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Abstract. We construct Lipschitz Q-valued functions which approximate carefully in-
tegral currents when their cylindrical excess is small and they are almost minimizing in a
suitable sense. This result is used in two subsequent works to prove the discreteness of the
singular set for the following three classes of 2-dimensional integral currents: area minimiz-
ing in Riemannian manifolds, semicalibrated and spherical cross sections of 3-dimensional
area minimizing cones.

This paper is the second in a series of works aimed at establishing an optimal regular-
ity theory for 2-dimensional integral currents which are almost minimizing in a suitable
sense. Building upon the monumental work of Almgren [2], Chang in [5] established that
2-dimensional area-minimizing currents in Riemannian manifolds are classical minimal sur-
faces, namely they are regular (in the interior) except for a discrete set of branching singu-
larities. The argument of Chang is however not entirely complete since a key starting point
of his analysis, the existence of the so-called “branched center manifold”, is only sketched
in the appendix of [5] and requires the understanding (and a suitable modification) of the
most involved portion of the monograph [2].

An alternative proof of Chang’s theorem has been found by Rivière and Tian in [21] for
the special case of J-holomorphic curves. Later on the approach of Rivière and Tian has
been generalized by Bellettini and Rivière in [4] to handle a case which is not covered by
[5], namely that of special Legendrian cycles in S5 (see also [3] for a further generalization).

Meanwhile the first and second author revisited Almgren’s theory giving a much shorter
version of his program for proving that area-minimizing currents are regular up to a set
of Hausdorff codimension 2, cf. [6, 8, 7, 9, 10]. In this note and its companion papers
[11, 12] we build upon the latter works in order to give a complete regularity theory which
includes both the theorems of Chang and Bellettini-Rivière as special cases, in particular
recovering the fine description of the structure of singular points proven by Chang and
extending this picture to the cases of semicalibrated currents and spherical cross-sections
(we refer to [11, 12] for more precise statements).

We start by introducing the following terminology (cf. [13, Definition 0.3]).

Definition 0.1. Let Σ ⊂ Rm+n be a C2 submanifold and U ⊂ Rm+n an open set.

(a) An m-dimensional integral current T with finite mass and spt(T ) ⊂ Σ ∩ U is area-
minimizing in Σ ∩ U if M(T + ∂S) ≥ M(T ) for any (m + 1)-dimensional integral
current S with spt(S) ⊂⊂ Σ ∩ U .
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(b) A semicalibration (in Σ) is a C1 m-form ω on Σ such that ‖ωx‖c ≤ 1 at every
x ∈ Σ, where ‖·‖c denotes the comass norm on ΛmTxΣ. An m-dimensional integral

current T with spt(T ) ⊂ Σ is semicalibrated by ω if ωx(~T ) = 1 for ‖T‖-a.e. x.
(c) An m-dimensional integral current T supported in ∂BR(p) ⊂ Rm+n is a spherical

cross-section of an area-minimizing cone if p××T is area-minimizing.

Calibrated submanifolds, namely currents T as in (b) where the calibrated form is closed,
have been central objects of study in several areas of differential geometry and mathemat-
ical physics since the seminal work of Harvey and Lawson, cf. [17]. Two primary examples
are holomorphic subvarieties and special Lagrangians in Calabi-Yau manifolds, which play
an important role in string theory (especially regarding mirror symmetry, cf. [18, 27]) but
also emerge naturally in gauge theory (see [28]). Semicalibrations are a natural general-
ization of calibrations: since the condition dω = 0 on the calibrating form is rather rigid
and in particular very unstable under deformations. In fact semicalibrations were consid-
ered already in [28] (cf. Section 6 therein) and around the same time they became rather
popular in string theory, when several authors directed their attention to non-Calabi-Yau
manifolds (the subject is nowadays known as “flux compactification”, cf. [14]): in that
context the natural notion to consider is indeed a special class of semicalibrating forms
(see for instance the works [15, 16], where these are called quasi calibrations).

In what follows, given an integer rectifiable current T , we denote by Reg(T ) the subset
of spt(T ) \ spt(∂T ) consisting of those points x for which there is a neighborhood U such
that T U is a (constant multiple of) a regular oriented submanifold. Correspondingly,
Sing(T ) is the set spt(T ) \ (spt(∂T ) ∪ Reg(T )). Observe that Reg(T ) is relatively open
in spt(T ) \ spt(∂T ) and thus Sing(T ) is relatively closed. The main result of this and the
works [11, 12] is then the following

Theorem 0.2. Let Σ and ω be as in Definition 0.1, let T be as in (a), (b) or (c) and
assume in addition that m = 2, that Σ is of class C3,α and ω of class C2,α for some
positive α. Then Sing(T ) is discrete.

Clearly Chang’s result is covered by case (a). As already pointed out, the proof of The-
orem 0.2 gives in fact more information, namely an accurate description of the behavior
of T around any singular point. This is the exact analog of the singularity description
provided by Chang [5] for the area minimizing case, whose validity is therefore extended
to both cases (b) and (c) of Definition 0.1. The results of Theorem 0.2 are optimal, be-
cause of the well-known examples of area minimizing currents induced by singular complex
curves. Note, however, that there are many singular semicalibrated currents which are not
calibrated, and we give an example in the appendix.

The program of extending the Almgren-Chang regularity theory to general semicali-
brated currents was started by Rivière and Tian in [22] and indeed their alternative proof
of Chang’s theorem was meant as a first step towards case (b) of Theorem 0.2 (cf. [22,
page 743]). The first notable contribution which goes beyond the Almgren-Chang result
is due to Pumberger and Rivière in [20], and important groundbreaking results were then
achieved by Bellettini and Rivière in [4] and by Bellettini in [3]. In particular [4] proved
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the theorem above for Legendrian cycles in S5, which form a special subclass of both (b)
and (c). The result and the methods were then extended in [3] to a class of 2-dimensional
semicalibrated currents in 5-dimensional manifolds which, roughly speaking, are based on
Legendrian cycles as local models. In this and the notes [11, 12] we give a complete answer
in the general 2-dimensional case. In higher dimensions Almgren’s famous bound on the
Hausdorff dimension of the singular set has been extended to semicalibrated currents by
the third author in [25].

Following the Almgren-Chang program, Theorem 0.2 will be established through a suit-
able “blow-up argument” which requires four essential tools:

(i) The uniqueness of tangent cones for T . This result is a, by now classical, theorem
of White for area-minimizing 2-dimensional currents in the Euclidean space, cf.
[29]. Chang extended it to case (a) in the appendix of [5], whereas Pumberger and
Rivière covered case (b) in [20]. A general derivation of these results for a wide
class of almost minimizers has been given in [13]: the theorems in there cover, in
particular, all the cases of Definition 0.1.

(ii) The theory of multiple-valued functions, pioneered by Almgren in [2], for which we
will use the results and terminology of the papers [6, 8].

(iii) A suitable approximation procedure for integer rectifiable currents with graphs of
multiple valued functions. The one needed in case (a) is already contained in [7],
but the latter reference does not cover the cases (b) and (c): the purpose of this
note is to extend the theorems in [7] to these cases.

(iv) The so-called “center manifold”: this will be constructed in [11], whereas the final
argument for Theorem 0.2 will then be given in [12].

In fact this note does more than just providing (iii) for the cases of (b) and (c), because
we give an approximation theorem for almost minimal currents in any dimension m, see
Definition 1.1 for the precise condition. Indeed, relaxing the minimizing condition in the
regularity theory is a central theme in geometric measure theory: from the one hand it
could be the first step towards the analysis of different elliptic functionals, from the other
hand it has many applications in a variety of problems in which the minimizing condition
must be weakened (the examples are numerous: we just cite the fundamental work of
Almgren on elliptic variational problems with constraints [1] and the celebrated paper of
Schoen and Simon on stable hypersurfaces, [23]). However, there are very few results in
this direction in higher codimension: compared to the codimension one case the task is
much harder, since several delicate arguments of the Almgren-Chang depend sensibly upon
the minimizing assumption. This note gives a first contribution by establishing a strong
approximation theorem under a very natural condition, see Definition 1.1 for the precise
formulation.

0.1. Acknowledgments. The research of Camillo De Lellis and Luca Spolaor has been
supported by the ERC grant RAM (Regularity for Area Minimizing currents), ERC 306247.

1. Notation and statement of the main theorem
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We introduce the notion of almost minimizers that we are going to use in the paper.

Definition 1.1 (Ω-minimality). Let Ω be a positive constant. An integer rectifiable m-
dimensional current with compact support in Rm+n is called Ω-minimal if

M(T ) ≤M(T + ∂S) + Ω M(S) ∀S ∈ Im+1(Rm+n) with compact support. (1.1)

In order to state the main result, we need to introduce some notation. With Br(p)
and Br(x) we denote, respectively, the open ball with radius r and center p in Rm+n and
the open ball with radius r and center x in Rm. Cr(x) will always denote the cylinder
Br(x) × Rn and the point x will be omitted when it is the origin. In fact, by a slight
abuse of notation, we will often treat the center x as a point in Rm+n, avoiding the correct,
but more cumbersome, (x, 0). ei will denote the unit vectors in the standard basis, π0 the
(oriented) plane Rm × {0} and ~π0 the m-vector e1 ∧ . . . ∧ em orienting it. We denote by
p and p⊥ the orthogonal projections onto, respectively, π0 and its orthogonal complement
π⊥0 . In some cases we need orthogonal projections onto other planes π and their orthogonal
complements π⊥, for which we use the notation pπ and p⊥π . For what concerns integral
currents we use the definitions and the notation of [24]. We isolate the main assumption
of our approximation theorem in the following

Assumption 1.2. For some open cylinder C4r(x) (with r ≤ 1) and some positive integer
Q,

p]T = Q JB4r(x)K and ∂T C4r(x) = 0 . (1.2)

The following is the notion of excess, which represents the main regularity parameter for
integral currents.

Definition 1.3 (Excess). For a current T as in Assumption 1.2 we define the cylindrical
excess E(T,Cr(x)), the excess measure eT and its density dT :

E(T,Cr(x)) :=
‖T‖(Cr(x))

ωmrm
−Q,

eT (A) := ‖T‖(A× Rn)−Q |A| for every Borel A ⊂ Br(x),

dT (y) := lim sup
s→0

eT (Bs(y))

ωm sm
= lim sup

s→0
E(T,Cs(y)),

where ωm is the measure of the m-dimensional unit ball (the subscripts T will be omitted
if clear from the context).

The main theorem of the paper is then the following approximation result (for the
notation concerning multiple valued functions and their graphs we refer to [6, 8, 7]).

Theorem 1.4. There exist constants M,C21, β0, ε21 > 0 (depending on m,n,Q) with the
following property. Assume that T ∈ Im(Rm+n) is Ω-minimal, it satisfies (1.2) in the
cylinder C4r(x) and E = E(T,C4r(x)) < ε21. Then, there exist a map f : Br(x)→ AQ(Rn)
and a closed set K ⊂ Br(x) such that

Lip(f) ≤C21E
β0 , (1.3)
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Gf (K × Rn) = T (K × Rn) and |Br(x) \K| ≤ C21E
β0
(
E + r2Ω2

)
rm , (1.4)∣∣∣‖T‖ (Cr(x))−Qωmrm −

1

2

∫
Br(x)

|Df |2
∣∣∣ ≤ C21E

β0
(
E + r2Ω2

)
rm , (1.5)

osc(f) ≤ C21h(T,C4r(x)). (1.6)

The proof of Theorem 1.4 will be achieved in the next three sections. The first one
contains the most significant new ideas compared to the approximation of mass minimizing
currents as done in [7]: here, indeed, we show how to improve upon the almost minimal
condition under the assumption that the cylindrical excess is small, thus leading to a refined
estimate. In the two subsequent sections we modify accordingly the computations of [7] to
prove Theorem 1.4. Finally, in the last section we show how Theorem 1.4 applies to the
currents considered in Definition 0.1 and state for later reference the approximation result
which will be used in [11, 12] to prove Theorem 0.2. From now on constants which depend
only upon m, n and Q will be called dimensional constants.

2. Homotopy lemma

Before proving the main Lipschitz approximation theorem we need a lemma which esti-
mates carefully the difference in mass between an Ω-almost minimizer and a competitor in
terms of a power of the excess and the constant Ω. The key idea is to choose the surface
S in (1.1) to be a (suitable perturbation of the) homotopy between two accurately chosen
preliminary Lipschitz approximations of T and R. To this regard we introduce the notion
of Eβ-approximation as in [7, Definition 5.1]. According to [7, Proposition 2.2 & Definition
5.1] we then have

Theorem 2.1. There exist dimensional constants ε0, C21 > 0 such that, if T is as in
Theorem 1.4 in a cylinder C4r(x), E := E(T,C4r(x)) < ε0 and 0 < β ≤ 1

2m
, then the

following holds. There is a function u ∈ Lip(B7r/2(x),AQ(Rn)), called Eβ-approximation
of T , such that

Lip(u) ≤ C21E
β,

Gu (K × Rn) = T (K × Rn),

M
(
(T −Gu) (B7r/2(x) \K)

)
+ |B7r/2(x) \K| ≤ C21 r

mE1−2β.

By using the Eβ-approximations we get the following improvement of the Ω-minimality
in the case of small excesses.

Lemma 2.2 (Homotopy Lemma). Let T be an Ω-almost minimizer which satisfies (1.2).
There are positive dimensional constants ε22 and C25 such that, if E = E(T,C4r(x)) ≤ ε22,
then the following holds. For every R ∈ Im(C3r(x)) such that ∂R = ∂(T C3r(x)), we have

‖T‖(C3r(x)) ≤M(R) + C25r
m+1ΩE

1/2 . (2.1)
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Moreover, let β ≤ 1
2m

, s ∈]r, 2r[, R = Gg Cs(x) for some Lipschitz map g : Bs → AQ(Rn)

with Lip(g) ≤ 1 and f be the Eβ-approximation of T in C3r. If f = g on ∂Bs and
P ∈ Im(Rm+n) is such that ∂P = ∂((T −Gf ) Cs), then

‖T‖(Cs(x)) ≤M(Gg) + M(P ) + C25Ω
(
E

3/4rm+1 + (M(P ))1+1/m +

∫
Bs(x)

G(f, g)
)
. (2.2)

Proof. We will first show (2.1): in fact (2.2) follows easily from a portion of the same
argument, as it will be highlighted at the end.

Without loss of generality we assume x = 0. If ‖T‖(C3r) ≤M(R) then there is nothing
to prove. Hence we can suppose

M(R) ≤ ‖T‖(C3r). (2.3)

Define the current R′ ∈ Im(C4r) by R′ := R+T (C4r \C3r). Observe that ∂(T −R′) = 0.
So ∂(p](T − R′)) = 0. On the other hand p](T − R′) = k JB4rK for some constant k and
thus we conclude p](T − R′) = 0. Therefore R′ satisfies (1.2). Moreover we notice that,
thanks to (2.3), the cylindrical excess of R′ enjoys the following bound:

E(R′, C4r) =
M(R′)

ωm(4r)m
−Q

(2.3)

≤ M(T )

ωm(4r)m
−Q = E(T,C4r) =: E.

Let f, h : B7r/2 → AQ(Rn) be the Eβ-Lipschitz approximations of T and R′ respectively, in
the cylinders C7r/2 for some β ∈ (0, 1/2m]. Then there exist sets KT , KR′ ⊂ B7r/2(x) such
that T (KT × Rn) = Gf (KT × Rn) and R′ (KR′ × Rn) = Gh (KR′ × Rn), fulfilling the
following estimates:

M((T −Gf ) C7r/2) ≤ C21r
mE1−2β and M((R′ −Gh) C7r/2) ≤ C21r

mE1−2β, (2.4)

|B7r/2 \KT | ≤ C21r
mE1−2β and |B7r/2 \KR′ | ≤ C21r

mE1−2β, (2.5)

Lip(f) ≤ C21E
β and Lip(h) ≤ C21E

β. (2.6)

Next we set K := KT ∩KR′ and we notice that by (2.5)

|B7r/2 \K| ≤ CrmE1−2β. (2.7)

Let |·| be the function |(x, y)| := |x|2 for every (x, y) ∈ Rm×Rn, where |x|2 is the Euclidean
norm of the vector x. By the slicing theory, (2.4), (2.7) and Fubini’s Theorem there exists
s ∈ (3r, 7/2r) such that

M(〈T −Gf , | · |, s〉) + M(〈R′ −Gh, | · |, s〉) ≤ Crm−1E1−2β (2.8)

and
|∂Bs \K| ≤ Crm−1E1−2β . (2.9)

By the Isoperimetric Inequality, there exists PT , PR ∈ Im(Rm+n) such that

∂PT = 〈T −Gf , | · |, s〉 ∂PR = 〈R′ −Gh, | · |, s〉
and

M(PT ) + M(PR) ≤ C
(
M(〈T −Gf , | · |, s〉

)m/(m− 1)
+ C

(
M(〈R′ −Gh, | · |, s〉

)m/(m− 1)

≤ CrmEm(1−2β)/(m−1).
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Therefore, we can conclude that

∂((T −Gf ) Cs) = ∂PT ∂((R′ −Gh) Cs) = ∂PR (2.10)

and, since β ≤ 1
2m

, also
M(PT ) + M(PR) ≤ CrmE (2.11)

Next consider the functions

f ′ := ξ ◦ f : B7r/2 → Q ⊂ RN(Q,n) and h′ := ξ ◦ h : B7r/2 → Q ⊂ RN(Q,n) .

where ξ : AQ(Rn) → RN(Q,n) is the bilipschitz embedding in [6, Section 2.1], and the
homotopy between them, defined by

H̃ : [0, 1]×B7r/2 3 (t, x)→ (x, tf ′(x) + (1− t)h′(x)) ∈ Rm × RN .

Consider the Lipschitz map

φ : Rm × RN 3 (x, y)→ (x, ξ−1(ρ(y))) ∈ Rm ×AQ(Rn)

where ρ : RN(Q,n) → Q := ξ(AQ(Rn)) is the Lipschitz retraction in [6, Section 2.1], and

define H := φ ◦ H̃. H can be seen as a Q-valued map H : [0, 1]×B7r/2→AQ(Rm+n). Without
changing notation for H we restrict it to [0, 1] × Bs and following the notation of [8,
Definition 1.3] we define S := TH . If we set G := H|[0,1]×∂Bs we can use [8, Theorem 2.1]
to conclude that

∂S = (Gf −Gh) Cs−TG = (Gf −Gh) Cs−P , (2.12)

where P := TG. We now want to estimate M(S) and M(P ) and we will do it using
the Q-valued area formula in [8, Lemma 1.9]. We start with M(S). We fix a point of
differentiability p where DH =

∑
JDHiK. On [0, 1]×Bs we use the coordinates (t, x) and

on the target space Rm+n the coordinates (x, y). Let p = (t0, x0). It is then obvious that
the matrix DHi can be decomposed as

DHi(p) =

(
0m×1 Im×m
vn×1 An×m .

)
where the matrices A and v can be bound using the following observation. If we consider
the map t 7→ Φ(t) := H(t, x0) and x 7→ Λ(x) := t0f

′(x) + (1− t0)h′(x), we then have
|v| ≤ CLip(Φ) and |A| ≤ CLip(Λ), where the constant C depends only on n and Q. On
the other hand, it is easy to see that Lip(Φ) ≤ CG(f(x0), h(x0)) and Lip(Λ) ≤ C(Lip(h) +
Lip(f)) ≤ Eβ. Thus we can estimate

JHi(p) :=
√

det(DH∗i (p) ·DHi(p)) ≤ CG(f(x0), h(x0)) .

Using [8, Lemma 1.9] we then conclude

M(S) ≤ C

∫
Bs

G(f, h)

and, arguing in a similar fashion,

M(P ) ≤ C

∫
∂Bs

G(f, h) .
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Observe that f and h coincide, respectively, with the slices of the currents T and R′ on any
x0 ∈ K. On the other hand, s > 3r and T C4r \C3r = R′ C4r \C3r. We thus conclude
that h = f on K ∩ ∂Bs. Let x ∈ ∂Bs \K. By (2.9), there exists x0 ∈ K ∩ ∂Bs such that
|x− x0| ≤ CrE(1−2β)/(m−1) = CrE2β (recall that β≤ 1

2m
). Thus

G(f(x), h(x)) ≤ (Lip(f) + Lip(h)) |x− x0| ≤ CrE3β ,

and so we conclude

M(P ) ≤ C

∫
∂Bs

G(f, h) ≤ CrE3β|∂Bs \K| ≤ CrmE1+β ≤ CrmE . (2.13)

On the other hand, we recall that, by a standard variant of the Poincaré inequality (cf.,
for example, [30, 4.4.7]),∫

Bs

G(f, h) ≤ Cr‖G(f, h)‖L1(∂Bs) + Cr‖D(G(f, h))‖L1(Bs)

(2.13)

≤ Crm+1E + Cr1+m/2

(∫
(|Df |2 + |Dh|2)

)1/2

≤ Crm+1E
1/2 . (2.14)

Thus,

(Gf −Gh) Cs = ∂S + P (2.15)

with

M(P ) ≤ CrmE and M(S) ≤ Crm+1E
1/2. (2.16)

Now observe that

0 = ∂(T −R′) = ∂((Gf −Gh) Cs) + ∂(PT − PR) = ∂∂S + ∂P + ∂(PT − PR) .

Hence, ∂(P + PT − PR) = 0 and, by the isoperimetric inequality, there is an S ′ with
M(S ′) ≤ Crm+1E1+1/m and ∂S ′ = P +PT −PR. Additionally, again using the isoperimetric
inequality, there are currents ST and SR such that

∂ST = (T −Gf ) Cs − PT
∂SR = (R′ −Gh) Cs − PR

and

M(ST ) ≤ C (‖T −Gf‖(Cs) + M(PT ))
(m + 1)/m ≤ CE

3/4rm+1

M(SR) ≤ C (‖R′ −Gh‖(Cs) + M(PR))
(m + 1)/m ≤ CE

3/4rm+1 .

In the latter inequalities we have used ‖R′ −Gh‖(Cs) + ‖T −Gf‖(Cs) ≤ CE1−2βrm: in
particular (1 − 2β)(m + 1)/m≥1 − 1/m2 ≥ 3/4; observe that this estimate explains the
exponent of E in the third summand of the right hand side of (2.2).

Thus, setting S ′′ = S + ST − SR + S ′ we finally achieve (T − R′) Cs = ∂S ′′ and
M(S ′′) ≤ Crm+1E1/2. Recalling that s > 3r and that R′ = R+ T (C4r \C3r) we conclude
∂S ′′ = (T −R) C3r. Applying now the Ω-minimality of T we conclude

‖T‖(C3r) ≤M(R) + C25r
m+1ΩE

1/2 .
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For the proof of (2.2) we conclude with the same computations, except that this time f = g
on ∂Bs and the current R is already given by Gg C. The modifications to the argument
are then straightforward, given the remark of the previous paragraph. �

3. Harmonic approximation and gradient Lp estimates

In this and in the next section we follow largely [7] with minor modifications: on the one
hand we have the additional Ω-error terms, but on the other hand the ambient Riemannian
manifold is the Euclidean space. Thus the arguments are somewhat less technical.

3.1. Harmonic Approximation. In this subsection we prove that if T is an almost
minimizer then its Eβ-Lipschitz approximation is close to a Dir-minimizing function w
with estimates which are infinitesimal in the excess.

Theorem 3.1 (First harmonic approximation). For every η1, δ > 0 and every β ∈ (0, 1
2m

),
there exists a constant ε23 > 0 with the following property. Let T be an Ω-almost minimizer
which satisfies Assumption 1.2 in C4r0(x) . If E = E(T,C4r0(x)) ≤ ε23 and r0 Ω ≤ ε23E

1/2,
then the Eβ-Lipschitz approximation f in C3r0(x) satisfies∫

B2r0 (x)\K
|Df |2 ≤ η1E ωm (4 r0)m = η1 eT (B4r0(x)). (3.1)

Moreover, there exists a Dir-minimizing function w such that

r0
−2

∫
B2r0 (x)

G(f, w)2 +

∫
B2r0 (x)

(
|Df | − |Dw|

)2 ≤ η1E ωm (4 r0)m = η1 eT (B4r0(x)) , (3.2)∫
B2r0 (x)

|D(η ◦ f)−D(η ◦ w)|2 ≤ η1E ωm (4 r0)m = η1 eT (B4r0(x)) . (3.3)

Proof. The proof of the theorem is at all analogous to the one given in [7, Theorem 3.2]:
for this reason, we provide here only the principal parts, leaving the details to the readers.
By rescaling and translating, it is not restrictive to assume that x = 0 and r0 = 1. The
proof is by contradiction: assume there exist a constant c1 > 0, a sequence of positive real
numbers (εl)l, a sequence of Ωl-minimal currents (Tl)l∈N and corresponding Eβ

l -Lipschitz
approximations (fl)l∈N such that

El := E(Tl,C4) ≤ εl → 0, Ωl ≤ εlE
1/2
l and

∫
B2\Kl

|Dfl|2 ≥ c1El, (3.4)

where Kl := {x ∈ B3 : meTl(x) < E2β
l } with meTl denoting the “non-centered” maximal

function of eTl :

meTl(y) := sup
y∈Bs(w)⊂B4(x)

eTl(Bs(w))

ωm sm
= sup

y∈Bs(w)⊂B4(x)

E(Tl,Cs(w)).

Set Γl := {x ∈ B4 : meTl(x) ≤ 2−mE2β
l } and observe that Γl ∩ B3 ⊂ Kl. From the

Lipschitz approximation in [7, Proposition 3.2], it follows that

Lip(fl) ≤ C22E
β
l , (3.5)
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|Br \Kl| ≤ C22E
−2β
l eT

(
Br+r0(l) \ Γl

)
for every r ≤ 3 , (3.6)

where r0(l) = 16E
(1−2β)/m
l < 1

2
. Then, (3.4), (3.5) and (3.6) give

c1El ≤
∫
B2\Kl

|Dfl|2 ≤ C22 eTl(Bs \ Γl) ∀ s ∈
[

5
2
, 3
]
.

Setting c2 := c1/(2C22), we have 2c2El ≤ eTl(Bs \Γl) = eTl(Bs)−eTl(Bs∩Γl), thus leading
to

eTl(Γl ∩Bs) ≤ eTl(Bs)− 2 c2El , (3.7)

for l large enough. Next observe that ωm4mEl = eTl(B4) ≥ eTl(Bs), because eTl is a positive
measure under the Assumption 1.2. Therefore, by the Taylor expansion in [8, Corollary
3.3], (3.7) and El ↓ 0, it follows that, for every s ∈ [5/2, 3],∫

Γl∩Bs

|Dfl|2

2
≤ (1 + C E2β

l ) eTl(Γl ∩Bs)

≤ (1 + C E2β
l )
(
eTl(Bs)− 2 c2El

)
≤ eTl(Bs)− c2El. (3.8)

Our aim is to show that (3.8) contradicts the Ωl-almost minimizing property (1.1) of Tl.
This is shown by constructing a suitable competitor Sl for Tl, via a careful modification
of the Eβ

l -approximations fl. The construction of the competitor Sl is identical to the
one done in [7, pages 1854-1857], actually simplified by the fact that our currents Tl are
supported in Rm+n and not in a Riemannian manifold. Therefore, we omit here the details
of the computations (which can be found in full details in the PhD thesis of the third
author, [26]) and recall only the conclusion: there exist integer rectifiable currents Sl such
that ∂Sl = ∂(Tl C4) and

M(Sl)−M(Tl) ≤ −
c2El

4
+ C E1+γ

l . (3.9)

Now using (2.1) of the Homotopy Lemma 2.2 we have the upper bound

M(Sl)−M(Tl) ≥ −C25ΩlE
1/2
l ≥ −C25εlEl.

Combining this inequality with (3.9) we obtain

c2El
4
≤ CE1+γ

l + CεlEl

which for El, εl sufficiently small (and hence for l large enough) provides the desired con-
tradiction.

For what concerns (3.2), we argue similarly. Let (Tl)l be a sequence with vanishing
El := E(Tl,C4), contradicting the second part of the statement and perform the same
analysis as before. Up to subsequences, one of the following statement must be false:

(i) liml

∫
B2
|Dgl|2 =

∫
B2
|Dhl0|2, for any l0 (recall that

∫
B2
|Dhl|2 is constant);

(ii) hl is Dir-minimizing in B2.
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If (i) is false, then there is a positive constant c2 such that, for every r ∈ [5/2, 3],∫
Br

|Dhl|2

2
≤
∫
Br

|Dgl|2

2
− c2 ≤

eTl(Br)

El
− c2

2
,

for l large enough. Therefore we can argue exactly as in the proof of (3.1) (using hl instead
of Hl to construct the competitors) and reach a contradiction. If (ii) is false, then hl is
not Dir-minimizing in B5/2. This implies (cp. [7, pages 1857-1859]) that we can find a
competitor Fl satisfying, for any r ∈ [5/2, 3],∫

Br

|DFl|2

2
≤
∫
Br

|Dhl|2

2
− c2 ≤ lim

l

∫
Br

|Dgl|2

2
− 2 c2 ≤

eT (Br)

El
− c2

2
,

provided l is large enough (where c2 > 0 is a constant independent of r and l). On the
other hand, since Fl = hl on B3 \ B5/2, ‖G(Fl, gl)‖L2(B3\B5/2) → 0 and we argue as above

with Fl in place of Hl and reach a contradiction in this case as well. (The details of this
argument are also reported in the PhD thesis of the third author [26]). �

3.2. Improved excess estimate. The higher integrability of the Dir-minimizing func-
tions (cp. [7, Theorem 6.1]) and the harmonic approximation in Theorem 3.1 lead to the
following estimate, which we call “weak” since we will improve it in the next section with
Theorem 4.1.

Proposition 3.2 (Weak excess estimate). For every η2 > 0, there exist ε24, C26 > 0 with
the following property. Let T be an Ω-almost minimizer and assume it satisfies (1.2) in
C4s(x). If E = E(T,C4s(x)) ≤ ε24, then

eT (A) ≤ η2 eT (B4s(x)) + C26 Ω2 sm+2, (3.10)

for every A ⊂ Bs(x) Borel with |A| ≤ ε24|Bs(x)| (C26 depends only on η2,m, n and Q).

Proof. The proof is a minor modification of [7, Proposition 6.4]: nevertheless, being very
short, we provided here a brief account of all the arguments.

Without loss of generality, we can assume s = 1 and x = 0. We distinguish the two
regimes: ε̂2E ≤ Ω2 and Ω2 ≤ ε̂2E, where ε̂ ≤ ε24 is a parameter whose choice will be
specified later. In the former, clearly eT (A) ≤ C E ≤ C Ω2. In the latter, we let f be
the E1/4m-Lipschitz approximation of T in C3. By a Fubini-type argument as the ones
already used in the previous sections, we find a radius r ∈ (1, 2) and a current P with
M(P ) ≤ CE1+γ and ∂((T −Gf ) Cr) = ∂P for some γ(m) > 0. We can thus apply the
Homotopy Lemma 2.2 to R = Gf Cr + P + T (C3 \Cr):

‖T‖(Cr) ≤M(R Cr) + CΩE
1/2 ≤ ‖Gf‖(Cr) + Cε̂E + CE1+γ

≤ Q |Br|+
∫
Br

|Df |2

2
+ Cε̂E + C E1+γ, (3.11)

for some positive γ (possibly smaller than the previous one), where we used the Taylor
expansion in [8, Corollary 3.3].
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On the other hand, using the Taylor expansion for the part of the current which coincides
with the graph of f , we deduce as well that

‖T‖(Cr) = ‖T‖((Br \K)× Rn) + ‖T‖((Br ∩K)× Rn)

≥ ‖T‖((Br \K)× Rn) +Q |Br ∩K|+
∫
Br∩K

|Df |2

2
− C E1+γ. (3.12)

Subtracting (3.12) from (3.11), we then have

eT (Br \K) ≤
∫
Br\K

|Df |2

2
+ Cε̂E + CE1+γ, (3.13)

and we recall that the constant C is independent of ε̂. Therefore, taking into account (3.1)
of Theorem 3.1, we conclude that the excess on the exceptional set Br \K is infinitesimal
with respect to the E if ε24 is chosen small enough, namely

eT (Br \K) ≤ η E, (3.14)

for a suitable η > 0. Let now A ⊂ B1 be such that |A| ≤ ε24 ωm. Combining (3.14) with
the Taylor expansion and with (3.2) of Theorem 3.1, we have

eT (A) ≤ eT (A \K) +

∫
A

|Df |2

2
+ C E1+γ ≤

∫
A

|Dw|2

2
+ 2 η eT (B4), (3.15)

where w is a Dir-minimizing and ε24 is assumed small enough. Hence, we infer the conclu-
sion (3.10) from the higher integrability of the gradient of Dir-minimizing functions given
in [7, Theorem 6.1] (see [7, page 1861] for the simple argument). �

3.3. Gradient Lp estimate. One of the key points of the proof of Theorem 1.4 is to show
an Lp estimate, for some p > 1, for the density d of the excess measure of an Ω-almost
minimizer.

Theorem 3.3 (Gradient Lp estimate). There exist constants p2 > 1 and C, ε25 > 0 (de-
pending on n,Q) with the following property. Assume T satisfies (1.2) in the cylinder C4.
If T is an Ω-almost minimizer and E = E(T,C4) < ε25, then∫

{d≤1}∩B2

dp2 ≤ C Ep2−1
(
E + Ω2

)
. (3.16)

Proof. The proof is the same as the proof of [7, Theorem 2.3], where [7, Proposition 6.4]
is replaced by our Proposition 3.2. �

4. Strong excess estimate and proof of Theorem 1.4

4.1. Almgrem’s strong excess estimate. Thanks to the higher integrability of Theorem
3.3, we can control the excess where d ≤ 1. To control it outside this region, we prove the
following strengthened version of Proposition 3.2.
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Theorem 4.1 (Almgren’s strong excess estimate). There are constants ε21, γ2, C27 > 0
(depending on n,Q) with the following property. Assume T satisfies Assumption 1.2 in C4

and is Ω almost minimizing. If E = E(T,C4) < ε21, then

eT (A) ≤ C27

(
Eγ2 + |A|γ2

) (
E + Ω2

)
for every Borel A ⊂ B1. (4.1)

Proof. The proof follows the same scheme in [7]. First of all, by a regularization by convo-
lution technique, we construct a subset of radii B ⊂ [1, 2] with |B| > 1

2
with the property

that, for every σ ∈ B, there exists a Q-valued function g ∈ Lip(Bσ,AQ(Rn)) such that

g|∂Bσ = f |∂Bσ , Lip(g) ≤ C28E
β1 (4.2)∫

Bσ

|Dg|2 ≤
∫
Bσ∩K

|Df |2 + C28E
γ3
(
E + Ω2

)
, (4.3)

where f is the Eβ1-Lipschitz approximation of the Ω-minimal current T and γ3, C28 are
dimensional positive constants. The proof of the above estimates is given in [7, Proposi-
tion 7.3].

Using now the isoperimetric inequality and a slicing argument, we find a radius σ ∈ B
and P ∈ Im(Rm+n) with ∂P = ∂((T −Gf ) Cs) and M(P ) ≤ CE1+γ. We can therefore
apply the Homotopy Lemma 2.2 to conclude that

‖T‖(Cσ) ≤ ‖Gg‖(Cσ) + CΩ

∫
Bσ

G(g, f) + CE1+γ+C ΩE
3/4. (4.4)

Then, from (4.4), (4.3), the inequality 2ΩE3/4 ≤ EγΩ2 + E3/2−γ (for any γ < 1/2) and the
Taylor expansion for M(Gg) we achieve

‖T‖(Cσ) ≤ Q |Bσ|+
∫
Bσ∩K

|Df |2

2
+ CEγ(E + Ω2) + CΩ

∫
Bσ

G(g, f) , (4.5)

for some γ > 0. On the other hand, by the Taylor’s expansion in [8, Corollary 3.3],

‖T‖(Cs) = ‖T‖((Bs \K)× Rn) + ‖Gf‖((Bs ∩K)× Rn)

≥ ‖T‖((Bs \K)× Rn) +Q |K ∩Bs|+
∫
K∩Bs

|Df |2

2
− C E1+γ, (4.6)

possibly changing the value of γ > 0. Hence, from (4.5) and (4.6), we get

eT (Bs \K) ≤ C Eγ (E + Ω2) + CΩ

∫
Bσ

G(g, f). (4.7)

Next note that, by the Taylor expansion of the mass of the graph of f , it follows that
|Df |2 ≤ C dT ≤ CE2β < 1 a.e. in K: indeed, in all Lebesgue points of K and |Df |2 we
have that

|Df |2(x) = lim
s→0

∫
Bs(x)∩K |Df |

2

ωm sm
≤ C lim

s→0

eGf
(Bs(x) ∩K)

ωm sm
≤ C lim sup

s→0

eT (Bs(x))

ωm sm
= CdT (x).
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Therefore, for every A ⊂ B1 Borel set, we can use the higher integrability of |Df | in K
given by Theorem 3.3 to get

eT (A) ≤ eT (A ∩K) + eT (A \K)

≤
∫
A∩K

|Df |2

2
+ C E1+γ + C Eγ (E + Ω2) + CΩ

∫
Bσ

G(g, f)

≤ C |A ∩K|
p2−1
p2

(∫
A∩K
|Df |q2

)2/q2

+ C Eγ (E + Ω2) + CΩ

∫
Bσ

G(g, f)

≤ C |A|
p2−1
p2

(
E + Ω2

)
+ C Eγ (E + Ω2) + CΩ

∫
Bσ

G(g, f).

In order to conclude the proof we need only to estimate the term
∫
Bσ

G(g, f). For this

part of the argument it is important to recall the construction of the map g in [7]. We
introduce the following notation. Given two (vector-valued) functions h1 and h2 and two
radii 0 < s < r, we denote by lin(h1, h2) the linear interpolation in Br \ B̄s between h1|∂Br
and h2|∂Bs , i.e., if (θ, t) ∈ Sm−1 × [0,∞) are spherical coordinates, then

lin(h1, h2)(θ, t) =
r − t
r − s

h2(θ, s) +
t− s
r − s

h1(θ, r) .

Next, we fix two parameters δ > 0 and ε > 0, radii 1 < r1 < r2 < r3 < 2, given by

r3 = σ, r2 = r3 − s and r1 = r2 − s,

with σ ∈ B the radius in the estimates (4.2) and (4.3) (whose existence is established in
[7]) and with ε = Ea, δ = Eb and s = Ec, where

a =
1− 2 β1

2m
, b =

1− 2 β1

4m (nQ+ 1)
and c =

1− 2 β1

8nQ 4m (nQ+ 1)
.

Fix also ϕ ∈ C∞c (B1) a standard nonnegative mollifier. We set f ′ := ξ ◦ f . Recall the
Lipschitz maps ρ and ρ?δ of [6, Theorem 2.1] and [7, Proposition 7.2], respectively, and
define:

g′ :=


√
E ρ ◦ lin

(
f ′√
E
,ρ?δ

(
f ′√
E

))
in Br3 \Br2 ,

√
E ρ ◦ lin

(
ρ?δ

(
f ′√
E

)
,ρ?δ

(
f ′√
E
∗ ϕε

))
in Br2 \Br1 ,

√
E ρ?δ

(
f ′√
E
∗ ϕε

)
in Br1 .

(4.8)
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Finally set g := ξ−1 ◦ g′. In particular, recalling that ξ−1 is Lipschitz continuous and
f = ξ−1 ◦ f , we can estimate as follows∫

Bσ

G(f, g) ≤ C

∫
Bσ\Bσ−s

∣∣∣f ′ −√Eρ ◦ lin
( f ′√

E
,ρ?δ

( f ′√
E

))∣∣∣︸ ︷︷ ︸
I1

+

+C

∫
Bσ−s\Bσ−2s

∣∣∣f ′ −√Eρ ◦ lin
(
ρ?δ

( f ′√
E

)
,ρ?δ

( f ′√
E
∗ ϕε

))∣∣∣︸ ︷︷ ︸
I2

+

+C

∫
Bσ−2s

∣∣∣f ′ −√Eρ?δ( f ′√
E
∗ ϕε

)∣∣∣︸ ︷︷ ︸
I3

.

We will estimate I1, I2, I3 separately. For what concerns I1, we recall that ρ ◦ f ′ = f ′, ρ
is Lipschitz continuous and λρ(P ) = ρ(λP ), for every λ > 0, P ∈ Q, since Q is a cone;
therefore,

I1 ≤ C

∫ σ

σ−s

∫
∂Bt

√
E
∣∣∣ f ′√
E
− t+ s− σ

s

f ′√
E
− σ − t

s
ρ?δ

( f ′√
E

)∣∣∣ dt
= C
√
E

∫ σ

σ−s

σ − t
s

∫
∂Bt

∣∣∣ f ′√
E
− ρ?δ

( f ′√
E

)∣∣∣ dt ≤ C
√
Eδ8−nQ |Bσ \Bσ−s| ≤ CE

1/2+c

where we used |ρ?δ(P )−P | ≤ C δ8−nQ from [7, Proposition 7.2] and |Bσ\Bσ−s| ≤ Cs ≤ CEc.
We next bound I2: similarly as for I1

I2 ≤ C
√
E

∫ σ−s

σ−2s

∫
∂Bt

∣∣∣ f ′√
E
− t+ 2s− σ

s
ρ?δ

( f ′√
E

)
− σ − s− t

s
ρ?δ

( f ′√
E
∗ ϕε

)∣∣∣
≤ C
√
E

∫ σ−s

σ−2s

∫
∂Bt

(∣∣∣ f ′√
E
− ρ?δ

( f ′√
E

)∣∣∣+
σ − s− t

s

∣∣∣ρ?δ( f ′√
E

)
− ρ?δ

( f ′√
E
∗ ϕε

)∣∣∣) dt

≤ CE
1/2+c + C

∫
Bσ−s\Bσ−2s

∣∣f ′ − f ′ ∗ ϕε∣∣
where we have used the fact that ρ?δ is Lipschitz. The estimate for I3 is similarly given by

I3 ≤ C
√
E

∫
Bσ−2s

(∣∣∣ f ′√
E
− ρ?δ

( f ′√
E

)∣∣∣+
∣∣∣ρ?δ( f ′√

E

)
− ρ?δ

( f ′√
E
∗ ϕε

)∣∣∣)
≤ CE

1/2+c + C

∫
Bσ−2s

|f ′ − f ′ ∗ ϕε| .

We therefore achieve the estimate

I2 + I3 ≤ CE
1/2+c +

∫
Bσ−s

|f ′ − f ′ ∗ ϕε|
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and to conclude, we compute∫
Bσ−s

∣∣f ′ − f ′ ∗ ϕε∣∣ ≤ ∫
Bσ−s

∫
Bε

ϕε(x)|f ′(y − x)− f ′(y)| dy dx

≤
∫
Bσ−s

∫
Bε

∫ 1

0

ϕε(x)|Df ′(y − tx) · x| dt dy dx

≤
∫ 1

0

∫
Bε

ϕε(x)ε

∫
Bσ−s

|Df(y − tx)| dy dx dt ≤ ε ‖Df‖L1(Bσ) ≤ CE
1/2+a ,

(where we have used the fact that ε ≤ s). Putting everything together we conclude that

Ω

∫
Bσ

G(f, g) ≤ C ΩE
1/2+γ≤ C Eγ

(
E + Ω2

)
for a suitable γ > 0, thus concluding the proof of the Theorem. �

4.2. Proof of Theorem 1.4. Without loss of generality, we can assume r = 1 and x = 0.
Choose β2 < min{ 1

2m
, γ3

2(1+γ3)
}, where γ3 is the constant in Theorem 4.1. Let f be the Eβ2-

Lipschitz approximation of T . Clearly (1.3) follows directly from [7, Proposition 3.2] if
β0 < β2. Set next A :=

{
meT > 2−mE2β2

}
∩B9/8. By [7, Proposition 3.2], |A| ≤ CE1−2β2 .

Apply estimate (4.1) to A to conclude:

|B1 \K| ≤ C E−2β2 eT (A) ≤ C Eγ3−2β2(1+γ3)(E + Ω2).

By our choice of γ3 and β2, this gives (1.4) for some positive β0. Finally, set S = Gf .
Recalling the strong Almgren’s estimate (4.1) and the Taylor expansion in [8, Corollary
3.3], we conclude:∣∣∣∣‖T‖(C1)−Qωm −

∫
B1

|Df |2

2

∣∣∣∣ ≤ eT (B1 \K) + eS(B1 \K) +

∣∣∣∣eS(B1)−
∫
B1

|Df |2

2

∣∣∣∣
≤ C Eγ3(E + Ω2) + C |B1 \K|+ C Lip(f)2

∫
B1

|Df |2 ≤ C Eγ1(E + Ω2).

The L∞ bound follows straightforwardly from [7, Proposition 3.2].

5. Approximation of 2-dimensional almost minimizing currents

As mentioned in the introduction, we state here the approximation result for two dimen-
sional currents as in (a), (b) and (c) of Theorem 0.2, which will be used in our subsequent
notes [11, 12]. The following are the main assumptions.

Assumption 5.1. In case (a) Σ ⊂ Rm+n is a C2 submanifold of dimensionm+n̄ = m+n−l,
which is the graph of an entire function Ψ : Rm+n̄ → Rl and satisfies the bounds

‖DΨ‖0 ≤ c0 and A := ‖AΣ‖0 ≤ c0, (5.1)

where c0 is a positive (small) dimensional constant. ω is a C1 m-form. T is an integral
current of dimension 2 with bounded support. Moreover it satisfies one of the three condi-
tions (a), (b) or (c) in Definition 0.1. In particular in case (a) we have spt(T ) ⊂ Σ and T
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is area-minimizing in Σ. In case (b) we assume Σ = Rm+n and T is semicalibrated by ω.
In case (c) we have that Σ coincides with a portion of ∂BR(p), which is the graph of a map
Ψ : Ω→ R satisfying (5.1), for some Ω ⊂ Rm+n−1. Finally, for some open cylinder C4r(x)
(with r ≤ 1) and some positive integer Q, we assume that Assumptions 1.2 still holds.

Theorem 5.2. There exist constants M,C21, β0, ε21 > 0 (depending on m,n, n̄, Q) with the
following property. Assume that T satisfies Assumption 1.2 in the cylinder C4r(x) and E =
E(T,C4r(x)) < ε21. Then, there exist a map f : Br(x)→ AQ(Rn), with {x}×spt(f(x)) ⊂ Σ
for every x, and a closed set K ⊂ Br(x) such that

Lip(f) ≤C21E
β0 + C21Ωr in case (a) and (c) , (5.2)

Lip(f) ≤C21E
β0 in case (b) (5.3)

Gf (K × Rn) = T (K × Rn) and |Br(x) \K| ≤ C21E
β0
(
E + r2Ω2

)
rm , (5.4)∣∣∣‖T‖ (Cr(x))−Qωmrm −

1

2

∫
Br(x)

|Df |2
∣∣∣ ≤ C21E

β0
(
E + r2Ω2

)
rm , (5.5)

where Ω = A in case (a), Ω = ‖dω‖0 in case (b) and Ω = 3
R

in case (c). If in addition

h(T,C4r(x)) := sup{|p⊥(x)− p⊥(y)| : x, y ∈ spt(T ) ∩C4r(x)} ≤ r, then

osc(f) ≤ C21h(T,C4r(x)) + C21(E1/2 + rΩ)r in case (a) and (c) , (5.6)

osc(f) ≤ C21h(T,C4r(x)) in case (b). (5.7)

Proof. Case (a) is proved in [7, Theorem 2.4], while case (b) follows directly from Theo-
rem 1.4 after recalling that semicalibrated currents are Ω-minimal currents for Ω = ‖dω‖0

by [13, Proposition 1.2].
It remains to handle case (c). Again by [13, Proposition 1.2], a current satisfying (c) of

Definition 0.1 is an Ω-minimal current for Ω = 3
R

. Therefore, we can apply Theorem 1.4.
However, the graph of the map f so obtained is not necessarily contained in Σ. We
show here how to modify it in such a way to fulfill the requirements of Theorem 5.2. We
assume that Ψ is a function whose graph coincides with Σ (the connected component of
∂BR(p)∩C4r(x) containing spt(T )) and arguing as in [7, Remark 1.5] we can assume that
‖Ψ0‖ ≤ CE1/2r + CΩr2, ‖DΨ‖0 ≤ CE1/2 + CΩr and ‖D2Ψ‖0 ≤ CΩ. The domain of Ψ is
a subset of B4r(x)×Rn−1. Let now f =

∑
i JfiK be the function given by Theorem 1.4 and

let f̄ =
∑

i

q
f̄i

y
, where f̄i(y) gives the first n− 1 coordinates of fi(y). Observe that on the

set K we necessarily have

f(y) =
∑
i

q
(f̄i(y),Ψ(y, f̄i(y))

y
.

We then can extend f̄ to Br(x) \ K with Lip(f̄) ≤ CLip(f) and osc (f̄) ≤ Cosc (f) and

hence define f̂(y) =
∑

i

q
(f̄i(y),Ψ(y, f̄i(y))

y
for every y ∈ Br(x) (it must be shown that

(y, f̄i(y)) belongs to the domain of definition of Ψ, but this follows easily from the smallness



18 CAMILLO DE LELLIS, EMANUELE SPADARO AND LUCA SPOLAOR

of osc (f̄)). Obviously f = f̂ on K. On the other hand it is straightforward to check that

Lip(f̂) ≤C Lip(f̄) + C(Lip(f̄) + 1)‖DΨ0‖ ≤ CEβ0 + CΩr

osc (f̂) ≤C osc (f) + ‖Ψ‖0 ≤ Ch(T,C4r(x)) + C(E
1/2 + Ωr)r .

In addition we conclude∣∣∣∣∫
Br(x)

|Df |2 −
∫
Br(x)

|Df̂ |2
∣∣∣∣ ≤ (Lip(f)2 + Lip(f̂)2)|Br(x) \K| ≤ C|Br(x) \K| .

Thus the estimates in Theorem 1.4 complete the proof. �

Appendix A. A singular semicalibrated current

Here we give an explicit example of a 2-dimensional current with a singular point that
is semicalibrated by a differential form which is not closed.

Consider a function u : R2 → R2 which is C∞ but not analytic, and assume that

u(0) = |∇u(0)| = 0.

We need to introduce the following:

(1) E1, E2 ∈ T
(
Gr(u)

)
and E3, E4 ∈ N

(
Gr(u)

)
smooth sections of the tangent and the

normal bundles of Gr(u) ⊂ R4 considered as a smooth oriented submanifold such
that

Ei(p) · Ej(p) = δij ∀ p ∈ Gr(u), ∀ i, j = 1, . . . , 4;

moreover we assume that Ei(0) = ei for every i = 1, . . . , 4, where {ei}i=1,...,4 is the
standard basis of R4;

(2) θ1, . . . , θ4 the dual fields:

θi(p)
(
Ej(p)) = δij ∀ p ∈ Gr(u), ∀ i, j = 1, . . . , 4;

(3) pu the nearest point projection on Gr(u), which exists in a tubular neighborhood
of the submanifold Gr(u) and therefore, in particular, in Br0 for some r0 > 0;

(4) JDK := (e3∧e4)·H2 {x1 = x2 = 0} the current associated to the oriented integration
on the vertical plane D = {x1 = x2 = 0}.

It is now elementary to verify the following claims:

(i) the smooth 2-dimensional differential form

ω(x) := θ1(pu(x)) ∧ θ2(pu(x)) + θ3(pu(x)) ∧ θ4(pu(x))

is a semicalibration in Br0 ;
(ii) the current T := Gu + JDK is semicalibrated by ω in Br0 and 0 ∈ Sing(T ).

Note that ω is not a closed form, for in this case T would be an area minimizing current
thus implying that spt(T ) \ {0} is locally the graph of an analytic map (cf. [19, Theo-
rem 5.5]): this is obviously not the case for a generic smooth u.

Actually, following the same principles, it is simple to construct many more examples.
In particular it is possible to construct examples where the semicalibrated current has a
branching singularity. However the corresponding computations are slightly more involved.



LIPSCHITZ APPROXIMATION FOR ALMOST MINIMAL CURRENT 19

References

[1] F. J. Almgren, Jr. Existence and regularity almost everywhere of solutions to elliptic variational
problems with constraints. Mem. Amer. Math. Soc., 4(165):viii+199, 1976.

[2] Frederick J. Almgren, Jr. Almgren’s big regularity paper, volume 1 of World Scientific Monograph
Series in Mathematics. World Scientific Publishing Co. Inc., River Edge, NJ, 2000.

[3] Costante Bellettini. Almost complex structures and calibrated integral cycles in contact 5-manifolds.
Adv. Calc. Var., 6(3):339–374, 2013.

[4] Costante Bellettini and Tristan Rivière. The regularity of special Legendrian integral cycles. Ann. Sc.
Norm. Super. Pisa Cl. Sci. (5), 11(1):61–142, 2012.

[5] Sheldon Xu-Dong Chang. Two-dimensional area minimizing integral currents are classical minimal
surfaces. J. Amer. Math. Soc., 1(4):699–778, 1988.

[6] Camillo De Lellis and Emanuele Spadaro. Q-valued functions revisited. Mem. Amer. Math. Soc.,
211(991):vi+79, 2011.

[7] Camillo De Lellis and Emanuele Spadaro. Regularity of area minimizing currents I: gradient Lp

estimates. Geom. Funct. Anal., 24(6):1831–1884, 2014.
[8] Camillo De Lellis and Emanuele Spadaro. Multiple valued functions and integral currents. Ann. Sc.

Norm. Super. Pisa Cl. Sci. (5), XIV(4):1239–1269, 2015.
[9] Camillo De Lellis and Emanuele Spadaro. Regularity of area-minimizing currents II: center manifold.

Ann. of Math. (2), 183(2):499–575, 2016.
[10] Camillo De Lellis and Emanuele Spadaro. Regularity of area-minimizing currents III: blow-up. Ann.

of Math. (2), 183(2):577–617, 2016.
[11] Camillo De Lellis, Emanuele Spadaro, and Luca Spolaor. Regularity theory for 2-dimensional almost

minimal currents II: branched center manifold. 2015.
[12] Camillo De Lellis, Emanuele Spadaro, and Luca Spolaor. Regularity theory for 2-dimensional almost

minimal currents III: blowup. 2015.
[13] Camillo De Lellis, Emanuele Spadaro, and Luca Spolaor. Uniqueness of tangent cones for 2-

dimensional almost minimizing currents. 2015.
[14] Mariana Graña. Flux compactifications in string theory: a comprehensive review. Phys. Rep.,

423(3):91–158, 2006.
[15] J. Gutowski, G. Papadopoulos, and P. K. Townsend. Supersymmetry and generalized calibrations.

Phys. Rev. D (3), 60(10):106006, 11, 1999.
[16] Jan Gutowski. Generalized calibrations. In Progress in string theory and M-theory (Cargèse, 1999),
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