U we have

Ax̄(ΓU (τ)) ≥ −4K r2 − 8β .

Proof. Since x′ /∈ ΓU (τ) we deduce by Lemma 3.11 that for every z1, z2 ∈ ΓU (τ) ut holds

c′(z1, z2) := 〈ux′(z1), ux′(z2)〉x′ ≥ −
Kr2

2
. (3.26)

In order to simplify notation, let us set, as before, σ := dg(x, x
′) and di := dg(x, zi)

d̄i := dg(x̄, zi)
d′i := dg(x

′, zi)
for i ∈ {1, 2}.

Applying Lemma 3.2 for Φ
ux′ (z1),ux′ (z2)
x′ and setting

e := dg(z1, z2) =
[
Φ
ux′ (z1),ux′ (z2)
x′ (d′1, d

′
2)
]1/2

we obtain ∣∣e2 − d′21 − d′22 + 2 d′1 d
′
2 c
′(z1, z2)

∣∣ ≤ Kd′21 d′22 . (3.27)

In an analogous manner, applying Lemma 3.2 for Φ
ux̄(z1),ux̄(z2)
x̄ and setting again

e := dg(z1, z2) =
[
Φ
ux̄(z1),ux̄(z2)
x̄ (d̄1, d̄2)

]1/2

and

c̄(z1, z2) := 〈ux̄(z1), ux̄(z2)〉x̄
we obtain ∣∣e2 − d̄2

1 − d̄2
2 + 2d̄1d̄2c̄(z1, z2)

∣∣ ≤ Kd̄2
1d̄

2
2. (3.28)
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Figure 4. sec−(τ) := {ux(x′)} * Nexp−1
x (ΓU (τ)) (x)

Combining (3.27) and (3.28) we deduce

2d̄1d̄2c̄(z1, z2)− 2d′1d
′
2c
′(z1, z2) ≥ −K

(
d̄2

1d̄
2
2 + d′21 d

′2
2

)
+ d̄2

1 − d′21 + d̄2
2 − d′22 ,

thus in particular

c̄(z1, z2) ≥
(
d′1d
′
2

d̄1d̄2

)
c′(z1, z2)− K

2
d̄1d̄2

(
1 +

(
d′1d
′
2

d̄1d̄2

)2
)

+
d̄2

1 − d′21
2 d̄1 d̄2

+
d̄2

2 − d′22
2 d̄1 d̄2

. (3.29)

To proceed, we need to bound the last two terms of (3.29). Applying Lemma 3.13 we obtain

d̄2
i − d′2i ≥ −(1 +Kr2) (βσ)2 − 2 (βσ) d̄i , for i ∈ {1, 2} ,

thus, dividing by 2 d̄1d̄2 we deduce in view of (3.19) and (3.4) that

d̄2
i − d′2i
2 d̄1d̄2

≥ − 4β2

(1− 2β)2
− 2β

1− 2β
= − 2β

(1− 2β)2
.

Using the above estimation, together with (3.26), (3.19) and (3.20), we deduce from (3.29) that

c̄(z1, z2) ≥ −
(

1− 4β

1− 2β

)2 K

2
r2 − K

2
r2

(
1 +

1

(1− 2β)4

)
− 4β

(1− 2β)2
.

We conclude easily. �

The following result is the analogue of Lemma 3.7 (I) for the left-discontinuous case. Roughly
speaking, the result (almost) remedies the failure illustrated in Remark 3.8 by moving the point
x = γ(τ) (where γ is left-discontinuous) to x̄ := θ ((1− β) dg(x, x

′)) (see (3.16)) and making a
parallel transportation of the secant q := ux(x′) at x to q̄ ∈ Tx̄M along the geodesic θ joining x
to x̄.
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Proposition 3.15 (Transported secant). Under the above notation and same assumptions as
in Proposition 3.14, it holds:

〈q̄, ux̄(z)〉x̄ := 〈ux̄(x′), ux̄(z)〉x̄ ≤ 4β + 2Kr2, for all z ∈ ΓU (τ).

Proof. Let z ∈ ΓU (τ), set

σ := dg(x, x
′), d̄ = dg(x̄, z) and c̄(x′, z) := 〈ux̄(x′), ux̄(z)〉x̄.

Similarly to the proof of Lemma 3.13, we apply Lemma 3.2 for the function Φ
ux̄(x′),ux̄(z)
x̄ with

t1 = dg(x̄, x
′) = βσ, t2 = d̄ := dg(x̄, z) and

d′ = dg(x
′, z) =

[
Φ
ux̄(x′),ux̄(z)
x̄ (βσ, d̄)

]1/2
.

We deduce readily

d′2 − (βσ)2 − d̄2 + 2βσ d̄ c̄(x′, z) ≤ K (βσ)2 d̄2. (3.30)

Notice that (3.23) yields

d̄2 − d′2

2βσ d̄
≤ β

(σ
d̄

)
+

(
d′

d̄

)
K

2
r2. (3.31)

Combining (3.30) with (3.31) and using (3.19) and (3.20) we deduce (recall that βσ ≤ r and
d̄ ≤ r) we get

c̄(x′, z) ≤ K

2
r2 +

(
3βσ

2d̄

)
+

(
d′

d̄

)
K

2
r2 ≤ K

2
r2 +

(
3β

1− 2β

)
+

(
1

1− 2β

)
K

2
r2.

We conclude easily. �

3.6. Estimations involving “almost secants”. We shall now modify the (backward) secant
q ∈ sec−(τ), if γ is left-continuous at τ (respectively the transported secant q̄ := ux̄(x′), if
γ is left-discontinuous at τ) to obtain a nearby direction p̂ of TxM (respectively of Tx̄M).
This direction will be called an “almost secant” at x (respectively at x̄) and will be used to
quantify the (backward) growth of the self-contracted curve γ. This will be done for all points
of left-continuity as well as for all points of left discontinuous up to a certain discontinuity jump.

Lemma 3.16 (Strong separation lemma). Let C be a nonempty subset of the unit sphere of Rd
satisfying

〈u1, u2〉 ≥ −δ, for all u1, u2 ∈ C , (3.32)

where

δ =
1

2(d+ 1)
. (3.33)

Then

conv (C)
⋂
B(0, δ) = ∅ . (3.34)

Proof. Let us assume, towards a contradiction, that for some u ∈ conv(C) we have ||u|| < δ.

By Caratheodory’s lemma there exist λ0, . . . , λd ∈ [0, 1] with
∑d

i=0 λi = 1 and unit vectors
u0, . . . , ud ∈ C such that ∥∥∥∥∥

d∑
i=0

λiui

∥∥∥∥∥ < δ.
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Let i0 ∈ {0, . . . , d} be such that λi0 ≥ λi for any i ∈ {0, . . . , d}. Then λi0 ≥ 1/(d + 1) and by
the Cauchy-Schwarz inequality

δ >

〈
ui0 ,

d∑
i=0

λiui

〉
=

d∑
i=0

λi 〈ui0 , ui〉 = λi0 +
∑
i 6=i0

λi 〈ui0 , ui〉

>
1

d+ 1
− δ

∑
i 6=i0

λi

 >
1

d+ 1
− δ = δ,

a clear contradiction. Thus the assertion holds true. �

We shall now fix the values of some constants which will be used in a crucial way in the
forthcoming estimations. We set

ᾱ =
1

32(d+ 1)2
:=

δ2

8
, (where d = dimM) (3.35)

and we chose r̄ ∈ (0, ρ), β̄ ∈ (0, 1/8) sufficiently small to ensure that{
4K r̄2 + 8 β̄ < δ
2K r̄2 + 4 β̄ < ᾱ.

(3.36)

Thus in view of Lemma 3.9 and respectively of Proposition 3.14 we deduce that A(Cx,U ) ≥ −δ,
that is,

〈u1, u2〉x ≥ −δ, for all u1, u2 ∈ Cx,U (3.37)

and respectively A(Cx̄,U ) ≥ −δ, that is,

〈u1, u2〉x̄ ≥ −δ, for all u1, u2 ∈ Cx̄,U . (3.38)

We are now ready to state a quantitative result for a bunch of almost secant directions.

Lemma 3.17 (measuring growth using “almost secants”). Let r̄ ∈ (0, ρ), β̄ ∈ (0, 1/8) and ᾱ > 0
be as in (3.35)–(3.36).

(i) for every τ ∈ (0, T∞) \D− (that is, x = γ(τ) = γ(τ−)) and for every secant q ∈ sec−(τ),
there exists p̂ ∈ UxM such that for every open subset U ofM with x ∈ U and diamU ≤ r̄,
every p ∈ B̂x(p̂, ᾱ) and u ∈ Cx,U it holds

〈p, u〉x ≤ −ᾱ and 〈p, q〉x ≥ ᾱ .

(ii) for every τ ∈ D−, for x̄ and q̄ = ux̄(x′) (transported secant at x̄), there exists p̂ ∈ Ux̄M
such that for every open subset U of M with {x, x̄, x′} ⊂ U and diamU ≤ r̄, every

p ∈ B̂x̄(p̂, ᾱ) and u ∈ Cx̄,U it holds:

〈p, u〉x̄ ≤ −ᾱ and 〈p, q̄〉x̄ ≥ ᾱ .

Proof. Both assertions follow by the same arguments and estimations. In order to present a
common proof let us proceed to the following identification:

– If x = γ(τ) = γ(τ−), we identify the tangent space TxM with the Euclidean space Rd
equipped with the scalar product 〈·, ·〉x.

– If x = γ(τ) 6= γ(τ−), we identify the tangent space Tx̄M with the Euclidean space Rd
equipped with the scalar product 〈·, ·〉x̄.
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In the sequel, we shall denote (in both cases) this scalar product by 〈·, ·〉. We further set

C = Cx,U (respectively C = Cx̄,U ) .

In view of (3.37) and (3.38) we deduce that condition (3.32) of Lemma 3.16 holds true. Therefore,

the projection of 0 to conv(C), denoted by ĉ ∈ TxM satisfies:

||ĉ|| ≥ δ and 〈−ĉ, u− ĉ〉 ≤ 0, ∀u ∈ C.
Recalling that C is made up of unit vectors, we deduce that for every u ∈ C it holds:

〈−ĉ, u〉 ≤ −||ĉ||2 ≤ −δ2 = −8ᾱ. (3.39)

(i) Let τ ∈ (0, T∞) \D− and fix any backward secant q ∈ sec−(τ) ∈ TxM≡ Rd and set

p̂ :=
q − ĉ
||q − ĉ||

.

By Lemma 3.7 (I) we get 〈q, u〉 ≤ 0, for all u ∈ C. Pick now any p ∈ B̂x(p̂, ᾱ) ≡ B(p̂, ᾱ), that is,
p = p̂+ v for some v ∈ TxM≡ Rd with ||v|| ≤ ᾱ. Then for every u ∈ C (unit vector) in view of
(3.39) we deduce

〈p, u〉 = 〈p̂+ v, u〉 ≤ 〈q, u〉+ 〈−ĉ, u〉
||q − ĉ||

+ ||v|| ≤ 0− ||ĉ||2

||q − ĉ||
+ ᾱ ≤ −8ᾱ

||q − ĉ||
+ ᾱ ≤ −3ᾱ ≤ −ᾱ,

where the fact that ||q − ĉ|| ≤ 2 is used. Finally,

〈p, q〉 = 〈p̂+ v, q〉 ≥ ||q||
2 + 〈−ĉ, q〉
||q − ĉ||

− ||v|| ≥ 1 + 0

2
− ᾱ ≥ ᾱ.

(ii) Let τ ∈ D− and consider the transported secant q̄ = ux̄(x′) ∈ TxM ≡ Rd at x̄. In an
analogous manner to the above, we set

p̂ :=
q̄ − ĉ
||q̄ − ĉ||

.

By Proposition 3.15 we get

〈q̄, u〉 ≤ ᾱ, for all u ∈ C . (3.40)

Since ĉ ∈ C we deduce

||q̄ − ĉ||2 = ||q̄||2 + ||ĉ||2 − 〈q̄, ĉ〉 ≥ 1 + δ2 − ᾱ = 1 + 7ᾱ ≥ 1.

In particular

1 ≤ ||q̄ − ĉ|| ≤ 2 . (3.41)

Let p ∈ B̂x̄(p̂, ᾱ) ≡ B(p̂, ᾱ), that is, p = p̂+ v for some v ∈ Tx̄M≡ Rd with ||v|| ≤ ᾱ. Then for
every u ∈ C (unit vector) in view of (3.40) we deduce

〈p, u〉 = 〈p̂+ v, u〉 ≤ 〈q̄, u〉+ 〈−ĉ, u〉
||q̄ − ĉ||

+ ||v|| ≤ ᾱ− ||ĉ||2

||q̄ − ĉ||
+ ᾱ ≤ −7ᾱ

||q̄ − ĉ||
+ ᾱ ≤ −ᾱ.

To conclude, using again (3.40) together with (3.41) we get

〈p, q̄〉 = 〈p̂+ v, q̄〉 ≥ ||q̄||
2 + 〈−ĉ, q̄〉
||q̄ − ĉ||

− ||v|| ≥ 1− ᾱ
||q̄ − ĉ||

− ᾱ ≥ 1− 2ᾱ ≥ ᾱ.

This concludes the proof of the assertion. �
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3.7. Width estimates via external tangents. We shall now define external functions which
play the role of the projected width in the Euclidean case. To this end, for ρ > 0 given by
Lemma 3.1, and ξ = (y, p) ∈ UK (that is, y ∈ K and p ∈ TyM with |p|y = 1) we define the
smooth function {

bξ : Bg(y, 2ρ)→ R
bξ(z) := b(y,p)(z) = 〈p, vy(z)〉y.

(3.42)

We underline two important properties of the above mapping that will be used in the sequel.

Lemma 3.18 (Properties of bξ). The following properties hold:

(i) for every ξ = (x, p) in UK it holds:

∇b(x,p)(x) = p ∈ TxM (3.43)

(ii) there exists L > 0 such that for every ξ = (y, p) ∈ UK and x, z ∈ Bg(y, ρ) it holds (recall

notation (3.9)):

|bξ(z)− (bξ(x) + 〈∇bξ(x), vx(z)〉x)| ≤ L|vx(z)|2x . (3.44)

Proof. Let us recall from Lemma 3.1 the notation φx := expx for the exponential mapping
and let us notice that bξ(z) := 〈p, φ−1

x (z)〉x. Since Dφ−1
x (x) is the identity mapping on TxM it

follows by the chain rule that Dbξ(y) := Db(x,p)(x) = 〈p, ·〉x. This proves (i).
Let us now observe that the mapping

(ξ, x) := ((y, p), x) 7→ bξ(x) := 〈p, φ−1
y (x)〉y (3.45)

is smooth (whenever it is well-defined, that is, dg(x, y) ≤ 2ρ). The second assertion follows by
considering the exact Taylor expansion of order 2 for the function z 7→ bξ(z) at the point x,
together with the compactness of K and UK and a standard argument. �.

The following result is crucial for our purposes. Roughly speaking it will be used to associate
to each pair (x, p̂) ∈ UM (in the left-continuous case – c.f. Lemma 3.17(i)) and respectively
(x, p̂) ∈ UM (in the left-discontinuous case – c.f. Lemma 3.17(ii)) an element ξ = (y, p) ∈ UK
(among a finite prescribed family). Each such ξ will provide an “external” tangent at x (namely,
the tangent vector ∇bξ(x) ∈ TxM) and respectively at x̄ (namely, ∇bξ(x̄) ∈ Tx̄M) which turns
out to satisfy almost the same estimations as in Lemma 3.17. In this way we shall eventually
replace (the infinite set of) “almost secants” by (the set of) external tangents. As we shall show
in the sequel, this later will be described by finitely many generators, as a consequence of the
compactness.

Corollary 3.19 (Approximating “almost secants” by external tangents). Let ᾱ > 0 be given

by (3.35). Then there exists r̂ ∈ (0, ρ) such that for every ξ̂ = (x, p̂) ∈ UK, ξ = (y, p) ∈ BD(ξ̂, r̂)
(Riemannian ball in the unit bundle UM), and z ∈ Bg(x, r̂) we have:∣∣∇b(y,p)(x)− p̂

∣∣
x
<
ᾱ

4
; (3.46)

and

|bξ(z)− (bξ(x) + 〈∇bξ(x), vx(z)〉x)| ≤ ᾱ

4
|vx(z)|x . (3.47)

Proof. Since the mapping

(ξ, x) := ((y, p), x) 7→ Dbξ(x) := 〈p,Dφ−1
y (x)(·)〉y
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is continuous, we deduce easily from the compactness of K and UK and relation (3.43) that

there exists r̂ > 0 such that for all ξ̂ = (x, p̂), ξ = (y, p) in UK satisfying Dg((x, p̂), (y, p)) < r̂
we have ∣∣∇b(y,p)(x)−∇b(x,p̂)(x)

∣∣
x

=
∣∣∇b(y,p)(x)− p̂

∣∣
x
<
ᾱ

4
.

For the second assertion, let L > 0 be given by Lemma 3.18 (ii). We shrink r̂ > 0 if necessary
to ensure that r̂ ≤ min{ρ, ᾱ/4L} and choose any z ∈ Bg(x, r̂). Since dg(x, z) = |vx(z)|x < ᾱ/4L
we deduce readily (3.47) from (3.44). �.

Let us now apply the previous result to the case where ξ̂ = (x, p̂) ∈ UK is directly related to
our self-contracted curve. We consider two cases:

• Case τ ∈ (0, T∞) \D− (point of left-continuity of γ):
for every backward secant q ∈ sec−(τ) at x = γ(τ) we associate its (almost secant)
approximation p̂ ∈ UxK (c.f. Lemma 3.17 (i)) and we set

ξ̂ := (x, p̂) . (3.48)

(Notice that different secants at x might give rise to different p̂ ∈ UxK (therefore to

different elements ξ̂ ∈ UK).
• Case τ ∈ D− \ D−(η) (point of left-discontinuity of γ where η is determined in the next

lemma). In this case the backward secant q := ux(x′) at x = γ(τ) is unique).
We set x̄ := θ ((1− β) dg(x, x

′)), q̄ := ux̄(x′), see (3.16), and consider p̂ ∈ Ux̄K (c.f.
Lemma 3.17 (ii)). We set:

ξ̂ := (x̄, p̂). (3.49)

Under the above notation we have:

Lemma 3.20 (Approximating estimations). There exists η ∈ (0, ρ) such that the following
statements hold:

(I) Let τ ∈ (0, T∞) \D− and q ∈ sec−(τ), and let ξ̂ := (x, p̂) be defined as in (3.48). Then

for every ξ = (y, p) ∈ BD(ξ̂, η), setting U := Bg(y, 2η) we have

bξ(z) ≤ bξ(x)− 3ᾱ

4
dg(x, z), ∀z ∈ ΓU (τ) \ {x}, (3.50)

and

〈∇bξ(x), q〉x ≥ ᾱ. (3.51)

(II) Let D−(η) be as in (3.7) (for this value of η > 0) and τ ∈ D−�D−(η) (that is, 0 <

dg(x, x
′) < η). Let ξ̂ := (x̄, p̂) be defined by (3.49). Then for every ξ = (y, p) ∈ BD(ξ̂, η),

setting U = Bg(y, 2η) we have

bξ(z) ≤ bξ(x̄)− 3ᾱ

4
dg(x̄, z), ∀z ∈ ΓU (τ), (3.52)

and

〈∇bξ(x̄), q̄〉x̄ ≥ ᾱ. (3.53)

Proof. Let r̄ > 0 be given by (3.36) and r̂ > 0 be given by Corollary 3.19. Shrinking the latter
if necessary, we may assume r̂ ≤ r̄/2. Fix now any η ∈ (0, r̂/3).

We shall first consider the case τ ∈ (0, T∞) \ D−. We fix q ∈ sec−(τ) and set ξ̂ := (x, p̂). Let

ξ = (y, p) ∈ BD(ξ̂, η). It follows from (3.1) that dg(x, y) < η. Therefore,

U := Bg(y, 2η) ⊂ Bg(x, r̂) and diam U ≤ r̄.
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By Corollary 3.19 we obtain ∇bξ(x) ∈ B̂x(p̂, ᾱ/4), therefore we deduce from Lemma 3.17 (i)
that for all z ∈ ΓU (τ) \ {x} it holds

〈∇bξ(x), ux(z)〉x ≤ −ᾱ and 〈∇bξ(x), q〉x ≥ ᾱ .

Recalling notation from (3.9) we have for all z ∈ ΓU (τ), z 6= x

vx(z) = |vx(z)|xux(z) = dg(x, z)ux(z).

Using the above we deduce from (3.47) that

bξ(z)− bξ(x) ≤ 〈∇bξ(x), vx(z)〉x +
ᾱ

4
|vx(z)|x ≤

(
〈∇bξ(x), ux(z)〉x +

ᾱ

4

)
dg(x, z) ≤ −

3ᾱ

4
dg(x, z).

The case τ ∈ D−�D−(η) follows in a similar way under obvious amendments. �

Remark 3.21 (Determining an η-net). We say that a finite subset F of UK is an η-net if F
has an nonempty intersection with any ball BD(ξ̂, η) where ξ̂ runs throughout UK. Since UK is
compact, using a standard argument we infer from Lemma 3.20 above that there exists a finite
η-net

F = {ξi = (yi, pi)}ki=1 (3.54)

in UM (which goes together with the finite family of open sets
{
Ui := Bg(yi, 2η)

}k
i=1

) such that

for every τ ∈ (0, T∞) \D− and q ∈ sec−(τ) (respectively, for every τ ∈ D−�D−(η)) and every
z ∈ ΓU (τ) relations (3.50)–(3.51) (respectively (3.52)–(3.53)) hold.

We are now ready to state our fundamental result, which states that the growth of the length
of a self-contracted curve is locally controlled by an active external function bξ (determined by
some ξ ∈ F). To this end, let us recall from Remark 3.6 the notation of D−(η) and D+(η)
(η-threshold for left and right discontinuity)

Corollary 3.22 (Determining an η-net). Under the notation of Remark 3.21 we have:
(i) for every τ ∈ (0, T∞) \D− there exists δ > 0 such that for every s ∈ (τ − δ, τ ] there exists
ξ ∈ F satisfying

bξ(γ(s))− bξ(γ(τ)) ≥ ᾱ

4
dg(γ(s), γ(τ)). (3.55)

(ii) for every τ ∈ D− \ D−(η) there exists ξ ∈ F and δ > 0 such that for every s ∈ (τ − δ, τ ] it
holds:

bξ(γ(s))− bξ(γ(τ)) ≥ ᾱ

4
dg(γ(s), γ(τ)). (3.56)

In both cases, if τ /∈ D+(η), then the above formulas (3.55) and (3.56) hold true when we replace
γ(τ) by z = γ(t) for any t ∈ [τ, τ + δ).

Proof. (i). Let τ ∈ (0, T∞)\D− (point of left-continuity) and set x = γ(τ). Since sec−(τ) is the
set of accumulation points of the subset {ux(γ(s))} of UxM as s↗ τ , and since UxM is compact,
it follows that there exists δ > 0 such that for every s ∈ (τ − δ, τ ], there exists qs ∈ sec−(τ)
such that |qs− ux(γ(s))|x < ᾱ/8. Applying Remark 3.21 (for x = γ(τ) and qs ∈ sec−(τ)) we get
ξ = (y, q) ∈ F (depending on s) and U := Bg(y, 2η) such that (3.50)–(3.51) hold true. It follows
from (3.47) that

bξ(γ(s))− bξ(x) ≥
(
〈∇bξ(x), ux(γ(s))〉x −

ᾱ

4

)
|vx(γ(s))|x. (3.57)
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Let us provide a lower bound for the right-hand side (we set u := ux(γ(s)) and recall that
|u− qs| < ᾱ/8).

〈∇bξ(x), u〉x = 〈∇bξ(x), qs〉x + 〈qs, u− qs〉x + 〈∇bξ(x)− qs, u− qs〉x (3.58)

≥ ᾱ− (1 + |∇bξ(x)− qs|x) |u− qs|x ≥
ᾱ

2
.

We conclude by combining (3.57) and (3.58) and recalling that |vx(γ(s))|x = dg(x, γ(s)).

(ii). Let us now assume τ ∈ D−\D−(η), set x = γ(τ), x′ = γ(τ−) and x̄ := θ
(
(1− β̄) dg(x, x

′)
)
.

In this case, Remark 3.21 provides ξ = (y, q) ∈ F and U := Bg(y, 2η) such that (3.52)–(3.53)
hold true. It follows again from (3.47) that

bξ(x
′)− bξ(x̄) ≥

(
〈∇bξ(x̄), ux̄(x′)〉x −

ᾱ

4

)
|vx̄(x′)|x̄.

Since q̄ := ux̄(x′) and dg(x̄, x
′) = |vx̄(x′)|x̄ the above yields directly in view of (3.53) that

bξ(x
′)− bξ(x̄) ≥ 3ᾱ

4
dg(x̄, x

′).

Combining the above with (3.52) for z = x we deduce easily that

bξ(x
′)− bξ(x) ≥ 3ᾱ

4
dg(x, x

′).

Since x′ = lims↗τ γ(s) and bξ is continuous we obtain via a standard argument that there exists
δ > 0 such that (3.56) holds.

Let us finally assume (in both cases (i) and (ii) above) that τ /∈ D+(η), that is, dg(γ(τ), γ(τ+) <
η. Therefore, shrinking δ if necessary we may assume that for all t ∈ [τ, τ + δ) it holds
dg(γ(τ), γ(t) < η, yielding that z = γ(t) ∈ U , hence (3.50) (in case (i)) and respectively,
(3.52) (in case (ii)) hold true. The result follows easily. �

3.8. Proof of finite length. Let F ⊂ UM be the finite η-net defined in (3.54). Then for any
i ∈ {1, . . . , k} and ξi = (yi, pi) ∈ F , we consider the function bξ given by (3.42) and observe that

Ui := Bg(yi, 2η) ⊂ Bg(yi, 2 ρ) := dom bξ.

We now define the local width of γ at x = γ(τ) with respect to ξi as follows:

Wi(τ) := diam {bξi(z) : z ∈ ΓUi(τ)} ( Ui := Bg(yi, 2η)) , (3.59)

using the convention that diam ∅ = 0. Notice that for τ1 ≤ τ2 we have ΓUi(τ2) ⊂ ΓUi(τ1),
therefore Wi(τ2) ≤Wi(τ1). In order words, the function τ 7−→Wi(τ) is decreasing on [0, T∞) for
every i ∈ {1, . . . , k}. Let us now consider the (decreasing) aggregate function

WF (τ) :=
k∑
i=1

Wi(τ). (3.60)

The following result holds.

Proposition 3.23. Let [a, b] ⊂ (0, T∞)� (D−(η) ∪ D+(η)). Then for every partition

a = t0 < t1 < . . . < tn = b

of [a, b] it holds:
n∑
j=1

dg(γ(ti−1), γ(ti)) ≤
ᾱ

4
(WF (a)−WF (b)) . (3.61)
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Proof. We deduce easily from Corollary 3.6 and the definition of WF in (3.60) that for every
τ /∈ D−(η) ∪ D+(η) there exists δτ > 0, such that for all s, t ∈ (τ − δτ , τ + δτ ) with s ≤ τ ≤ t it
holds:

WF (s)−WF (t) ≥ ᾱ

4
dg(γ(s), γ(t)) . (3.62)

Let {ti}ni=0 be a partition of [a, b]. Then for every i ∈ {1, . . . , n}, using a standard compactness
argument on [ti−1, ti] we deduce that (3.62) is true for s = ti−1 and t = ti. Summing up these
inequalities, for all i we obtain (3.61). �

We are now ready to conclude the proof of Theorem 2.2.

Proof of Theorem 2.2. Let γ : [0, T∞) →M be a self-contracted curve. Set N := D−(η) ∪
D+(η) and denote by |N | its cardinality. Fix T < T∞ and denote by γT the restriction of γ to
the compact interval [0, T ]. We shall prove that γT is rectifiable and its length is bounded by
WF (0) + |N |Σ, where Σ is a strict upper bound for the maximal left or right jump of γ, that is,

Σ > max

{
max
σ∈D̂

dg(γ(σ), γ(σ−)) , max
σ∈D+(η)

dg(γ(σ), γ(σ+))

}
.

Since N is finite (and the right and left limits exist at every point), we deduce easily that there
exists δ′ > 0 such that for any σ ∈ N and any s, t ∈ (σ − δ′, σ + δ′) with s ≤ σ ≤ t it holds

dg(γ(s), γ(t) < Σ . (3.63)

Notice that the compact set [0, T ] \
⋃
σ∈N (σ − δ′, σ + δ′) is a finite union of intervals [ai, bi],

for each of which Proposition 3.23 applies. We deduce easily that

`(γT ) ≤ ᾱ

4
WF (0) + |N |Σ .

Since the above bound is independent of T , passing to the limit as T → +∞ we obtain that the
length of γ is bounded by the same constant. �

Remark 3.24. The above proof shows that the upper bound for the length of any self-contracted
curve γ : [0, T∞) → K only depends on the dimension of the manifold and the compact set K
(see also Remark 3.6).
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