
GEOMETRIC INEQUALITIES FOR FRACTIONAL
LAPLACE OPERATORS AND APPLICATIONS

ELEONORA CINTI AND FAUSTO FERRARI

Abstract. We prove a weighted fractional inequality involving

the solution u of a nonlocal semilinear problem in Rn. Such in-

equality bounds a weighted L2-norm of a compactly supported

function φ by a weighted Hs-norm of φ. In this inequality a geo-

metric quantity related to the level sets of u will appear. As a

consequence we derive some relations between the stability of u

and the validity of fractional Hardy inequalities.

1. introduction

In this paper, following the ideas contained in [17], we prove a

weighted Poincaré inequality that gives us useful informations con-

cerning the geometry of the level surfaces of stable solutions of the

fractional semi-linear equation

(−∆)su = f(u) in Rn, (1.1)

where s ∈ (0, 1) and f is C1 in the range of u.

For every locally integrable function u : Rn → R such that∫
Rn

| u(y) |
1+ | y |n+2s

dy < +∞,
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and s ∈ (0, 1), the following operator is well defined

(−∆)su(x) = c(n, s)

∫
Rn

u(x)− u(y)

| x− y |n+2s
dy

= lim
ε→0+

c(n, s)

∫
Rn\B(x,ε)

u(x)− u(y)

| x− y |n+2s
dy,

where c(n, s) is a positive constant such that for every x ∈ Rn,

lim
s→1−

(−∆)su(x) = −∆u(x).

For the definition and the main properties of the fractional Laplacian,

we refer to [10], Section 3, and references therein.

Since in the sequel the constant c(n, s) does not play any particular

role, we omit it and simply assume that

(−∆)su(x) =

∫
Rn

u(x)− u(y)

| x− y |n+2s
dy.

The energy functional associated to problem (1.1) is given by

E(u) =
1

4

∫
Rn

∫
Rn

(u(x)− u(y))2

| x− y |n+2s
dxdy −

∫
Rn
F (u(y))dy, (1.2)

where F denotes the potential, i.e. F ′ = −f .

Definition 1.1. We say that a function u satisfies (1.1) in the weak

sense when for every h ∈ C∞0 (Rn),

1

2

∫
Rn×Rn

(u(x)− u(y))(h(x)− h(y))

| x− y |n+2s
dxdy =

∫
Rn
f(u(y))h(y)dy. (1.3)

Moreover, we say that u is a stable weak solution of (1.1) if the second

variation of the energy is nonnegative, that is, if for every h ∈ C∞0 (Rn):

1

2

∫
Rn

∫
Rn

(h(x)− h(y))2

| x− y |n+2s
dxdy −

∫
Rn
f ′(u(y))h2(y)dy ≥ 0. (1.4)

We can state now our main result.

Theorem 1.2. Let u be a stable weak solution of (1.1) and s ∈ (0, 1).

Then, for every smooth and compactly supported function φ ∈ C∞0 (Rn),

we have
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∫
Rn×Rn

(∑n
i=1 (uxi(x)− uxi(y))2 − (|∇u(x)| − |∇u(y)|)2

|x− y|n+2s

)
φ2(x)dxdy

≤
∫
Rn×Rn

|∇u(y)|2 |φ(x)− φ(y)|2

|x− y|n+2s
dxdy.

(1.5)

One can consider (1.5) a fractional weighted Poincaré inequality since

it allows to control a weighted L2-norm of a compactly supported func-

tion φ by a weighted Hs-norm of the same function φ.

Remark 1.3. As one can see from the proof of Theorem 1.2, we can

consider stable solutions u of more general integro-differential equa-

tions, and obtain a corresponding weighted Poincaré-type inequality.

More precisely, if we consider a symmetric kernel K(x, y) of differen-

tiability order s ∈ (0, 1) with general possibly nonsmooth coefficients

(as considered for instance in [8, 9]) and u a stable solution of∫
Rn
|u(x)− u(y)|2K(x, y)dy = f(u),

then we can deduce the analogue of inequality (1.5) with |x− y|−n−2s

replaced by K(x, y).

Inequality (1.5) can be seen as the fractional analogue of the following

inequality which was studied in [15, 24, 25]:∫
Rn\{∇w=0}

(
n−1∑
i=1

|∇wxi |2 − |∇|∇w||2
)
φ2dx ≤

∫
Rn
|∇w|2|∇φ|2dx,

(1.6)

where w is a stable solution to the local equation ∆w = f(w).

Recently inequality (1.6) has been generalized to other operators. In

[17] elliptic operators of the form div(A(x)∇) have been considered.

In [23] the authors take in account fractional type operators, but they

prove an inequality that is related to the solution of the associated local

problem obtained via the Caffarelli-Silvestre extension indeed, see [5].

As a consequence their inequality still involves weighted H1-norms on

the right-hand side.
3



Here, we are interested in the analogue inequality for solutions u

of the nonlocal problem (−∆)su = f(u) (without considering its s-

harmonic extensions) which therefore will involve fractional Sobolev

norms.

Moreover, making a particular choice of the function u, we establish

some relations between the stability of u and the validity of a fractional

Hardy inequality.

We recall now the fractional Hardy inequality with best constant.

For fractional Hardy inequalities we refer to [11, 12, 13, 19, 20, 22],

and in particular we refer to [19] for the best constant in the case of

the entire space, and to [20] for the best constant in general domains.

More precisely, see Theorem 1.1 in [19], there exists a constant C

such that: for every φ ∈ C∞0 (Rn)∫
Rn×Rn

|ϕ(x)− ϕ(y)|2

|x− y|n+2s
dxdy ≥ C

∫
Rn
|x|−2sϕ2(x)dx. (1.7)

Moreover the optimal C for which the above inequality holds is given

by

CH,s := 2π
n
2

Γ
(
n+2s

4

)2

Γ
(
n−2s

4

)2

Γ
(
n+2s

2

)
|Γ(−2s)|

. (1.8)

In addition we prove the following result.

Theorem 1.4. Let s ∈ (0, 1), and 0 < γ < 2s. We have:

i) | x |γ is a stable solution of (1.1) with f(ρ) = −β(γ, s)ρ1− 2s
γ ,

if and only if there exists a contant C such that s-fractional

inequality (1.7) holds;

ii) There exists a positive constant η, depending only on n, s, γ

η = η(n, s, γ) =

∫ +∞

0

τ γ+n−2G(τ)dτ, (1.9)

where

G(τ) =

∫
|y′|=1

1− 〈e, y′〉
(1− 2τ〈e, y′〉+ τ 2)

n+2s
2

dHn−1(y′),

e ∈ Rn, | e |= 1, such that : if | x |γ is a stable solution of (1.1)

for f(ρ) = −β(γ, s)ρ1− 2s
γ , then the following weighted fractional
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Hardy ineuality holds: for every φ ∈ C∞0 (Rn),

η

∫
Rn
|x|−2sφ2(x)ωγ(x)dx

≤
∫
Rn

(∫
Rn

|φ(x)− φ(y)|2

|x− y|n+2s
dx

)
ωγ(y)dy,

(1.10)

where ωγ(x) = |x|2(γ−1).

There is a wide literature on Hardy-type inequalities (see, for in-

stance [22] and references therein). Concerning Hardy inequalities of

fractional order and their generalizations to weights, we recall the fol-

lowing recent works [11, 12, 13].

To prove Theorem 1.4, we apply inequality (1.5) to a suitable radial

function u, which is a stable solution of (1.1) for a certain nonlinear

f . The main tool we use is a representation formula for the fractional

Laplacian of radial functions, established in [18].

More precisely, in Lemma 3.1 we will establish that the function

u(x) = |x|γ is a solution of (1.1) for the nonlinearity f(u) = −β(γ, s)u1− 2s
γ ,

where β(γ, s) is a constant which expression is given in (3.3). Plugging

this particular choice of u and f in the definition of stability (see for-

mula (1.4)), we obtain a relation between the stability of u(x) = |x|γ

and the validity of a fractional Hardy inequality.

We remark moreover that, in order to obtain further results, our

approach could be revisited making use also of some ideas contained

in the seminal paper [21] and in the successive develops, see e.g. [6],

mainly applied to local linear operators.

Now , we comment on the geometric informations contained in in-

equality (1.5). The inequality proved in [24], [25] for stable solutions w

to semi-linear equations for the classical Laplace operator ∆w = −f(w)

in Rn, can be written, see e.g. [14], as∫
Rn\{∇w=0}

(
| ∇w |2

n−1∑
i=1

k2
i + | ∇T | ∇w ||2

)
φ2 ≤

∫
Rn
| ∇w |2| ∇φ |2,

(1.11)

for every φ ∈ C∞0 (Rn), where ki, i = 1, . . . , n − 1, are the principal

curvatures of the level surfaces of the function u and ∇T denotes the

tangential gradient along the same level sets.
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In the fractional case we get that (see Corollary 2.1),∫
Rn×Rn\C0

(φ2(x) + φ2(y)) | ∇u(x) || ∇u(y) | | n(x)− n(y) |2

| x− y |n+2s
dxdy

≤
∫
Rn×Rn

(| ∇u(x) |2 + | ∇u(y) |2)
| φ(x)− φ(y) |2

| x− y |n+2s
dxdy,

(1.12)

where n(x) = ∇u(x)
|∇u(x)| is the unit normal to the level surface {u = c}

at each point x ∈ {u = c}, where the gradient of u does not vanish and

C0 = {(x, y) ∈ Rn × Rn : ∇u(x) 6= 0, ∇u(y) 6= 0}.
We remark that if Γ is a smooth regular path on the level surface

Σ = {u = c} such that Γ′(0) = v, and v is any unit tangent vector

v ∈ TxΣ where TxΣ is the tangent space at x, then

n(Γ(t))− n(x) = tk(v)v + o(t)

as t → 0, where k is the curvature along the tangent direction v. In

particular

| n(Γ(t))− n(x) |2= k(v)2t2 + o(t2)

as t→ 0.

For a nonlocal notion of directional curvatures of a surface we refer

to [1]. We observe now that there is a close relation (at least asymp-

totically as s → 1
2
) between the quantity |n(x)−n(y)|2

|x−y|n+2s appearing in our

inequality (1.12) and the quantity
∑n−1

i=1 k
2
i involved in (1.11).

Indeed, see Lemma A.4 in [7], if Σ is a smooth hypersurface of di-

mension n − 1, and ν is a smooth choice of the normal vector to Σ.

Then

lim
s→ 1

2

(1− 2s)

∫
Σ

(ν(x)− ν(y)) · ν(x)

|x− y|n+2s
dy =

ωn
2

n−1∑
k=1

k2
i (x),

where ωn denote the volume of the unit ball.

Basically, the quantity
∫

Σ
(ν(x)−ν(y))·ν(x)
|x−y|n+2s dy describes how the normal

vector varies in an average sense, taking into account also interactions

”coming from far”, that is interactions with all points y ∈ Σ. The

aforementioned result tells us that, when s → 1
2
, that quantity con-

verges, up to a multiplicative constant, to the sum of the square of the

principal curvatures.
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In the classical case, the geometric inequality (1.11) has been used,

see [14, 15] and reference therein, to prove the 1-dimensional symme-

try of stable solutions to the semilinear equation −∆u = f(u) in low

dimensions. We say that a function u is 1−D if it depends only on one

Euclidean variable, or equivalentely if its level sets are hyperplanes. In

[15], by choosing a suitable test funtion φ with compact support in a

ball of radius R in (1.11) and using an energy estimate for the solution

u, the authors proved that the right-hand side of (1.11) tends to 0 for

R → ∞, which implies that all the principle curvature ki of the level

sets of u must be identically 0.

For the fractional case, the analogue of this 1 −D symmetry result

for stable solutions of the equation (−∆u)s = f(u) has been proven to

be true in dimension 2 for any power 0 < s < 1 [4, 23] and in dimension

3 for 1/2 ≤ s < 1 [2, 3]. The proofs of all these results make use of

the extension established in [5], which allows to study the fractional

equation (1.1) by studying a local Neumann problem in the half-space

Rn+1
+ . In [23], the authors used a geometric inequality analogue to

(1.11) for the extended problem in the half-space, while in [4, 2, 3] a

different approach based on a Liouville type result is used.

One could try to see whether our fractional geometric inequality (1.5)

implies 1−D symmetry for stable solutions of equation (1.1), at least

in low dimensions. This would give an alternative proof of the above

mentioned results, without using the Caffarelli-Silvestre extension.

Unfortunately, this is not the case, since in order to deduce 1 − D
symmetry from inequality (1.5) we would need some decay estimates of

∇u, that are not satisfied by the solution of our problem (see Remark

3.3).

2. Proof of Theorem 1.2

We start by a very simple observation due to the linearity of the

fractional Laplacian. If u is a solution of (1.1), then its derivatives uxi
satisfies the linearized problem

(−∆)suxi = f ′(u)uxi . (2.1)

We can now prove Theorem 1.2.
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Proof of Theorem 1.2. We start with some easy computations which

will be useful in the sequel. By symmetry between x and y, we have

that the two following identities hold:

∫
Rn

(−∆)su(x)v(x)dx =

∫
Rn×Rn

(u(x)− u(y))

|x− y|n+2s
v(x)dxdy

=
1

2

∫
Rn×Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy,

(2.2)

and

∫
Rn×Rn

v(x)
(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy

=
1

2

∫
Rn×Rn

(u(x)− u(y))(v2(x)− v2(y))

|x− y|n+2s
dxdy.

(2.3)

For the convenience of the reader, we split the proof in three steps.

Step 1. We start by multiplying equation (2.1) by uxiφ
2 and we get

(−∆)suxi(uxiφ
2) = f ′(u)u2

xi
φ2. (2.4)
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Integrating the left-hand side of (2.4) and using (2.2) and (2.3), we

deduce that∫
Rn

(−∆)suxi(x)(uxiφ
2)(x)dx

(2.2)
=

1

2

∫
Rn×Rn

(uxi(x)− uxi(y)) ((uxiφ
2)(x)− (uxiφ

2)(y))

|x− y|n+2s
dxdy

=
1

2

∫
Rn×Rn

(uxi(x)− uxi(y)) (uxi(x)φ2(x)− uxi(y)φ2(x) + uxi(y)φ2(x)− uxi(y)φ2(y))

|x− y|n+2s

⊗ dxdy

=
1

2

∫
Rn×Rn

φ2(x)
(uxi(x)− uxi(y))2

|x− y|n+2s
dxdy

+
1

2

∫
Rn×Rn

uxi(y)(uxi(x)− uxi(y))(φ2(x)− φ2(y))

|x− y|n+2s
dxdy

(2.3)
=

1

2

∫
Rn×Rn

φ2(x)
(uxi(x)− uxi(y))

|x− y|n+2s
dxdy

+
1

4

∫
Rn×Rn

(u2
xi

(x)− u2
xi

(y))(φ2(x)− φ2(y))

|x− y|n+2s
dxdy.

(2.5)

We integrate now also the right-hand side of (2.4) end we sum in i to

deduce

1

2

∫
Rn×Rn

φ2(x)

∑n
i=1

(
u2
xi

(x)− u2
xi

(y)
)2

|x− y|n+2s
dxdy+

+
1

4

∫
Rn×Rn

(|∇u(x)|2 − |∇u(y)|2) (φ2(x)− φ2(y))

|x− y|n+2s
dxdy

=

∫
Rn
f ′(u)(x)|∇u(x)|2φ2(x)dx.

Using again (2.3) in the second term on the left-hand side, we conclude

1

2

∫
Rn×Rn

φ2(x)

∑n
i=1

(
u2
xi

(x)− u2
xi

(y)
)2

|x− y|n+2s
dxdy+

+
1

2

∫
Rn×Rn

|∇u(y)| (|∇u(x)| − |∇u(y)|) (φ2(x)− φ2(y))

|x− y|n+2s
dxdy

=

∫
Rn
f ′(u)(x)|∇u(x)|2φ2(x)dx.

(2.6)
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Step 2. In this second step, we use the stability of u. We recall

that since u is a stable solution of (1.1), we have for any smooth and

compactly supported function ϕ,

1

2

∫
Rn×Rn

|ϕ(x)− ϕ(y)|2

|x− y|n+2s
dxdy −

∫
Rn
f ′(u(x))ϕ2(x)dx ≥ 0, (2.7)

see (1.4). We choose as a test function ϕ = |∇u|φ and we make some

computations in the first term of (2.7):

1

2

∫
Rn×Rn

(|∇u(x)|φ(x)− |∇u(y)|φ(y))2

|x− y|n+2s
dxdy

=
1

2

∫
Rn×Rn

(|∇u(x)|φ(x)− |∇u(y)|φ(x) + |∇u(y)|φ(x)− |∇u(y)|φ(y))2

|x− y|n+2s
dxdy

=
1

2

∫
Rn×Rn

φ2(x)
(|∇u(x)| − |∇u(y)|)2

|x− y|n+2s
dxdy

+
1

2

∫
Rn×Rn

|∇u(y)|2 (φ(x)− φ(y))2

|x− y|n+2s
dxdy

+

∫
Rn×Rn

φ(x)|∇u(y)|(|∇u(x)| − |∇u(y)|) (φ(x)− φ(y))

|x− y|n+2s
dxdy

(2.3)
=

1

2

∫
Rn×Rn

φ2(x)
(|∇u(x)| − |∇u(y)|)2

|x− y|n+2s
dxdy

+
1

2

∫
Rn×Rn

|∇u(y)|2 (φ(x)− φ(y))2

|x− y|n+2s
dxdy

+
1

2

∫
Rn×Rn

|∇u(y)|(|∇u(x)| − |∇u(y)|) (φ2(x)− φ2(y))

|x− y|n+2s
dxdy

(2.8)

Step 3. Combining together (2.6), (2.7) and (2.8), we conclude∫
Rn×Rn

(∑n
i=1 (uxi(x)− uxi(y))2 − (|∇u(x)| − |∇u(y)|)2

|x− y|n+2s

)
φ2(x) dxdy

≤
∫
Rn×Rn

|∇u(y)|2 |φ(x)− φ(y)|2

|x− y|n+2s
dxdy.

�

We define now the set

C0 = {(x, y) ∈ Rn × Rn : ∇u(x) 6= 0, ∇u(y) 6= 0}
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Corollary 2.1. Let u be a stable weak solution of (1.1) and s ∈ (0, 1).

Then, for any smooth and compactly supported function φ ∈ C∞0 (Rn),

we have

∫
Rn×Rn\C0

(φ2(x) + φ2(y)) | ∇u(x) || ∇u(y) | | n(x)− n(y) |2

| x− y |n+2s
dxdy

≤
∫
Rn×Rn

(| ∇u(x) |2 + | ∇u(y) |2)
| φ(x)− φ(y) |2

| x− y |n+2s
dxdy,

(2.9)

Proof. By developing the computation in the left hand side of (1.5) we

get, for every (x, y) ∈ Rn × Rn \ C0,

2

∫
Rn×Rn\C0

|∇u(x)||∇u(y)|

(
1− 〈 ∇u(x)

|∇u(x)| ,
∇u(y)
|∇u(y)|〉

|x− y|n+2s

)
φ2(x)dxdy

≤
∫
Rn×Rn

|∇u(y)|2 |φ(x)− φ(y)|2

|x− y|n+2s
dxdy.

(2.10)

On the other hand, for every (x, y) ∈ Rn × Rn \ C0,

2

(
1− 〈 ∇u(x)

|∇u(x)|
,
∇u(y)

|∇u(y)|
〉
)

=

∣∣∣∣ ∇u(x)

|∇u(x)|
− ∇u(y)

|∇u(y)|

∣∣∣∣2 .
Thus, denoting (x, y) ∈ Rn × Rn \ C0, n(x) = ∇u(x)

|∇u(x)| , we get∫
Rn×Rn\C0

|∇u(x)||∇u(y)| | n(x)− n(y) |2

|x− y|n+2s
φ2(x)dxdy

≤
∫
Rn×Rn

|∇u(y)|2 |φ(x)− φ(y)|2

|x− y|n+2s
dxdy.

(2.11)

Now, by symmetry, it is also true that∫
Rn×Rn\C0

|∇u(x)||∇u(y)| | n(x)− n(y) |2

|x− y|n+2s
φ2(y)dxdy

≤
∫
Rn×Rn

|∇u(x)|2 |φ(x)− φ(y)|2

|x− y|n+2s
dxdy.

(2.12)

Hence, by summing respectively the right hand sides and the left hand

sides of the inequality (2.11) and (2.12), we get (2.9). �
11



3. Proof of Theorem 1.4

It is well known by a straightforward calculation that if u is a radial

function, u(x) = u(|x|), then

∆u(|x|) = u′′(|x|) +
n− 1

|x|
u′(|x|).

In particular if u(r) = rγ, then

∆u(|x|) = (γ(γ − 1) + (n− 1)γ) |x|γ−2 = γ(γ − 2 + n)|x|γ−2.

As a consequence,

if n > 2, whenever γ ≥ 0 or γ ≤ −n + 2, u(x) = c | x |γ is sub-

harmonic for c > 0. In particular for every γ > 0,∫
∂B(x,t)

|y|γdHn−1(y) ≥ |x|γ.

If n = 2 for every γ ∈ R, u(x) = c | x |γ is sub-harmonic, for c > 0.

As a consequence, recalling the characterisation remarked in [16] of the

fractional operator, it follows from the representation

−(−∆)su(x) = nωn

∫ ∞
0

(∫
∂B(x,r)

(u(y)− u(x))dHn−1(y)

)
r−1−2sdr

that |x|γ is also s−subharmonic that is

−(−∆)s|x|γ ≥ 0, (3.1)

whenever ∫
Rn\Br(x)

|y|γ

|x− y|n+2s
dy < +∞,

that is whenever n+ 2s−n+ 1−γ > 1, that is when γ < 2s. We recall

the result in [18], it has been proved that for every radial function u

− (−∆)su(r)

= r−2s

∫ +∞

1

(
u(rτ)− u(r) + (u(

r

τ
)− u(r))τ−n+2s

)
τ(τ 2 − 1)−1−2sH(τ)dτ,

(3.2)

where

H(τ) := 2παn

∫ π

0

sinn−2 θ
(
√
τ 2 − sin2 θ + cos θ)1+2s√

τ 2 − sin2 θ
dθ,
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where αn = π
n−3
2

Γ(n−1
2 )

. One can see that H is a positive continuous

function on [1,+∞) with H(τ) ∼ τ 2s as τ → +∞.

Using this representation formula, we deduce the following result.

Lemma 3.1. Let 0 < γ < 2s, s ∈ (0, 1) and let f(ρ) = −β(γ, s)ρ1− 2s
γ ,

where

β(γ, s) =

∫ +∞

1

(
τ γ − 1 + ((

1

τ
)γ − 1)τ−n+2s

)
τ(τ 2 − 1)−1−2sH(τ)dτ.

(3.3)

Then v =| x |γ is solution of (1.1) that is, in particular,

−(−∆)sv(r) = β(γ, s)v1− 2s
γ > 0.

Proof.

− (−∆)su(r)

= r−2s

∫ +∞

1

(
(rτ)γ − rγ + ((

r

τ
)γ − rγ)τ−n+2s

)
τ(τ 2 − 1)−1−2sH(τ)dτ

= r−2s+γ

∫ +∞

1

(
τ γ − 1 + ((

1

τ
)γ − 1)τ−n+2s

)
τ(τ 2 − 1)−1−2sH(τ)dτ

= β(γ, s)r−2s+γ,

(3.4)

where

β(γ, s) =

∫ +∞

1

(
τ γ − 1 + ((

1

τ
)γ − 1)τ−n+2s

)
τ(τ 2 − 1)−1−2sH(τ)dτ.

(3.5)

In particular

β(γ, s) =

∫ +∞

1

(τ γ − 1)
(
1− τ−n+2s−γ) τ(τ 2 − 1)−1−2sH(τ)dτ. (3.6)

Hence, if −n+ 2s− γ ≤ 0, and γ ≥ 0, we deduce that β(γ, s) > 0. We

remark also that if v(|x|) = |x|γ, then keeping in mind (3.1) or previous

observation and (3.4), we get

−(−∆)sv(r) = β(γ, s)v1− 2s
γ ≥ 0.

Thus v is solution of

(−∆)sv(r) = f(v(r)) ≤ 0,
13



where

f(v) = −β(γ, s)v1− 2s
γ .

�

We need another intermediate result summarised in the following

lemma before beginning the proof of Theorem 1.4.

Lemma 3.2. There exists a constant η(n, s) > 0 such that:∫
Rn
|x|γ−1|y|γ−1

1− 〈 x|x| ,
y
|y|〉

|x− y|n+2s
dy = η(n, s)|x|2(γ−1−s), (3.7)

where

η = η(n, s, γ) =

∫ +∞

0

τ γ+n−2G(τ)dτ,

and

G(τ) =

∫
|y′|=1

1− 〈e, y′〉
(1− 2τ〈e, y′〉+ τ 2)

n+2s
2

dHn−1(y′),

e ∈ Rn, | e |= 1, is independent of e.

Proof. First we remark that the integral depends only on |x|. Indeed

let x = Qx′ where Q is a unitary matrix, that is |detQ| = 1. Then

after a change of variables,∫
Rn
|Qx′|γ−1|y|γ−1

1− 〈 Qx′|Qx′| ,
y
|y|〉

|Qx′ − y|n+2s
dy =

∫
Rn
|Qx′|γ−1|Q′y|γ−1

1− 〈 Qx′|Qx′| ,
Qy′

|Qy′|〉
|Qx′ −Qy′|n+2s

dy

=

∫
Rn
|x′|γ−1|y′|γ−1

1− 〈 Qx′|Qx′| ,
Qy′

|Qy′|〉
|x′ − y′|n+2s

dy =

∫
Rn
|x′|γ−1|y′|γ−1

1− 〈 x′|x′| , Q
T Qy′

|y′| 〉
|x′ − y′|n+2s

dy

=

∫
Rn
|x′|γ−1|y′|γ−1

1− 〈 x′|x′| ,
y′

|y′|〉
|x′ − y′|n+2s

dy.

(3.8)

Hence passing in polar coordinates we get∫
Rn
|x|γ−1|y|γ−1

1− 〈 x|x| ,
y
|y|〉

|x− y|n+2s
dy = |x|γ−1

∫ +∞

0

ργ+n−2

∫
|y′|=1

1− 〈 x|x| , y
′〉

|x− ρy′|n+2s
dHn−1(y′)dρ

= |x|γ−1

∫ +∞

0

ργ+n−2

∫
|y′|=1

1− 〈 x|x| , y
′〉

||x| x|x| − ρy′|n+2s
dHn−1(y′)dρ

(3.9)
14



The function

F (x, ρ) =

∫
|y′|=1

1− 〈 x|x| , y
′〉

||x| x|x| − ρy′|n+2s
dHn−1(y′)

depends only on |x|. Indeed, for every e ∈ {|x| = 1}

F (x, ρ) = F (|x|, ρ) =

∫
|y′|=1

1− 〈e, y′〉
||x|e− ρy′|n+2s

dHn−1(y′)

On the other hand,

|x− y|n+2s =
(
|x|2 + 2〈x, y〉+ |y|2

)n+2s
2 ,

thus

F (|x|, ρ) =

∫
|y′|=1

1− 〈e, y′〉
(|x|2 − 2ρ|x|〈e, y′〉+ ρ2)

n+2s
2

dHn−1(y′)

= |x|−n−2s

∫
|y′|=1

1− 〈e, y′〉
(1− 2 ρ

|x|〈e, y′〉+ ( ρ
|x|)

2)
n+2s

2

dHn−1(y′) = |x|−n−2sG(
ρ

|x|
),

(3.10)

where

G(s) =

∫
|y′|=1

1− 〈e, y′〉
(1− 2s〈e, y′〉+ s2)

n+2s
2

dHn−1(y′)

As a consequence∫
Rn
|x|γ−1|y|γ−1

1− 〈 x|x| ,
y
|y|〉

|x− y|n+2s
dy = |x|γ−1−n−2s

∫ +∞

0

ργ+n−2G(
ρ

|x|
)dρ

= |x|γ−1−n−2s+γ+n−1

∫ +∞

0

τ γ+n−2G(τ)dτ = |x|2γ−2−2s

∫ +∞

0

τ γ+n−2G(τ)dτ.

(3.11)

�

Now we are in position to give the proof of Theorem 1.4.

Proof of Theorem 1.4. i) In order to prove part i), it is enough to write

the stability condition (1.4) for the specific choice v(x) = |x|γ and

f(v) = −β(γ, s)v1− 2s
γ . Indeed, we have that

f ′(v) = −(1− 2s

γ
)β(γ, s)v−

2s
γ ,

15



and therefore v is stable if and only if∫
Rn×Rn

|ϕ(x)− ϕ(y)|2

|x− y|n+2s
dxdy +

(
1− 2s

γ

)
β(γ, s)

∫
Rn

φ2(s)

|x|2s
dx ≥ 0,

that is, if and only if, the fractional Hardy inequality holds. We observe

that here, we don’t obtain the optimal constant CH,s indeed 1− 2s
γ
→ 0

as γ → 2s. Using inequality (1.7) and comparing the optimal constant

CH,s given in (1.8) with the constant appearing above we deduce that

|x|γ is a stable solution of (1.1) for any γ satisfying

2s · β(γ, s)

β(γ, s) + CH,s
≤ γ < 2s. (3.12)

ii) Suppose now that v(x) = |x|γ is a stable solution (this is the case for

γ satisfying (3.12) above). We apply inequality (1.5) to this particular

choice of v. We calculate ∇v = γ|x|γ−2x. Thus, inserting ∇v in the

main inequality (1.5) we get:∫
Rn×Rn

(∑n
i=1 (γ|x|γ−2xi − γ|y|γ−2yi)

2 − (γ|x|γ−1 − γ|y|γ−1)
2

|x− y|n+2s

)
φ2(x)dxdy

≤
∫
Rn×Rn

γ2|y|2(γ−1) |φ(x)− φ(y)|2

|x− y|n+2s
dxdy.

(3.13)

that is, developing the calculation,∫
Rn×Rn

(∑n
i=1 (|x|γ−2xi − |y|γ−2yi)

2 − (|x|γ−1 − |y|γ−1)
2

|x− y|n+2s

)
φ2(x)dxdy

≤
∫
Rn×Rn

|y|2(γ−1) |φ(x)− φ(y)|2

|x− y|n+2s
dxdy,

(3.14)

that is ∫
Rn×Rn

|x|γ−1|y|γ−1 − |x|γ−2|y|γ−2〈x, y〉
|x− y|n+2s

φ2(x)dxdy

≤
∫
Rn×Rn

|y|2(γ−1) |φ(x)− φ(y)|2

|x− y|n+2s
dxdy,

(3.15)
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and ∫
Rn×Rn

|x|γ−1|y|γ−1
1− 〈 x|x| ,

y
|y|〉

|x− y|n+2s
φ2(x)dxdy

≤
∫
Rn×Rn

|y|2(γ−1) |φ(x)− φ(y)|2

|x− y|n+2s
dxdy.

(3.16)

Let us consider now∫
Rn
|x|γ−1|y|γ−1

1− 〈 x|x| ,
y
|y|〉

|x− y|n+2s
dy.

Keeping in mind the result stated in the previous Lemma 3.2 we get:∫
Rn×Rn

|x|γ−1|y|γ−1
1− 〈 x|x| ,

y
|y|〉

|x− y|n+2s
φ2(x)dxdy

=

∫
Rn
|x|γ−1

(∫
Rn
|y|γ−1

1− 〈 x|x| ,
y
|y|〉

|x− y|n+2s
dy

)
φ2(x)dx

= η(n, s)

∫
Rn
|x|2(γ−1−s)φ2(x)dx

Analogously for the right hand side of (3.16) we get∫
Rn×Rn

|y|2(γ−1) |φ(x)− φ(y)|2

|x− y|n+2s
dxdy

=

∫
Rn
|y|2(γ−1)

(∫
Rn

|φ(x)− φ(y)|2

|x− y|n+2s
dx

)
dy.

As a consequence, recalling now (3.16), we deduce that

η(n, s)

∫
Rn
|x|2(γ−1−s)φ2(x)dx ≤

∫
Rn
|y|2(γ−1)

(∫
Rn

|φ(x)− φ(y)|2

|x− y|n+2s
dx

)
dy.

(3.17)

�

Remark 3.3. As explained in the introduction, inequality (1.11) has

been used in [14, 15], to prove 1 −D symmetry of stable solutions to

the semilinear equation −∆u = f(u) in Rn. More precisely, choosing

the test function

φR(x) =


1 x ∈ B(0,

√
R)

0 x ∈ Rn \B(0, R)
2 log R

|x|
logR

, B(0, R) \B(0,
√
R).
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and using an energy estimate for the solution u, after passing to the

limit R → +∞, one can deduce that all the principal cuvature ki of

the level sets of u must vanish. In our case, if we try to insert the same

function φ (which seems actually the best choice for the test function)

in inequality (1.5), in order to conclude 1 − D symmetry of stable

solutions to the equation (−∆)su = f(u), we would need the solution

to satisfy some gradient decay estimates which do not hold in general.
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Math. J. 58 (2009), no. 4, 1619–1637.

[18] F. Ferrari, I. E. Verbitsky, Radial fractional Laplace operators and Hessian

inequalities, J. Differential Equations 253 (2012), no. 1, 244–272.

[19] R. Frank, R. Seiringer, Non-linear ground state representations and sharp

Hardy inequalities, J. Funct. Anal. 255 (2008), no. 12, 3407–3430.

[20] M. Loss and C. Sloane, Hardy inequalities for fractional integrals on general

domains J. Funct. Anal. 259 (2010), 1369–1379.

[21] E. Mitidieri, S.I. Pokhozhaev, A priori estimates and the absence of solu-

tions of nonlinear partial differential equations and inequalities. (Russian)

Tr. Mat. Inst. Steklova 234 (2001), 1–384; translation in Proc. Steklov Inst.

Math. 2001, no. 3 (234), 13–62

[22] B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in

Mathematics Series, 219. Longman Scientific and Technical, Harlow, (1990).

[23] Y. Sire, E. Valdinoci, Fractional Laplacian phase transitions and boundary

reactions: A geometric inequality and a symmetry result J. Functional Anal-

ysis 256 (2009), 1842–1864.

[24] P. Sternberg, K. Zumbrun,Connectivity of phase boundaries in strictly con-

vex domains, Arch. Rational Mech. Anal. 141 (1998), no. 4, 375–400.

[25] P. Sternberg, K. Zumbrun,A Poincaré inequality with applications to volume-
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