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INVOLVING CRITICAL NONLINEARITIES
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Abstract. We study the combined effect of concave and convex nonlinearities on the
number of positive solutions for a fractional system involving critical Sobolev exponents.
With the help of the Nehari manifold, we prove that the system admits at least two positive
solutions when the pair of parameters (λ, µ) belongs to a suitable subset of R2.
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1. Introduction

This paper is concerned with the multiplicity of positive solutions for the following elliptic
system involving the fractional Laplacian

(1.1)


(−∆)su = λ|u|q−2u+ 2α

α+β |u|
α−2u|v|β in Ω,

(−∆)sv = µ|v|q−2v + 2β
α+β |u|

α|v|β−2v in Ω,

u = v = 0 on ∂Ω,

where Ω ⊂ RN is a smooth bounded domain, λ, µ > 0, 1 < q < 2 and α > 1, β > 1 satisfy
α+ β = 2∗s = 2N/(N − 2s), s ∈ (0, 1) and N > 2s. When α = β, α+ β = p ≤ 2∗s, λ = µ and
u = v, problem (1.1) reduces to the semilinear scalar fractional elliptic equation

(1.2)

{
(−∆)su = λ|u|q−2u+ |u|p−2u in Ω,

u = 0 on ∂Ω.

Recently, a great attention has been focused on the study of nonlinear problems like (1.2)
which involve the fractional Laplacian. This type of operators naturally arises in physical
situations such as thin obstacle problems, optimization, population dynamics, geophysical
fluid dynamics, mathematical finance, phases transitions, straitified materials, anomalous
diffusion, crystal dislocation, soft thin films, semipermeable membranes, flames propagation,
conservation laws, ultra-relativistic limits of quantum mechanics, quasi-geostrophic flows,
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multiple scattering, minimal surfaces, materials science and water waves, see [21]. We refer
to [12,23,25,28,29,31,34] for the subcritical case and to [3,4,11,14,15,22,24,26,30] for the
critical case. In the remarkable paper [9], Caffarelli and Silvestre gave a new formulation of
the fractional Laplacian through Dirichlet-Neumann maps. This is extensively used in the
recent literature since it allows to transform nonlocal problems to local ones, which permits
to use variational methods. For example, Barrios, Colorado, de Pablo and Sánchez [3] used
the idea of the s-harmonic extension and studied the effect of lower order perturbations in
the existence of positive solutions of (1.2). Brändle, Colorado and de Pablo [5] investigated
the fractional elliptic equation (1.2) involving concave-convex nonlinearity, and obtained an
analogue multiplicity result to the problem considered by Ambrosetti, Brézis and Cerami
in [2]. In the case q = 2 and p = 2∗s, Servadei and Valdinoci [26] studied (1.2) and extended
the classical Brézis-Nirenberg result [6] to the nonlocal case. In [8], Cabré and Tan de-

fined (−∆)1/2 through the spectral decomposition of the Laplacian operator on Ω with zero
Dirichlet boundary conditions. With classical local techniques, they established existence of
positive solutions for problems with subcritical nonlinearities, regularity and L∞-estimates
for weak solutions. In particular, Tan [30] considered

(1.3)

{
(−∆)1/2u = λu+ u

N+1
N−1 in Ω,

u = 0 on ∂Ω,

investigating the solvability (see also [34] for a subcritical situation). Very recently, Col-
orado, de Pablo, and Sánchez [14] studied the following nonhomogeneous fractional equation
involving critical Sobolev exponent{

(−∆)su = |u|2∗s−2u+ f(x) in Ω,

u = 0 on ∂Ω.

and proved existence and multiplicity of solutions under appropriate conditions on the size
of f . For the same problems, Shang, Zhang and Yang [22] obtained similar results.

The analogue problems to (1.1) for the Laplacian operator have been studied extensively
in recent years, see [1, 13, 19, 20, 32, 33] and the references therein. In particular, Hu and
Lin [20] studied the Laplacian system with critical growth and obtained the existence and
multiplicity results of positive solutions by variational methods.

The purpose of this paper is to study system (1.1) in the critical case α + β = 2∗s. Using
variational methods and a Nehari manifold decomposition, we prove that system (1.1) admits
at least two positive solutions when the pair of parameters (λ, µ) belongs to a certain subset
of R2. To our best knowledge, there are just a few results in the literature on the fractional
system (1.1) with both concave-convex nonlinearities and critical growth terms. We point
out that we adopt in the paper the spectral (or regional) definition of the fractional laplacian
in a bounded domain based upon a Caffarelli-Silvestre type extension (see [14]), and not the
integral definition. We shall refer to [27] for a nice comparison between these two different
notions. In [18], a problem like (1.1) with q = 2 is investigated, using the integral notion,
from the point of view of existence, nonexistence and regularity.

To formulate the main result, we introduce

(1.4) Λ1 :=

(
2∗s − q
2∗s − 2

S(s,N)−
q
2 |Ω|

2∗s−q
2∗s

)− 2
2−q
[

2− q
2(2∗s − q)

(ksSα,β)
2∗s
2

] 2
2∗s−2

,
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where |Ω| is the Lebesgue measure of Ω, ks is a normalization constant and S(s,N),Sα,β are
best Sobolev constants that will be introduced later. For γ > 0, we also consider

Cγ :=
{

(λ, µ) ∈ R2
+ : 0 < λ

2
2−q + µ

2
2−q < γ

}
.

Then we have the following

Theorem 1.1. The following facts holds

(i) system (1.1) has at least one positive solution for all (λ, µ) ∈ CΛ1.
(ii) there is Λ2 < Λ1 such that (1.1) has at least two positive solutions for (λ, µ) ∈ CΛ2.

Concerning regularity, one can get a priori estimates for the solutions to (1.1) and hence
obtain, as in [3, Proposition 5.2], that u, v ∈ C∞(Ω) for s = 1/2, u, v ∈ C0,2s(Ω) if 0 < s <
1/2 and u, v ∈ C1,2s−1(Ω) if 1/2 < s < 1.

The paper is organized as follows. In Section 2 we introduce the variational setting of the
problem and present some preliminary results. In Section 3 we show that the Palais-Smale
condition holds for the energy functional associated with (1.1) at energy levels in a suitable
range related to the best Sobolev constants. In Section 4 we give some properties about the
Nehari manifold and fibering maps. In Section 5 we investigate the existence of Palais-Smale
sequences. In Section 6 we obtain solutions to some related local minimization problems.
Finally, the proof of Theorem 1.1 is given in Section 7.

2. Some preliminary facts

In this section, we collect some preliminary facts in order to establish the functional
setting. First of all, let us introduce the standard notations for future use in this paper. We
denote the upper half-space in RN+1

+ by

RN+1
+ := {z = (x, y) = (x1, · · · , xN , y) ∈ RN+1 : y > 0}.

Let Ω ⊂ RN be a smooth bounded domain. Denote by

CΩ := Ω× (0,∞) ⊂ RN+1
+ ,

the cylinder with base Ω and its lateral boundary by ∂LCΩ := ∂Ω × (0,∞). The powers
(−∆)s of the positive Laplace operator −∆, in Ω, with zero Dirichlet boundary conditions
are defined via its spectral decomposition, namely

(−∆)su(x) :=

∞∑
j=1

ajρ
s
jϕj(x),

where (ρj , ϕj) is the sequence of eigenvalues and eigenfunctions of the operator −∆ in Ω
under zero Dirichlet boundary data and aj are the coefficients of u for the base {ϕj}∞j=1 in

L2(Ω). In fact, the fractional Laplacian (−∆)s is well defined in the space of functions

Hs
0(Ω) :=

{
u =

∞∑
j=1

ajϕj ∈ L2(Ω) : ‖u‖Hs
0

=
( ∞∑
j=1

a2
jρ
s
j

)1/2
<∞

}
,

and ‖u‖Hs
0

= ‖(−∆)s/2u‖L2(Ω). The dual space H−s(Ω) is defined in the standard way, as

well as the inverse operator (−∆)−s.
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Definition 2.1. We say that (u, v) ∈ Hs
0(Ω)×Hs

0(Ω) is a solution of (1.1) if the identity
ˆ

Ω

(
(−∆)

s
2u(−∆)

s
2ϕ1 + (−∆)

s
2 v(−∆)

s
2ϕ2

)
dx−

ˆ
Ω

(λ|u|q−2uϕ1 + µ|v|q−2vϕ2)dx

− 2α

α+ β

ˆ
Ω
|u|α−2u|v|βϕ1dx−

2β

α+ β

ˆ
Ω
|u|α|v|β−2vϕ2dx = 0,

holds for all (ϕ1, ϕ2) ∈ Hs
0(Ω)×Hs

0(Ω).

Associated with problem (1.1), we consider the energy functional

Jλ,µ(u, v) :=
1

2

ˆ
Ω

(
|(−∆)

s
2u|2 + |(−∆)

s
2 v|2

)
dx− 1

q

ˆ
Ω

(λ|u|q + µ|v|q)dx

− 2

α+ β

ˆ
Ω
|u|α|v|βdx.

The functional is well defined in Hs
0(Ω) × Hs

0(Ω), and moreover, the critical points of the
functional Jλ,µ correspond to solutions of (1.1). We now conclude the main ingredients of a
recently developed technique used in order to deal with fractional powers of the Laplacian.
To treat the nonlocal problem (1.1), we shall study a corresponding extension problem, which
allows us to investigate problem (1.1) by studying a local problem via classical variational
methods. We first define the extension operator and fractional Laplacian for functions in
Hs

0(Ω)×Hs
0(Ω). We refer the reader to [3–5,10] and to the references therein.

Definition 2.2. For a function u ∈ Hs
0(Ω), we denote its s-harmonic extension w = Es(u)

to the cylinder CΩ as the solution of the problem
div(y1−2s∇w) = 0 in CΩ

w = 0 on ∂LCΩ

w = u. on Ω× {0},

and

(−∆)su(x) = −ks lim
y→0+

y1−2s∂w

∂y
(x, y),

where ks = 21−2sΓ(1− s)/Γ(s) is a normalization constant.

The extension function w(x, y) belongs to the space

Xs
0(CΩ) := C∞0 (Ω× [0,∞))

‖·‖Xs0(CΩ)

endowed with the norm

‖z‖Xs
0(CΩ) :=

(
ks

ˆ
CΩ
y1−2s|∇z|2dxdy

)1/2

.

The extension operator is an isometry between Hs
0(Ω) and Xs

0(CΩ), namely

‖u‖Hs
0(Ω) = ‖Es(u)‖Xs

0(CΩ), for all u ∈ Hs
0(Ω).
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With this extension we can reformulate (1.1) as the following local problem

(2.1)



−div(y1−2s∇w1) = 0, −div(y1−2s∇w2) = 0 in CΩ

w1 = w2 = 0 on ∂LCΩ

w1 = u, w2 = v on Ω× {0}
∂w1
∂νs = λ|w1|q−2w1 + 2α

α+β |w1|α−2w1|w2|β on Ω× {0}
∂w2
∂νs = µ|w2|q−2w2 + 2β

α+β |w1|α|w2|β−2w2 on Ω× {0},

where
∂wi
∂νs

:= −ks lim
y→0+

y1−2s∂wi
∂y

, , i = 1, 2

and w1, w2 ∈ Xs
0(CΩ) are the s-harmonic extension of u, v ∈ Hs

0(Ω), respectively. Let

Es0(CΩ) := Xs
0(CΩ)×Xs

0(CΩ).

An energy solution to this problem is a function (w1, w2) ∈ Eα0 (CΩ) satisfying

ks

ˆ
CΩ
y1−2s∇w1 · ∇ϕ1dxdy + ks

ˆ
CΩ
y1−2s∇w2 · ∇ϕ2dxdy

= λ

ˆ
Ω
|w1|q−2w1ϕ1dx+

2α

α+ β

ˆ
Ω
|w1|α−2w1|w2|βϕ1dx

+µ

ˆ
Ω
|w2|q−2w2ϕ2dx+

2β

α+ β

ˆ
Ω
|w1|α|w2|β−2w2ϕ2dx,

for all (ϕ1, ϕ2) ∈ Es0(CΩ). If (w1, w2) ∈ Es0(CΩ) satisfies (2.1), then (u, v) = (w1(·, 0), w2(·, 0)),
defined in the sense of traces, belongs to the space Hs

0(Ω)×Hs
0(Ω) and it is a solution of the

original problem (1.1). The associated energy functional to the problem (2.1) is denoted by

Iλ,µ(w) := Iλ,µ(w1, w2) =
ks
2

ˆ
CΩ
y1−2s(|∇w1|2 + |∇w2|2)dxdy

− 1

q

ˆ
Ω

(λ|w1|q + µ|w2|q)dx−
2

α+ β

ˆ
Ω
|w1|α|w2|βdx.

Critical points of Iλ,µ in Es0(CΩ) correspond to critical points of Jλ,µ : Hs
0(Ω)×Hs

0(Ω)→ R.
In the following lemma we list some relevant inequalities from [5].

Lemma 2.3. For any 1 ≤ r ≤ 2∗s and any z ∈ Xs
0(CΩ), it holds

(2.2)

(ˆ
Ω
|u(x)|rdx

) 2
r

≤ C
ˆ
CΩ
y1−2s|∇z(x, y)|2dxdy, u := Tr(z),

for some positive constant C = C(r, s,N,Ω). Furthermore, the space Xs
0(CΩ) is compactly

embedded into Lr(Ω), for every r < 2∗s.

Remark 2.4. When r = 2∗s, the best constant in (2.2) is denoted by S(s,N), that is

(2.3) S(s,N) := inf
z∈Xs

0(CΩ)\{0}

ˆ
CΩ
y1−2s|∇z(x, y)|2dxdy( ˆ

Ω
|z(x, 0)|2∗sdx

) 2
2∗s

.
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It is not achieved in any bounded domain and, for all z ∈ Xs(RN+1
+ ),

(2.4)

ˆ
RN+1

+

y1−2s|∇z(x, y)|2dxdy ≥ S(s,N)

(ˆ
RN
|z(x, 0)|

2N
N−2sdx

)N−2s
N

.

S(s,N) is achieved for Ω = RN by functions wε which are the s-harmonic extensions of

(2.5) uε(x) :=
ε(N−2s)/2

(ε2 + |x|2)(N−2s)/2
, ε > 0, x ∈ RN .

Let U(x) = (1 + |x|2)
2s−N

2 and let W be the extension of U . Then

W(x, y) = Es(U) = cN,sy
2s

ˆ
RN

U(z)dz

(|x− z|2 + y2)
N+2s

2

,

is the extreme function for the fractional Sobolev inequality (2.4). The constant S(s,N)
given in (2.3) takes the exact value

S(s,N) =
2πsΓ(N+2s

2 )Γ(1− s)(Γ(N2 ))
2s
N

Γ(s)Γ(N−2s
2 )(Γ(N))s

,

and it is achieved for Ω = RN by the functions wε.

Now, we consider the following minimization problem

(2.6) Ss,α,β := inf
(w1,w2)∈Es0(CΩ)\{0}

ˆ
CΩ
y1−2s(|∇w1|2 + |∇w2|2)dxdy(ˆ

Ω
|w1|α|w2|βdx

) 2
2∗s

.

Using ideas from [1], we establish a relationship between S(s,N) and Ss,α,β (see also [18]).

Lemma 2.5. For the constants S(s,N) and Ss,α,β introduced in (2.3) and (2.6), it holds

(2.7) Ss,α,β =

[(
α

β

) β
2∗s

+

(
β

α

) α
2∗s

]
S(s,N).

In particular, the constant Ss,α,β is achieved for Ω = RN .

Proof. Let {zn} ⊂ Xs
0(CΩ) be a minimization sequence for S(s,N). Let s, t > 0 to be chosen

later and consider the sequences w1,n := szn and w2,n := tzn in Xs
0(CΩ). By (2.6), we have

s2 + t2

(sαtβ)
2

2∗s

ˆ
CΩ
y1−2s|∇zn(x, y)|2dxdy(ˆ

Ω
|zn|2

∗
sdx

) 2
2∗s

≥ Ss,α,β.

Defining g : R+ → R+ by setting g(x) := x
2β
2∗s + x

−2α
2∗s , we have

s2 + t2

(sαtβ)
2

2∗s

= g
(s
t

)
, min

R+
g = g(x0) = g(

√
α/β) =

(
α

β

) β
2∗s

+

(
β

α

) α
2∗s
.
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Choosing s, t in the previous inequality such that s/t =
√
α/β and letting n→∞ yields[(α

β

) β
2∗s

+

(
β

α

) α
2∗s
]
S(s,N) ≥ Ss,α,β.

On the other hand, let {(w1,n, w2,n)} ⊂ Es0(CΩ) \ {0} be a minimizing sequence for Ss,α,β.
Set hn := snw2,n for sn > 0 with

´
Ω |w1,n|2

∗
sdx =

´
Ω |hn|

2∗sdx. Then Young’s inequality yieldsˆ
Ω
|w1,n|α|hn|βdx ≤

α

2∗s

ˆ
Ω
|w1,n|2

∗
sdx+

β

2∗s

ˆ
Ω
|hn|2

∗
sdx =

ˆ
Ω
|hn|2

∗
sdx =

ˆ
Ω
|w1,n|2

∗
sdx.

In turn, we can estimateˆ
CΩ
y1−2s(|∇w1,n(x, y)|2 + |∇w2,n(x, y)|2)dxdy(ˆ

Ω
|w1,n|α|w2,n|βdx

) 2
α+β

=

s
2β
2∗s
n

ˆ
CΩ
y1−2s(|∇w1,n(x, y)|2 + |∇w2,n(x, y)|2)dxdy( ˆ

Ω
|w1,n|α|hn|βdx

) 2
α+β

≥
s

2β
2∗s
n

ˆ
CΩ
y1−2s|∇w1,n(x, y)|2dxdy(ˆ

Ω
|w1,n|2

∗
sdx

)2/2∗s

+

s
2β
2∗s
n s−2

n

ˆ
CΩ
y1−2s|∇hn(x, y)|2dxdy(ˆ

Ω
|hn|2

∗
sdx

)2/2∗s

≥ S(s,N)g(sn) ≥ S(s,N)g(
√
α/β).

Passing to the limit in the last inequality we obtain[(α
β

) β
2∗s

+

(
β

α

) α
2∗s
]
S(s,N) ≤ Ss,α,β.

Whence, the conclusion follows by combining the previous inequalities. �

In the end of this section, we fix some notations that will be used in the sequel.

Notations. In this paper we use the following notations:

• Lp(Ω), 1 ≤ p ≤ ∞ denote Lebesgue spaces, with norm ‖ · ‖p. E = Xs
0(CΩ)×Xs

0(CΩ)
is equipped with the norm ‖z‖2 = ‖(w1, w2)‖2 = ‖w1‖2Xs

0(CΩ) + ‖w2‖2Xs
0(CΩ).

• The dual space of a Banach space E will be denoted by E−1. We set tz = t(w1, w2) =
(tw1, tw2) for all z ∈ E and t ∈ R. z = (w1, w2) is said to be non-negative in CΩ if
w1(x, y) ≥ 0, w2(x, y) ≥ 0 in CΩ and to be positive if w1(x, y) > 0, w2(x, y) > 0 in CΩ.
• |Ω| is the Lebesgue measure of Ω. B(0; r) is the ball at the origin with radius r.
• O(εt) denotes |O(εt)|/εt ≤ C as ε→ 0 for t ≥ 0. on(1) denotes on(1)→ 0 as n→∞.
• C,Ci, c will denote various positive constants which may vary from line to line.
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3. The Palais-Smale condition

In this section we shall detect the range of values c for which the (PS)c-condition holds
for the functional Iλ,µ. Let c ∈ R and set, for simplicity, E := Es0(CΩ). We say {zn} ⊂ E is
a (PS)c-sequence in E for Iλ,µ if Iλ,µ(zn) = c+ on(1) and I ′λ,µ(zn) = on(1) strongly in E−1,

as n → ∞. If any (PS)c-sequence {zn} in E for Iλ,µ admits a convergent subsequence, we
say that Iλ,µ satisfies the (PS)c-condition. We shall need the following preliminary result.

Lemma 3.1. Let {zn} ⊂ E be a (PS)c-sequence for Iλ,µ with zn ⇀ z in E. Then I ′λ,µ(z) = 0

and there exists a positive constant K0, depending only on q,N,S(s,N) and |Ω|, such that

Iλ,µ(z) ≥ −K0

(
λ

2
2−q + µ

2
2−q
)
.

Proof. Consider zn = (w1,n, w2,n) ⊂ E and z = (w1, w2) ∈ E. If {zn} is a (PS)c-sequence
for Iλ,µ with zn ⇀ z in E, then w1,n ⇀ w1 and w2,n ⇀ w2 in Xs

0(CΩ), as n→∞. Then, by
virtue of Sobolev embedding theorem (Lemma 2.3), we also have w1,n(·, 0) → w1(·, 0) and
w2,n(·, 0) → w2(·, 0) strongly in Lq(Ω), as n → ∞. Of course, up to a further subsequence,
w1,n(·, 0)→ w1(·, 0) and w2,n(·, 0)→ w2(·, 0) a.e. in Ω. It is standard to check that I ′λ,µ(z) =

0. This implies that 〈I ′λ,µ(z), z〉 = 0, namely

ks

ˆ
CΩ
y1−2s

(
|∇w1|2 + |∇w2|2

)
dxdy =

ˆ
Ω

(λ|w1|q + µ|w2|q)dx+ 2

ˆ
Ω
|w1|α|w2|βdx.

Consequently, we get

Iλ,µ(z) =
(1

2
− 1

2∗s

)
ks

ˆ
CΩ
y1−2s(|∇w1|2 + |∇w2|2)dxdy(3.1)

−
(1

q
− 1

2∗s

) ˆ
Ω

(λ|w1|q + µ|w2|q)dx.

By (3.1), Hölder and Young inequalities and the Sobolev embedding theorem, we obtain

Iλ,µ(z) =
(1

2
− 1

2∗s

)
‖z‖2 −

(1

q
− 1

2∗s

) ˆ
Ω

(λ|w1|q + µ|w2|q)dx

≥ s

N
‖z‖2 − 2∗s − q

q2∗s
|Ω|(2∗s−q)/2∗s (λ‖w1‖q2∗s + µ‖w2‖q2∗s )

≥ s

N
‖z‖2 − 2∗s − q

q2∗s
|Ω|(2∗s−q)/2∗sS(s,N)−

q
2 (λ‖w1‖q + µ‖w2‖q)

≥ s

N
‖z‖2 − C

(2− q
2

ε
[
λ

2
2−q + µ

2
2−q
]

+
q

2
ε
− 2−q

q
[
‖w1‖2 + ||w2‖2

] )
=

s

N
‖z‖2 − s

N
‖z‖2 −K0

(
λ

2
2−q + µ

2
2−q
)

= −K0

(
λ

2
2−q + µ

2
2−q
)
,

which yields the assertion, where we have put

C :=
2∗s − q
q2∗s

|Ω|(2∗s−q)/2∗sS(s,N)−
q
2 , ε :=

(
NqC

2s

) q
2−q

, K0 :=
ε(2− q)

2
C,

the positive constants involving only q, |Ω|, S(s,N) an N . �
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Lemma 3.2. If {zn} ⊂ E is a (PS)c-sequence for Iλ,µ, then {zn} is bounded in E.

Proof. Let zn = (w1,n, w2,n) ⊂ E be a (PS)c-sequence for Iλ,µ and suppose, by contradiction,
that ‖zn‖ → ∞, as n→∞. Put

z̃n = (w̃1,n, w̃2,n) :=
zn
‖zn‖

=
(w1,n

‖zn‖
,
w2,n

‖zn‖

)
.

We may assume that z̃n ⇀ z̃ = (w̃1, w̃2) in E. This implies that w̃1,n(·, 0) → w̃1(·, 0) and
w̃2,n(·, 0)→ w̃2(·, 0) strongly in Lr(Ω) for all 1 ≤ r < 2∗s and, thus,ˆ

Ω
(λ|w̃1,n|q + µ|w̃2,n|q)dx =

ˆ
Ω

(λ|w̃1|q + µ|w̃2|q)dx+ on(1).

Since {zn} is a (PS)c sequence for Iλ,µ and ‖zn‖ → ∞, we get

ks
2

ˆ
CΩ
y1−2s

(
|∇w̃1,n|2 + |∇w̃2,n|2

)
dxdy − ‖zn‖

q−2

q

ˆ
Ω

(λ|w̃1,n|q + µ|w̃2,n|q)dx(3.2)

− 2‖zn‖2
∗
s−2

2∗s

ˆ
Ω
|w̃1,n|α|w̃2,n|βdx = on(1),

and

ks

ˆ
CΩ
y1−2s

(
|∇w̃1,n|2 + |∇w̃2,n|2

)
dxdy − ‖zn‖q−2

ˆ
Ω

(λ|w̃1,n|q + µ|w̃2,n|q)dx(3.3)

− 2‖zn‖2
∗
s−2

ˆ
Ω
|w̃1,n|α|w̃2,n|βdx = on(1).

Combining (3.2) and (3.3), as n→∞, we obtain

ks

ˆ
CΩ
y1−2s

(
|∇w̃1,n|2 + |∇w̃2,n|2

)
dxdy(3.4)

=
2(2∗s − q)
q(2∗s − 2)

‖zn‖q−2

ˆ
Ω

(λ|w̃1,n|q + µ|w̃2,n|q)dx+ on(1).

In view of 1 < q < 2 and ‖zn‖ → ∞, (3.4) implies that

ks

ˆ
CΩ
y1−2s

(
|∇w̃1,n|2 + |∇w̃2,n|2

)
dxdy → 0,

as n→∞, which contradicts to the fact that ‖z̃n‖ = 1 for any n ≥ 1. �

Lemma 3.3. Iλ,µ satisfies the (PS)c condition with c satisfying

−∞ < c < c∞ :=
2s

N

(
ksSs,α,β

2

)N
2s

−K0

(
λ

2
2−q + µ

2
2−q
)
,

where K0 is the positive constant introduced in Lemma 3.1

Proof. Let {zn} ⊂ E be a (PS)c-sequence for Iλ,µ with c ∈ (−∞, c∞). Write zn =
(w1,n, w2,n). By Lemma 3.2, we see that {zn} is bounded in E and zn ⇀ z = (w1, w2)
up to a subsequence and z is a critical point of Iλ,µ. Furthermore, w1,n ⇀ w1 and w2,n ⇀ w2

weakly in Xs
0(CΩ), w1,n(·, 0)→ w1(·, 0) and w2,n(·, 0)→ w2(·, 0) strongly in Lr(Ω) for every
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1 ≤ r < 2∗s and w1,n(·, 0) → w1(·, 0), w2,n(·, 0) → w2(·, 0) a.e. in Ω, up to a subsequence.
Hence, we have

(3.5)

ˆ
Ω

(λ|w1,n|q + µ|w2,n|q)dx =

ˆ
Ω

(λ|w1|q + µ|w2|q)dx+ on(1).

Let ŵ1,n := w1,n − w1, ŵ2,n := w2,n − w2 and ẑn := (ŵ1,n, ŵ2,n). Then, we obtain

‖ẑn‖2 = ‖zn‖2 − ‖z‖2 + on(1).

In light of [19, Lemma 2.1], we also get

(3.6)

ˆ
Ω
|ŵ1,n|α|ŵ2,n|βdx =

ˆ
Ω
|w1,n|α|w2,n|βdx−

ˆ
Ω
|w1|α|w2|βdx+ on(1).

Using Iλ,µ(zn) = c+ on(1) and I ′λ,µ(zn) = on(1) and (3.5)-(3.6), we conclude

1

2
‖ẑn‖2 −

2

2∗s

ˆ
Ω
|ŵ1,n|α|ŵ2,n|βdx = c− Iλ,µ(z) + on(1),(3.7)

‖ẑn‖2 − 2

ˆ
Ω
|ŵ1,n|α|ŵ2,n|βdx = 〈I ′λ,µ(zn), zn〉 − 〈I ′λ,µ(z), z〉+ on(1) = on(1).

Hence, we may assume that

(3.8) ‖ẑn‖2 → `, 2

ˆ
Ω
|ŵ1,n|α|ŵ2,n|βdx→ `.

If ` = 0, the proof is complete. If, by contradiction, ` > 0 then from (3.8) and the definition
of Ss,α,β, we have

ksSs,α,β
(
`

2

) 2
2∗s

= ksSs,α,β lim
n→∞

(ˆ
Ω
|ŵ1,n|α|ŵ2,n|βdx

) 2
2∗s
≤ lim

n→∞
‖ẑn‖2 = `,

which implies that ` ≥ 2(ksSs,α,β/2)
N
2s . On the other hand, from Lemma 3.1, formulas (3.7)

and (3.8), we obtain

c =

(
1

2
− 1

2∗s

)
`+ Iλ,µ(z) ≥ 2s

N

(
ksSs,α,β

2

)N
2s

−K0

(
λ

2
2−q + µ

2
2−q
)
,

which contradicts c < c∞. �

4. The Nehari manifold

Since the energy functional Iλ,µ associated with (2.1) is not bounded on E, it is useful to
consider the functional on the Nehari manifold

Nλ,µ :=
{
z ∈ E\{0} : 〈I ′λ,µ(z), z〉 = 0

}
.

Thus, z = (w1, w2) ∈ Nλ,µ if and only if

(4.1) 〈I ′λ,µ(z), z〉 = ‖z‖2 −Qλ,µ(z)− 2

ˆ
Ω
|w1|α|w2|βdx = 0,

where

Qλ,µ(z) :=

ˆ
Ω

(λ|w1|q + µ|w2|q)dx.

It is clear that all critical points of Iλ,µ must lie on Nλ,µ and, as we will see below, local
minimizers on Nλ,µ are actually critical points of Iλ,µ. We have the following results.
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Lemma 4.1. The energy functional Iλ,µ is bounded below and coercive on Nλ,µ.

Proof. Let z = (w1, w2) ∈ Nλ,µ, then by (4.1) and the Hölder inequality and the Sobolev
embedding theorem

Iλ,µ(z) =
2∗s − 2

22∗s
‖z‖2 − 2∗s − q

q2∗s
Qλ.µ(z)(4.2)

≥ 2∗s − 2

22∗s
‖z‖2 − 2∗s − q

q2∗s
S(s,N)−

q
2 |Ω|

2∗s−q
2∗s

(
λ

2
2−q + µ

2
2−q
) 2−q

2 ‖z‖q.

Since 1 < q < 2, the functional Iλ,µ is coercive and bounded below on Nλ,µ. �

The Nehari manifold Nλ,µ is closely linked to the fibering map Φz : t→ Iλ,µ(tz) given by

Φz(t) := Iλ,µ(tz) =
t2

2
‖z‖2 − tq

q

ˆ
Ω

(λ|w1|q + µ|w2|q)dx−
2t2
∗
s

α+ β

ˆ
Ω
|w1|α|w2|βdx.

Such maps were introduced by Drabek and Pohozaev in [16] and later on used by Brown
and Zhang [7]. Notice that we have

Φ′z(t) = t‖z‖2 − tq−1

ˆ
Ω

(λ|w1|q + µ|w2|q)dx− 2t2
∗
s−1

ˆ
Ω
|w1|α|w2|βdx,

Φ′′z(t) = ‖z‖2 − (q − 1)tq−2

ˆ
Ω

(λ|w1|q + µ|w2|q)dx− 2(2∗s − 1)t2
∗
s−2

ˆ
Ω
|w1|α|w2|βdx.

It is clear that Φ′z(t) = 0 if and only if tz ∈ Nλ,µ. Hence, z ∈ Nλ,µ if and only if Φ′z(1) = 0.
Introduce now the functional

Rλ,µ(z) := 〈I ′λ,µ(z), z〉.
Then, for every z ∈ Nλ,µ, we have

〈R′λ,µ(z), z〉 = 2‖z‖2 − qQλ,µ(z)− 22∗s

ˆ
Ω
|w1|α|w2|βdx

= (2− q)‖z‖2 − 2(2∗s − q)
ˆ

Ω
|w1|α|w2|βdx(4.3)

= (2∗s − q)Qλ,µ(z)− (2∗s − 2)‖z‖2.
Following the method used in [32], we split Nλ,µ into three parts

N+
λ,µ := {z ∈ Nλ,µ : 〈R′λ,µ(z), z〉 > 0},

N 0
λ,µ := {z ∈ Nλ,µ : 〈R′λ,µ(z), z〉 = 0},
N−λ,µ := {z ∈ Nλ,µ : 〈R′λ,µ(z), z〉 < 0}.

Then, we have the following lemmas.

Lemma 4.2. If z0 is a local minimizer for Iλ,µ on Nλ,µ and z0 6∈ N 0
λ,µ, then I ′λ,µ(z0) = 0.

Proof. Let z0 = (w0,1, w0,2) ∈ Nλ,µ be a local minimizer for Iλ,µ on Nλ,µ. Then z0 solves

Min {Iλ,µ(z) : Rλ,µ(z) = 0}.
Hence, there exists a Lagrange multiplier γ ∈ R such that I ′λ,µ(z0) = γR′λ,µ(z0). Thus,

〈I ′λ,µ(z0), z0〉 = γ〈R′λ,µ(z0), z0〉 = 0.

Since z0 6∈ N 0
λ,µ, then 〈R′λ,µ(z0), z0〉 6= 0, yielding γ = 0. This completes the proof. �



12 X. HE, M. SQUASSINA, AND W. ZOU

Let Λ1 be the positive number defined in (1.4). Then we have the following result.

Lemma 4.3. Assume that (λ, µ) ∈ CΛ1. Then N 0
λ,µ = ∅.

Proof. Assume by contradiction that there exist λ > 0 and µ > 0 with 0 < λ
2

2−q +µ
2

2−q < Λ1

and such that N 0
λ,µ 6= ∅. Let z ∈ N 0

λ,µ. Then, by virtue of (4.3), we get

‖z‖2 =
2(2∗s − q)

2− q

ˆ
Ω
|w1|α|w2|βdx, ‖z‖2 =

2∗s − q
2∗s − 2

Qλ,µ(z).

By Hölder inequality and the Sobolev embedding theorem, we have

‖z‖ ≥
[ 2− q

2(2∗s − q)
(ksSs,α,β)

2∗s
2

] 1
2∗s−2

,

‖z‖ ≤
(2∗s − q

2∗s − 2
S(s,N)−

q
2 |Ω|

2∗s−q
2∗s

) 1
2−q (

λ
2

2−q + µ
2

2−q
) 1

2 ,

which leads to the inequality

λ
2

2−q + µ
2

2−q ≥
(2∗s − q

2∗s − 2
S(s,N)−

q
2 |Ω|

2∗s−q
2∗s

)− 2
2−q
[ 2− q

2(2∗s − q)
(ksSα,β)

2∗s
2

] 2
2∗s−2

= Λ1,

contradicting the assumption. �

From Lemma 4.3, if 0 < λ
2

2−q + µ
2

2−q < Λ1, we can write Nλ,µ = N+
λ,µ ∪N

−
λ,µ and define

αλ,µ := inf
z∈Nλ,µ

Iλ,µ(z), α+
λ,µ := inf

z∈N+
λ,µ

Iλ,µ(z), α−λ,µ := inf
z∈N−λ,µ

Iλ,µ(z).

Moreover, we have the following properties about the Nehari manifold Nλ,µ.

Theorem 4.4. The following facts holds

(i) If (λ, µ) ∈ CΛ1, then we have αλ,µ ≤ α+
λ,µ < 0;

(ii) If (λ, µ) ∈ C(q/2)2/(2−q)Λ1
, then we have α−λ,µ > c0 for some positive constant c0

depending on λ, µ,N, s and |Ω|.

Proof. (i) Let z = (w1, w2) ∈ N+
λ,µ. By formula (4.3), we have

2− q
2(2∗s − q)

‖z‖2 >
ˆ

Ω
|w1|α|w2|β

and so,

Iλ,µ(z) =

(
1

2
− 1

q

)
‖z‖2 + 2

(
1

q
− 1

2∗s

) ˆ
Ω
|w1|α|w2|βdx

≤
[(

1

2
− 1

q

)
+

(
1

q
− 1

2∗s

)
2− q
2∗s − q

]
‖z‖2

= −(2− q)s
Nq

‖z‖2 < 0.

Therefore, by the definition of αλ,µ, α
+
λ,µ, we can deduce that αλ,µ ≤ α+

λ,µ < 0.

(ii) Let z ∈ N−λ,µ. By equation (4.3),

2− q
2(2∗s − q)

‖z‖2 <
ˆ

Ω
|w1|α|w2|βdx.
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By the Hölder inequality and the Sobolev embedding theorem, we haveˆ
Ω
|w1|α|w2|βdx ≤ (ksSs,α,β)−

2∗s
2 ‖z‖2∗s .

Hence, we obtain

‖z‖ >
(

2− q
2(2∗s − q)

) 1
2∗s−2

(ksSs,α,β)
N
4s , for all z ∈ N−λ,µ.

From the last inequality we infer that

Iλ,µ(z) =
2∗s − 2

22∗s
‖z‖2 − 2∗s − q

q2∗s
Qλ.µ(z)

≥ ‖z‖q
[

2∗s − 2

22∗s
‖z‖2−q − 2∗s − q

q2∗s
S(s,N)−

q
2 |Ω|

2∗s−q
2∗s

(
λ

2
2−q + µ

2
2−q
) 2−q

2

]
>

(
2− q

2(2∗s − q)

) q
2∗s−2

(ksSs,α,β)
qN
4s

[2∗s − 2

22∗s
(ksSs,α,β)

(2−q)N
4s

(
2− q

2(2∗s − q)

) 2−q
2∗s−2

− 2∗s − q
q2∗s

S(s,N)−
q
2 |Ω|

2∗s−q
2∗s

(
λ

2
2−q + µ

2
2−q
) 2−q

2
]
.

Thus, if λ
2

2−q + µ
2

2−q < (q/2)
2

2−qΛ1, then

Iλ,µ(z) > c0, for all z ∈ N−λ,µ,

for some positive constant c0 = c0(λ, µ,S(s,N), |Ω|). �

Theorem 4.5. Let (λ, µ) ∈ CΛ1. Then, for every z = (w1, w2) ∈ E withˆ
Ω
|w1|α|w2|βdx > 0,

then there exist (unique) t− = t−(z) > 0 and t+ = t+(z) > 0 such that

t+z ∈ N+
λ,µ, t−z ∈ N−λ,µ.

In particular, we have

t+ < tmax < t−, tmax :=

(
(2− q)‖z‖2

2(2∗s − q)
ˆ

Ω
|w1|α|w2|βdx

) 1
2∗s−2

as well as

Iλ,µ(t+z) = min
0≤t≤tmax

Iλ,µ(tz), Iλ,µ(t−z) = max
t≥0
Iλ,µ(tz).

Proof. Fix z = (w1, w2) ∈ E with
´

Ω |w1|α|w2|βdx > 0. Put

(4.4) m(t) := t2−q‖z‖2 − 2t2
∗
s−q
ˆ

Ω
|w1|α|w2|βdx for t ≥ 0.

Clearly, m(0) = 0 and m(t)→ −∞ as t→∞. Notice that

m′(t) = (2− q)t1−q‖z‖2 − 2(2∗s − q)t2
∗
s−q−1

ˆ
Ω
|w1|α|w2|βdx.
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Clearly, m′(t) = 0 at t = tmax, m′(t) > 0 for t ∈ (0, tmax) and m′(t) < 0 for t ∈ (tmax,∞).
Moreover, by a direct calculation we obtain

m(tmax) = ‖z‖q
[( 2− q

2(2∗s − q)

) 2−q
2∗s−2 − 2

( 2− q
2(2∗s − q)

) 2∗s−q
2∗s−2

] ‖z‖2∗sˆ
Ω
|w1|α|w2|βdx


2−q

2∗s−2

≥ ‖z‖q
(

2∗s − 2

2∗s − q

)( 2− q
2(2∗s − q)

(ksSα,β)
2∗s
2

) 2−q
2∗s−2

.

Therefore, we have

m(0) = 0

< Qλ,µ(w1, w2)

≤ |Ω|
2∗s−q

2∗s S(s,N)−
q
2 (λ

2
2−q + µ

2
2−q )

2−q
2 ‖z‖q(4.5)

< ‖z‖q
(

2∗s − 2

2∗s − q

)(
2− q

2(2∗s − q)
(ksSα,β)

2∗s
2

) 2−q
2∗s−2

≤ m(tmax)

for 0 < λ
2

2−q + µ
2

2−q < Λ1. By the equation for Φ′z(t) and (4.4) we get

(4.6) Φ′z(t) = tq−1

[
m(t)−

ˆ
Ω

(λwq1 + µwq2)dx

]
.

Furthermore, if tz ∈ Nλ,µ, then

(4.7) tq−1m′(t) = Φ′′z(t).

By (4.5) and (4.6), there exist unique t+ and t− such that 0 < t+ < tmax < t− such that

m(t+) = Qλ,µ(w1, w2) = m(t−), m′(t+) > 0 > m′(t−),

and (4.6) implies Φ′z(t
+) = Φ′z(t

−) = 0. By (4.7), we have Φ′′z(t
+) > 0,Φ′′z(t

−) < 0. This
shows that Φz(t) has a local minimum at t+ and local maximum at t− with t+z ∈ N+

λ,µ, t
−z ∈

N−λ,µ. Moreover, Iλ,µ(t−z) ≥ Iλ,µ(tz) ≥ Iλ,µ(t+z) for all t ∈ [t+, t−] and Iλ,µ(t+z) ≤ Iλ,µ(tz)

for all t ∈ [0, t+]. Hence, Iλ,µ(t+z) = min0≤t≤tmax Iλ,µ(tz) and Iλ,µ(t−z) = maxt≥0 Iλ,µ(tz),
concluding the proof. �

5. Existence of Palais-Smale sequences

Lemma 5.1. Let (λ, µ) ∈ CΛ1. Then, for any z ∈ Nλ,µ, there exists r > 0 and a differentiable
map ξ : B(0; r) ⊂ E → R+ such that ξ(0) = 1 and ξ(h)(z − h) ∈ Nλ,µ for every h ∈ B(0; r).
Let us set

T1 := 2ks

ˆ
CΩ
y1−2s (∇w1 · ∇h1 +∇w2 · ∇h2) dxdy,

T2 := q

ˆ
Ω

(
λ|w1|q−2w1h1 + µ|w2|q−2w2h2

)
dx,

T3 := 2

ˆ
Ω

(
α|w1|α−2w1h1|w2|β + β|w1|α|w2|β−2w2h2

)
dx,



NEHARI MANIFOLD FOR CRITICAL FRACTIONAL SYSTEMS 15

for all (h1, h2) ∈ E and (w1, w2) ∈ E. Then

〈ξ′(0), h〉 =
T3 + T2 − T1

(2− q)‖z‖2 − 2(2∗s − q)
ˆ

Ω
|w1|α|w2|βdx

,(5.1)

for all (h1, h2) ∈ E.

Proof. For z = (w1, w2) ∈ Nλ,µ, define a function Hz : R× E → R by

Hz(ξ, p) := 〈I ′λ,µ(ξ(z − p)), ξ(z − p)〉

= ξ2ks

ˆ
CΩ
y1−2s

(
|∇(w1 − p1)|2 + |∇(w2 − p2)|2

)
dxdy

− ξq
ˆ

Ω
(λ|w1 − p1|q + µ|w2 − p2|q) dx− 2ξ2∗s

ˆ
Ω
|w1 − p1|α|w2 − p2|βdx.

Then Hz(1, 0) = 〈I ′λ,µ(z), z〉 = 0 and, by Lemma 4.3, we have

dHz(1, (0, 0))

dξ
= 2‖z‖2 − q

ˆ
Ω

(λ|w1|q + µ|w2|q) dx− 22∗s

ˆ
Ω
|w1|α|w2|βdx

= (2− q)‖z‖2 − 2(2∗s − q)
ˆ

Ω
|w1|α|w2|βdx 6= 0.

In turn, by virtue of the Implicit Function Theorem, there exists r > 0 and a function
ξ : B(0; r) ⊂ E → R of class C1 such that ξ(0) = 1 and formula (5.1) holds, via direct
computation. Moreover, Hz(ξ(h), h) = 0, for all h ∈ B(0; r), is equivalent to

〈I ′λ,µ(ξ(h)(z − h)), ξ(h)(z − h)〉 = 0, for all h ∈ B(0; r),

namely ξ(h)(z − h) ∈ Nλ,µ. �

Lemma 5.2. Let (λ, µ) ∈ CΛ1. Then, for each z ∈ N−λ,µ, there exists r > 0 and a differen-

tiable function ξ− : B(0; r) ⊂ E → R+ such that ξ−(0) = 1, ξ−(h)(z − h) ∈ N−λ,µ for every

h ∈ B(0; r) and formula (5.1) holds.

Proof. Arguing as for the proof of Lemma 5.1, there exists r > 0 and a differentiable function
ξ− : B(0; r) ⊂ E → R+ such that ξ−(0) = 1, ξ−(h)(z − h) ∈ Nλ,µ for all h ∈ B(0; r) and
formula (5.1) holds. Since

〈R′λ,µ(z), z〉 = (2− q)‖z‖2 − 2(2∗s − q)
ˆ

Ω
|w1|α|w2|βdx < 0,

by the continuity of the functions R′λ,µ and ξ−, up to reducing the size of r > 0, we get

〈R′λ,µ(ξ−(h)(z − h)), ξ−(h)(z − h)〉 = (2− q)‖ξ−(h)(z − h)‖2

− 2(2∗s − q)
ˆ

Ω
|(ξ−(h)(z − h))1|α|(ξ−(h)(z − h))2|βdx < 0,

where (ξ−(h)(z − h))i ∈ Xs
0(CΩ) denote the components of ξ−(h)(z − h). This implies that

the functions ξ−(h)(z − h) belong to N−λ,µ. �

Proposition 5.3. The following facts hold.

(i) Let (λ, µ) ∈ CΛ1 . Then there is a (PS)αλ,µ-sequence {zn} ⊂ Nλ,µ for Iλ,µ.

(ii) Let (λ, µ) ∈ C(q/2)2/(2−q)Λ1
. Then there is a (PS)α−λ,µ

-sequence {zn} ⊂ N−λ,µ for Iλ,µ.
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Proof. (i) By Lemma 4.1 and Ekeland Variational Principle [17], there exists a minimizing
sequence {zn} ⊂ Nλ,µ such that

Iλ,µ(zn) < αλ,µ +
1

n
,

Iλ,µ(zn) < Iλ,µ(w) +
1

n
‖w − zn‖, for each w ∈ Nλ,µ.(5.2)

Taking n large and using αλ,µ < 0, we have

Iλ,µ(zn) =
(1

2
− 1

2∗s

)
‖zn‖2 −

(1

q
− 1

2∗s

)ˆ
Ω

(λ|w1,n|q + µ|w2,n|q)dx(5.3)

< αλ,µ +
1

n
<
αλ,µ

2
.

This yields that

− q2∗s
2(2∗s − q)

αλ,µ <

ˆ
Ω

(λ|w1,n|q + µ|w2,n|q)dx(5.4)

≤ |Ω|
2∗s−q

2∗s S(s,N)−
q
2 (λ

2
2−q + µ

2
2−q )

2−q
2 ‖zn‖q.

Consequently, zn 6= 0 and combining with (5.3) and (5.4) and using Hölder inequality

‖zn‖ >
[
− q2∗s

2(2∗s − q)
αλ,µ|Ω|

q−2∗s
2∗s S(s,N)

q
2 (λ

2
2−q + µ

2
2−q )

q−2
2

] 1
q

,

and

(5.5) ‖zn‖ <
[

2(2∗s − q)
q(2∗s − 2)

|Ω|
2∗s−q

2∗s S(s,N)−
q
2 (λ

2
2−q + µ

2
2−q )

2−q
2

] 1
2−q

.

Now we prove that

‖I ′λ,µ(zn)‖E−1 → 0, as n→∞.
Fix n ∈ N. By applying Lemma 5.1 to zn, we obtain the function ξn : B(0; rn) → R+ for
some rn > 0, such that ξn(h)(zn − h) ∈ Nλ,µ. Take 0 < ρ < rn. Let w ∈ E with w 6≡ 0 and
put h∗ = ρw

‖w‖ . We set hρ = ξn(h∗)(zn − h∗), then hρ ∈ Nλ,µ, and we have from (5.2) that

Iλ,µ(hρ)− Iλ,µ(zn) ≥ − 1

n
‖hρ − zn‖.

By the Mean Value Theorem, we get

〈I ′λ,µ(zn), hρ − zn〉+ o(‖hρ − zn‖) ≥ −
1

n
‖hρ − zn‖.

Thus, we have

〈I ′λ,µ(zn),−h∗〉+ (ξn(h∗)− 1)〈I ′λ,µ(zn), zn − h∗〉 ≥ −
1

n
‖hρ − zn‖+ o(‖hρ − zn‖).

Whence, from ξn(h∗)(zn − h∗) ∈ Nλ,µ, it follows that

−ρ
〈
I ′λ,µ(zn),

w

‖w‖

〉
+ (ξn(h∗)− 1)〈I ′λ,µ(zn)− I ′λ,µ(hρ), zn − h∗〉

≥ − 1

n
‖hρ − zn‖+ o(‖hρ − zn‖).
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So, we get 〈
I ′λ,µ(zn),

w

‖w‖

〉
≤ 1

nρ
‖hρ − zn‖+

o(‖hρ − zn‖)
ρ

(5.6)

+
(ξn(h∗)− 1)

ρ
〈I ′λ,µ(zn)− I ′λ,µ(hρ), zn − h∗〉.

Since ‖hρ − zn‖ ≤ ρ|ξn(h∗)|+ |ξn(h∗)− 1|‖zn‖ and

lim
ρ→0

|ξn(h∗)− 1|
ρ

≤ ‖ξ′n(0)‖.

For fixed n ∈ N, if we let ρ → 0 in (5.6), then by virtue of (5.5) we can choose a constant
C > 0 independent of ρ such that〈

I ′λ,µ(zn),
w

‖w‖

〉
≤ C

n
(1 + ‖ξ′n(0)‖).

Thus, we are done once we prove that ‖ξ′n(0)‖ remains uniformly bounded. By (5.1), (5.5)
and Hölder inequality, we have∣∣〈ξ′n(0), h〉

∣∣ ≤ C1‖h‖∣∣∣(2− q)‖zn‖2 − 2(2∗s − q)
ˆ

Ω
|w1,n|α|w2,n|βdx

∣∣
for some C1 > 0. We only need to prove that∣∣∣∣(2− q)‖zn‖2 − 2(2∗s − q)

ˆ
Ω
|w1,n|α|w2,n|βdx

∣∣∣∣ ≥ C2,

for some C2 > 0 and n large enough. We argue by contradiction. Suppose that there exists
a subsequence {zn} such that

(5.7) (2− q)‖zn‖2 − 2(2∗s − q)
ˆ

Ω
|w1,n|α|w2,n|βdx = on(1).

By virtue of (5.7) and the fact that zn ∈ Nλ,µ, we have

‖zn‖2 =
2(2∗s − q)

2− q

ˆ
Ω
|w1,n|α|w2,n|βdx+ on(1), ‖zn‖2 =

2∗s − q
2∗s − 2

Qλ,µ(zn) + on(1).

Taking into account that Iλ,µ(zn) → αλ,µ < 0 as n → ∞, we have ‖zn‖ 6→ 0 as n → ∞.
Then, arguing as in the proof of Lemma 4.3 yields (λ, µ) 6∈ CΛ1 , a contradiction. Then,〈

I ′λ,µ(zn),
w

‖w‖
〉
≤ C

n
.

This proves (i). By Lemma 5.2, one can prove (ii), but we shall omit the details here. �

6. Local minimization problems

Now, we establish the existence of a local minimizer for Iλ,µ in N+
λ,µ.

Proposition 6.1. Let (λ, µ) ∈ CΛ1. Then Iλ,µ has a local minimizer z+ in N+
λ,µ satisfying

the following conditions:

(i) Iλ,µ(z+) = αλ,µ = α+
λ,µ < 0;

(ii) z+ is a positive solution of (2.1).
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Proof. By (i) of Proposition 5.3, there exists a minimizing sequence {zn} = {(w1,n, w2,n)}
for Iλ,µ in Nλ,µ such that, as n→∞,

(6.1) Iλ,µ(zn) = αλ,µ + on(1) and I ′λ,µ(zn) = on(1) in E−1.

By Lemma 4.1, we see that Iλ,µ is coercive on Nλ,µ, and {zn} is bounded in E. Then there

exists a subsequence, still denoted by {zn} and z+ = (w+
1 , w

+
2 ) ∈ E such that, as n→∞, w1,n ⇀ w+

1 , w2,n ⇀ w+
2 , weakly in Xs

0(Ω),
w1,n → w+

1 , w2,n → w+
2 , strongy in Lr(Ω) for all 1 ≤ r < 2∗s,

w1,n → w+
1 , w2,n → w+

2 , a.e. in Ω,

up to subsequences. This implies that, as n→∞,
(6.2) Qλ,µ(zn) = Qλ,µ(z+) + on(1).

We claim that z+ is a nontrivial solution of (2.1). From (6.1)-(6.2), it is easy to verify that
z+ is a weak solution of (2.1). From zn ∈ Nλ,µ and (4.2) we deduce that

(6.3) Qλ,µ(zn) =
q(2∗s − 2)

2(2∗s − q)
‖zn‖2 −

q2∗s
2∗s − q

Iλ,µ(zn).

Let n→∞ in (6.3), by (6.1), (6.2) and αλ,µ < 0, we have

Qλ,µ(z+) ≥ − q2∗s
2∗s − q

αλ,µ > 0.

Therefore, z+ ∈ Nλ,µ is a nontrivial solution of (2.1). Now we show that zn → z+ strongly
in E and Iλ,µ(z+) = αλ,µ. Since z+ ∈ Nλ,µ, then by (6.3), we obtain

αλ,µ ≤ Iλ,µ(z+)

=
s

N
‖z+‖2 − 2∗s − q

q2∗s
Qλ,µ(z+)

≤ lim
n→∞

( s
N
‖zn‖2 −

2∗s − q
q2∗s

Qλ,µ(zn)
)

= lim
n→∞

Iλ,µ(zn) = αλ,µ.

This implies that Iλ,µ(z+) = αλ,µ and limn→∞ ‖zn‖2 = ‖z+‖2. Set ẑn = zn− z+. Then, that

‖ẑn‖2 = ‖zn‖2 − ‖z+‖2 + on(1).

Hence, zn → z+ in E. We claim that z+ ∈ N+
λ,µ. Assume by contradiction that z+ ∈ N−λ,µ.

Then, by Theorem 4.5, there exist (unique) t+1 and t−1 with t+1 z
+ ∈ N+

λ,µ and t−1 z
+ ∈ N−λ,µ.

In particular, we have t+1 < t−1 = 1. Since

d

dt
Iλ,µ(tz+)|t=t+1 = 0, and

d2

dt2
Iλ,µ(tz+)|t=t+1 > 0,

there exists t+1 < t∗ ≤ t−1 such that Iλ,µ(t+1 z
+) < Iλ,µ(t∗z+). By Theorem 4.5, we have

Iλ,µ(t+1 z
+) < Iλ,µ(t∗z+) ≤ Iλ,µ(t−1 z

+) = Iλ,µ(z+),

a contradiction. Since Iλ,µ(z+) = Iλ,µ(|w+
1 |, |w

+
2 |) and (|w+

1 |, |w
+
2 |) ∈ Nλ,µ, by Lemma 4.2

we may assume that z+ is a nontrivial nonnegative solution of (2.1). Then by the Strong
Maximum Principle [10, Lemma 2.4], we have w+

1 , w
+
2 > 0 in CΩ, hence, z+ is a positive

solution for (2.1). �
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Next we will use wε = Es(uε), the family of minimizers for the trace inequality (2.4), where
uε is given in (2.5). Without loss of generality, we may assume that 0 ∈ Ω. We then define
the cut-off function φ ∈ C∞0 (CΩ), 0 ≤ φ ≤ 1 and for small fixed ρ > 0,

φ(x, y) =

{
1, (x, y) ∈ Bρ,
0, (x, y) 6∈ B2ρ,

where Bρ = {(x, y) : |x|2 + y2 < ρ2, y > 0}. We take ρ so small that B2ρ ⊂ CΩ. Recall W is
the extension of U introduced in Section 2, we have (cf. [3]) |∇W(x, y)| ≤ Cy−1W(x, y). Let

Uε(x) =
1

(ε2 + |x|2)
N−2s

2

, ε > 0.

Then the extension of Uε(x) has the form

Wε(x, y) = cN,sy
2s

ˆ
RN

Uε(z)dz

(|x− z|2 + y2)
N+2s

2

= ε2s−NW
(x
ε
,
y

ε

)
.

Notice that φWε ∈ Xs
0(CΩ), for ε > 0 small enough.

Lemma 6.2. There is z ∈ E\{0} nonnegative and Λ∗ > 0 such that for (λ, µ) ∈ CΛ∗

sup
t≥0
Iλ,µ(tz) < c∞,

where c∞ is given in Lemma 3.3. In particular, α−λ,µ < c∞ for all (λ, µ) ∈ CΛ∗.

Proof. By an argument similar to that of the proof of [3, formula (3.26)], we get

‖φWε‖2Xs
0

= ks

ˆ
RN+1

+

y1−2s|∇Wε|2dxdy +O(1)(6.4)

= ε2s−Nks

ˆ
RN+1

+

y1−2s|∇W(x, y)|2dxdy +O(1).

We notice that

‖φUε‖2
∗
s

2∗s
=

ˆ
Ω
|φUε|2

∗
sdx =

ˆ
Ω

φ(x)2∗s

(ε2 + |x|2)N
dx,

‖Uε‖2
∗
s

2∗s
=

ˆ
RN

1

(ε2 + |x|2)N
dx = ε−N‖U‖2

∗
s

2∗s
.

Then, one has that

‖φUε‖2
∗
s

2∗s
− ε−N‖U‖2

∗
s

2∗s
=

ˆ
Ω

φ2∗s (x)− 1

(ε2 + |x|2)N
dx−

ˆ
RN\Ω

dx

(ε2 + |x|2)N
,

which yields∣∣∣‖φUε‖2∗s2∗s
− ε−N‖U‖2

∗
s

2∗s

∣∣∣ ≤ ˆ
Ω\B(0;ρ)

1

(ε2 + |x|2)N
dx+

ˆ
RN\Ω

dx

(ε2 + |x|2)N

=

ˆ
RN\B(0;ρ)

dx

(ε2 + |x|2)N
≤
ˆ
RN\B(0;ρ)

dx

|x|2N
= C3.

This implies that

1− C3ε
N‖U‖−2∗s

2∗s
≤ εN‖φUε‖2

∗
s

2∗s
‖U‖−2∗s

2∗s
≤ 1 + C3ε

N‖U‖−2∗s
2∗s

.
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Taking ε so small that C2ε
N‖U‖−2∗s

2∗s
< 1, since 2/2∗s = (N − 2s)/N < 1, we obtain

1− εNC3‖U‖−2∗s
2∗s
≤ (1− εNC3‖U‖−2∗s

2∗s
)2/2∗s ≤ εN−2s‖φUε‖22∗s‖U‖

−2
2∗s

≤ (1 + εNC3‖U‖−2∗s
2∗s

)2/2∗s ≤ 1 + εNC3‖U‖−2∗s
2∗s

.

Hence ‖φUε‖22∗s = ε2s−N‖U‖22∗s +O(ε2s). Since W = Es(U) optimizes (2.4), by (6.4) we have

‖φWε‖2Xs
0

‖φUε‖22∗s
=

ε2s−Nks

ˆ
RN+1

+

y1−2s|∇W(x, y)|2dxdy +O(1)

ε2s−N‖U‖22∗s +O(ε2s)
(6.5)

=

ks

ˆ
RN+1

+

y1−2s|∇W(x, y)|2dxdy

‖U‖22∗s

(
1 +O(εN−2s)

)
= ksS(s,N) +O(εN−2s).

Now we consider the function J : E → R defined by J(z) := 1/2‖z‖2− 2/2∗s
´

Ω |w1|α|w2|βdx.

Set w0,1 :=
√
αφWε, w0,2 :=

√
βφWε and z0 := (w0,1, w0,2) ∈ E. Notice that J(0) = 0,

J(tz0) > 0 for t > 0 small and J(tz0) < 0 for t > 0 large. The map t 7→ J(tz0) maximizes at

(6.6) t0 :=
( ‖z0‖2

2

ˆ
Ω
|w0,1|α|w0,2|βdx

) 1
2∗s−2

.

Then from (2.7), (6.5) and (6.6), we conclude that

sup
t≥0

J(tz0) = J(t0z0) =

(
1

2
− 1

2∗s

)
‖z0‖

22∗s
2∗s−2(

2

ˆ
Ω
|w0,1|α|w0,2|β

) 2
2∗s−2

=
s

N

[(α+ β)ks

ˆ
CΩ
y1−2s|∇(φWε)|2dxdy(

α
α
2 β

β
2

ˆ
Ω
|φUε|2

∗
sdx
) 2

2∗s

] 2∗s
2∗s−2

· 1

2
N−2s

2s

=
s

N2
N−2s

2s

[(α
β

) β
α+β

+

(
β

α

) α
α+β ]N

2s

[ks ˆ
CΩ
y1−2s|∇(φWε)|2(ˆ

Ω
|φUε|2

∗
sdx
) 2

2∗s

]N
2s

(6.7)

=
s

N2
N−2s

2s

[(α
β

) β
α+β

+

(
β

α

) α
α+β ]N

2s
[
ksS(s,N) +O(εN−2s)

]N
2s

=
s

N2
N−2s

2s

[
ksSs,α,β +O(εN−2s)

]N
2s

=
s

N

1

2
N−2s

2s

(ksSs,α,β)
N
2s +O(εN−2s) =

2s

N

(
ksSs,α,β

2

)N
2s

+O(εN−2s).
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We now choose δ1 > 0 so small that, for all (λ, µ) ∈ Cδ1 , we get

c∞ =
2s

N

(
ksSs,α,β

2

)N
2s

−K0

(
λ

2
2−q + µ

2
2−q
)
> 0.

By the definition of Iλ,µ and z0, we have

Iλ,µ(tz0) ≤ t2

2
‖z0‖2, for all t ≥ 0 and λ, µ > 0,

which implies that there exists t0 ∈ (0, 1) satisfying

sup
t∈[0,t0]

Iλ,µ(tz0) < c∞, for all (λ, µ) ∈ Cδ1 .

Hence, from (6.7) and α, β > 1 we see that

sup
t≥t0
Iλ,µ(tz0)

= sup
t≥t0

(
J(tz0)− tq

q
Qλ,µ(tz0)

)
(6.8)

≤ 2s

N

(ksSs,α,β
2

)N
2s

+O(εN−2s)− tq0
q

(
λα

q
2 + µβ

q
2

)ˆ
B(0;ρ)

|Uε|qdx

≤ 2s

N

(ksSs,α,β
2

)N
2s

+O(εN−2s)− tq0
q

(λ+ µ)

ˆ
B(0;ρ)

|Uε|qdx.

Letting 0 < ε ≤ ρ, we haveˆ
B(0;ρ)

|Uε|qdx =

ˆ
B(0;ρ)

1

(ε2 + |x|2)
q(N−2s)

2

dx ≥
ˆ
B(0;ρ)

1

(2ρ2)
q(N−2s)

2

dx = C4,

for some C4 = C4(N, s, ρ). Combining this with (6.8), for ε =
(
λ

2
2−q + µ

2
2−q
) 1
N−2s < ρ,

sup
t≥t0
Iλ,µ(tz0) ≤ 2s

N

(ksSs,α,β
2

)N
2s

+O
(
λ

2
2−q + µ

2
2−q
)
− tq0
q

(λ+ µ)C4.

Choosing δ2 > 0 small enough, for all (λ, µ) ∈ Cδ2 , we have

O
(
λ

2
2−q + µ

2
2−q
)
− tq0
q

(λ+ µ)C4 < −K0

(
λ

2
2−q + µ

2
2−q
)
.

If we set Λ∗ = min{δ1, ρ
N−2s, δ2} > 0, then for (λ, µ) ∈ CΛ∗ ,

(6.9) sup
t≥0
Iλ,µ(tz0) < c∞.

Finally, we prove that α−λ,µ < c∞ for all (λ, µ) ∈ CΛ∗ . Recall that

z0 = (w0,1, w0,2) = (
√
αφWε,

√
βφWε).

Since
´

Ω |w0,1|α|w0,2|βdx > 0, by Theorem 4.5 there exists t0 > 0 such that t0z0 ∈ N−λ,µ. By

the definition of α−λ,µ and (6.9), we conclude that

α−λ,µ ≤ Iλ,µ(t0z0) ≤ sup
t≥0
Iλ,µ(tz0) < c∞

for all (λ, µ) ∈ CΛ∗ . �
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Let Λ∗ be as in Lemma 6.2. We prove the existence a local minimizer for Iλ,µ on N−λ,µ.

Proposition 6.3. Let Λ∗ > 0 be as in Lemma 6.2 and set

Λ2 := min{Λ∗, (q/2)
2

2−qΛ1}.

For (λ, µ) ∈ CΛ2, Iλ,µ has a minimizer z− in N−λ,µ with Iλ,µ(z−) = α−λ,µ. Furthermore, z−

is a positive solution of (2.1).

Proof. By (ii) of Proposition 5.3, there is a (PS)α−λ,µ
sequence {zn} ⊂ N−λ,µ for Iλ,µ for all

(λ, µ) ∈ C(q/2)2/(2−q)Λ1
.

By Lemmas 3.3 and 6.2 and (ii) of Theorem 4.4, for all (λ, µ) ∈ CΛ∗ , Iλ,µ satisfies the

(PS)α−λ,µ
condition and α−λ,µ > 0. Then, there exists a subsequence still denoted by {zn} and

z− = (w−1 (x, y), w−2 (x, y)) ∈ N−λ,µ such that zn → z− strongly in E and Iλ,µ(z−) = α−λ,µ > 0,

for all (λ, µ) ∈ CΛ2 . Arguing as in the proof of Proposition 6.1, for (λ, µ) ∈ CΛ2 , we obtain
that z− is a positive solution of (2.1). �

7. Proof of the main result concluded

By Proposition 6.1, for (λ, µ) ∈ CΛ1 , system (2.1) admits a positive solution z+ ∈ N+
λ,µ.

By Proposition 6.3, a positive solution z− ∈ N−λ,µ exists for all (λ, µ) ∈ CΛ2 . Furthermore,

since N+
λ,µ ∩ N

−
λ,µ = ∅, then z+, z− are distinct positive solutions of system (2.1). In turn,

(u±(x), v±(x)) = (w±1 (x, 0), w±2 (x, 0)) are distinct positive solutions of (1.1). �
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