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SUNTO: In questo lavoro si provano risultati di regolarità per minimi di fun-
zionali scalari

∫
f(x, u, Du) a crescita non-standard di tipo p(x), cioè:

L−1|z|p(x) ≤ f(x, s, z) ≤ L(1 + |z|p(x)) .

Si considerano per la funzione esponente p(x) > 1 ipotesi di regolarità ottima-
li.

ABSTRACT: We prove regularity results for real valued minimizers of the in-
tegral functional

∫
f(x, u, Du) under non-standard growth conditions of p(x)-

type, i.e.
L−1|z|p(x) ≤ f(x, s, z) ≤ L(1 + |z|p(x))

under sharp assumptions on the continuous function p(x) > 1.

1. – Introduction

The aim of this paper is the study of the regularity properties of local
minimizers of integral functionals of the type

F(u, Ω) :=

∫

Ω

f(x, u(x), Du(x))dx , (1.1)

where Ω is a bounded open set of Rn, f : Ω × R × Rn → R is a Cara-
théodory function and u ∈ W 1,1

loc (Ω,R). The regularity theory for minimizers
was successfully carried out under the assumption of p-growth

L−1|z|p ≤ f(x, s, z) ≤ L(1 + |z|p) , p > 1

and under natural assumptions of convexity or quasiconvexity of f (see for
example [G], [Ev], [AF1], [AF2]). At the end of the eighties some articles
considering the more flexible (p, q)-growth

L−1|z|p ≤ f(x, s, z) ≤ L(1 + |z|q) , q > p > 1

1



were published, after the pioneering papers of Marcellini (see [M1] - [M3], and
[ELM] with the references therein). Despite the considerable number of publi-
cations devoted to the issue, for this type of functionals a general theory is
still lacking. A borderline case between standard and non-standard growth is
the so called p(x)-growth

L−1|z|p(x) ≤ f(x, s, z) ≤ L(1 + |z|p(x)) (1.2)

a prominent model functional being:

∫

Ω

|Du|p(x) dx . (1.3)

Such types of energies owe their importance to the fact that several models
(also non variational) coming from Mathematical Physics are built using a
variable growth exponent. For instance, Rajagopal and Růžička (for more
details see [RR], [R1], [R2], [D], [AM3] and [AM4]) elaborated a model for elec-
trorheological fluids, which are special non-Newtonian fluids characterized by
their ability to change very quickly their mechanical properties in presence
of an electromagnetic field E(x). Later, a model for fluids showing a similar
dependence on the temperature was elaborated by Zhikov ([Z2]). In a different
setting, (see [Z1]) the differential system modelling the so called “thermistor
problem” includes equations like

−div(p(x)|Du|p(x)−2Du) = 0 .

On the other hand, functionals like the one in (1.3) have been studied also from
a functional spaces theorical point of view since they motivate the introduction
of certain related function spaces with interesting features (see, for instance,
[ER1], [ER2], [F]).
For such functionals a regularity theory was recently developed ([AF2], [Z1],
[FZ], [CM], [AM1], [AM2], [MM]) obtaining some optimal regularity results for
local minimizers of integrals functionals of the type

F0(u, Ω) :=

∫

Ω

f(x,Du(x))dx

with the Lagrangian f(x, z) satisfying a p(x) growth assumption as in (1.2).
In this article we extend the results in [AM1] to more general functionals of the
type in (1.1), including model examples like:

∫

Ω

a(x, u(x))|Du|p(x) dx , (1.4)

and, more generally: ∫

Ω

a(x, u(x))f(x,Du) dx , (1.5)
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where f(x, z) is as in (1.2) and a(x, u) is a continuous function of its arguments.
Our results can be shortly summarized as follows: if the exponent p(x) has
modulus of continuity ω1, satisfying the following assumption:

lim
R→0

ω1(R) log

(
1

R

)
= λ , (1.6)

then u ∈ C0,α
loc (Ω) where α ≡ α(λ) is such that:

lim
λ→0

α(λ) = 1 .

Clearly, if

lim
R→0

ω1(R) log

(
1

R

)
= 0 , (1.7)

it turns out that u ∈ C0,α
loc (Ω) for each α < 1. Moreover if both p(x) and a(x, u)

are Hölder continuous, then Du is Hölder continuous too. It is worth stressing
that the previous results are optimal, in the sense that if the condition (1.6)
fails for each λ, then, as shown by mean of a counterexample by Zhikov, (see
[Z1]), local minimizers fail to be, in general, locally Hölder continuous. In
this respect our result is therefore sharp. In a second step, assuming higher
regularity both on p(x) and a(x, u) (i.e.: Hölder continuity) we prove the
Hölder continuity of the gradient Du itself. Since the Hölder continuity of
the gradient is the maximal regularity expected even when p(x) is constant
(compare [Ur], where the scalar case is treated; the vectorial case has been
subsequently studied in [Uh]; see also [FM] for the case of non standard growth
conditions) also this result is the best possible.
Finally, let us comment on some technical aspects of the paper. We are dealing
with very general convex Lagrangians of the type f(x, u, Du). Indeed our
functionals will be of the type:

∫
|Du|p(x) + g(x, u,Du) dx (1.8)

where g is a Carathéodory function, convex with respect to variable z, such
that:

0 < g(x, u, z) ≤ (1 + |z|p(x)) .

In particular such functions are not C2 and fail to be even differentiable at
each point. Therefore, such Lagrangians f are convex but fail to be smooth
and depend explicitly on the variable u ∈ R; so when proving our results we
have to adopt a refined freezing, variational argument based on the Ekeland
variational principle and combine it with the arguments developed in the paper
[AM1]. This is due to the fact that, in order to overcome the lack of smoo-
thness of the function f , an involved approximation procedure is required.
In turn this leads to consider a sequence of approximating functionals whose
(approximating) minimizers do converge to a certain limit function. For such
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minimizers, uniform regularity estimates are found. Now, since the functio-
nal we consider is not, in general, convex (due to the u dependence of the
function f) uniqueness of minimizers, and therefore the convergence of the ap-
proximating minimizers to the original minimizer, is not a priori guaranteed.
To overcome this obstruction, the above mentioned Ekeland principle turns
out to be the appropriate tool, ensuring that the constructed approximating
minimizers converge to the original one. The regularity of the original mini-
mizer is then obtained passing to the limit the uniform estimates found for
the approximating ones. We like to remark that such a technique has been
successfully adopted for functionals with standard p-growth in the paper [CFP]
(see also [CP], [FH]), and its application in our setting arises a certain number
of technical problems, especially when dealing with the estimates.
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2. – Notation and statements

In the sequel Ω will denote an open bounded domain in Rn and B(x,R)
the open ball {y ∈ Rn : |x− y| < R}. If u is an integrable function defined on
B(x,R), we will set

(u)x,R = −
∫

B(x,R)

u(x)dx =
1

ωnRn

∫

B(x,R)

u(x)dx ,

where ωn is the Lebesgue measure of B(0, 1). We shall also adopt the conven-
tion of writing BR and (u)R instead of B(x,R) and (u)x,R respectively, when
the center will not be relevant or it is clear from the context; moreover, un-
less otherwise stated, all balls considered will have the same center. Finally
the letter c will freely denote a constant, not necessarily the same in any two
occurrences, while only the relevant dependences will be highlighted.
The Carathéodory function f : Ω×R×Rn → R will be supposed to satisfy a
growth condition of the following type:

L−1|z|p(x) ≤ f(x, u, z) ≤ L(1 + |z|p(x)) (2.1)

for all x ∈ Ω, u ∈ R, z ∈ Rn, where p : Ω → (1, +∞) is a continuous function
and L ≥ 1. Next, we will set

F(u,A) :=

∫

A
f(x, u(x), Du(x))dx

for all u ∈ W 1,1
loc (Ω) and for all A ⊂ Ω.

With this type of non-standard growth, we adopt the following notion of local
minimizer and local Q-minimizer:
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Definition 2.1. We say that a function u ∈ W 1,1
loc (Ω) is a local minimizer of

the functional F if |Du(x)|p(x) ∈ L1
loc(Ω) and

∫

spt ϕ

f(x, u(x), Du(x))dx ≤
∫

spt ϕ

f(x, u(x) + ϕ(x), Du(x) + Dϕ(x))dx

for all ϕ ∈ W 1,1
0 (Ω) with compact support in Ω.

Definition 2.2. We say that a function u ∈ W 1,1
loc (Ω) is a local Q-minimizer

of the functional F with Q ≥ 1 if for all v ∈ W 1,1
loc (Ω) we have

F(u,K) ≤ QF(v, K) ,

where we set K =: spt(u− v) ⊂⊂ Ω.

We shall consider the following growth, ellipticity and continuity conditions:

L−1(µ2 + |z|2)p(x)/2 ≤ f(x, u, z) ≤ L(µ2 + |z|2)p(x)/2 , (H1)

∫

Q1

[f(x0, u0, z0 + Dϕ(x))− f(x0, u0, z0)]dx

≥ L−1

∫

Q1

(µ2 + |z0|2 + |Dϕ(x)|2)(p(x0)−2)/2|Dϕ(x)|2dx

(H2)

for some 0 ≤ µ ≤ 1, for all z0 ∈ Rn, u0 ∈ R, x0 ∈ Ω, ϕ ∈ C∞0 (Q1) , where
Q1 = (0, 1)n,

|f(x, u, z)− f(x0, u, z)|

≤ Lω1(|x− x0|)
[(

µ2 + |z|2
)p(x)/2

+
(
µ2 + |z|2

)p(x0)/2][
1 + | log(µ2 + |z|2)|

]

(H3)

for all z ∈ Rn, u ∈ R, x and x0 ∈ Ω, where L ≥ 1. Here ω1 : R+ → R+ is
a nondecreasing continuous function, vanishing at zero, which represents the
modulus of continuity of p :

|p(x)− p(y)| ≤ ω1(|x− y|). (H4)

We will always assume that ω1 satisfies the following condition:

lim sup
R→0

ω1(R) log

(
1

R

)
< +∞ ; (2.2)

thus in particular, without loss of generality, we may assume that

ω1(R) ≤ L| log R|−1 (2.3)

for all R < 1.
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We shall also consider the following continuity condition with respect to u :

|f(x, u, z)− f(x, u0, z)| ≤ Lω2(|u− u0|)(µ2 + |z|2)p(x)/2 . (H5)

for any u, u0 ∈ R. As usual, without loss of generality, we shall suppose that
ω2 is a concave, bounded and, hence, subadditive function.

Remark. Following [FFM] it is possible to prove that a functional satisfying
the previous assumptions can be written in the form (1.8), with g described
as in the introduction.

No differentiability is assumed on f with respect to x or with respect to z.
Since all our results are local in nature, without loss of generality we shall
suppose that

1 < γ1 ≤ p(x) ≤ γ2 ∀x ∈ Ω ,

and ∫

Ω

|Du(x)|p(x)dx < +∞ . (2.4)

Our main result is contained in the following:

Theorem 2.3. Let u ∈ W 1,1
loc (Ω) be a local minimizer of the functional (1.1),

where f is a continuous function satisfying (H1)-(H5). Moreover suppose that

lim
R→0

ω1(R) log

(
1

R

)
+ ω2(R) = 0 . (2.5)

Then u ∈ C0,α
loc (Ω), for all 0 < α < 1.

After the proof of the previous results we shall make some remarks leading to
the following more precise statement:

Theorem 2.4. Let u ∈ W 1,1
loc (Ω) be a local minimizer of the functional (1.1),

where f is a continuous function satisfying (H1)-(H5). Then there exists a
nonincreasing function:

α : R+ → (0, 1) , lim
s→0

α(s) = 1

such that if

lim
R→0

ω1(R) log

(
1

R

)
+ ω2(R) ≤ λ , (2.6)

then u ∈ C0,α(λ)
loc (Ω).

Clearly, Theorem 2.3 is then a consequence of Theorem 2.4, taking λ = 0.
In the case when both the functions f and p(x) are smoother, we recover the
classical C1,α regularity of local minimizers:
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Theorem 2.5. Let u ∈ W 1,1
loc (Ω) be a local minimizer of the functional (1.1),

where f is a continuous function satisfying (H1)-(H5). Moreover suppose that
ω1(R) + ω2(R) ≤ LRα for some 0 < α ≤ 1 and for all R ≤ 1. Suppose also
that f is of class C2 with respect to the variable z in Ω×R× (Rn \ {0}), with
D2f satisfying

L−1(µ2 + |z|2)(p(x)−2)/2|λ|2 ≤ D2f(x, u, z)λ⊗ λ ≤ L(µ2 + |z|2)(p(x)−2)/2|λ|2

for all λ ∈ Rn. Then Du is locally Hölder continuous in Ω.

3. – Preliminary results

Before proving our main theorems, we need some preliminary results and esta-
blish some basic notation. In the following we shall consider varying balls,
always having the same center when not differently specified. Moreover, by
c (or similar symbols) we denote a constant, that may vary from line to line,
while only the important connections will be highlighted. If B4R ≡ B(xc, 4R)
we shall set:

p1,xc(R) := min
x∈B4R

p(x) , p2,xc(R) := max
x∈B4R

p(x) . (3.1)

When it will be clear from the context we shall omit to indicate the dependence
on xc just denoting

p1 ≡ p1,xc p2 ≡ p2,xc .

The following is a higher integrability result which is due, in its original version,
to Zhikov, and which we adapt to functionals of type (1.1).

Theorem 3.1. Let O be an open subset of Ω, let u ∈ W 1,1
loc (O) be a local

minimizer of the functional (1.1) with f : O × R × Rn → R satisfying (H1)
and with the function p(x) satisfying (H4) and (2.2). Moreover suppose that

∫

O
|Du(x)|p(x)dx ≤ M1

for some constant M1. Then, there exist two positive constants c0, δ depending
on γ1, γ2, L, M1, such that, if BR ⊂⊂ O, then

(
−
∫

BR/2

|Du(x)|p(x)(1+δ)dx

)1/(1+δ)

≤ c0 −
∫

BR

|Du(x)|p(x)dx + c0 . (3.2)

Proof. First step: let R/2 ≤ t < s ≤ R ≤ 1 , and let η ∈ C∞
0 (BR) be a cut-off

function such that 0 ≤ η ≤ 1, η ≡ 0 outside Bs, η ≡ 1 on Bt, |Dη| ≤ 2(s−t)−1.
Moreover we set ϕ(x) = η(x)(u(x)− (u)R) and let g = u−ϕ. We remark that
g = u on ∂Bs while on Bt we have g = (u)R, consequently Dg = 0 on Bt.
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Hence, using the fact that u is a local minimizer, we may write∫

Bt

|Du(x)|p(x)dx

≤ L

∫

Bs

f(x, u(x), Du(x))dx

≤ L

∫

Bs

f(x, g(x), Dg(x))dx

≤ L2

∫

Bs

(
1 + |Dg(x)|p(x)

)
dx

≤ L2

∫

Bs\Bt

[(1− η(x))|Du(x)|+ |u(x)− (u)R||Dη(x)|]p(x)dx + c̄

≤ ĉ

∫

Bs\Bt

|Du(x)|p(x)dx + c̃

∫

Bs

∣∣∣∣
u(x)− (u)R

s− t

∣∣∣∣
p(x)

dx + c̄

≤ ĉ

∫

Bs\Bt

|Du(x)|p(x)dx + c̃
1

|s− t|p2

∫

BR

|u(x)− (u)R|p(x)dx + c̄ ,

where ĉ = L22γ2−1, c̃ = L222γ2−1, c̄ = L2|BR|. Now adding the quantity (i.e.:
“filling the hole”)

ĉ

∫

Bt

|Du(x)|p(x)dx

to the first and the last term of the previous chain of inequalities and dividing
by ĉ + 1, we get∫

Bt

|Du(x)|p(x)dx ≤ ϑ1

∫

Bs

|Du(x)|p(x)dx+d̃
1

|s− t|p2

∫

BR

|u(x)−(u)R|p(x)dx+d̄ ,

where

ϑ1 =
ĉ

ĉ + 1
< 1 , d̃ =

L222γ2−1

L22γ2−1 + 1
, d̄ =

L2|BR|
L22γ2−1 + 1

.

Now we can apply [G], Lemma 6.1 with the choices

Z(t) =

∫

Bt

|Du(x)|p(x)dx ,

A = d̃

∫

BR

|u(x)− (u)R|p(x)dx, B = d̄, C = 0, α = p2, β = 0, ρ =
R

2
,

obtaining∫

BR/2

|Du(x)|p(x)dx ≤ c

[
(R/2)−p2 d̃

∫

BR

|u(x)− (u)R|p(x)dx + d̄

]

≤ cRp1−p2

∫

BR

∣∣∣∣
u(x)− (u)R

R

∣∣∣∣
p(x)

dx + cRn

≤ cR−ω1(8R)

∫

BR

∣∣∣∣
u(x)− (u)R

R

∣∣∣∣
p(x)

dx + cRn
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≤ c exp(8L)

∫

BR

∣∣∣∣
u(x)− (u)R

R

∣∣∣∣
p(x)

dx + cRn

≤ c

∫

BR

∣∣∣∣
u(x)− (u)R

R

∣∣∣∣
p(x)

dx + cRn ,

where in the fourth inequality we used (2.3) and c is a constant depending
only on γ1, γ2, L.
According to the previous facts, we find that

−
∫

BR/2

|Du(x)|p(x)dx ≤ c −
∫

BR

∣∣∣∣
u(x)− (u)R

R

∣∣∣∣
p(x)

dx + c . (3.3)

Second step: we fix ϑ = min
{√

n+1
n

, γ1

}
and we take R < R0/16 where R0 is

small enough to have ω1(8R0) ≤ ϑ− 1. It is easy to see that

1 ≤ p2ϑ

p1

≤ ϑ2 ≤ n + 1

n
.

From the standard Sobolev-Poincaré inequality for a ball with q = p1

ϑ
≥ 1, t =

p2ϑ
p1

, we get

−
∫

BR

∣∣∣∣
u(x)− (u)R

R

∣∣∣∣
p(x)

dx

≤ 1 + −
∫

BR

∣∣∣∣
u(x)− (u)R

R

∣∣∣∣
p2

dx

≤ 1 + c

(
−
∫

BR

|Du(x)| p1
ϑ dx

) (p2−p1)ϑ
p1

(
−
∫

BR

|Du(x)| p1
ϑ dx

)ϑ

≤ 1 + c

(∫

BR

(1 + |Du(x)|p(x))dx

) (p2−p1)ϑ
p1

R
−(p2−p1)ϑn

p1

(
−
∫

BR

|Du(x)| p1
ϑ dx

)ϑ

≤ c(M1)

(
−
∫

BR

|Du(x)| p1
ϑ dx

)ϑ

+ c ,

where in the third inequality we use the fact that p1

ϑ
≤ p(x)

ϑ
≤ p(x) and in the

last one we use again the fact that, by (2.3), R
−(p2−p1)ϑn

p1 is bounded. So, by
the second step

−
∫

BR

∣∣∣∣
u(x)− (u)R

R

∣∣∣∣
p(x)

dx ≤ c

(
−
∫

BR

|Du(x)| p(x)
ϑ dx

)ϑ

+ c . (3.4)
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Third step: from (3.3) and (3.4) we obtain

−
∫

BR/2

|Du(x)|p(x)dx ≤ c

(
−
∫

BR

|Du(x)| p(x)
ϑ dx

)ϑ

+ c .

Let us observe that the previous reverse Hölder estimate follows only for those
radii R < R0/16, so we recall the version of Gehring’s lemma that can be
found, for instance, in [S] and we can finish the proof. The desired dependence
of the constant follows again looking at the statement in [S]. ¤
Corollary 3.2 (Caccioppoli inequality). Suppose that the function u ∈
W 1,1

loc (Ω) is a local minimizer of the functional (1.1), with f satisfying (2.1)
and (2.3), and let BR ⊂⊂ Ω. Then

−
∫

BR/2

|Du(x)|p(x)dx ≤ c −
∫

BR

∣∣∣∣
u(x)− (u)R

R

∣∣∣∣
p(x)

dx + c ,

where c depends only on γ1, γ2, L.

Proof. It follows from the first step of the previous proof, formula (3.3). ¤
Before going on, we need to prove some propositions. In the following we shall
consider balls BR ⊂⊂ Ω and functions u, such that:

u ∈ W 1,q(BR) q > 1.

This is a technical assumption that will be always satisfied with a suitable
choice of the function u and of the exponent q, when applying the propositions
below in the next section.

Proposition 3.3. Let g : Rn → R be a function of class C2 satisfying

L−1(µ2 + |z|2)q/2 ≤ g(z) ≤ L(µ2 + |z|2)q/2 , (H1c)∫

Q1

[g(z0 + Dϕ(x))− g(z0)]dx

≥ L−1

∫

Q1

(µ2 + |z0|2 + |Dϕ(x)|2)(q−2)/2|Dϕ(x)|2dx

(H2c)

with L > 1, where q is a constant such that γ1 ≤ q ≤ γ2, and µ > 0. Let
u ∈ W 1,q(BR), BR ⊂⊂ Ω and let ṽ ∈ u + W 1,q

0 (Ω) be a minimizer of the
functional

H(w,BR) :=

∫

BR

g(Dw(x))dx + ϑ0

∫

BR

|Dw −Dv0|dx

:=G0 + ϑ0

∫

BR

|Dw −Dv0|dx

in the Dirichlet class u + W 1,q
0 (BR), where ϑ0 ≥ 0 and v0 ∈ u + W 1,q

0 (BR) is a
fixed function. Then for all β > 0 and for all A0 > 0 we have∫

Bρ

|Dṽ(x)|qdx ≤ c
( ρ

R

)n
∫

BR

(µ2 + |Dṽ(x)|2)q/2dx
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+ cϑ0

∫

BR

|Du(x)−Dṽ(x)|dx + cRnϑ0

q
q−1

[
1

A0

] qβ
q−1

+ c[A0]
qβ

∫

BR

(1 + |Du(x)|q)dx ,

for any 0 < ρ < R, where c ≡ c(γ1, γ2, n) is independent of v0, ṽ, u, q, µ and
R.

Proof. Let v ∈ W 1,q(BR) be a local minimizer of the functional w 7→∫
BR

g(Dw(x))dx in the Dirichlet class u+W 1,q
0 (BR). We remark that the func-

tion g(z) satisfies the assumptions of [AM1], Theorem 3.2 and γ1 ≤ q ≤ γ2, so
comparing v and ṽ in BR we have, for any 0 < ρ < R

∫

Bρ

(µ2 + |Dv(x)|2)q/2dx ≤ c
( ρ

R

)n
∫

BR

(µ2 + |Dṽ(x)|2)q/2dx ,

where c ≡ c(γ1, γ2, n). Now, arguing in a standard way (see again [AM1],
[CFP]), it is easy to see that

∫

Bρ

(µ2 + |Dṽ(x)|2)q/2dx

≤ c
( ρ

R

)n
∫

BR

(µ2 + |Dṽ(x)|2)q/2dx

+ c

∫

BR

(µ2 + |Dṽ(x)|2 + |Dv(x)|2)(q−2)/2|Dṽ(x)−Dv(x)|2dx

(3.5)

and that (since in our case we are assuming µ > 0):

G0(ṽ)− G0(v) ≥ c−1

∫

BR

(µ2 + |Dṽ(x)|2 + |Dv(x)|2)(q−2)/2|Dṽ(x)−Dv(x)|2dx .

(3.6)
Again we remark that c depends only on L, γ1, γ2. On the other hand, using the
minimality of ṽ and triangular inequality in the second estimate, we deduce

G0(ṽ)− G0(v)

≤ H(ṽ)−H(v) + ϑ0

∫

BR

|Dṽ(x)−Dv(x)|dx

+ ϑ0

∫

BR

|Dv(x)−Du(x)|dx− ϑ0

∫

BR

|Dv(x)−Du(x)|dx

≤ ϑ0

∫

BR

|Du(x)−Dṽ(x)|dx +

∫

BR

{
ϑ0

[
1

A0

]β}{|Dv(x)−Du(x)| [A0]
β
}

dx

≤ ϑ0

∫

BR

|Du(x)−Dṽ(x)|dx + cRnϑ0

q
q−1

[
1

A0

] qβ
q−1

11



+ c[A0]
qβ

∫

BR

(1 + |Du(x)|q)dx

for all β > 0 and all A0 > 0. Connecting the last inequality to (3.5) and (3.6)
we get the thesis. ¤
The previous result, as the following one, are technical preliminaries that will
be needed later. Now, our next task is to derive a “non smooth” version of
the previous proposition. Let us start with a simple smoothing result.

Lemma 3.4. Let h(z) : Rn → R be a continuous function satisfying (H1c)
and (H2c) where q is a constant such that γ1 ≤ q ≤ γ2 and µ ≥ 0, and let
(Gm)m∈N be a sequence of continuous functions defined by:

Gm(z) :=

∫

B(0,1)

ϕ(y)h
(
z +

y

m

)
dy ,

where ϕ : B(0, 1) → [0, 1] is a positive and symmetric mollifier. Then for any
m ∈ N the function Gm satisfies (H1c) and (H2c) with L replaced by 8γ2L and
µ2 replaced by µ2 + 1

m2 .

Proof. It easily follows from [FF]. ¤
Proposition 3.5. Let h(z) : Rn → R be a continuous function satisfying
(H1c) and (H2c) where q is a constant such that γ1 ≤ q ≤ γ2, and µ ≥ 0; for
all u ∈ W 1,q(Ω) let v0 ∈ u + W 1,q

0 (BR) be a minimizer of the functional

H(w, BR) :=

∫

BR

h(Dw(x))dx + ϑ0

∫

BR

|Dw −Dv0|dx

in the Dirichlet class u + W 1,q
0 (BR), where ϑ0 ≥ 0. Then for all β > 0 and all

A0 > 0 we have
∫

Bρ

|Dv0(x)|qdx ≤ c
( ρ

R

)n
∫

BR

(µ2 + |Dv0(x)|2)q/2dx

+ cϑ0

∫

BR

|Du(x)−Dv0(x)|dx + cRnϑ0

q
q−1

[
1

A0

] qβ
q−1

+ c[A0]
qβ

∫

BR

(1 + |Du(x)|q)dx ,

for any 0 < ρ < R, where c ≡ c(γ1, γ2, n) is independent of v0, u and R.

Proof. The proof of this proposition can be obtained following a standard
approximation argument (see [FF], [CFP]). We confine ourselves to sketch it.
We define vm ∈ u + W 1,q

0 (BR) as the unique minimizer of the functional

Hm(w,BR) :=

∫

BR

Gm(Dw(x))dx + ϑ0

∫

BR

|Dw −Dv0|dx

12



in the Dirichlet class u+W 1,q
0 (BR). Using a standard coercivity argument and

the strict convexity of the functional H, it turns out that, up to subsequences,
vm weakly converges to u in W 1,q(BR) and the estimate stated follows passing
to the limit the corresponding ones of Proposition 3.3, valid, uniformly, for
each vm. ¤
Finally, we recall the main result from [FZ]:

Theorem 3.6. Let u ∈ W 1,1
loc (Ω) be a local minimizer of the functional (1.1),

where f is a continuous function satisfying (H1) and with the function p(x)
satisfying (H4) and (2.2). Then there exists an exponent γ ≡ γ(n, p(x), L) ∈
(0, 1) such that any local minimizer of the functional (1.1) is in C0,γ

loc (Ω).

4. – Proof of Theorems 2.3 and 2.4.

We give the proof of Theorem 2.3, the proof of Theorem 2.4 being just a
straightforward consequence of the arguments developed for the first one.

Setting of the quantities.

From now on, since we are going to prove local regularity results, we shall
assume that our minimizer u is globally Hölder continuous, that is:

|u(x)− u(y)| ≤ [u]γ|x− y|γ (4.1)

for all x, y ∈ Ω.
We start the proof of the main theorems by fixing some important quantities.
We start applying Theorem 3.1 in order to get a higher integrability exponent
for the gradient Du , δ > 0. Obviously we can replace at will the exponent δ
with smaller constants; so we choose δ such that δ < min{γ1 − 1, γ

1−γ
}, where

γ is the Hölder continuity exponent coming from Theorem 3.6. Therefore the
exponent δ will depend upon the quantities γ1, γ2, L, M1, where (see (2.4))

M1 := L2

∫

Ω

(1 + |Du(x)|2)p(x)/2dx . (4.2)

Let 0 < R0 < 1 (that will be used as a radius) such that ω1(8R0) ≤ δ/4, where δ
is the higher integrability exponent. Observe that since δ ≡ δ(n, γ1, γ2,M1, L)
then also the radius R0 will depend on the same quantities.
In the following R > 0 will always denote a radius such that 16R < R0 ≤ 1;
therefore we shall always take balls BR ≡ B(xc, R) ⊂⊂ Ω with R satisfying
16R < R0 ≤ 1. For such a ball we shall set

p1(R) ≡ p1,xc(R) := min
x∈B4R

p(x) , p2(R) ≡ p2,xc(R) := max
x∈B4R

p(x) . (4.3)

This choice implies that

p2(1 + δ/4) ≤ p(x)(1 + δ/4 + ω1(8R)) ≤ p(x)(1 + δ) in B4R , (4.4)

13



and also that
p(x) ≥ γ1 > δ + 1 > 1 + δ/4 . (4.5)

Finally we set
pm := max

BR0

p(x) .

With such a choice, (4.4) and the higher integrability result given by Theorem
3.1 allow us to say that:

∫

BR0/4

|Du(x)|pmdx ≤
∫

BR0/4

|Du(x)|p(x)(1+δ)dx + cRn
0

≤ cRn
0

(
−
∫

BR0

(|Du(x)|p(x) + 1)dx

)1+δ

≤ cR−nδ
0

(∫

BR0

(|Du(x)|p(x) + 1)dx

)1+δ

:≤ M2 .

(4.6)

In the last inequality, we use the previous (4.2) and the fact that R0 ≡
R0(n, γ1, γ2,M1, L) (since it is determined only after δ) to deduce that the con-
stant M2 depends only on L, γ1, γ2, ‖|Du|p(x)‖L1(Ω); we may suppose, without
loss of generality, that M2 ≥ M1.
Let B(xc, 4R) ≡ B4R ⊂⊂ BR0/4 be not necessarily concentric with BR0 ; from
now on, when not differently specified, all the balls considered, except BR0 ,
will have the same center xc.

Freezing.

We first remark that by Theorem 3.1 and by (4.4) we are able to deduce that
u ∈ W 1,p2(1+δ/4)(B4R).
Let x0 ∈ B4R such that

p(x0) ≡ p2,xc(R) := max
x∈B4R

p(x) .

For any x ∈ B4R, z ∈ Rn we set

h(z) := f(x0, (u)R, z) ,

G0(w, BR) :=

∫

BR

h(Dw(x))dx =

∫

BR

f(x0, (u)R, Dw(x))dx , (4.7)

since we are freezing the function f at the point (x0, (u)R), let us remark again
that the center of the ball BR is xc, which in general it is different form x0.
Let v be the local minimizer of G0 in the Dirichlet class u + W 1,1

0 (BR). We
observe that the function h(z) := f(x0, (u)R, z) satisfies the assumption of
[AM1], Lemma 3.1 with p = p2, γ1 ≤ p2 ≤ γ2. So, by the minimality of v, it
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follows that there exist two constants c and ε ∈ (0, δ/4) both depending on
γ1, γ2, L and independent of R and v, such that

(
−
∫

BR

|Dv(x)|p2(1+ε)dx

)1/(1+ε)

≤ c −
∫

BR

|Dv(x)|p2dx + c

(
−
∫

B2R

|Du(x)|p2(1+δ/4)dx

)1/(1+δ/4)

,

(4.8)

∫

BR

|Dv(x)|p2dx ≤ c

∫

BR

(1 + |Du(x)|p2) dx. (4.9)

Since u is a local minimizer of the functional (1.1), we obtain

G0(u) ≤ G0(v) +

∫

BR

f(x, v(x), Dv(x))dx−
∫

BR

f(x, u(x), Dv(x))dx

+

∫

BR

f(x, u(x), Dv(x))dx−
∫

BR

f(x0, u(x), Dv(x))dx

+

∫

BR

f(x0, u(x), Dv(x))dx−
∫

BR

f(x0, (u)R, Dv(x))dx

+

∫

BR

f(x0, (u)R, Du(x))dx−
∫

BR

f(x0, u(x), Du(x))dx

+

∫

BR

f(x0, u(x), Du(x))dx−
∫

BR

f(x, u(x), Du(x))dx

= G0(v) + I + II + III + IV + V .

(4.10)

Bounds for the quantities I, II, ..., V .

First of all we estimate I

I ≤ L

∫

BR

ω2(|v(x)− u(x)|)(µ2 + |Dv(x)|2)p(x)/2dx

≤ L

∫

BR

ω2(|v(x)− u(x)|)(µ2 + |Dv(x)|2)p2/2dx

+ L

∫

BR

ω2(|v(x)− u(x)|)dx =: A + B .

Let r = p2(1 + ε) ∈ (p2, p2(1 + δ/4)) the higher integrability exponent given

by [CFP], Lemma 2.7. Using Hölder inequality with exponents r
p2

and
(

r
p2

)′
=

r
r−p2

and the fact that ω2 is bounded, we deduce that

A ≤ c

[∫

BR

(µ2 + |Dv(x)|2) r
2 dx

] p2
r

[∫

BR

ω
r

r−p2
2 (|v(x)− u(x)|)dx

] r−p2
r

≤ cRn

[
−
∫

BR

ω2(|v(x)− u(x)|)dx

] r−p2
r
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+ c

(∫

BR

|Dv(x)|rdx

) p2
r

[∫

BR

ω
r

r−p2
2 (|v(x)− u(x)|)dx

] r−p2
r

=: C + D ,

where c ≡ c(γ1, γ2, L, n). Using the concavity of ω2 we estimate:

C = cRn

[
−
∫

BR

ω2(|v(x)− u(x)|)dx

] r−p2
r

≤ c ωσ
2

(
−
∫

BR

(|v(x)− u(x)|)dx

)
Rn ,

where we set σ = r−p2

r
= ε

1+ε
. Further using (4.8), (4.9), (4.4), by Theorem 3.1

and arguing as before, we obtain

D ≤ cRn

[
−
∫

BR

|Dv(x)|p2dx +

(
−
∫

B2R

|Du(x)|p2(1+δ/4)dx

) 1
1+δ/4

]

×
[
ωσ

2

(
−
∫

BR

|v(x)− u(x)|dx

)]

≤ c

[∫

BR

(1 + |Du(x)|p2)dx

+ Rn −
∫

B2R

(
1 + |Du(x)|p(x)(1+δ/4+ω1(8R))dx

) 1
1+δ/4

]

×
[
ωσ

2

(
−
∫

BR

|v(x)− u(x)|dx

)]

≤ c

[∫

BR

(1 + |Du(x)|p2)dx + Rn

[(
−
∫

B4R

(1 + |Du(x)|p(x))dx

) (1+δ/4+ω1(8R))
1+δ/4

]]

×
[
ωσ

2

(
−
∫

BR

|v(x)− u(x)|dx

)]

≤ c

[∫

BR

(1 + |Du(x)|p2)dx + R−n
ω1(8R)
1+δ/4

(∫

B4R

(1 + |Du(x)|p(x))dx

)ω1(8R)
1+δ/4

×
∫

B4R

(1 + |Du(x)|p2)dx

][
ωσ

2

(
−
∫

BR

|v(x)− u(x)|dx

)]

≤ c

[∫

B4R

(1 + |Du(x)|p2)dx

][
ωσ

2

(
−
∫

BR

|v(x)− u(x)|dx

)]
,

since R−n
ω1(8R)
1+δ/4 is bounded (argue as in the first step of Theorem 3.1). Mo-

reover c depends only on L, γ1, γ2,M1. On the other hand, again using the
boundedness and the concavity of ω2

B ≤ cRnωσ
2

(
−
∫

BR

|v(x)− u(x)|dx

)
,
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where again, c ≡ c(γ1, γ2, n, L).
Combining the previous facts and using Poincaré inequality we have

I ≤ c

[∫

B4R

(1 + |Du(x)|p2)dx

]
ωσ

2

(
−
∫

BR

|v(x)− u(x)|dx

)

≤ c‖1 + |Du|‖p2

Lp2 (B4R)ω
σ
2

(
R −

∫

BR

|Dv(x)−Du(x)|dx

)

≤ c‖1 + |Du|‖p2

Lp2 (B4R)ω
σ
2

[(
Rp2 −

∫

BR

|Dv(x)−Du(x)|p2dx

)1/p2
]

≤ c‖1 + |Du|‖p2

Lp2 (B4R)ω
σ
2

[(
Rp2 −

∫

BR

(1 + |Du(x)|p2)dx

)1/p2
]

≤ c‖1 + |Du|‖p2

Lp2 (B4R)ω
σ
2

[(
Rp2 −

∫

BR

(1 + |Du(x)|p(x)(1+δ))dx

)1/p2
]

,

where in the last inequality we used (4.5). By Theorem 3.6, u ∈ C0,γ(Ω); we
set [u]γ to be the Hölder constant of u in Ω and recall that, by our choice, it
follows that δ < γ

1−γ
. We set m̃ := γ + γδ− δ and we remark that 0 < m̃ < 1.

So first using Theorem 3.1 and then Caccioppoli inequality we get

ωσ
2

[(
Rp2 −

∫

BR

(1 + |Du(x)|p(x)(1+δ))dx

)1/p2
]

≤cωσ
2

[
R

(
−
∫

BR

(1 + |Du(x)|p(x))dx

)(1+δ)/p2
]

≤ cωσ
2

[
R

(
−
∫

B4R

(
1 +

∣∣∣∣∣
u(x)− (u)4R

R

∣∣∣∣∣

p2
)

dx

)(1+δ)/p2
]

≤ cωσ
2

[(
Rp2

[
−
∫

B4R

(
1 +

[u]p2
γ Rp2γ

Rp2

)
dx

](1+δ))1/p2
]

= cωσ
2 [(Rp2 + [u]p2(1+δ)

γ Rp2[1+γ+γδ−1−δ])1/p2 ]

≤ cωσ
2 (Rm̃) .

So, finally

I ≤ cωσ
2 (Rm̃)

∫

B4R

(1 + |Du(x)|p2)dx ,

where c ≡ c(γ1, γ2, L, n, M1).
Now we proceed estimating the remaining terms starting by III. We can use
(H5) and (4.9) and again the fact that u is Hölder continuous (see (4.1)):

III ≤ L

∫

BR

ω2(|u(x)− (u)R|)
(
µ2 + |Dv(x)|2)p(x)/2

dx
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≤ cω2(R
γ)

∫

BR

(1 + |Du(x)|p2) dx .

In a similar way we get the estimate of IV :

IV ≤ L

∫

BR

ω2(|u(x)− (u)R|)
(
µ2 + |Du(x)|2)p(x)/2

dx

≤ cω2(R
γ)

∫

BR

(1 + |Du(x)|p2) dx .

We stress that the constants (denoted by c) found in the previous inequalities
depend on (γ1, γ2, n, L, M1) also via [u]γ (see again Theorem 3.6).
To get the estimates of II and V we can argue exactly as in [AM1] but using
(4.6) and our higher integrability Theorem 3.1. We obtain

II ≤ cω1(R) log

(
1

R

) ∫

B4R

|Du(x)|p2dx + cω1(R)Rn ,

V ≤ cω1(R) log

(
1

R

) ∫

B2R

|Du(x)|p2dx + cω1(R)Rn ,

where the constant c now depends also upon M2.
Collecting the previous bounds and summing up we get (keeping into account
that ω2(R

γ) ≤ cωσ
2 (Rm̃)):

I + II + III + IV + V

≤ c

[
ω1(R) log

(
1

R

)
+ ωσ

2 (Rm̃))

] ∫

B4R

(1 + |Du(x)|p2)dx .
(4.11)

Applying Ekeland variational principle.

We set for simplicity

F (R) := ω1(R) log

(
1

R

)
+ ωσ

2 (Rm̃) .

The assumption (2.5) allows us to say that

lim
R→0

F (R) = 0 .

Now, by the minimality of v, from (4.10) and (4.11), we obtain

G0(u) ≤ inf
u+W 1,1

0 (BR)
G0 + H(R) ,

where we set

H(R) := cF (R)

∫

B4R

(1 + |Du(x)|p2)dx .
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We apply Theorem 1 from [Ek] (“Ekeland variational principle”). Let V =
u + W 1,1

0 (BR) equipped with the distance

d(w1, w2) := H
− 1

p2 R
−n

p2−1
p2

∫

BR

|Dw1(x)−Dw2(x)|dx .

It is easy to see that the functional G0 is lower semicontinuous with respect to
the topology induced by the distance d. Then by [Ek], Theorem 1 it follows
that there exists v0 ∈ u + W 1,1

0 (BR) such that

(i)

∫

BR

|Du(x)−Dv0(x)|dx ≤ [H(R)]
1

p2 R
n

p2−1
p2 ,

(ii) G0(v0) ≤ G0(u) ,

(iii) v0 is a local minimizer of the functional

w 7→ G0(w) +

[
H(R)

Rn

] p2−1
p2

∫

BR

|Dw −Dv0|dx .

By the minimality of v0 we have that for every ϕ ∈ W 1,p2

0 (BR) :

G0(v0, BR) ≤ G0(v0 + ϕ,BR) +

[
H(R)

Rn

] p2−1
p2

∫

BR

|Dv0(x) + Dϕ(x)−Dv0(x)|dx

≤ G0(v0 + ϕ,BR) +
1

2L

∫

BR

|Dv0(x) + Dϕ(x)|p2dx

+
1

2L

∫

BR

|Dv0(x)|p2dx + cH(R) ,

Using growth assumptions (2.1) it follows in a simple way that

∫

BR

|Dv0(x)|p2dx ≤ c

∫

BR

|Dv0(x) + Dϕ(x)|p2dx + c(H(R) + Rn) ,

with c ≡ c(γ1, γ2, n, L). This means that v0 is a Q-minimizer of the functional

w 7→
∫

BR

(
|Dw|p2 +

H(R)

Rn
+ 1

)
dx ,

where Q ≡ Q(γ1, γ2, n, L) > 1. Observe that the dependence upon M1 and
M2 is incorporated in H(R). Then it is easy to see that (see [G], Theorem
6.7) there exists an exponent of higher integrability s ∈ (p2, p2(1 + δ/4)) and
a constant c > 0 such that

(
−
∫

BR/2

|Dv0(x)|sdx

)p2/s

≤ c −
∫

BR

|Dv0(x)|p2dx + c

(
1 +

H(R)

Rn

)
.
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On the other hand from the growth assumption (2.1) and from property (ii) :

L−1

∫

BR

|Dv0(x)|p2dx ≤ G0(v0) ≤ G0(u) ≤ L

∫

BR

(1 + |Du(x)|p2) dx ,

so (
−
∫

BR/2

|Dv0(x)|sdx

)p2/s

≤ c −
∫

B4R

(1 + |Du(x)|p2)dx . (4.12)

Comparison and conclusion.

We apply Proposition 3.5 with the following choices: h(z) := f(x0, (u)R, z), q =

p2, A0 = F (R), ϑ0 =
[

H(R)
Rn

] p2−1
p2 and

H(w, BR) = G0(w) +

[
H(R)

Rn

] p2−1
p2

∫

BR

|Dw −Dv0|dx .

Then, by property (i) we have for every β > 0
∫

Bρ

|Dv0(x)|p2dx

≤ c
( ρ

R

)n
∫

BR

(µ2 + |Dv0(x)|2) p2
2 dx + c[F (R)]p2β

∫

BR

(1 + |Du(x)|p2)dx

+ c

[
H(R)

Rn

] p2−1
p2

[H(R)]
1

p2 R
n

p2−1
p2 + cRn

[
H(R)

Rn

] [
1

F (R)

] p2β
p2−1

≤ c
( ρ

R

)n
∫

BR

(µ2 + |Du(x)|2) p2
2 dx + cH(R) + cH(R)[F (R)]

p2β
1−p2

+ c[F (R)]p2β

∫

BR

(1 + |Du(x)|p2)dx ,

for any 0 < ρ < R. We choose β > 0 such that

γ1 − 1

γ2
2

<
p2 − 1

p2
2

< β <
p2 − 1

p2

<
γ2 − 1

γ1

.

Combining the previous facts, we easily get
∫

Bρ

|Dv0(x)|p2dx ≤c
( ρ

R

)n
∫

BR

(µ2 + |Du(x)|2) p2
2 dx

+ c[F (R)]p2β

∫

B4R

(1 + |Du(x)|p2)dx ,

(4.13)

with c ≡ c(γ1, γ2, n, L,M1,M2) and for any 0 < ρ < R. Now we use (4.13)
obtaining

∫

Bρ

|Du(x)|p2dx ≤ c

∫

Bρ

|Dv0(x)|p2dx + c

∫

Bρ

|Du(x)−Dv0(x)|p2dx
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≤ c
[( ρ

R

)n

+ [F (R)]p2β
] ∫

B4R

|Du(x)|p2dx

+ cRn + c

∫

BR/2

|Du(x)−Dv0(x)|p2dx .

(4.14)

again for any 0 < ρ < R. In order to complete the proof, we have to estimate of
the last term in the previous formula. We are going to do this by (4.12), (4.4),
(2.3) and Theorem 3.1. We choose θ ∈ (0, 1) such that θ/s + 1 − θ = 1/p2;
then, recalling that s ∈ (p2, p2(1 + δ/4)), we have that

∫

BR/2

|Du(x)−Dv0(x)|p2dx

≤ cRn

(
−
∫

BR/2

|Du(x)−Dv0(x)|sdx

) θp2
s

(
−
∫

BR/2

|Du(x)−Dv0(x)|dx

)(1−θ)p2

≤ cRn[H(R)
1

p2 R
− n

p2 ](1−θ)p2

×
[(

−
∫

BR/2

|Du(x)|sdx

) θp2
s

+

(
−
∫

BR/2

|Dv0(x)|sdx

) θp2
s

]

≤ cRnθ[H(R)](1−θ)

×
[(

−
∫

BR/2

|Du(x)|p2(1+δ/4)dx

) θ
1+δ/4

+

(
−
∫

B4R

(1 + |Du(x)|p2)dx

)θ
]

≤ cRnθ[H(R)](1−θ)

[(
−
∫

BR/2

(1 + |Du(x)|p(x)(1+δ/4+ω1(8R)))dx

) θ
1+δ/4

+

(
−
∫

B4R

(1 + |Du(x)|p2)dx

)θ
]

≤ cRnθ[H(R)](1−θ)

[(
−
∫

BR

(1 + |Du(x)|p(x))dx

) θ(1+δ/4+ω1(8R))
1+δ/4

+

(
−
∫

B4R

(1 + |Du(x)|p2)dx

)θ
]

≤ c(M1)R
nθ[H(R)](1−θ)

[
R−n

θω1(8R)
1+δ/4

(
−
∫

BR

(1 + |Du(x)|p2)dx

)θ

+

(
−
∫

B4R

(1 + |Du(x)|p2)dx

)θ
]

≤ c(L)

(∫

B4R

(1 + |Du(x)|p2)dx

)θ

[H(R)](1−θ)
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≤ c[F (R)](1−θ)

∫

B4R

(1 + |Du(x)|p2)dx .

In the previous estimate the constant depends on (γ1, γ2, n, L, M1,M2) while

we remark that we used (2.3) to bound R−n
θω1(8R)
1+δ/4 ≤ c. We can now insert this

estimate in (4.14) and get∫

Bρ

|Du(x)|p2dx ≤ c
[( ρ

R

)n

+ [F (R)](1−θ) + [F (R)]p2β
] ∫

B4R

|Du(x)|p2dx+cRn .

for any 0 < ρ < R. We set W (R) := [F (R)](1−θ) + [F (R)]p2β; from our
assumptions it is clear that

lim
R→0

W (R) = 0 .

Therefore, since the function

R → p2(R)

is non-decreasing, we may estimate:∫

Bρ

|Du(x)|p2(ρ)dx ≤ c
[( ρ

R

)n

+ W (R)
] ∫

B4R

|Du(x)|p2(R)dx + cRn ,

for any 0 < ρ < R, where c depends only on γ1, γ2, n, L,M1,M2. At this
point the conclusion come arguing as in the last part of the proof of [AM1],
Proposition 3.1; so fixing 0 < τ < n, by [AM1], Lemma 3.2 if we take R1 > 0
depending only on γ1, γ2, L, M1,M2, ω1, ω2, τ, such that W (R) ≤ ε0 whenever
0 < R < 16R1, we may conclude, since p2(ρ) is nondecreasing with respect to
ρ, ∫

Bρ

|Du(x)|p2(ρ)dx ≤ c(M2)ρ
n−τ

whenever 0 < ρ < R1, a fact that we may assume without loss of generality.
On the other hand γ1 ≤ p2(ρ); so that∫

Bρ

|Du(x)|γ1dx ≤ c(M2)ρ
n−τ

for any 0 < ρ < R1. At this point the thesis of the theorem follows from
an integral characterization of Hölder continuous functions due to Campanato
(see [G], chapter 2, section 3) together with a standard covering argument. ¤
Proof of Theorem 2.4. The proof of this theorem can be achieved fol-
lowing Remark 3.3 from [AM1] observing that, fixed the Hölder continuity
exponent α, in order to apply the iteration lemma as Proposition 3.1 from
[AM1], the assumption (2.5) is only used to establish that, for a constant
λ ≡ λ(n, p(x), L, α) > 0 it follows there exists R1 ≡ R1(n, p(x), L, α) such
that:

lim
R→0

ω1(R) log

(
1

R

)
+ ω2(R) ≤ λ ,

that is exactly (2.6). ¤

22



5. – Proof of Theorem 2.5.

Let f be as in the assumptions of the theorem. For any u ∈ W 1,p(x0)(B(xc, R)),
the problem

min

{∫

B(xc,R)

f(x0, (u)R, Dw)dx : w ∈ u + W
1,p(x0)
0 (B(xc, R))

}
(5.1)

has a unique solution that we will denote with v. Using [Ma], estimates (2.4)
and (2.5), we can easily obtain

−
∫

B(xc,ρ)

|Dv(x)− (Dv)xc,ρ|p(x0)dx

= −
∫

B(xc,ρ)

∣∣∣∣−
∫

B(xc,ρ)

(Dv(x)−Dv(y)) dy

∣∣∣∣
p(x0)

dx

≤
[

sup
x,y∈B(xc,ρ)

|Dv(x)−Dv(y)|
]p(x0)

≤
[
c

(
ρ

R

)β

sup
BR/2

|Dv|
]p(x0)

≤ c

(
ρ

R

)βp(x0)

−
∫

B(xc,R)

(1 + |Dv(x)|p(x0))dx ,

(5.2)

where ρ ≤ R/2, c > 0, 0 < β < 1 and both c and β depend only on γ1, γ2, L.
We consider the ball B(xc, 4R) ⊂⊂ BR0/4; from now on, when not differently
specified, all the balls considered will have the same center xc. We set p2 :=
maxB4R

p(x) ≡ p2(R) . Let τ = αξβ
2(n+β)

, where we fix

ξ := min

{
1

4
,
m̃σ

2

}
.

where σ and m̃ are as in the proof of Theorem 2.3. Arguing as in the previous
section we get that there exists R1 and a constant c, both only dependent on
L, γ1, γ2, α and ‖|Du|p(x)‖L1(Ω), such that, whenever 0 < R < R1, we obtain

∫

BR

|Du(x)|p2(R)dx ≤ cRn−τ . (5.3)

Let now R be such that 4R < R1, take x0 ∈ B4R such that p(x0) = p2 and
let v ∈ u + W 1,p2

0 (BR) be the solution of the previous problem (5.1) . Working
in a standard way and recalling the definitions of the function h(z) and of the
functional G0 given in (4.7), we get

G0(u)− G0(v)

=

∫

BR

〈Dh(Dv(x)), Du(x)−Dv(x)〉dx [= 0]

23



+

∫

BR

dx

∫ 1

0

(1− t)D2h(tDu(x) + (1− t)Dv(x))(Du(x)−Dv(x))

⊗ (Du(x)−Dv(x))dt

≥ ν

∫

BR

dx

∫ 1

0

(1− t)(µ2 + |tDu(x) + (1− t)Dv(x)|2)(p2−2)/2

× |Du(x)−Dv(x)|2dt

≥ c−1

∫

BR

(µ2 + |Du(x)|2 + |Dv(x)|2)(p2−2)/2|Du(x)−Dv(x)|2dx .

(5.4)

We remark (see [SZ]) that the second integral in the first equality may have a
singularity when

tDu(x) + (1− t)Dv(x) = 0 , (5.5)

but this may happen at most for one value of t. On the other hand D2h(p) is a
positive defined form for p 6= 0, so it is not difficult to see that this identity is
also valid in the exceptional case in which (5.5) is satisfied for a certain t0. For
example one can erase an interval (t0− ε, t0 + ε) from the integration domain,
get the result of the integral and then let ε → 0. So estimates (5.4) are also
valid in the case of functions f of class C2 with respect to the variable z in the
domain Ω×R× (Rn \{0}), while all the other estimates in this section are still
valid without differentiability assumptions on f ; hence we can prove Theorem
2.5 without approximation arguments.
Arguing as in the previous section, we get

G0(u) ≤ G0(v) + c

[
ωσ

2 [Rm̃] + ω1(R) log

(
1

R

)] ∫

B4R

(1 + |Du(x)|p2)dx .

Now, using the assumptions and by the previous definition of ξ, we get
∫

BR

(µ2 + |Du(x)|2 + |Dv(x)|2)(p2−2)/2|Du(x)−Dv(x)|2dx

≤cR2αξ

∫

B4R

(1 + |Du(x)|p2)dx .

On the other hand, it is not difficult to get the following estimate:
∫

BR

|Du(x)−Dv(x)|p2(R)dx ≤ cRαξ

∫

B4R

(1 + |Du(x)|p2)dx ; (5.6)

in the case p ≥ 2, the previous inequality is obvious, while in the case p ≤ 2 we
can rapidly deduce it by Hölder inequality (see [AM1], pag.138), the minimality
of v and the bounds for f.
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Finally, we recall that we choose 4R < R1 and so we can use (5.2), (5.3), (5.6),
the minimality of v and the fact that the map R 7→ p2(R) is nondecreasing, to
get

∫

Bρ

|Du− (Du)ρ|p2dx

≤
∫

Bρ

|Du− (Dv)ρ|p2dx

≤ cρn −
∫

Bρ

|Dv − (Dv)ρ|p2dx + c

∫

BR

|Du(x)−Dv(x)|p2dx

≤ c

(
ρ

R

)βp2(R)

ρn −
∫

BR

(1 + |Du|p2(R))dx

+ cRαξ

∫

B4R

(1 + |Du(x)|p2)dx

≤ c

(
ρ

R

)βp2(R)

ρn +

(
ρ

R

)βp2(R)(
ρ

R

)n

Rn−τ + cRαξ[Rn + Rn−τ ]

≤ cρn+βR−β−τ + cRαξRn−τ .

Now we chose ρ = 1
2
R1+θ with θ = (αξ)/(n+β). If we write again the last term

only with ρ, we get that the exponent of the two term of the sum are equal and
so by the previous choice of τ, they are equal to n + λ with λ = (αξβ)/2(n +
β + αξ); from the choice of α, β, ξ we easily get that λ ≥ λ0 > 0 for some λ0

dependent only on L, γ1, γ2. From the previous chain of inequalities, again by
the integral characterization of Hölder continuous functions due to Campanato
and the usual covering argument, we get that Du is Hölder continuous. This
finishes the proof. ¤
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