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Abstract

Li and Shanmugalingam showed in [20] that annularly quasiconvex met-

ric spaces endowed with a doubling measure preserve the property of sup-

porting a p-Poincaré inequality under the sphericalization and flattening

procedures. Because natural examples such as the real line or a broad

class of metric trees are not annularly quasiconvex, our aim in the present

paper is to study under weaker hypothesis on the metric space, the preser-

vation of p-Poincaré inequalites under those conformal deformations for

sufficiently large p. We propose similar hypothesis to the ones used in [9],

where the preservation of∞-Poincaré inequality has been studied under the

assumption of radially star-like quasiconvexity (for sphericalization) and

meridian-like quasiconvexity (for flattening). To finish, using the spheri-

calization procedure, we exhibit an example of a Cheeger differentiability

space whose blow up at a point is not a PI space.
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1 Introduction

One of the cornerstones in the development of first order calculus in the metric

measure setting has been the concept of metric space equipped with a doubling

measure and supporting a Poincaré inequality. If a space or domain supports a

Poincaré inequality, many fruitful geometric properties can be deduced, including

the existence of non-trivial differentiable structures. Therefore, it is valuable to

explore which metric spaces enjoy such properties. For a general introduction to

the subject one can look at [2], [12], [13] or [15].

A common way to construct new metric spaces from old ones is to use con-

formal deformations. This means to construct a new metric space, which is

homeomorphic to the original one, by endowing the old space with a new density

function. In order to preserve some certain geometric properties, the measure

also plays an important role and should be altered in a similar way. A natural

problem is to study the preservation of the doubling property and the Poincaré

inequality under these deformations. In the present paper, two types of conformal

deformations are considered: sphericalization and flattening.

Sphericalization and flattening are dual transformations in the sense that if

one starts from a bounded metric space, then performs a flattening transfor-

mation followed by a sphericalization transformation, then the resulting metric

space is biLipschitz equivalent to the original space. Furthermore, starting from

an unbounded metric space, the performance of sphericalization followed by a

flattening transformation leads to a metric space that is biLipschitz equivalent to

the original.

The idea of sphericalization and flattening was first considered in the paper of

Buckley and Balogh [1] and further studied in [4] and [16]. Within the paper, two

types of conformal deformation were introduced in order to generalize the stere-

ographic projection between the Riemann sphere and the complex plane. Their

motivation comes from comparing quasihyperbolic metric of a domain (which are

considered in Bonk, Heinonen and Koskela [3]) with two types of metric, the

length metric and the sphericalized metric on the domain.

The preservation of p-Poincaré inequality under these conformal deformations

for the case p < ∞ was first studied in Li and Shanmugalingam [20], assuming

that the original space is annularly quasiconvex. By a result in Korte [19], spaces

supporting a p-Poincaré inequality for sufficiently small p ≥ 1 are necessarily an-
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nularly quasiconvex. It was shown in [20] that the property of annular quasicon-

vexity cannot be removed in their results regarding preservation of the property

of supporting a p-Poincaré inequality, and the authors of [20] pose whether the

assumption of annular quasiconvexity is necessary for preserving a p-Poincaré

inequality for sufficiently large p.

At this point, it is important to highlight the role that the exponent p plays

in p-Poincaré inequalities. The larger the p, the weaker the inequality and the

limiting case, the ∞-Poincaré inequality, would be the weakest. We refer the

interested reader to [11] for several examples of spaces supporting a p-Poincaré

inequality for some but not all values of p in the range [1,∞]. In [9], the preser-

vation of quasiconvexity and ∞-Poincaré inequality has been studied under a

weaker assumption, namely, radially star-like quasiconvexity and meridian-like

quasiconvexity. The motivation for introducing these new definitions comes from

the fact that there are simple examples that are not annularly quasiconvex but

still support a Poincaré inequality, as the real line R or S1 when endowed with

the length metric. The definition of such properties are inspired by the paper [3],

where the authors considered the duality of uniform domains and Gromov hyper-

bolic spaces and use the concept of rough star-likeness. While these new notions

are too weak to be used in the setting considered in the current paper, here we

consider metric spaces that have a modification of these weak notions which still

yield the preservation of the property of supporting a p-Poincaré inequality for

sufficiently large p. The notions we consider in this paper are still weaker than

the annular quasiconvexity considered in [20].

The different nature of p-Poincaré inequality for finite p versus ∞-Poincaré

inequality makes that the techniques used in [20] differ from the ones used in

[9]. In [20] a version of chaining arguments found in [6] are used. In [9], which

considers the case p = ∞, a purely geometric characterization of ∞-Poincaré

inequality, proved in [10] and based on a stronger version of quasiconvexity is

used instead.

For a metric space supporting a doubling measure there are two exponents

related to the doubling measure, the relative upper bound exponent t and the

relative lower bound exponent s with t ≤ s in general. In the present paper, we

improve part of the results in [20], namely, the preservation of p-Poincaré inequal-

ity under sphericalization and flattening for p > s, under the weaker assumptions
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of (a refinement of) radially star-like quasiconvexity, for sphericalization, and (a

refinement of) meridian-like quasiconvexity, for flattening. On the other hand, it

is well-known that Ahlfors Q-regular spaces that support a a p-Poincaré inequal-

ity for some 1 ≤ p < Q are annularly quasiconvex when Q > 1 (see [19]). Notice

that in this case t = s = Q and therefore, Ahlfors Q-regular spaces preserve the

p-Poincaré inequality for p > 1 under sphericalization and flattening procedures

for the weaker assumptions that we propose.

On the other hand, it is an open question (see for example [8]) whether a

blow-up of a differentiability space (in the sense of Cheeger) must be a PI space,

that is, a metric space with a doubling measure and a p-Poincaré inequality for

some p < ∞. To finish we exhibit in Example 5.1, using the sphericalization

procedure, that this is not always the case.

The paper is organized as follows: in Section 2, basic notations and defini-

tions will be introduced; in Section 3, preservation of p-Poincaré inequality for

p > s under sphericalization for (a refinement of) radially star-like quasiconvex

spaces) will be proved (see Theorem 3.1). In Section 4 preservation of p-Poincaré

inequality for p > s under flattening for (a refinement of) meridian-like quasicon-

vex spaces) will be presented (see Theorem 4.1). Last section, Section 5, shows

an example of a differentiability space whose blow-up is not a PI space.

2 Notation and preliminaries

In this section we gather the key notions, definitions and notations that will be

used throughout the paper.

2.1 Curves in metric spaces

Let (X, d) be a metric space. We denote open balls centered at x ∈ X and of

radius r > 0 by B(x, r) := {y ∈ X : d(x, y) < r} and closed balls by B(x, r) :=

{y ∈ X : d(x, y) ≤ r}. For λ > 0, λB denotes the ball concentric with B (with

respect to a predetermined center) but with radius λ-times the radius of B. For

0 < r < R, A(a, r, R) denotes the annulus A(a, r, R) := B(a,R) \B(a, r).

Given a continuous map (also known as curve) γ : I → X, where I = [a, b]

for some a, b ∈ R with a < b, we denote the length of γ with respect to the metric
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d by

`d(γ) := sup
n−1∑
k=0

d(γ(tk), γ(tk+1)),

where the supremum is taken over all partitions a = t0 < t1 < · · · < tn = b of the

interval [a, b]. A curve γ is rectifiable if `d(γ) < ∞. We simply write `(γ) if the

metric is clear from the context. Given two points x, y ∈ X, γxy denotes a curve

connecting x to y.

For a rectifiable curve γ : [a, b]→ X, let sγ : [a, b]→ [0, `(γ)] be the associated

length function. That is, sγ(t) = `(γ|[a, t]). There exists a unique (1-Lipschitz

continuous) map γs : [0, `(γ)] → X such that γ = γs ◦ sγ. The curve γs is called

the arc length parametrization of γ. If γ is a rectifiable curve in X, the line

integral over γ of a Borel function ρ : X → [0,∞] is defined by

∫
γ

ρds :=

∫ `(γ)

0

(ρ ◦ γs)(t)dt. (2.1)

A metric space (X, d) is said to be C-quasiconvex if there exists C ≥ 1 such

that for every pair of points x and y there exists a rectifiable curve γ with `d(γ) ≤
Cd(x, y). A related notion to quasiconvexity is that of annular quasiconvexity,

a notion introduced in [19] and has been further used for example in [4], [12]

and [16]. We say that X is A-annularly quasiconvex with respect to a base point

a ∈ X if there exists A ≥ 1 such that for every r > 0, and for each pair of

points x, y ∈ A(a, r/2, r) there is a curve γxy connecting x to y inside the annulus

A(a, r/A,Ar) with `d(γ) ≤ Ad(x, y). We say that X is annularly quasiconvex if

there exists A ≥ 1 such that X is A-annularly quasiconvex for every a ∈ X.

2.2 Metric Measure spaces

A metric space endowed with a Borel measure µ is called a metric measure space,

that is, (X, d, µ) will denote a metric measure space. We say that the measure µ

is doubling if balls have finite positive measure and there is a constant Cµ ≥ 1

such that

µ(2B) ≤ Cµµ(B) (2.2)

for all balls B.

5



Condition (2.2) implies that there are constants C > 0 and s > 0, depending

only on Cµ, such that
µ(B(x, r))

µ(B(y,R))
≥ C

( r
R

)s
(2.3)

whenever 0 < r ≤ R and x ∈ B(y,R). See [12] for a proof of this. In this case

we also say that X has a relative lower volume decay of order s > 0.

If the measure is doubling and the space is connected, then there exists an

exponent t > 0 and constant C > 0 such that

µ(B(x, r))

µ(B(y,R))
≤ C

( r
R

)t
(2.4)

for 0 < r ≤ R ≤ dimX/2 and x ∈ B(y,R). In general, we have s ≥ t, and we say

X has a relative upper volume decay of order t > 0.

2.3 First-order calculus in metric measure spaces

Given a real-valued function u in a metric space X, a Borel function g : X →
[0,∞] is an upper gradient of u if

|u(x)− u(y)| ≤
∫
γ

gds,

for each rectifiable curve γ connecting x to y in X.

Given 1 ≤ p < ∞, we say that (X, d, µ) supports a p-Poincaré inequality if

each ball in X has finite and positive measure and there are constants C, λ > 0

such that for every open ball B in X, for every measurable function u on B, and

for every upper gradient g of u we have

1

µ(B)

∫
B

|u− uB|dµ ≤ Crad(λB)
( 1

µ(λB)

∫
λB

gpdµ
)1/p

.

Here, for arbitrary A ⊂ X with 0 < µ(A) <∞ we write uA = 1
µ(A)

∫
A
u dµ.

The ∞-Poincaré inequality can be seen when we replace the Lp norm of the

right hand side by L∞ norm.

The following result due to Keith [17] states that to verify a p-Poincaré in-

equality it suffices to verify the inequality for Lipschitz functions and their con-

tinuous upper gradients.

Lemma 2.5. [17, Theorem 2] Let p ≥ 1 and let (X, d, µ) be a complete metric

measure space with µ doubling. Then the following conditions are quantitatively

equivalent:
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(a) (X, d, µ) admits the p-Poincaré inequality for all measurable functions and

their upper gradients.

(b) (X, d, µ) admits the p-Poincaré inequality for all compactly supported Lip-

schitz functions and their compactly supported Lipschitz upper gradients.

By the work of Cheeger [7], metric measure spaces endowed with a doubling

measure and supporting a p-Poincaré inequality for p < ∞ have a very rich in-

finitesimal “linear” structure that allows to state the Rademacher differentiability

theorem in this context.

The interested reader can find in [15] a discussion of the recent advances in

the field of analysis on metric measure spaces, including those in [10] and [20]

(see [15, Chapter 14]).

2.4 Sphericalization and flattening

The concept of sphericalization and flattening are natural analogs of the stere-

ographic projection between the Riemann sphere and the complex plane. As

pointed out in the Introduction, they were introduced by Balogh and Buckley in

[1] and further studied in [4] and [16].

For an unbounded locally compact metric space X, we denote its one-point

compactification Ẋ = X ∪ {∞}.

Definition 2.6 (Sphericalization). Given a complete unbounded metric space

(X, d) and a base point a ∈ X, we consider the following density function da :

Ẋ × Ẋ → [0,∞) given by

da(x, y) =


d(x,y)

[1+d(x,a)][1+d(y,a)]
if x, y ∈ X,

1
1+d(x,a)

if x ∈ X, y =∞,

0 if x =∞ = y.

(2.7)

Although da is not a metric since it is possible to violate the triangular in-

equality, there exists a metric d̂a on Ẋ whose metric topology agrees with the

topology of Ẋ and satisfying

1

4
da(x, y) ≤ d̂a(x, y) ≤ da(x, y) (2.8)

for all x, y ∈ Ẋ (see [5, Lemma 2.2]).
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The metric space (Ẋ, d̂a) is said to be the sphericalization of (X, d). Since

there is no closed form formula for d̂a, for convenience we will use da in defining

balls in Ẋ. Balls in Ẋ, with respect to da, will be denoted Ba = Ba(x, r), while

the balls in X, with respect to the original metric d, will be denoted B = B(x, r).

Notice that the density function da we use satisfies the condition of sphericalizing

function g(t) = (1 + t)−2 as in [1]. Furthermore, observe that diam(Ẋ) = 1.

The operation of flattening, which is dual to the procedure of sphericalization,

can be defined analogously. In the flattening procedure, we begin with a bounded

metric space and remove a point to construct an unbounded metric space.

Definition 2.9 (Flattening). Given a complete bounded metric space (X, d) with

a base point c ∈ X, we consider the metric space Xc = X \ {c}, with a density

function dc : Xc ×Xc → [0,∞) defined by

dc(x, y) =
d(x, y)

d(x, c)d(y, c)
if x, y ∈ Xc.

Just as in the case of sphericalization, the density function dc is not a metric,

but by [4, Lemma 3.2], we have a metric space (Xc, d̄) associated to dc with

1

4
dc(x, y) ≤ d̄(x, y) ≤ dc(x, y)

for all x, y ∈ Xc.

The metric space (Xc, d̄) is said to be a flattening of (X, d). Balls in Xc,

with respect to the metric dc, will be denoted Bc(x, r), while the balls in X, with

respect to the metric d, will be denoted as usual by B(x, r).

In the sequel, it will be also useful to know how a curve and its corresponding

length change under the sphericalization and flattening processes. Let γ be a

rectifiable curve in a rectifiably connected unbounded metric space X. Under

sphericalization γ corresponds to γ̇ : [0, `(γ)]→ Ẋ defined by γ̇(t) = γs(t), where

γs is the arc-length parametrization of γ with respect to the original metric d.

By an abuse of notation we will denote the corresponding curve in Ẋ by γ as

well. One can check (see [1, Proposition 2.6]) that γ is rectifiable with respect to

the metric d̂a if it is rectifiable with respect to the original metric d.

Then length `da(γ) of γ with respect to “the metric” da is is given by the

formula

`da(γ) =

∫ `(γ)

0

1

[1 + d(γs(t), a)]2
ds(t)
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whereas the formula for the length `dc(γ) of γ with respect to “the metric” dc is

given by

`dc(γ) =

∫ `(γ)

0

1

d(γs(t), c)2
ds(t)

In the next lemma we explain how upper gradients are transformed under

sphericalization. Note that a function that is Lipschitz continuous on X will

be locally Lipschitz continuous on Ẋ \ {∞}, and a function that is Lipschitz

continuous on Ẋ is necessarily Lipschitz continuous on X.

Lemma 2.10. [20, Lemma 3.3.1] Suppose that u is a Lipschitz function on Ẋ.

If g is an upper gradient of u in X, then the function ĝ given by

ĝ(x) = g(x)(1 + d(x, a))2 (2.11)

and extended by setting ĝ(∞) = 0 is an upper gradient of u in Ẋ. Furthermore,

if h is an upper gradient of a function v in Ẋ, then the function ȟ given by

ȟ(x) =
h(x)

(1 + d(x, a))2
(2.12)

is an upper gradient of v in X.

The current work focuses on the preservation of Poincaré inequalities in the

setting of metric measure spaces under sphericalization and flattening, so we also

need to transform the measure on X in a manner compatible with the change in

the metric.

Definition 2.13. Suppose (X, d) is proper space equipped with a Borel-regular

measure µ such that the measures of non-empty open bounded sets are positive

and finite. We consider the spherical measure µa defined on Ẋ as follows. For

A ⊂ Ẋ, the measure µa(A) is given by

µa(A) =

∫
A\{∞}

1

µ(B(a, 1 + d(z, a)))2
dµ(z).

We next define the transformation µc of the measure µ under flattening. In

this case, X is a bounded metric space equipped with a Borel-regular measure µ.

Definition 2.14. The flattened measure µc corresponding to (Xc, dc) is given by

µc(A) =

∫
A

1

µ(B(c, d(c, z)))2
dµ(z),

whenever A ⊂ Xc is a Borel set.
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As shown in [1], the metric space resulting from flattening with respect to the

point {∞} the (bounded) sphericalized space (Ẋ, d̂a) is bi-Lipschitz equivalent

to the (unbounded) space (X, d), making sphericalization and flattening dual

transformations. The following lemma, due to N. Shanmugalingam, shows the

corresponding result for measures. We are grateful to N. Shanmugalingam for

allowing us to include the result here.

Lemma 2.15. Let X be a connected, unbounded, complete metric measure space

and µ be a doubling measure on X. Let a ∈ X and Xa = X ∪ {∞} be the

sphericalization of X with respect to the base point a, and X∞a be the flattening

of Xa with respect to the base point ∞. Then µ∞a ≈ µ, that is, there is a constant

C > 0 such that for all x ∈ X,

1

C
dµ(x) ≤ dµ∞a (x) ≤ C dµ(x),

and µ, µ∞a are mutually absolutely continuous.

Proof. The fact that µ and µ∞a are absolutely continuous with respect to each

other is clear from the definitions of µa and µ∞a .

Note that

dµ∞a (x) =
dµa(x)

µa(Ba(∞, da(x,∞)))2

=
dµ(x)

µa(Ba(∞, da(x,∞)))2 µ(B(a, 1 + d(x, a)))2
.

Thus we consider µa(Ba(∞, da(x,∞))). Observe that y ∈ Ba(∞, da(x,∞)) if and

only if da(y,∞) < da(x,∞), that is, d(y, a) > d(x, a). It follows that

Ba(∞, da(x,∞)) = X \B(a, d(x, a)).

The rest of the proof is divided into two cases.

Case 1: d(x, a) > 1/C. In this case, note that for y ∈ X \ B(a, d(x, a)) we

have that 1 + d(y, a) ≈ d(y, a) and hence by the doubling property of µ, we also

have µ(B(a, 1 + d(y, a))) ≈ µ(B(a, d(y, a))). For non-negative integers j we set
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Bj = B(a, 2jd(x, a)). Then by the doubling property of µ,

µa(Ba(∞, da(∞, x))) ≈
∫
X\B(a,d(x,a))

1

µ(B(a, d(y, a)))2
dµ(y)

=
∞∑
j=0

∫
Bj+1\Bj

1

µ(B(a, d(y, a)))2
dµ(y)

≈
∞∑
j=0

µ(Bj+1 \Bj)

µ(Bj)2
.

By (2.3) and (2.4), there are positive constants t, s (which are independent of

j, x) such that µ(Bj+1 \Bj) ≈ µ(Bj) and

2sj

C
≤ µ(Bj)

µ(B0)
≤ C 2tj. (2.16)

Using this, we obtain

µa(Ba(∞, da(∞, x))) ≈
∞∑
j=0

1

µ(Bj)
,

with
1

Cµ(B0)

∞∑
j=0

2−sj ≤
∞∑
j=0

1

µ(Bj)
≤ C

µ(B0)

∞∑
j=0

2−tj.

It follows from the assumption d(x, a) > 1/C that

µa(Ba(∞, da(x,∞))) ≈ 1

µ(B0)
=

1

µ(B(a, d(x, a)))
≈ 1

µ(B(a, 1 + d(x, a)))
,

that is, dµ∞a (x) ≈ dµ(x) when d(x, a) > 1/C.

Case 2: d(x, a) ≤ 1/C. In this case we have 1 + d(x, a) ≈ 1, and so by the

doubling property of µ,

µ(B(a, 1 + d(x, a))) ≈ µ(B(a, 1)).

For non-negative integers j we now choose Bj = B(a, 2j). Then

µa(Ba(∞, da(x,∞))) =

∫
X\B(a,d(x,a))

1

µ(B(a, 1 + d(y, a)))2
dµ(y)

≈
∫
B(a,1)\B(a,d(x,a))

1

µ(B(a, 1))2
dµ(y)

+
∞∑
j=0

∫
Bj+1\Bj

1

µ(B(a, 1 + d(y, a)))2
dµ(y).
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Since d(x, a) ≤ 1/C, we have

µ(B(a, 1) \B(a, d(x, a))) ≈ µ(B(a, 1)),

and for y ∈ Bj+1 \Bj we also have that

µ(B(a, 1 + d(y, a))) ≈ µ(Bj).

Hence

µa(Ba(∞, da(x,∞))) ≈ 1

µ(B(a, 1))
+
∞∑
j=0

µ(Bj+1 \Bj)

µ(Bj)2
.

An application of (2.16) to the above now yields

µa(Ba(∞, da(x,∞))) ≈ 1

µ(B(a, 1))
≈ µ(B(a, 1 + d(x, a))).

It now follows that dµ∞a (x) ≈ dµ(x) even when d(x, a) ≤ 1/C.

This completes the proof of the lemma.

2.5 Radially star-like quasiconvex spaces and meridian-

like quasiconvex spaces

The notions of radially star-like and meridian-like quasiconvexity were introduced

in [9] to investigate the preservation of ∞-Poincaré inequality under the trans-

formations of sphericalization and flattening. In order to deduce the preservation

of p-Poincaré inequality for a finite p, we need to consider a refinement version

of these properties named refinement of radially star-like quasiconvexity (in the

case of sphericalization) and refinement of meridian-like quasiconvexity (in the

case of flattening).

Definition 2.17. A metric space is a refinement of K-radially star-like quasi-

convex with respect to the base point a ∈ X if there exist a constant K ≥ 1,

a fixed radius r0 > 0, N0 ∈ N and a collection of base-point quasiconvex rays

β1, β2, · · · , βN0 connecting a to∞ such that for every r > r0 and x ∈ A(a, r/2, r)

there exists z ∈ βi for some i ∈ {1, 2, · · ·N0} and a quasiconvex curve γxz ⊂
A(a, r/K,Kr) connecting x to z such that

`(γxz) ≤ Kd(a, z).
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Here we say that a ray γ : [0,∞)→ X with γ(0) = a is base-point quasiconvex if

for each z ∈ |γ|, `(γaz) ≤ Cd(a, z), where γaz is the subcurve of γ connecting a

to z.

In the definition of radially star-like quasiconvexity introduced in [9] we con-

nect every point (in the corresponding annulus) to a base-point quasiconvex ray

(depending on the point) by a controlled quasiconvex curve. Notice that if (X, d)

is a connected complete locally compact metric space which is quasiconvex and

annularly quasiconvex with respect to a point a ∈ X, then (X, d) is a refinement

of K-radially star-like quasiconvex with N0 = 1. See [9, Lemma 3.3].

Definition 2.18. A (bounded) metric space is a refinement of K-meridian-like

quasiconvex with respect to a base point c ∈ X, if there exists a constant K ≥ 1,

a fixed radius r0 > 0, a point a ∈ X with 4d(a, c) ≥ diam(X), and a collection of

double base-point quasiconvex curves β1, β2, · · · , βN0 with respect to base points

a and c, and connecting a to c such that for every x ∈ A(c, r/2, r) and r0 ≥ r,

there exists z ∈ βi for some i ∈ {1, 2, · · ·N0} and a quasiconvex curve γxz ⊂
A(c, r/K,Kr) connecting x to z such that

`(γxz) ≤ Kd(x, c).

By double base-point quasiconvex curve we mean that for any z ∈ |γac|, `(γcz) ≤
Cd(c, z) and `(γaz) ≤ Cd(a, z). Here γaz and γcz denote the subcurves of γac with

end points a and z and c and z respectively.

In a similar fashion to the definition of radially star-like quasiconvexity, the

definition of meridian-like quasiconvexity introduced in [9] requires for every point

x (in the corresponding annulus) the existence of a double base-point quasiconvex

curve (depending on x) and a controlled quasiconvex curve connecting x to the

base-point quasiconvex curve. In general there may be a need for infinitely many

such double base-point quasiconvex curves, thus the above notion is a refinement

of the one from [9], where a fixed finite number of such curves serve all the points

in X.

Remark 2.19. The idea is to choose the point a ∈ X (in Definition 2.18) in

A(c, R/2, R) whereR = supz∈X d(c, z). If this is the case, 2d(a, c) ≥ supz d(c, z) ≥
diam(X)/2. Additionally, when 0 < r � R and x ∈ B(c, r), we have d(x, a) ≈
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d(a, c). Indeed, for x ∈ B(c, r), we have that

2d(a, c) > d(a, c) + d(x, c) ≥ d(a, x) ≥ d(a, c)− d(x, c) ≥ d(a, c)− r ≈ d(a, c).

Notice that if (X, d) is a bounded connected complete locally compact metric

space which is annularly quasiconvex with respect to a point c ∈ X, then (X, d)

is a refinement of K-meridian-like quasiconvex with respect to c. See [9, Lemma

4.3].

Remark 2.20. It is possible to show that sphericalization of unbounded spaces

having a refinement of radially star-like quasiconvexity property will result in a

bounded space endowed with a refinement of meridian-like quasiconvexity, and

vice versa. In fact, these two concepts are dual to each other via the dual trans-

formations of sphericalization and flattening. The idea of proof is essentially the

same as the proof of [9, Lemma 4.6, Lemma 4.7].

It seems to be unnatural to require that we need only finitely many base-

point quasiconvex rays (or double base-point quasiconvex curves), especially when

we assume the doubling property of the metric space. Since the assumption of

doubling measure ensures that the number of balls of radius r/2 covering the

balls B(x, r) is controlled by the doubling constant, the refinements seem to be

redundant. However, we need for the proofs a decomposition of the metric space

in a good order for each annulus that so far we are only able to obtain under the

additional refinement conditions. See (3.8) and (4.3) for the technical details.

Unless otherwise stated, the letter C denotes various positive constants whose

exact values are not important for the purposes of this paper, and its value might

change even within a line.

3 Preservation of p-Poincaré inequality for p > s

under sphericalization

Li and Shanmugalingam proved in [20, Theorem 3.3.5] the preservation of p-

Poincaré inequality (1 ≤ p <∞) under sphericalization for annular quasiconvex

spaces. In what follows we show the preservation of p-Poincaré inequality under

sphericalization for p sufficiently large for metric spaces satisfying the refinement

of radially star-like quasiconvexity (see Definition 2.17). Metric spaces that are
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not annular quasiconvex but are radially star-like quasiconvex are for example

the real line, the Euclidean infinite strip R × [−1, 1] or some classes of metric

trees.

Theorem 3.1. Let (X, d, µ) be a complete unbounded metric space with a dou-

bling measure µ so that (X, d, µ) supports a p-Poincaré inequality for some p > s,

where s is the exponent of relative lower volume decay associated to µ as in (2.3).

Let a ∈ X be a base point in X, and assume (X, d) is a refined K-radially star-

like quasicovex with respect to a for some K ≥ 1. Then (Ẋ, da, µa) also supports

a p-Poincaré inequality.

Remark 3.2. Notice that we need p > s, which is associated to the exponent s

related to the original measure µ rather than the spherical measure µa from (2.3).

See Example 3.16 below.

Proof. We need to verify p-Poincaré inequality for balls Ba(x, r) with x ∈ Ẋ

and r > 0. We divide the proof into three different cases: balls far away from

∞ (whose behavior is similar to the balls in the original metric), balls centered

at ∞, and more general balls. We assume 0 < r < 1/(10λK2), where λ is the

scaling constant involved in the Poincaré inequality and K is the constant in the

refinement of radially star-like quasiconvex property, because balls with radius

r ≥ 1/(10λK2) can be compared to balls centered at ∞ with radius 1, that is,

balls that are equal to Ẋ. Indeed, we will prove the Poincaré inequality for balls

centered at ∞ in Case 2 without restricting the radius r in that case.

Let u ∈ Lip(Ẋ) and let g be an upper gradient of u in X with respect to the

original metric d.

Case 1: da(x,∞) ≥ 8λr. We choose a positive integer k0 ≥ 3 so that

2k0λr ≤ da(x,∞) =
1

1 + d(x, a)
≤ 2k0+1λr. (3.3)

Then 1/(2k0+1λr) ≤ 1 + d(x, a) ≤ 1/(2k0λr). If y ∈ X such that da(x, y) < r,

then

d(x, y) < r(1 + d(x, a))(1 + d(y, a)) ≤ 1 + d(y, a)

2k0λ
≤ 1 + d(x, a) + d(x, y)

2k0λ
,

and so because λ ≥ 1,

d(x, y) ≤ 1 + d(x, a)

2k0λ− 1
≤ 1

22k0−1λ2r
,
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that is, Ba(x, r) ⊂ B(x, 21−2k0λ−2/r). Furthermore, if z ∈ B(x, 2−2k0−3λ−2/r),

then by (3.3),

d(x, z) <
1

22k0+3λ2r
≤ 1

2k0+2λ
(1 + d(x, a))

and

1 + d(z, a) ≥ 1 + d(x, a)− d(x, z) ≥ 1

2k0+1λr
− 1

22k0+3λ2r
>

1

2k0+2λr
.

Combining the above two estimates, we obtain

d(x, z) < r (1 + d(x, a))(1 + d(z, a)),

that is, B(x, 2−2k0−3λ−2/r) ⊂ Ba(x, r). Thus we have

B(x, 1
22k0+3λ2r

) ⊂ Ba(x, r) ⊂ B(x, 1
22k0−1λ2r

).

We simplify notation by setting

Bs = B(x, 1
22k0+3λ2r

), Bl = B(x, 1
22k0−1λ2r

).

Then we have Bs ⊂ Ba(x, r) ⊂ Bl = 16Bs. Notice that Bs and Bl are balls with

respect to the original metric d, while Ba(x, r) represents the ball with respect

to the metric da. Note that when z ∈ λBl,

1 + d(z, a) ≤ 1 + d(x, a) + d(z, x) <
1

2k0λr
+

1

22k0−1λr
≤ 2

2k0λr
≤ 4(1 + d(x, a)).

Since k0 ≥ 3,

1 +d(z, a) ≥ 1 +d(x, a)−d(z, x) >
1

2k0+1λr
− 1

22k0−1λr
≥ 1

2k0+2λr
≥ 1 + d(x, a)

4
.

Hence for z ∈ λBl we have

1

2k0+3λr
≤ 1 + d(x, a)

4
≤ 1 + d(z, a) ≤ 4(1 + d(x, a)) ≤ 1

2k0−2λr
. (3.4)

It follows from the above estimates and the doubling property of µ that for

z ∈ λBl,

C−1
dµ(z)

µ(B(a, 1/(2k0r)))2
≤ dµa(z) =

dµ(z)

µ(B(a, 1 + d(a, z))2
≤ C

dµ(z)

µ(B(a, 1/(2k0r)))2
.

(3.5)
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It follows that

µa(Ba(x, r)) ≤ C
µ(Bl)

µ(B(a, 1/(2k0r)))2
≤ C C4

µ

µ(Bs)

µ(B(a, 1/(2k0r)))2
,

and

µa(Ba(x, r)) ≥ C−1
µ(Bs)

µ(B(a, 1/(2k0r)))2
,

from which we obtain

1

C

µ(Bs)

µ(B(a, 1/(2k0r)))2
≤ µa(Ba(x, r)) ≤ C

µ(Bs)

µ(B(a, 1/(2k0r)))2
. (3.6)

From (3.4) again and Lemma 2.10, for z ∈ λBl we also get

1

C

1

22k0r2
g(z) ≤ ĝ(z) = g(z)(1 + d(a, z))2 ≤ C

1

22k0r2
g(z). (3.7)

Now, by applying (3.6), (3.5), and the p-Poincaré inequality of (X, d, µ) in order,

we obtain∫
Ba(x,r)

|u− uBa(x,r)| dµa ≤ 2

∫
Ba(x,r)

|u− uBl
| dµa

≤ C µ(B(a, 1/(2k0r)))2

µ(Bs)

∫
Bl

|u− uBl
| dµa

≤ C µ(B(a, 1/(2k0r)))2

µ(Bl)

∫
Bl

|u− uBl
| dµa

≤ C

∫
Bl

|u− uBl
| dµ

≤ C
1

22k0−1λ2r

∫
λBl

gp dµ

1/p

.

In the above, uBl
= µ(Bl)

−1 ∫
Bl
u dµ is the un-sphericalized average of u on Bl.

Now by applying (3.5) again as well as (3.7), we obtain the inequality∫
Ba(x,r)

|u− uBa(x,r)| dµa ≤
C r

2−1λ2

(
1

µa(Ba(x, r))

∫
λBl

ĝp dµa

)1/p

.

From (3.4) and the definition of Bl, if z ∈ λBl we have

da(x, z) =
d(x, z)

(1 + d(x, a))(1 + d(z, a))
≤ C

1

22k0−1λ2r
22k0λ2r2 ≤ C r.
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That is, λBl ⊂ CBa(x, r). Hence by the doubling property of µa (proved in

Subsection 3.2),

∫
Ba(x,r)

|u− uBa(x,r)| dµa ≤
C r

2−1λ2

 ∫
CBa(x,r)

ĝp dµa


1/p

,

which is the p-Poincaré inequality on Ba(x, r) as desired.

Case 2: x = ∞ and 0 < r < 1/(10λK2). As mentioned in Remark 2.20,

because X has the refinement of radially star-like quasiconvexity, Ẋ equipped

with da has the refinement of meridian-like quasiconvexity property. Therefore

we can write the ball Ba(∞, r) as a finite union of measurable sets, namely

Ba(∞, r) =

N0⋃
i=1

(Si ∩Ba(∞, r)),

Si :=
⋃
R>r0

{
x ∈ A(a,R/2, R) : ∃z ∈ βi and quasiconvex curve γ ⊂ A(a,R/K,KR)

with end points x, z and `(γxz) ≤ Kd(a, x)

}
.

(3.8)

Note that each Si is open because of the quasiconvexity of X, and hence is

measurable. Here, β1, · · · , βN0 are the curves referred to in Definition 2.17.

Observe that the intersection of two sets Si and Sj, i 6= j could possibly be

nonempty. For i ∈ {1, 2, · · ·N0} there exists zi ∈ βi with 3r/4 ≤ da(zi,∞) ≤ r.

Let ρ = r
20λK2 . Observe that Bi := Ba(zi, ρ) ⊂ 1

3Kλ
Ba(∞, 6Kλr) and that

KBa(∞, 6Kλr) ⊂ 70K3λBi. By the doubling property of µa (see [20, Propo-

sition 3.2.3]) we also have µa(Bi) ≈ µa(Si ∩ Ba(∞, r)). Following the same

argument as in [20, Case 2, Theorem 3.3.5], we see that

∫
Si∩Ba(∞,r)

|u− uBi
|dµa ≤ Cr

( ∫
λBi

ĝpdµa

)1/p
. (3.9)
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Observe that for a fixed i0 ∈ {1, 2, · · ·N0},∫
Ba(∞,r)

|u− uBa(∞,r)|dµa ≤ 2

∫
Ba(∞,r)

|u− uBi0
|dµa ≤ 2

N0∑
i=1

∫
Si∩Ba(∞,r)

|u− uBi0
|dµa

≤ 2

N0∑
i=1

∫
Si∩Ba(∞,r)

(|u− uBi
|+ |uBi

− uBi0
|)dµa

≤2

N0∑
i=1

∫
Si∩Ba(∞,r)

|u− uBi
|dµa + 2

N0∑
i=1

µa(Si ∩Ba(∞, r))|uBi
− uBi0

|.

(3.10)

Notice that the first summand of the last inequality can be estimated by using

(3.9) as follows:

N0∑
i=1

∫
Si∩Ba(∞,r)

|u− uBi
|dµa ≤Cr

N0∑
i=1

µa(Bi)
( ∫
λBi

ĝpdµa

)1/p
≈C N0 µa(Ba(∞, r))r

( ∫
λBa(∞,r)

ĝpdµa

)1/p
.

(3.11)

The second summand of the last inequality in (3.10) can be estimated by using

the point x =∞:

N0∑
i=1

µa(Si∩Ba(x, r))|uBi
−uBi0

| ≤
N0∑
i=1

µa(Si∩Ba(∞, 2r))(|uBi
−u(∞)|+|u(∞)−uBi0

|).

(3.12)

Now, fix 1 ≤ i ≤ N0.

Denote zi,0 = zi and Bi,0 = Bi. We can choose a sequence of points zi,j ∈ βi
by induction to estimate |uBi

− u(∞)|. Suppose zi,j−1 has been chosen, with

zi,j−1 ∈ A(∞, 2−lj−1−1r, 2−lj−1r) (with respect to the metric da), where lj−1 is

an integer depending only on j. We can find a point zi,j in the subcurve of βi

connecting zi,j−1 to ∞, denoted by β∞zi,j−1
, such that the length of the subcuve

γi,j of β∞zi,j−1
with end points zi,j−1 and zi,j satisfies 2−lj−1−1ρ ≤ `da(γi,j) ≤

2−lj−1ρ. Since da(zi,j−1,∞) ≥ 2−lj−1−1r ≥ 2−lj−1ρ ≥ `da(γi,j), such zi,j always

exists. Once zi,j has been chosen, we can choose zi,j+1 in the subcurve of βi

connecting zi,j to ∞ satsfying 2−lj−1ρ ≤ `(γi,j+1) ≤ 2−ljρ, where γi,j+1 can be

defined as before. Therefore, we have chosen a sequence of points zi,j ∈ βi.
We now need to prove that

lim
j→∞

da(zi,j,∞) = 0.
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Let Nl := {j ∈ N : lj = l}. We first need to show that for every l ≥ 0, we have

#(Nl) ≤ M(K,λ). Let sl = min j ∈ Nl. By the base-point quasiconvexity of βi

with respect to base point ∞, we have

#(Nl)2
−l−1ρ=

∑
j∈Nl

2−lj−1ρ ≤
∞∑
j=sl

2−lj−1ρ ≤
∞∑
j=sl

`da(γi,j+1)

≤ `da(β∞zi,sl ) ≤ Cda(zi,sl ,∞)

≤ 2−lslr = 2−lr,

(3.13)

so #(Nl) ≤M for some M = M(K,λ). Hence, for each l ≥ 0, there exists j ∈ N
so that when j ≥Ml, we have lj ≥ l, and so it follows that limj→∞ da(zi,j,∞) ≤
limj→∞ 2−ljr = 0.

Then we can take a collection of sphericalized balls Bi,j = Ba(zi,j, 2
−ljρ) to

estimate |uBi
− u(∞)|. Notice that rad(Bi,j) tends to zero when j approach to

∞. Then we can obtain the estimate as follows:

|uBi
− u(∞)| ≤

∞∑
j=0

|uBi,j
− uBi,j+1

| ≤ 4
∞∑
j=0

∫
2Bi,j

|u− u2Bi,j
|dµa

≤ C
∞∑
j=0

rada(2Bi,j)

µa(2Bi,j)1/p

(∫
6λK2Bi,j

ĝpdµa

)1/p

≤ C

(
∞∑
j=0

(
rada(2Bi,j)

µa(2Bi,j)1/p
)

p
p−1

) p−1
p
(
∞∑
j=0

∫
6λK2Bi,j

ĝpdµa

)1/p

≤ C

(
∞∑
j=0

(
rada(Bi,j)

µa(Bi,j)1/p
)

p
p−1

) p−1
p (

M

∫
6λK2(Si∩Ba(x,r))

ĝpdµa

)1/p

.

(3.14)

where in the third line we have used Hölder inequality and in the second line we

have applied Poincaré inequality for balls Bk
i , which satisfies the hypothesis of

Case 1.

On the other hand, we need to estimate the quantity (rada(Bi,j))/(µa(Bi,j)).

Since rada(Bi,j) = 2−ljρ and da(zi,j,∞) ≥ 2−lj−1r, by (3.6), we have

µa(Bi,j) ≈
µ(B(zi,j, C2lj/ρ))

µ(B(a, C2lj/ρ))2

and

µa(Bi) ≈
µ(B(zi, c/ρ))

µ(B(a, c/ρ))2
.

20



Therefore by (2.3), we have

µa(Bi,j)

µa(Bi)
≈ µ(B(zi,j, c2

lj/ρ))µ(B(a, c/ρ))2

µ(B(zi, c/ρ))µ(B(a, c2lj/ρ))2
≈ µ(B(a, c/ρ))

µ(B(a, c2lj/ρ))

≥ C−1(
c/ρ

c2lj/ρ
)s

≈ C(
2−ljρ

ρ
)s,

where the last two inequalities follow from an argument similar to that of (2.3).

Therefore, we obtain the inequality

(2−ljρ)s/p

µa(Bi,j)1/p
≤ C

ρs/p

(µa(Ba(zi, ρ)))1/p
.

Then we obtain the upper bound of the first term in the last inequality of (3.14),

which is(
∞∑
j=0

(
rada(Bi,j)

µa(Bi,j)1/p

) p
p−1

) p−1
p

=

(
∞∑
j=0

(
(2−ljρ)s/p(2−ljρ)1−s/p

µa(Bi,j)1/p

) p
p−1

) p−1
p

≤

(
∞∑
j=0

(
ρs/p(2−ljρ)1−s/p

µa(Bi)1/p

) p
p−1

) p−1
p

=
ρ

(µa(Bi))1/p

(
∞∑
j=0

2−lj
p−s
p−1

) p−1
p

.

(3.15)

Notice from the argument of (3.13) and the subsequent paragraph that for each

k ∈ N, there are at most M number of j with lj = k. So the quantity
∑∞

j=0 2−lj
p−s
p−1

is finite. Combining (3.14) and (3.15) we obtain that

|uBi
− u(∞)| ≤ Cr

 ∫
6λK2(Si∩Ba(x,r))

ĝpdµa


1/p

.

Combine (3.10),(3.11), (3.12) and the inequality above, we can obtain that

∫
Ba(∞)

|u− uBa(∞,r)|dµa ≤ Cr

 ∫
6λK2Ba(∞,r)

ĝpdµa


1/p

.
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Case 3: da(x,∞) < 8λr. In this case we use the conclusion of Case 2 above

as an aid, since Ba(x, r) ⊂ Ba(∞, 16λr), Ba(∞, 96Aλ2r) ⊂ Ba(x, 105Aλ2r) and

the ball Ba(∞, 16λr) satisfies the hypothesis of Case 2. Hence by the doubling

property of µa,∫
Ba(x,r)

|u− uBa(x,r)| dµa ≤ 2

∫
Ba(x,r)

|u− uBa(∞,16λr)| dµa

≤ C

∫
Ba(∞,16λr)

|u− uBa(∞,16λr)| dµa

≤ Cr

 ∫
96Aλ2Ba(∞,r)

ĝpdµa


1/p

≤ Cr

 ∫
Ba(x,105Aλ2r)

ĝpdµa


1/p

.

The following example was considered in [20] and shows that the previous

theorem is not true for p ≤ s.

Example 3.16. Let X be the 2-dimensional Euclidean strip R× [−1, 1] equipped

with the Euclidean metric and the weighted measure dµ(x) = max{1, |x|2}dL 2(x),

which is clearly a radially star-like quasiconvex space. By [14, Corollary 15.35]

the measure µ is p-admissible in R2 for any p > 1, which means that µ is dou-

bling and (R2, | · |, µ) supports a p-Poincaré inequality for any p > 1. In particular

(X, | · |, µ) supports a 2-Poincaré inequality. The sphericalized space with respect

to the base point a = (0, 0) is the region trapped between two tangential circles

in the sphere. In particular, the boundary of such a region is a quadratic cusp

and one can check that µa = L 2. Therefore (Xa, da, µa) supports a p-Poincaré

inequality for any p > 3. Observe that in this case the exponent of relative lower

volume decay associated to µ is s = 3.

The example [9, Example 3.14] provides a metric measure space endowed with

a doubling measure, which is not radially star-like quasiconvex, supporting an∞-

Poincaré inequality but whose sphericalized space fails to support an∞-Poincaré

22



inequality. We can therefore conclude that Theorem 3.1 is no longer true if the

hypothesis of refinement of radially star-like quasiconvexity is removed.

4 Preservation of p-Poincaré inequality for p > s

under flattening

In this section we show the preservation of p-Poincaré inequality under flattening

for p sufficiently large for metric spaces satisfying the refinement of meridian-like

quasiconvexity (see Definition 2.18).

Theorem 4.1. Let (X, d, µ) be a bounded complete metric space endowed with a

doubling measure µ and supporting a p-Poincaré inequality for some p > s, where

s is the exponent of relative lower volume decay associated to µ as in (2.3). Let

c ∈ X be a base point on X, and assume (X, d) is a refinement of K-meridian-like

quasiconvex with respect to the base point c for some K ≥ 1. Then (Xc, dc, µc)

also supports a p-Poincaré inequality.

Remark 4.2. Notice that we only require p > s, where s is associated to the

original measure µ rather than the flattened measure µc.

Proof. Let u ∈ Lip(Xc) and g be an upper gradient of u in X with respect to

the metric (X, d). We split the proof into three cases depending on the quantity

λrd(x, c).

Case 1: 6λrd(x, c) ≤ 1/2. As it was shown in [20, Proposition 4.1.1],

B(x, 2rd(x, c)2/3) ⊂ Bc(x, r) ⊂ B(x, 2rλd(x, c)2) ⊂ Bc(x, 6λr).

Furthermore, from that argument, we also obtain that 2
3
d(x, c) < d(y, c) <

2d(x, c) whenever y ∈ Bc(x, 6λr). Hence we obtain

µc(Bc(x, kr)) =

∫
Bc(x,kr)

dµ(y)

µ (B(c, d(y, c)))2
≈ µ(Bc(x, kr))

µ (B(c, d(x, c)))2
,

whenever 0 < k ≤ 6λ. In addition, for y ∈ 6λBc(x, r) the upper gradient

ḡ(y) = g(y)(d(y, c))2 ≈ g(y)(d(x, c)2).
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Therefore, by the doubling property of µ we obtain a Poincaré inequality on

Bc(x, r) when 6λrd(x, c) ≤ 1/2 as follows:∫
Bc(x,r)

|u− uBc(x,r)|dµc ≤2

∫
Bc(x,r)

|u− uB(x,2rd(x,c)2)|dµc

≤ C

µc(Bc(x, r))

∫
Bc(x,r)

|u− uB(x,2rd(x,c)2)|
µ (B(c, d(x, c)))2

dµ

≤ C

µ(Bc(x, r))

∫
Bc(x,r)

|u− uB(x,2rd(x,c)2)| dµ

≤ C

µ(B(x, 2rd(x, c)2/3))

∫
B(x,2rd(x,c)2)

|u− uB(x,2rd(x,c)2)| dµ.

Now applying the p-Poincaré inequality valid for X, we obtain

∫
Bc(x,r)

|u− uBc(x,r)|dµc ≤Cr d(x, c)2

 ∫
B(x,2rλd(x,c)2)

gp dµ


1/p

≤Cr
(∫

B(x,2rλd(x,c)2)

ḡp(y)
µ(B(c, d(x, c)))2

µ(Bc(x, 6λr))
dµc(y)

)1/p

≤Cr

 ∫
Bc(x,6λr)

ḡp dµc


1/p

as desired. This completes the proof of p-Poincaré inequality for balls Bc(x, r)

when 6λrd(x, c) < 1/2.

Case 2: λrd(x, c) ≥ 4λ. According to Case 2 of [20, Proposition 4.1.1], we can

see that

X \ B̄(c, 2/r) ⊂ Bc(x, r) ⊂ X \ B̄(c, 2/(3r)).

Let β1, · · · , βN0 be the double base-point quasiconvex curves guaranteed by the

refinement of meridian-like quasiconvexity of X. For i = 1, · · · , N0 let

Si :=
⋃
r≤r0

{
x ∈ X : if x ∈ A(c, r/2, r) with r ≤ r0 ∃ z ∈ βi and curve

γxz ⊂ A(c, r/K,Kr) connecting x to z with `(γxz) < Kd(x, c)
}
.

(4.3)

We can split the ball Bc(x, r) into a finite number of measurable sets Bc(x, r) =⋃N0

i=1(Si ∩ Bc(x, r)). Observe that the intersection of two sets Si and Sj, i 6= j
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could possibly be non empty. For each i = 1, · · · , N0 we have βi ⊂ Si, and by

the connectedness of βi we can find zi ∈ βi such that rd(zi, c) = 4. Let i be such

that Si ∩ Bc(x, r) is non-empty, and set ρ = r/(96λK) and Bi = Bc(zi, ρ). We

will now show that Bc(zi, r/(96λK)) ⊂ Bc(x, r).

Notice that the radius of the ball Bi = Bc(zi, ρ) satisfies the hypothesis of

Case 1, that is, 6λρd(zi, c) = 6λd(zi, c)r/(96λK) ≤ 1/2. Then we have

Bi = Bc
(
zi,

r

96λK

)
⊂ B

(
zi,

rd(zi, c)
2

48K

)
= B

(
zi,

d(zi, c)

12K

)
= B

(
zi,

1

3Kr

)
.

If y ∈ X \Bc(x, r), then

4d(y, c) ≤ rd(x, c)d(y, c) ≤ d(x, y) ≤ d(x, c) + d(y, c).

It follows that for such y, we have [rd(y, c) − 1]d(x, c) ≤ d(y, c), and hence by

rd(x, c) ≥ 4, we see that

4 [rd(y, c)− 1]

r
≤ d(y, c),

i.e., d(y, c) ≤ 4/(3r) ≤ 2/r, and so y ∈ B(c, 2/r). Hence X \ Bc(x, r) ⊂
B(c, 2/r). Thus we have X \ B(c, 2/r) ⊂ Bc(x, r). Because d(zi, c) = 4/r,

we have B(zi,
1

3Kr
)∩B(c, 2/r) is empty, and so Bi ⊂ X \ B̄(c, 2/r) ⊂ Bc(x, r) (it

also shows that for each i = 1, · · · , N0 we have Bc(x, r) ∩ Si is non-empty).

Since (X, d) is a refinement of K-meridian-like quasiconvex with respect to

a base point c, it follows that given x ∈ B(zi,
d(zi,c)
12K

), there exists a quasiconvex

curve in A(c, d(zi, c)/K,Kd(zi, c)) connecting x and zi, so x ∈ Si. Hence, we

have Bi ⊂ Si ∩Bc(x, r) ⊂ Bc(x, r), and by the doubling property of Xc (see [20,

Proposition 4.2.1]), it follows that µc(Bi) ≈ µc(Si ∩Bc(x, r)).

Following the same argument as Case 2 of [20, Theorem 4.3.3] we see that

∫
Si∩Bc(x,r)

|u− uBi
|dµc ≤ Cr

( ∫
6λKBc(x,r)

ḡpdµc
)1/p

. (4.4)
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Next observe that∫
Bc(x,r)

|u− uBc(x,r)|dµc ≤2

∫
Bc(x,r)

|u− uB1|dµc ≤ 2

N0∑
i=1

∫
Si∩Bc(x,r)

|u− uB1 |dµc

≤
N0∑
i=1

∫
Si∩Bc(x,r)

(|u− uBi
|+ |uBi

− uB1 |)dµc

≤
N0∑
i=1

∫
Si∩Bc(x,r)

|u− uBi
|+

N0∑
i=1

µc(Si ∩Bc(x, r))|uBi
− uB1|.

(4.5)

Notice that we can estimate the first summand of the last inequality by using

(4.4), so we only need to estimate the second summand.

Since d(a, c) ≈ supz∈X d(z, c), there exists l ≥ 0 with 2ld(zi, c) ≤ d(a, c) <

2l+1d(zi, c). In what follows, denote zi,0 = zi, zi,Mi
= a where Mi will be shown to

be bounded in the next paragraph. Then similar to Case 2 of Theorem 3.1, we can

construct a collection of points zi,k, where k = 0, 1, 2 . . . ,Mi from βi by induction.

Suppose zi,k−1 has been chosen. Then denote βzi,k−1a to be the subcurve of βi

connecting zi,k−1 to a, and zi,k−1 ∈ A(c, 2lk−1d(zi, c), 2
lkd(zi, c))(with respect to

the metric d), where lk is an integer depending only on k. We can find a point

zi,k ∈ βzi,k−1a such that the length of the subcurve γi,k of βi connecting zi,k−1 to

zi,k satisfies 2−lk−1−1ρ ≤ `c(γi,k) ≤ 2−lk−1ρ.

Let Ns = {j ≤ Mi : lj = s}. We first need to show that for each s ≤ l,

#(Ns) ≤ M for M = M(K,λ). Let js = min j ∈ Ns. Because (X, d) is a

refinement of meridian-like quasiconvex, βi is a base-point quasicovex ray with

respect to the point a and the metric dc and so we have

#(Ns)2
−s−1ρ =

∑
j∈Ns

2−ljρ ≤
∑
j∈Ns

`c(γi,j) ≤
Ml∑
j=js

`c(γi,j) = `c(βzi,jsa) ≤ Cdc(a, zi,js).

Since dc(a, zi,js) =
d(a,zi,js )

d(a,c)d(zi,js ,c)
and d(a, zi,js) ≤ d(a, c) + d(zi,js , c) ≤ 2d(a, c),

so

dc(a, zi,js) ≤
2

d(zi,js , c)
≤ 2

2ljs−1d(zi, c)
= 2−s16r, for rd(zi, c) = 4.

Therefore, we have #(Ns) ≤M and we have Mi ≤
∑l

s=0 #(Ns) ≤M(l + 1).

Set ρk = 2−jkρ. Then we can construct a collection of flattened balls Bi,k =

Bc(zi,k, ρk) in order to estimate the second summand in (4.5). Note that

|uBi
− uB1| ≤ |uBi

− uBi,Mi
|+ |uBi,Mi

− uB1|. (4.6)
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Without loss of generality, it suffices to only estimate |uBi,Mi
− uBi

|. To

estimate |uBi,Mi
− uBi

|, notice that uBi,Mi
= uB1,M1

for i = 1, 2, . . . , N0.

Then we have

|uBi
− uBi,Mi

| ≤
Mi∑
k=1

|uBi,k
− uBi,k+1

| ≤ 2

Mi∑
k=1

∫
2Bi,k

|u− uBi,k
|dµc

≤ C

Mi∑
k=1

rad(2Bi,k)

µc(2Bi,k)1/p

(∫
6λKBi,k

ḡpdµc
)1/p

≤ C
( Mi∑
k=1

( rad(2Bi,k)

µc(2Bi,k)1/p
)p/(p−1))(p−1)/p(∫

6λKBj,k

ḡpdµc
)1/p

≤ C
( Mi∑
k=1

( rad(2Bi,k)

µc(2Bi,k)1/p
)p/(p−1))(p−1)/p(

C ′
∫
6λKSi

ḡpdµc
)1/p

,

(4.7)

where we have used Hölder inequality in the third line and the fact that by

the doubling assumption on µ, µc is also doubling. In the second line, we have

applied Poincaré inequality for the balls Bi,k which satisfy the hypothesis of

Case 1. Indeed, recall that Bi,k = Bc(zi,k, ρk), and 2jkd(zi, c) ≤ d(zj,k, c) ≤
2jk+1d(zi, c), ρk = 2−jkρ = 2−jkr/(96λK), so d(zj,k, c)ρj ≤ 2d(zi, c)r/(96λK) =

1/(12λK).

Now, according to Case 1, since 6λrad(Bi,k)d(zi,k, c) ≤ 1/2, then we have

µc(Bc(zi,k, ρk)) =

∫
Bc(zi,k,ρk)

dµ(y)

µ(B(c, d(y, c)))2
≈ µ(Bc(zi,k, ρk))

µ(B(c, d(zi,k, c)))2

≈ µ(B(zi,k, ρkd(zi,k, c)
2))

µ(B(c, d(zi,k, c)))2
.

(4.8)

Notice that ρkd(zi,k, c) ≈ ρd(zi, c) = 1/(12λK) ≤ 1/2. By the doubling property,

of µ we have

Cµ ≥
µ(B(zi,k, ρkd(zi,k, c)

2))

µ(B(c, d(zi,k, c)))
≥ C

(d(zi,k,c)
24λK

)s
d(zi,k, c)s

≥ 1

C
.

Therefore, from the estimate above and (4.8) we can induce that

µc(Bc(zi,k, ρk))

µc(Bc(zi, ρ))
≈ µ(B(zi,k, ρkd(zi,k, c)

2))

µ(B(c, d(zi,k, c)))2
µ(B(c, d(zi, c)))

2

µ(B(zi, ρd(zi, c)2))

≈ µ(B(c, d(zi, c)))

µ(B(c, d(zi,k, c)))
≥ C

( d(zi, c)

d(zi,k, c)

)s
≈ C

( (4/r)

2jk(4/r)

)s
.
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Hence, we can get
(2−jkr)s/p

µc(Bi,k)1/p
≤ C

rs/p

µc(Bc(zi, ρ))1/p
.

From this estimate together with (4.7), we obtain

( Mi∑
k=1

( rad(2Bi,k)

µc(2Bi,k)1/p
)p/(p−1))(p−1)/p ≤C( Mi∑

k=1

((2−jkr)s/p(2−jkr)1−s/p

(µc(2Bi,k)1/p)

)p/(p−1))(p−1)/p
≤C
( Mi∑
k=1

(rs/p(2−jkr)1−s/p
(µc(Bi)1/p)

)p/(p−1))(p−1)/p
≤C
( Mi∑
k=1

2−jk(p−s)/(p−1)
)(p−1)/p r

µc(Bi)1/p
.

(4.9)

From (4.9), we can go back to (4.7), then we can derive that

|uBi
− uBi,Mi

| ≤ C
r

µc(Bi)1/p

(∫
6λKSi

ḡpdµc
)1/p

. (4.10)

Combining with (4.5), (4.6) and (4.10), we have proved the Case 2.

Case 3. The proof of this case is similar to case 3 of [20, Theorem 4.3.3].

For 1/4 ≤ λrd(x, c) ≤ 4λ, we combine the outcome of Case 2 above to obtain∫
Bc(x,r)

|u− uBc(x,r)|dµc ≤ 2

∫
Bc(x,r)

|u− uBc(x,8r)|dµc ≤C
∫

Bc(x,8r)

|u− uBc(x,8r)|dµc

≤Cr

 ∫
48AλBc(x,r)

ḡpdµc


1/p

.

Here we used the fact that Bc(x, 8r) satisfies the hypothesis of Case 2.

By combining the above three cases we have proved the theorem.

The example [9, Example 4.12] gives a metric measure space endowed with a

doubling measure, which is not meridian-like quasiconvexity, supporting an ∞-

Poincaré inequality but whose flattened space fails to support an ∞-Poincaré

inequality. Therefore we cannot dispense of the hypothesis of refinement of

meridian-like quasiconvexity in Theorem 4.1.
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5 Blow-up of a differentiability space: an exam-

ple

As far as we know, it is an open question whether a blow-up of a differentiability

space must be a PI space, that is, a metric space endowed with a doubling measure

an a p-Poincaré inequality for some p <∞. See for example [8].

The following example is a modification of [11, Example 2] and shows that

this is not always the case.

Example 5.1. Let Q = [0, 1]× [0, 1] ⊂ R2 be the unit square.

First we divide Q into nine equal squares of side-length 1/3 and remove the

central (open) one. We define the set Q1 to be the union of the 8 remaining

squares. Repeating this procedure on each of the 8 squares making up Q1 we

obtain the set Q2, a union of 82 squares, each of side-length 1/32. Iterating this

process we get a sequence of sets Qj consisting of 8j squares of side-length 1/3j.

Because Qj has positive area for each j, we can define a probability measure µj

concentrated on Qj obtained by renormalizing the Lebesgue measure (restricted

to Qj) to have measure one. We now consider the following metric measure space:

X = ... ∪ (Q3 + (−2, 0)) ∪ (Q2 + (−1, 0)) ∪Q1 ∪ (Q2 + (1, 0)) ∪ · · ·

endowed with the measure

µ =
∞∑

j=−1

χQ|j−1|+(j,0) · µj−1 +
∞∑
j=1

χQj+(j−1,0) · µj,

and with the Euclidean metric restricted to X. In the previous formula, Qj +

(j − 1, 0) is the set obtained by translating Qj in the direction parallel to the

x-axis by j − 1 units and µj is the measure given by

µj = (9/8)j L 2|Qj+(j−1,0) for j ∈ 1, 2, · · · ,
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and

µj = (9/8)|j|L 2|Q|j|+(j+1,0) for j ∈ · · · − 3,−2.

It can be directly verified that the measure µ is doubling on X. As shown in [11],

the space (X, d, µ) supports an ∞-Poincaré inequality but does nos support any

p-Poincaré inequality for finite p. This space, being a countable union of spaces

with a Euclidean differentiable structure, is a metric differentiability space in the

sense of Cheeger. By [20, Theorem 3.13], the sphericalization (Ẋ, da, µa) also

supports an ∞-Poincaré inequality and a metric differentiable structure (given

via the sphericalization of the metric differentiable structure of (X, d, µ)). See [7]

or [8] for the relevant definitions. On the other hand, the blow up of (Ẋ, da, µa)

at the point x = ∞ does not support a p-Poincaré inequality for any p < ∞
(because (X, d, µ) does not).
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[18] S. Keith and X. Zhong, The Poincaré inequality is an open ended condition,

Ann. of Math. (2)167 (2008), no.2, 575-599.

31



[19] R. Korte, Geometric implications of the Poincaré inequality, Results Math.,
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