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Abstract

In this paper we estimate the area of the graph of a map u : Ω ⊂ R2 → R2 discontinuous
on a segment Ju, with Ju either compactly contained in the bounded open set Ω, or starting
and ending on ∂Ω. We characterize A∞(u,Ω), the relaxed area functional in a sort of uniform
convergence, in terms of the infimum of the area of those surfaces in R3 spanning the graphs of
the traces of u on the two sides of Ju and having what we have called a semicartesian structure.
We exhibit examples showing that A(u,Ω), the relaxed area in L1(Ω;R2), may depend on the
values of u far from Ju and also on the relative position of Ju with respect to ∂Ω. These examples
confirm the highly non-local behaviour of A(u, ·), and justify the interest in the study of A∞.
Finally we prove that A(u, ·) is not subadditive for a rather large class of discontinuous maps u.

1 Introduction

Given a bounded open set Ω ⊂ R2 = R2
(x,y) and a map v := (v1, v2) : Ω→ R2 = R2

(ξ,η) of class C1, the

(non-parametric) area functional is defined as

A(v,Ω) :=

∫
Ω

|M(∇v)| dx dy,

where ∇v is the Jacobian matrix of v, M(ζ) is the vector of R6 having as entries the determinant
of all minors(1) of the (2 × 2)-matrix ζ, and | · | denotes the Euclidean norm: hence, |M(∇v)| =√

1 + |∇v1|2 + |∇v2|2 + (∂xv1∂yv2 − ∂yv1∂xv2)
2
.

The functional A(·,Ω) is polyconvex [5] and A(v,Ω) is the area of

graph(v) := {(x, y, ξ, η) : (x, y) ∈ Ω, (ξ, η) = v(x, y)} ⊂ R4 := R2
(x,y) × R2

(ξ,η),

a smooth two-dimensional manifold of codimension two.
For the purposes of the modern calculus of variations, it is useful to extend the area functional also to
non-smooth maps. A rather natural idea consists in considering its L1-lower semicontinuous envelope
(or L1-relaxed functional) [7], [1], [9], [10]; thus, for any v ∈ L1(Ω;R2), we set

A(v,Ω) := inf

{
lim inf
h→+∞

A(vh,Ω)

}
,
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(1)Including the minor of order 0, whose determinant is by definition taken equal 1.
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where the infimum is taken among all sequences (vh) ⊂ C1(Ω;R2) converging to v in L1(Ω;R2). The
aim of the present paper is to study A(v,Ω) for certain classes of non-smooth maps v. As we shall
see, another (i.e., with respect to a different and stronger convergence) relaxed functional will be of
interest, in this two-codimensional situation.
In [1, Theorem 3.7] it is proven that the domain of A(·,Ω) is contained(2) in the space BV(Ω;R2) of
maps with bounded variation in Ω, and for any v ∈ BV(Ω;R2) it turns out that

A(v,Ω) ≥
∫

Ω

|M(∇v)| dx dy + |Dsv|(Ω),

where ∇v and Dsv denote the absolutely continuous and the singular part of the distributional
gradient Dv, respectively. Moreover, in [1, Theorem 6.4] the subset of BV(Ω;R2) of all maps v for
which

A(v,Ω) =

∫
Ω

|M(∇v)| dx dy < +∞

is characterized; from now on we shall use the symbol A in place of A to denote the area of the
graph of a map in this class. It is worth to notice that A(v,Ω) =

∫
Ω
|M(∇v)| dx dy < +∞ for every

v ∈ H1(Ω;R2).
One of the major issues on the functional A(v, ·) is its non-subadditivity [7]. In [1, Theorems 4.1 and
5.1] the authors exhibit two examples of maps v for which there exist three bounded open sets Ω1,
Ω2, and Ω3 such that Ω3 ⊂⊂ Ω1 ∪ Ω2 and

A(v,Ω3) > A(v,Ω1) +A(v,Ω2). (1.1)

In the first theorem v = uT ∈ BV(Ω;R2), a piecewise constant map taking three non collinear values

around a triple point, while in the second one(3) v(x, y) = uV (x, y) := (x,y)
|(x,y)| (vortex map), and thus

v ∈W 1,p(Ω;R2) for any p ∈ [1, 2). Notice that inequality (1.1) implies that A(v,Ω) cannot be written
as an integral, over Ω, of a local integrand, integrated with respect to some measure; recall that, on
the contrary, this integral representation holds in codimension one (see [12], [6], [11]).
In [3] the authors provide an upper bound for A(uT ,Ω) that improves the estimate of [1]. They are
able to control the singular contribution of the relaxed area functional, namely

A(uT ,Ω)−
∫

Ω

|M(∇uT )| dx dy,

through the area of a suitable graph-type area-minimizing two-dimensional surface of codimension
one, entangled at the triple point with two other similar surfaces.
In [4], the authors explore further the idea of estimating the above mentioned singular contribution
through the area of solutions of a suitable Plateau’s-type problem in R3. More specifically, they study
the case of a map u that is regular enough out of a simple smooth jump curve Ju compactly contained
in Ω. Then they consider the closed curve Γ = Γ[u] ⊂ R3, supposed to be simple, obtained as the
union of the graphs of the traces of u on the two sides of Ju; the regularity of u implies the existence
of an area-minimizing immersion Xmin ∈ C2(B;R3) ∩ Cω(B;R3), mapping the boundary of the unit
disk B monotonically onto Γ, see for example [13] and [8]. In [4, Theorem 4.1] it is proven that, if
Σmin := Xmin(B) admits a semicartesian parametrization, then

A(u,Ω) ≤
∫

Ω

|M(∇u)| dx dy +H2(Σmin), (1.2)

(2)This inclusion is strict. For example, consider the map u(x) = x
|x|3/2

, for x in the unit disk B1((1, 0)) centered at

(1, 0). Since u ∈ C1(B1((1, 0));R2) ∩W 1,1(B1((1, 0));R2), it belongs to BV(B1((1, 0));R2). Nevertheless det(∇u) is
not integrable, and thus A(u, B1((1, 0)) = +∞.
(3)The authors prove the result in dimension n ≥ 3, but their proof holds also when n = 2.
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where H2 denotes the two-dimensional Hausdorff measure. A map Φ : O → R3, O ⊂ R2
(t,s) a

bounded open connected and simply connected, is said to be semicartesian if it is the identity in the
first coordinate, that is if Φ(t, s) := (t,Φ2(t, s),Φ3(t, s)), see Definition 2.3 for more details. In [4,
Theorem 5.1] sufficient conditions on Γ, i.e., Γ analytic with further non-degeneracy hypotheses, are
given in order that Σmin admits a semicartesian parametrization, and it is also conjectured that (1.2)
could be an equality, at least when Ju is far enough from ∂Ω. With the methods employed in [4], it
seems not easy to weaken the analyticity and non-degeneracy assumptions (a part from the case when
Γ admits a graph-type solution of the corresponding Plateau’s problem).

In this paper we continue the analysis on the singular contribution of the non-parametric area func-
tional for maps u having a line discontinuity Ju, in terms of suitable area-minimizing semicartesian
surfaces. We shall analyse both the case when Ju is compactly contained in Ω as well as when both
its end-points belong to ∂Ω. These two cases are quite different one each other; in particular, as we
shall see, the latter turns out to be related to minimal surfaces with a partially free boundary. Notice
that we do not suppose a priori that the union of the graphs of the traces of u on Ju is a Jordan
curve. Since we deal with maps with Lipschitz traces, even when Γ is a Jordan curve, it does not
satisfy the sufficient conditions of [4] that guarantee the existence of a semicartesian parametrization
for a solution of the corresponding Plateau’s problem.
Before stating our main results, we need to fix some notation and give some definitions, referring to
Section 2 for the details.

Given two maps γ± ∈ Lip([a, b];R2), we consider their graphs Γ± ⊂ R3 := Rt × R2
(ξ,η). Let R :=

(a, b) × (−1, 1) ⊂ R2
(t,s). We denote by semicart(R; Γ−,Γ+) the class of semicartesian maps on R

spanning Γ := Γ− ∪ Γ+, that is the class of maps Φ ∈ H1(R;R3) such that

Φ(t, s) := (t,Φ2(t, s),Φ3(t, s)), Φ(t,±1) = (t, γ±(t)).

In particular, Φ(R) is a surface that intersects any plane {t} × R2
(ξ,η) in a (not necessarily simple)

curve connecting the points (t, γ−(t)) and (t, γ+(t)), for any t ∈ [a, b].
Since semicart(R; Γ−,Γ+) is non-empty (Lemma 2.8), we can define

m(R; Γ−,Γ+) := inf
Φ∈semicart(R;Γ−,Γ+)

∫
R

|∂tΦ ∧ ∂sΦ| dt ds. (1.3)

If Γ is a closed (not necessarily simple) curve, we can consider also another class of maps. Let

D := {(t, s) ∈ R2 : t ∈ (a, b), s ∈ (σ−(t), σ+(t))},

with σ± ∈ Lip([a, b]), σ−(t) < 0 and σ+(t) > 0 for t ∈ (a, b) and σ±(a) = 0 = σ±(b). Then
semicart(D; Γ−,Γ+) denotes the class of semicartesian maps defined on D and spanning Γ := Γ−∪Γ+,
that is maps Φ ∈ H1(D;R3) such that

Φ(t, s) := (t,Φ2(t, s),Φ3(t, s)), Φ(t, σ±(t)) = (t, γ±(t)).

For such a Φ, the image Φ(D) is a surface whose intersection with any plane {t}×R2
(ξ,η), t belonging

to the open interval (a, b), is a curve connecting (t, γ−(t)) and (t, γ+(t)), but whose intersection with
the plane {a} × R2

(ξ,η) (resp. with {b} × R2
(ξ,η)) is the singleton (a, γ−(a)) (resp. (b, γ−(b))).

Also semicart(D; Γ−,Γ+) is non-empty and then we can define

m(D; Γ−,Γ+) := inf
Φ∈semicart(D;Γ−,Γ+)

∫
D

|∂tΦ ∧ ∂sΦ| dt ds.

We observe that when Γ is closed, m(R; Γ−,Γ+) ≤ m(D; Γ−,Γ+), since a surface that is image of a map
in semicart(D; Γ−,Γ+) can be obtained also as the image of a map in semicart(R; Γ−,Γ+) (see (2.6)).
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If Γ is closed and simple we could ask about the relations between m(D; Γ−,Γ+), m(R; Γ−,Γ+), and
a(Γ), the area of a solution of the classical Plateau’s problem for Γ. In general a(Γ) ≤ m(D; Γ−,Γ+),
but one could expect also that the equal sign holds (see Remark 2.11), while we exhibit in Example
2.13 a curve Γ for which

m(R; Γ−,Γ+) < a(Γ).

In the study of the L1-lower semicontinuous envelope of the area functional A(·,Ω), it would be
important to have an L1-lower semicontinuity result for m(R; ·, ·), compare also with Remark 4.7.
More precisely, if Γ± := graph(γ±), Γ±h := graph(γ±h ) with γ±, γ±h ∈ Lip([a, b];R2), it would be
desirable to prove that

m(R; Γ−,Γ+) ≤ lim inf
h→+∞

m(R; Γ−h ,Γ
+
h ) (1.4)

whenever γ±h → γ± in L1((a, b);R2). We are able to prove (1.4) only under the further assumption
that

sup
h∈N
||γ̇±h ||L∞((a,b);R2) < +∞. (1.5)

This is, in some sense, coherent with the lower semicontinuity of a(·) with respect to the Fréchet
convergence (see [13, §301], [8]); we shall show that a(·) is not lower semicontinuous with respect to
the L1-convergence, see Example 4.8 for the details. Proving the validity of (1.4) withouth assuming
(1.5) seems not to be easy, and would imply a characterization of A(u,Ω) for certain non-smooth maps
u. The lack of a proof of (1.4) under the mere L1-convergence forced us to define another extension
of the functional A(·,Ω) with respect to a stronger notion of convergence, that we now describe.

Definition 1.1 (Uniform convergence out of a closed set). Let v ∈ BV(Ω;R2) and J ⊂ Ω be a
closed set with zero Lebesgue measure. A sequence (vh) ⊂ L1(Ω;R2) is said to converge to v uniformly
out of J , if vh → v uniformly in any compact set of Ω \ J , as h→ +∞.

We shall always consider maps u ∈ BV(Ω;R2) so that, at any point of the (approximate) jump set
[2], the approximate two-sided limits, denoted by u±, coincide with the pointwise two-sided limits,
and from now on, with a small abuse of notation, Ju stands for the closure in Ω of the set {(x, y) ∈
Ω : u−(x, y) 6= u+(x, y)}.
We are now in a position to define another notion of relaxation of the area functional.

Definition 1.2 (The functional A∞). For any v ∈ BV(Ω;R2) we define

A∞(v,Ω) := inf

{
lim inf
h→+∞

A(vh,Ω)

}
,

where the infimum is taken among all sequences (vh) ⊂ C1(Ω;R2) converging to v in L1(Ω;R2) and
uniformly out of Jv.

It is clear that
A∞(v,Ω) ≥ A(v,Ω), v ∈ BV(Ω;R2).

For every v in the domain of the functional A(·,Ω) it is also worth to define the singular parts

As(v,Ω) := A(v,Ω)−
∫

Ω

|M(∇v)| dx dy,

A∞s (v,Ω) := A∞(v,Ω)−
∫

Ω

|M(∇v)| dx dy.

The aim of this paper is to study the functionals As and A∞s , and also to characterize A∞s (u,Ω), for
u in a suitable class of maps.
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1.1 Main results

We shall consider two rather different cases: Ω and u satisfying either condition I or condition II (see
Definitions 2.15 and 2.16, respectively). Condition I takes into account maps u ∈ W 1,∞(Ω \ Ju;R2)
having as jump set Ju a horizontal segment with both end-points belonging to ∂Ω; namely, the fracture
“traverses” the whole domain Ω. Condition II deals with maps u ∈W 1,∞(Ω \ Ju;R2) with Ju ⊂⊂ Ω.
We denote by

Γ±[u]

the graphs of the traces of u on the two sides of Ju (Section 2.1).

Our first result characterizes the lower semicontinuous envelope of A in the sense of Definition 1.2.

Theorem 1.3 (I: characterization of A∞). Let Ω and u satisfy condition I. Then

A∞s (u,Ω) = m(R; Γ−[u],Γ+[u]). (1.6)

The inequality A∞s (u,Ω) ≤ m(R; Γ−[u],Γ+[u]) is obtained using the same strategy proposed in [4],
and it is proven in Proposition 3.1. The proof of the converse inequality (lower bound), presented in
Section 4, is more interesting. As already noticed, in order to prove this inequality we use a lower
semicontinuity result for m(R; ·, ·) with respect to a convergence that is stronger than the one induced
by the L1-convergence. Since we miss the proof of the L1((a, b);R2)-lower semicontinuity of m(R; ·, ·),
we are not able to conclude the reasonable conjecture that As(u,Ω) = m(R; Γ−[u],Γ+[u]), for Ω and
u satisfying condition I and such that Γ−[u] ∩ Γ+[u] = ∅.

When Ω and u satisfy condition II the situation is less clear. The proof of the next result is given in
Proposition 5.1 and Theorem 6.1.

Theorem 1.4 (II: characterization of A∞). Let Ω and u satisfy condition II. Then

A∞s (u,Ω) = m(D; Γ−[u],Γ+[u]).

What is interesting is that it may happen that

As(u,Ω) < m(D; Γ−[u],Γ+[u]),

and thus there exist Ω and u for which

A(u,Ω) < A∞(u,Ω).

In Section 7 we collect some examples proving that sequences (uh) converging to u only in L1(Ω;R2)
can be more “convenient” than any other sequence converging to u also uniformly out of Ju. More
specifically, in Section 7.1 we adapt to our case the construction used in [1, Lemma 5.3] concerning
the area of the graph of the vortex map uV . The singular contribution of the area that we obtain
can be interpreted as the area of a semicartesian parametrization defined on a suitable rectangle and
spanning the graphs of the traces of u on a suitable extension Jext of Ju that reaches ∂Ω. Example
7.4 proves that this construction can possibly provide an upper bound lower than m(D; Γ−[u],Γ+[u]).
This suggests that it could be convenient to “extend” Ju up to the boundary by what we have called
a virtual jump. As observed in Remark 7.5, we can manipulate the result in Example 7.4 and show
that, if Ju has two connected components, the virtual jump could join one connected component to
the other, instead of joining Ju to ∂Ω. In Section 7.2 we exhibit an example where it is even more
convenient to consider a virtual jump connecting an internal point of Ju to ∂Ω.
All these examples reveal that the singular contribution of the area functional depends not only on
the values of u near the jump set, but also on the values of u far from the jump and on the position
of the jump with respect to ∂Ω, confirming the deep non-local behaviour of A(u, ·).
Our last result, Theorem 8.1, concerns the non-subadditivity of A with respect of the open set.
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Theorem 1.5. There exist Ω and u satisfying condition I such that A(u, ·) is not subadditive.

The class of maps u for which Theorem 8.1 holds is rather large, and those maps can be written
explicitely (see (8.1)). From Theorem 1.5, one deduces that the non-local character of A(u, ·) is not
necessarily due to the presence of a vortex or of a triple junction, but it is a much more general fact.
We underline that in order to prove Theorem 1.5 we do not use the results in Sections 4-6, but only the
upper bound in Proposition 3.1, and some (limited) results concerning cartesian currents (Proposition
8.6).

The plan of the paper is the following. In Section 2 we introduce the definitions and the main properties
concerning the semicartesian setting, and we fix the hypotheses on the class of maps we consider in
this work. In Sections 3 and 4 we prove the upper and the lower bound that, coupled together, yield
the proof of Theorem 1.3. Section 4 contains also the discussion on the semicontinuity of m(R; ·, ·).
Sections 5 and 6 deal with the case where Ω and u satisfy condition II and contain the proof of the
upper and the lower bound needed to prove Theorem 1.4. In Section 7 we exhibit some examples of
pairs (Ω,u) for which A(u,Ω) < A∞(u,Ω). Finally in Section 8 we prove the non-subadditivity of
A(u, ·) for a rather large class of maps.

Acknowledgements. We are very grateful to Gianni Dal Maso for many discussions and advices.

2 Semicartesian structure

Let us start with some definitions. From now on we take a, b ∈ R = Rt, with a < b.

Definition 2.1 (Union of two graphs). Let Γ ⊂ R3 = Rt × R2
(ξ,η); we say that Γ is union of two

graphs on [a, b] if Γ = Γ− ∪ Γ+, where Γ± := graph(γ±) with γ± ∈ C([a, b];R2) ∩ Liploc((a, b);R2).
We say that Γ is union of two Lipschitz graphs on [a, b] if furthermore γ± ∈ Lip([a, b];R2).

Remark 2.2. Depending on the values of γ± at t = a and t = b, Γ could be either a closed curve, or
an open curve, or the union of two open curves. Notice that we do not exclude that γ−(t) = γ+(t)
for some t ∈ (a, b). We shall be mostly interested in the cases when either Γ is closed, or when
γ−(a) 6= γ+(a) and γ−(b) 6= γ+(b). The latter case will be related to a partially free boundary
problem.

Definition 2.3 (Semicartesian map). A semicartesian map on O is a continuous map Φ : O → R3

of the form
Φ(t, s) = (t, φ(t, s)) = (t, φ1(t, s), φ2(t, s)), (t, s) ∈ O, (2.1)

where
O := {(t, s) ∈ R2 : σ−(t) < s < σ+(t), t ∈ (a, b)},

with σ± ∈ C([a, b]) ∩ Liploc((a, b)) and σ− < σ+ in (a, b).

If we need to stress the dependence on the functions σ±, we shall use the notation O = [[σ−, σ+]].

Definition 2.4 (Semicartesian parametrizations). Given Γ = Γ− ∪ Γ+ union of two graphs on
[a, b], Γ± := graph(γ±), a semicartesian parametrization spanning Γ is a pair (O,Φ) where O =
[[σ−, σ+]] and Φ is a semicartesian map on O satisfying the boundary condition

Φ(t, σ±(t)) = (t, γ±(t)), t ∈ [a, b].

We notice that, if γ−(a) 6= γ+(a), the domain O = [[σ−, σ+]] of a semicartesian parametrization
(O,Φ) spanning Γ = Γ− ∪ Γ+ has to satisfy σ−(a) < σ+(a). Similarly, if γ−(b) 6= γ+(b), necessarily
σ−(b) < σ+(b). On the other hand, if γ−(a) = γ+(a), we can in principle choose either a domain O
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such that σ−(a) = σ+(a) or such that σ−(a) < σ+(a). The trace on the plane {t = a} of the image of
Φ is, in the first case, just the point (a, γ−(a)); while in the second case, it is a not necessarily simple,
closed, curve. Similar considerations are valid at t = b.
In the following we shall need more regularity on Φ, since we need the area of a semicartesian
parametrization to be finite; in Sections 3 and 5 we will need Φ and its derivatives to be square
integrable, in order to build maps uh ∈ H1(Ω;R2). This is, in some sense, coherent also with the
classical theory of Plateau’s problem [8], where an area-minimizing immersion of the disk is found by
minimizing the Dirichlet functional.
Finally we will fix special domains O. In Lemma 2.14 we will show that this can be done without loss
of generality.

Definition 2.5 (The domains R and D). We set

R := (a, b)× (−1, 1),

namely R = [[σ−R , σ
+
R ]], with σ−R ≡ −1 and σ+

R ≡ 1.
We also fix two maps σ± ∈ Lip([a, b]) so that σ− < σ+ on (a, b) and

- σ−(a) = σ+(a) = 0 and σ±(t) = O(t− a), for t ∈ (a, a+ δ), δ > 0 small enough;

- σ−(b) = σ+(b) = 0 and σ±(t) = O(b− t), for t ∈ (b− δ, b), δ > 0 small enough,(4)

and we define
D := [[σ−, σ+]].

Definition 2.6 (The classes semicart). Let Γ = Γ−∪Γ+ be union of two Lipschitz graphs on [a, b].
We set

semicart(R; Γ−,Γ+) := {Φ ∈H1(R;R3) :

(R,Φ) semicartesian parametrization spanning Γ},

semicart(D; Γ−,Γ+) := {Φ ∈H1(D;R3) :

(D,Φ) semicartesian parametrization spanning Γ}.

Remark 2.7 (Area integrand for semicartesian maps). For a semicartesian map Φ as in (2.1)
belonging either to semicart(R; Γ−,Γ+) or to semicart(D; Γ−,Γ+), we have

|∂tΦ ∧ ∂sΦ| =
√
|∂sφ|2 + (∂tφ1∂sφ2 − ∂tφ2∂sφ1)2. (2.2)

The area of a semicartesian parametrization is therefore∫
|∂tΦ ∧ ∂sΦ| dtds =

∫ √
|∂sφ|2 + (∂tφ1∂sφ2 − ∂tφ2∂sφ1)2 dt ds,

where the domain of integration of the integrals is either R or D. If in particular φ1(t, s) = s, the
right hand side of (2.2) reduces obviously to

√
1 + |∂tφ2|2 + |∂sφ2|2, namely the integrand of the area

functional in the one-codimensional cartesian case.

Notice that, if Γ± = graph(γ±) with either γ−(a) 6= γ+(a) or γ−(b) 6= γ+(b), then the class
semicart(D; Γ−,Γ+) is empty.

Lemma 2.8. Let Γ = Γ− ∪ Γ+ be union of two Lipschitz graphs on [a, b]. Then

semicart(R; Γ−,Γ+) 6= ∅.

If in addition Γ is closed, then also semicart(D; Γ−,Γ+) 6= ∅.
(4)These growth assumptions are needed in order to prove that the linear interpolating map Φ`D defined in Lemma

2.8, see (2.3), has the right regularity. Lemma 2.14 shows that this assumption is not restrictive.
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Proof. Write Γ± = graph(γ±). Let us define the following R2-valued Lipschitz continuous linear
interpolating map:

`R(t, s) :=
1− s

2
γ−(t) +

1 + s

2
γ+(t), (t, s) ∈ R.

Then `R(t,±1) = γ±(t); thus the map Φ`R(t, s) := (t, `R(t, s)) belongs to semicart(R; Γ−,Γ+).
Now, suppose that γ−(a) = γ+(a) and γ−(b) = γ+(b) (i.e., Γ is closed) and define

`D(t, s) :=

{
σ+(t)−s

σ+(t)−σ−(t)γ
−(t) + s−σ−(t)

σ+(t)−σ−(t)γ
+(t) (t, s) ∈ D,

γ±(t) s = σ±(t), t ∈ [a, b].

Thus for (t, s) ∈ D

∂t`(t, s) =
σ+(t)− s

σ+(t)− σ−(t)
γ̇−(t) +

s− σ−(t)

σ+(t)− σ−(t)
γ̇+(t)

+
(γ+(t)− γ−(t))(σ̇+(t)σ−(t)− σ+(t)σ̇−(t))

(σ+(t)− σ−(t))2
− s(γ+(t)− γ−(t))(σ̇+(t)− σ̇−(t))

(σ+(t)− σ−(t))2
,

∂s`(t, s) =
γ+(t)− γ−(t)

σ+(t)− σ−(t)
.

Since γ± ∈ Lip([a, b];R2), the properties on σ± in Definition 2.5 ensure that∣∣∣∣γ+(t)− γ−(t)

σ+(t)− σ−(t)

∣∣∣∣ ≤ C < +∞ t ∈ (a, a+ δ),

and similarly for t ∈ (b − δ, b). Noticing also that |σ̇+σ− − σ+σ̇−| ≤ C(σ+ − σ−) (for a possibly
different positive constant C), and recalling that γ± and σ± are Lipschitz continuous, we get that
∂t`D and ∂s`D are bounded. It follows that the map

Φ`D (t, s) := (t, `D(t, s)) (2.3)

belongs to W 1,∞(D;R3), and in particular to semicart(D; Γ−,Γ+).

Remark 2.9. If γ+(t) = γ−(t) for some t ∈ (a, b), Φ`R (resp. Φ`D ) maps the segment {t} ×
[−1, 1] (resp. {t} × [σ−(t), σ+(t)]) to the point (t, γ+(t)), hence it is not injective. More generally, a
semicartesian map could be possibly not injective even if γ−(t) 6= γ+(t) for every t ∈ (a, b).

As a consequence of Lemma 2.8, we can introduce the following quantities.

Definition 2.10 (Minimal values m). Let Γ = Γ− ∪ Γ− be union of two Lipschitz graphs on [a, b].
We define

m(R; Γ−,Γ+) := inf
Φ∈semicart(R;Γ−,Γ+)

∫
R

|∂tΦ ∧ ∂sΦ| dt ds. (2.4)

If furthermore Γ is closed we define

m(D; Γ−,Γ+) := inf
Φ∈semicart(D;Γ−,Γ+)

∫
D

|∂tΦ ∧ ∂sΦ| dt ds. (2.5)

It is worthwhile to observe that (2.4) may become a partially free boundary problem, on the planes
{t = a} and {t = b}.
Trivially, if Γ is closed, then

m(R; Γ−,Γ+) ≤ m(D; Γ−,Γ+).
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Indeed, supposing without loss of generality that |σ±| < 1, we can find, for any Ψ ∈ semicart(D; Γ−,Γ+),
a map Φ ∈ semicart(R; Γ−,Γ+) having the same area, defined as

Φ(t, s) :=


Ψ(t, s) if (t, s) ∈ D,
γ+(t) if (t, s) ∈ R \D, s > 0,

γ−(t) if (t, s) ∈ R \D, s < 0.

(2.6)

Remark 2.11 (Semicartesian parametrizations and Plateau’s problem). The problem of the
existence of a minimum in (2.4) and (2.5) seems to be open and requires further investigation. If
Γ = Γ− ∪ Γ+ is a closed simple curve, it is natural to compare m(D; Γ−,Γ+) with the area a(Γ) of
a solution of the classical Plateau’s problem for Γ, that is an area-minimizing immersion of the disk,
that maps the boundary of the disk onto Γ monotonically, see for instance [13] and [8]. It is possible(5)

to see that
m(D; Γ−,Γ+) ≥ a(Γ). (2.7)

It is plausible that (2.7) holds with equal sign, and that m(D; Γ−,Γ+) is actually a minimum. To
substantiate these assertions, we recall that in [4] it is proven that solutions of the classical Plateau’s
problem admit a semicartesian parametrization if Γ is an analytic curve with further nondegeneracy
properties at (a, γ±(a)) and (b, γ±(b)) (a case that does not fit in our setting). On the other hand, for
what concerns the semicartesian maps defined on the rectangle R, even assuming that Γ is a closed sim-
ple curve, the existence of an area-minimizing semicartesian parametrization in semicart(R; Γ−,Γ+)
does not follow from the existence of a solution for the Plateau’s problem. Indeed since the class of
surfaces parametrized by maps in semicart(R; Γ−,Γ+) strictly contains (due to the free boundary on
the planes {t = a} and {t = b}) the ones parametrized by maps in semicart(D; Γ−,Γ+), we could
expect that in general it contains also the class of surfaces considered in the classical setting. More-
over we shall prove that possibly a(Γ) > m(R; Γ−,Γ+): in Example 2.12 we build a semicartesian
parametrization whose image is not in the class of surfaces considered for the classical Plateau’s prob-
lem; in Example 2.13 we exhibit γ± ∈ Lip([a, b];R2) such that the union of their graphs is a Jordan
curve for which the semicartesian parametrization built in Example 2.12 has as area which is less than
a(Γ).

The next example is also strictly related to the construction made in Proposition 7.1.

Example 2.12 (Partially free boundary on {t = b}). Let γ± ∈ Lip([a, b];R2) and suppose that
γ−(a) = γ+(a); let us denote by C the (connected) set γ−([a, b]) ∪ γ+([a, b]) ⊂ R2

(ξ,η). In Figure 1 we

draw a case when γ+ is not injective.
We want to define the map Φ ∈ semicart(R; Γ−,Γ+) which, for every t ∈ (a, b), maps the segment
{t} × [−1, 1] ⊂ R onto the portion of {t} × C bounded by the points (t, γ−(t)) and (t, γ+(t)) and
containing (t, γ−(a)).
If for convenience we parametrize C by a curve γ ∈ Lip([−1, 1];R2), defined by

γ(λ) :=

{
γ−(−(b− a)λ+ a) if λ ∈ [−1, 0],

γ+((b− a)λ+ a) if λ ∈ (0, 1],

so that γ(−1) = γ−(b), γ(0) = γ−(a) = γ+(a) and γ(1) = γ+(b), then Φ({t} × [−1, 1]) must be equal

to
{

(t, γ(λ)) : λ ∈
[
− t−a
b−a ,

t−a
b−a

]}
. Thus we can define Φ ∈ semicart(R; Γ−,Γ+) as

Φ(t, s) :=

(
t, γ

(
t− a
b− a

s

))
, (t, s) ∈ R. (2.8)

(5)For instance, as a consequence of the Riemann mapping theorem.
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b

a

γ−(a) = γ+(a)

γ+(b)

γ−(b)

ξ

η

t

Figure 1: Example 2.12. In the plane {0}×R2
(ξ,η)

we represent the curve C; C is the projection of the curves Γ± (in

bold) on the plane {0} × R2
(ξ,η)

. In light grey we draw the copies of C in the planes {t} × R2
(ξ,η)

, t ∈ [a, b]. The surface

Φ(R) is the union of all portions of {t} × C bounded by (t, γ−(t)) and (t, γ+(t)), when t varies in [a, b].

We observe that, if Γ := graph(γ−) ∪ graph(γ+) is a closed simple curve, the surface Φ(R) is not the
image of an immersion of the disk mapping the boundary of the disk monotonically onto Γ, because
Φ(∂R) = Γ ∪ ({b} × C). Moreover

m(R; Γ−,Γ+) ≤
∫

R

|∂tΦ ∧ ∂sΦ| dt ds ≤ (b− a)

∫ b

a

(
|γ̇−|+ |γ̇+|

)
dt.

Note that, if γ± are injective, we have that Φ(R) lies on the lateral part of the surface of the cylinder
(a, b)× C.

We now exhibit maps γ± ∈ Lip([a, b];R2) so that Γ := graph(γ−)∪graph(γ+) is a closed simple curve
and m(R; Γ−,Γ+) < a(Γ).

Example 2.13 (m(R; Γ−,Γ+) < a(Γ)). Let ρ be a positive real number with

ρ > 2(b− a). (2.9)

Let us define the maps γ± ∈ Lip([a, b];R2) as follows: if t ∈ [a, b],

γ−(t) := (1, 0),

γ+(t) := ρ (cos(θ(t)), sin(θ(t))) + (1− ρ, 0),
(2.10)

where θ : [a, b]→ [0, 2π] is given by

θ(t) :=
2π(t− a)

b− a
, t ∈ [a, b], (2.11)

see the second picture of Figure 2. Then Γ := graph(γ−) ∪ graph(γ+) is a Lipschitz closed simple
curve. Moreover, any disk-type surface spanning Γ has area greater than or equal to the area πρ2 of
its orthogonal projection (a disk of radius ρ) on the coordinate plane R2

(ξ,η), hence

a(Γ) ≥ πρ2.
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On the other hand, the image Φ(R) of the semicartesian parametrization (R,Φ) defined in (2.8) has
area strictly less than 2πρ(b − a) (see the first picture in Figure 2). From our choice (2.9), it then
follows

m(R; Γ−,Γ+) < a(Γ).

a b

Γ

t

Γ

a b t

Figure 2: The curve Γ defined in Example 2.13. The left picture is the image of the semicartesian parametrization
(R,Φ) spanning Γ built as in Example 2.12; we notice that it lies on the lateral surface of the cylinder of base the disk
of radius ρ and height b− a. The right picture represents the image of an embedding of the disk mapping the boundary
of the disk onto Γ: the area of such a surface is greater than or equal to the area of its orthogonal projection on a plane
orthogonal to the t-axis, that is a disk of radius ρ.

We conclude this section proving that fixing R and D as in Definition 2.5 is not restrictive.

Lemma 2.14 (Choice of domain). Let Γ = Γ− ∪ Γ+ be union of two Lipschitz graphs on [a, b],
Γ± = graph(γ±). Let O1 = [[σ−1 , σ

+
1 ]] be such that σ−1 (a) < σ+

1 (a) and σ−1 (b) < σ+
1 (b). If (O1,Ψ)

is a semicartesian parametrization spanning Γ such that Ψ ∈ H1(O1;R3), then there exists a map
Φ ∈ semicart(R; Γ−,Γ+) such that∫

R

|∂tΦ ∧ ∂sΦ| dt ds =

∫
O1

|∂tΨ ∧ ∂sΨ| dt ds. (2.12)

If moreover Γ is closed, O2 = [[σ+
2 , σ

+
2 ]] is such that σ−2 (a) = σ+

2 (a) and σ−2 (b) = σ+
2 (b), and (O2, χ)

is a semicartesian parametrization spanning Γ such that χ ∈ H1(O2;R3), then there exists a map
Φ ∈ semicart(D; Γ−,Γ+) such that∫

D

|∂tΦ ∧ ∂sΦ| dt ds =

∫
O2

|∂tχ ∧ ∂sχ| dt ds. (2.13)

Proof. Let us define the map T1 : R→ O1 as

T1(t, s) :=

(
t,

1− s
2

σ−1 (t) +
1 + s

2
σ+

1 (t)

)
.

Since σ±1 ∈ Lip([a, b]), we have that T ∈ Lip(R;O1) and thus the map Φ := Ψ ◦ T1 belongs to
semicart(R; Γ−,Γ+); moreover T1 is injective and thus (2.12) holds.
Let us suppose that Γ is closed. Recall that D = [[σ−, σ+]]. We define the map T2 : D → O2 as

T2(t, s) :=

(
t,

σ+(t)− s
σ+(t)− σ−(t)

σ−2 (t) +
s− σ−(t)

σ+(t)− σ−(t)
σ+

2 (t)

)
.

One can show that T2 ∈ Lip(D;O2) with computation similar to the ones in Lemma 2.8, and thus the
map Φ := χ ◦ T2 belongs to semicart(D; Γ−,Γ+). The injectivity of T2 implies (2.13).
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2.1 Maps from a planar domain to the plane and jumping on a curve

From now on we set
R− := (a, b)× (−1, 0), R+ := (a, b)× (0, 1).

Let Ω ⊂ R2
(x,y) be a bounded open connected set. Let u : Ω → R2

(ξ,η) be a map belonging to

BV(Ω;R2) ∩W 1,∞(Ω \ Ju;R2), where Ju ⊂ Ω is a C2 simple curve parametrized by an arc-length
parametrization α : (a, b) ⊂ Rt → R2

(x,y). Two cases are possible (remember our convention on the

set Ju in the Introduction): either Ju ⊂⊂ Ω or Ju ∩ ∂Ω 6= ∅.
We denote by u± the two Lipschitz traces on the two sides of the jump, and we define γ±[u] ∈
Lip((a, b);R2) as

γ±[u](t) := u±(α(t)).

In accordance with our previous notation, we denote with Γ±[u] ⊂ R3 = Rt × R2
(ξ,η) the graph of

γ±[u]. When there is no ambiguity, we shall write γ± and Γ± in place of γ±[u] and Γ±[u], respectively.
In this paper we will deal with pairs (Ω,u) satisfying one of the two conditions specified in Definitions
2.15 and 2.16. In both the two conditions, the jump Ju is a horizontal segment; this assumption allows
to identify the plane R2

(x,y) (containing the domain Ω of u) with the space of the parameters R2
(t,s),

thus simplifying the presentation(6).

Definition 2.15 (Condition I). We say that Ω and u ∈ BV(Ω;R2) satisfy condition I if Ω = R,
Ju = (a, b)× {0}, and u ∈ Lip(R−;R2) ∩ Lip(R+;R2).

Definition 2.16 (Condition II). We say that Ω and u ∈ BV(Ω;R2) satisfy condition II if Ju :=
[a, b]×{0} ⊂⊂ Ω, u ∈W 1,∞(Ω \ Ju;R2), and there exist the pointwise limits (still denoted by u±) of
u at all points of Ju.

3 Condition I: upper bound

The next proposition provides an upper bound for A∞(u,Ω) (and hence for A(u,Ω)), when Ω and u
satisfy condition I, proving one of the two inequalities (i.e., (3.2)) of Theorem 1.3. We shall suitably
modify the construction made in [4] in a different context.

Proposition 3.1 (Upper bound, I). Let Ω and u satisfy condition I. Then there exists a sequence
(uh) ⊂ H1(R;R2) converging to u in L1(R;R2) and uniformly out of Ju such that

lim inf
h→+∞

A(uh,R) =

∫
R

|M(∇u)| dt ds+m(R; Γ−[u],Γ+[u]). (3.1)

Hence
A∞s (u,R) ≤ m(R; Γ−[u],Γ+[u]). (3.2)

Proof. Let (Φh) ⊂ semicart(R; Γ−,Γ+) be a minimizing sequence for (1.3), that is∫
R

|∂tΦh ∧ ∂sΦh| dt ds→ m(R; Γ−,Γ+) as h→ +∞, (3.3)

(6) When Ju is a simple curve of class C2, this identification cannot be made; however there exist δ > 0 and an open
set N ⊃ Ju such that N = Λ((a, b)× (−δ, δ)), with (a, b)× (−δ, δ) ⊂ R(t,s) and Λ is the C1 diffeomorphism defined by

Λ(t, s) := α(t) + sα̇(t)⊥ for (t, s) ∈ Rδ := (a, b) × (−δ, δ), where v⊥ := (−v2, v1). Thus, with some technicalities, we
expect to be possible to extend our results also to this case. In [4] the upper bound to A(u,Ω) is provided for a map
jumping on a C2 smooth curve compactly contained in Ω.
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and write Φh(t, s) = (t, φh(t, s)) with φh ∈ H1(R;R2). For any ε ∈ (0, 1) set Rε := (a, b) × (−ε, ε),
and define the map uh,ε ∈ H1(R;R2) as

uh,ε(t, s) :=


u(t, s) if (t, s) ∈ R \ R2ε,

u(t, 2(s− ε)) if (t, s) ∈ (a, b)× (ε, 2ε),

u(t, 2(s+ ε)) if (t, s) ∈ (a, b)× (−2ε,−ε),
φh(t, s/ε) if (t, s) ∈ Rε.

With a computation similar to the one in [4], we get

lim inf
ε→0+

A(uh,ε,R) =

∫
R

|M(∇u)| dt ds+

∫
R

|∂tΦh ∧ ∂sΦh| dt ds.

Indeed A(uh,ε, (a, b)×(ε, 2ε)) and A(uh,ε, (a, b)×(−2ε,−ε)) are negligible as ε→ 0+, as a consequence
of the hypothesis u ∈ Lip(R+;R2) ∩ Lip(R−;R2). Moreover, a direct computation gives:

A(uh,ε,Rε) =

∫ b

a

∫ ε

−ε

√
1 +

∣∣∣∂tφh (t, s
ε

)∣∣∣2 +
1

ε2

∣∣∣∂sφh (t, s
ε

)∣∣∣2 +
1

ε2

(
det∇φh

(
t,
s

ε

))2

ds dt

=

∫ b

a

∫ 1

−1

√∣∣∣∂sφh (t, s
ε

)∣∣∣2 +
(

det∇φh
(
t,
s

ε

))2

+O(ε2) ds dt

ε→0+

−→
∫

R

|∂tΦh ∧ ∂sΦh| dt ds.

By a diagonalization process, and using (3.3), we can choose a sequence (uh) := (uh,εh) such that

lim
h→+∞

A(uh,R) =

∫
R

|M(∇u)| dt ds+m(R; Γ−,Γ+),

which implies (3.1).(7)

4 Condition I: lower bound

The main result of this section is the following inequality that, coupled with Proposition 3.1, concludes
the proof of Theorem 1.3.

Theorem 4.1 (Lower bound, I). Let Ω and u satisfy condition I. Let (uh) ⊂ Lip(R;R2) be a
sequence converging to u in L1(R;R2) and uniformly out of Ju. Then

lim inf
h→+∞

A(uh,R) ≥
∫

R

|M(∇u)| dt ds+m(R; Γ−[u],Γ+[u]).

Hence
A∞s (u,R) ≥ m(R; Γ−[u],Γ+[u]). (4.1)

The proof of Theorem 4.1 will be achieved in two steps: the first step gives the result if the sequence
uh coincides with u far enough from Ju.

(7)Indeed (see [4, Appendix 3]) A(·,R) can be obtained by relaxing in L1 the functional v →
∫
R |M(∇v)| dt ds from

H1(R;R3). Similar results hold for A∞(·,R), with the corresponding convergence.
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Theorem 4.2. Let Ω and u satisfy condition I. If (uh) ⊂ Lip(R;R2) converges to u in L1(R;R2) and

uh = u in R \Nh,

for some decreasing sequence (Nh) of neighbourhoods of Ju such that
⋂
h∈N

Nh = Ju, then

lim inf
h→+∞

A(uh,R) ≥
∫

R

|M(∇u)| dt ds+m(R; Γ−[u],Γ+[u]).

The second step shows that, given any sequence (uh) satisfying the hypotheses of Theorem 4.1, we
can build a sequence (vh) satisfying the hypotheses of Theorem 4.2 and whose area is, in the limit,
not larger than the area of (uh).

Theorem 4.3. Let Ω and u satisfy condition I. Let (uh) ⊂ Lip(R;R2) be a sequence converging to u
in L1(R;R2) and uniformly out of Ju. Then there exists a sequence (vh) ⊂ Lip(R;R2) satisfying the
hypotheses of Theorem 4.2 and such that

lim inf
h→+∞

A(uh,R) ≥ lim inf
h→+∞

A(vh,R). (4.2)

4.1 Proof of Theorem 4.2

We need some preliminary lemmas.

Lemma 4.4 (Lower bound of m via interpolation). Let α, β ∈ Lip([a, b];R2), and set Γα :=
graph(α) and Γβ := graph(β). Then there exists a constant C > 0 independent of α and β, such that

m(R; Γα,Γβ) ≤ C||α− β||L1((a,b);R2)

(
1 + max

[
||α̇||L∞((a,b);R2), ||β̇||L∞((a,b);R2)

])
. (4.3)

Proof. Let us define the map ` ∈W 1,∞(R;R2) interpolating α and β, as in Lemma 2.8, that is

`(t, s) :=
1− s

2
α(t) +

1 + s

2
β(t), (t, s) ∈ R.

Setting Φ`(t, s) := (t, `(t, s)), we get ∂tΦ`(t, s) =
(

1, 1−s
2 α̇(t) + 1+s

2 β̇(t)
)

and ∂sΦ`(t, s) =
(

0, β(t)−α(t)
2

)
.

Thus

|∂tΦ` ∧ ∂sΦ`| =
1

2

√
|α− β|2 +

[(
1− s

2
α̇+

1 + s

2
β̇

)
· (α− β)⊥

]2

, (4.4)

where, for z = (z1, z2) ∈ R2, we set z⊥ := (−z2, z1). Hence∫
R

|∂tΦ` ∧ ∂sΦ`| dt ds ≤ C||α− β||L1((a,b);R2)

(
1 + max

[
||α̇||L∞((a,b);R2), ||β̇||L∞((a,b);R2)

])
, (4.5)

and, since Φ` ∈ semicart(R; Γα,Γβ), also (4.3) follows.

The computations in Lemma 4.4 allow to prove a semicontinuity result for m(R; Γ−h ,Γ
+
h ).

Lemma 4.5 (Lower semicontinuity of m(R; ·, ·)). Let (γ±h ) ⊂ Lip([a, b];R2) and γ± ∈ Lip([a, b];R2)
be such that:

- there exists C1 > 0 such that ||γ̇±h ||L∞((a,b);R2) ≤ C1 for any h ∈ N,

- γ±h → γ± in L1((a, b);R2) as h→ +∞.

Then, setting Γ±h := graph(γ±h ) and Γ± := graph(γ±), we have

m(R; Γ−,Γ+) ≤ lim inf
h→+∞

m(R; Γ−h ,Γ
+
h ).
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Proof. For any h ∈ N, let
(
Φhk
)
⊂ semicart(R; Γ−h ,Γ

+
h ) be such that

lim
k→+∞

∫
R

|∂tΦhk ∧ ∂sΦhk | dt ds = m(R; Γ−h ,Γ
+
h ). (4.6)

Let us denote by `+h , `
−
h : R→ R2 the linear interpolating maps, such that, for any t ∈ [a, b],

`+h (t,−1) = γ+
h (t), `+h (t, 1) = γ+(t),

`−h (t,−1) = γ−h (t), `−h (t, 1) = γ−(t).

Following the notation of Lemma 2.8 we also write Φ`±h
(t, s) := (t, `±h (t, s)). We define the maps

(Ψh
k) ⊂ semicart(R; Γ−,Γ+) as

Ψh
k(t, s) :=


Φ`+h

(t, 4s− 3)) if t ∈ (a, b), s ∈ [1/2, 1),

Φhk(t, 2s) if t ∈ (a, b), s ∈ (−1/2, 1/2),

Φ`−h
(t,−4s− 3)) if t ∈ (a, b), s ∈ (−1,−1/2].

We have, using also (4.6),∫
R

|∂tΨh
k ∧ ∂sΨh

k | dt ds

=

∫
R

|∂tΦhk ∧ ∂sΦhk | dt ds+

∫
R

|∂tΦ`+h ∧ ∂sΦ`+h | dt ds+

∫
R

|∂tΦ`−h ∧ ∂sΦ`−h | dt ds

k→+∞−→ m(R; Γ−h ,Γ
+
h ) +

∫
R

|∂tΦ`+h ∧ ∂sΦ`+h | dt ds+

∫
R

|∂tΦ`−h ∧ ∂sΦ`−h | dt ds.

Now, recalling inequality (4.5) and our first assumption, we have∫
R

|∂tΦ`+h ∧ ∂sΦ`+h | dt ds+

∫
R

|∂tΦ`+h ∧ ∂sΦ`+h | dt ds

≤C
(
‖γ+
h − γ

+‖L1((a,b);R2) + ‖γ−h − γ
−‖L1((a,b);R2)

)
(1 + C1) ,

and the right hand side is infinitesimal as h → +∞ by our second assumption. Hence, we can select
a subsequence (kh) and obtain a sequence

(
Ψh
kh

)
⊂ semicart(R; Γ−,Γ+) so that

lim inf
h→+∞

∫
R

|∂tΨh
kh
∧ ∂sΨh

kh
| dt ds = lim inf

h→+∞
m(R; Γ−h ,Γ

+
h ).

The inclusion Ψh
kh
∈ semicart(R; Γ−,Γ+) implies that∫

R

|∂tΨh
kh
∧ ∂sΨh

kh
| dt ds ≥ m(R; Γ−,Γ+),

and the assertion of the lemma follows.

The last result that we need before proving Theorem 4.2 provides an estimate from below of the area
of the graph of a sufficiently smooth map on a strip.

Lemma 4.6 (Lower bound of area on a strip). Let ε ∈ (0, 1) and Rε := (a, b)× (−ε, ε). Given a
map v ∈ Lip(Rε;R2), let Γ±ε denote the graphs on [a, b] of the sections v(·,±ε) ∈ Lip([a, b];R2). Then

A(v,Rε) ≥ m(R; Γ−ε ,Γ
+
ε ).
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Proof. Set v = (v1, v2). Neglecting the constant 1 and the term |∂tv|2 in the expression of |M(∇v)|,
we deduce

A(v,Rε) ≥
∫

Rε

√
|∂sv|2 + (∂tv1∂sv2 − ∂sv1∂tv2)2 dt ds. (4.7)

On the other hand we can define the map Φ ∈ semicart(R; Γ−ε ,Γ
+
ε ) as

Φ(t, s) := (t,v(t, εs)), (t, s) ∈ R,

and (2.2) shows that
∫

R
|∂tΦ ∧ ∂sΦ| dt ds equals the right hand side of (4.7). Hence

A(v,Rε) ≥
∫

R

|∂tΦ ∧ ∂sΦ| dt ds ≥ m(R; Γ−ε ,Γ
+
ε ).

Now, we can prove Theorem 4.2.

Proof. Recalling the properties of the sequence (uh), we can choose an infinitesimal sequence (εh) of
positive numbers such that Rεh := (a, b)× (−εh, εh) ⊇ Nh. We have

A(uh,R) = A(u,R \ Rεh) +A(uh,Rεh).

Set γ±h (·) := uh(·,±εh) and γ± := γ±[u]. We observe that, by assumption, γ±h = u(·,±εh) and thus
γ±h and γ satisfy the hypotheses of Lemma 4.5. Hence, applying also Lemma 4.6, we get

lim inf
h→+∞

A(uh,R) ≥ lim inf
h→+∞

[
A(u,R \ Rεh) +m(R; Γ−h ,Γ

+
h )
]
≥
∫

R

|M(∇u)| dt ds+m(R; Γ−,Γ+),

that is the thesis.

Remark 4.7. The strategy of the proof of Theorem 4.2 would prove the lower bound (4.1) for any
sequence (uh) ⊂ C1(R;R2) converging to u in L1(R;R2), if we would be able to remove the bound on
the L∞-norm of γ̇±h in the hypotheses of Lemma 4.5. Indeed, as a consequence of Fubini’s theorem,
the convergence of (uh) to u in L1(R;R2) implies that uh(·, ε) → u(·, ε) in L1((a, b);R2) for almost
every level ε ∈ (0, 1).
Lemma 4.5 is in some sense coherent with the lower semicontinuity of the area of solutions of Plateau’s
problem (when Γh and Γ are Jordan curves); indeed lower semicontinuity is usually guaranteed when
Γh → Γ in the sense of Fréchet, [13], [8], that would be implied by our hypotheses. On the other hand,
in Example 4.8 we exhibit a sequence (Γh) of curves, union of two Lipschitz graphs, converging in L1

to a union Γ of two Lipschitz graphs, for which the lower semicontinuity fails. In this context Γh → Γ
in L1 means that Γh := graph(γ−h )∪graph(γ+

h ), Γ := graph(γ−)∪graph(γ+), γ±h , γ
± ∈ Lip([a, b];R2),

and γ±h → γ± in L1((a, b);R2) as h→ +∞.

Example 4.8 (Lack of L1-lower semicontinuity for the Plateau’s problem). Let Γ ⊂ R3 be
a closed simple rectifiable curve. As already recalled in Remark 4.7, it is known that a(·) is Fréchet
lower semicontinuous. We show here that if Γ is union of the graphs of γ± ∈ Lip([a, b];R2), it may
happen that

a(Γ) > lim
h→+∞

a(Γh), (4.8)

where (Γh) is a sequence of closed simple space curves, Γh = graph(γ−h ) ∪ graph(γ+
h ), and γ±h → γ±

in L1((a, b);R2) as h→ +∞.
Indeed, choose the maps γ± as in (2.10). Let us define the maps γ±h ∈ Lip([a, b];R2) converging to γ±

in L1((a, b);R2) as

γ−h (t) = (1, 0) = γ−(t), γ+
h (t) = ρ

(
cos(θh(t)), sin(θh(t))

)
+ (1− ρ, 0),
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a b

Γh

b−1
h

Figure 3: One element of the sequence (Γh) defined in Example 4.8 that approximates in L1 sense the curve Γ defined
in Example 2.13, and a disk-type surface with boundary Γh that lies on the cylinder.

where

θh(t) :=

{
θ(t) if t ∈ [a, b− h−1],

−2π b−a−h
−1

b−a h(t− b) if t ∈ (b− h−1, b],

with θ defined in (2.11). Hence, in the short interval (b−h−1, b), the path made by γ+
h is the same as

the path it makes in (a, b−h−1), with reversed orientation. The curve Γh is represented in the Figure
3. For any h ∈ N there exists an immersion of the disk, mapping the boundary of the disk onto Γh
whose image lies on the lateral boundary of the cylinder [a, b] × Bρ((1 − ρ, 0)); hence for any h ∈ N
we have a(Γh) ≤ 2πρ(b− a) that, for ρ large enough, gives (4.8), see Example 2.13.
This example does not exclude the lower semicontinuity of m(R; Γ−,Γ+) with respect to the L1-
convergence. Indeed the limit of the areas of the surfaces represented in Figure 3 is the area of the
surface represented in the first picture of Figure 2.

4.2 Proof of Theorem 4.3

In order to prove Theorem 4.3 we need the following technical result, inspired by [1, Proposition 7.3],
that provides a way to interpolate two maps on a strip, by controlling the amount of area of the
interpolating map with the thickness of the strip.

Proposition 4.9 (Interpolation, I). Let (uh) ⊂ Lip(R+;R2) be a sequence converging to u ∈
Lip(R+;R2) in L1(R+;R2). Let εo ∈ (0, 1) be fixed, such that ∂tu(·, s)|s=εo exists almost everywhere
in (a, b). Let εi ∈ (0, εo) be such that:

(i) ||uh(·, εi)− u(·, εi)||L∞((a,b);R2) → 0 as h→ +∞;

(ii) ∂tuh(·, s)|s=εi exists almost everywhere in (a, b) for any h ∈ N;

(iii) lim inf
h→+∞

||∂tuh(·, εi)||L1((a,b);R2) ≤M , where the constant M may depend on εi.

Then the sequence (vh) ⊂ Lip(R+;R2) defined as

vh(t, s) :=


u(t, s) if t ∈ (a, b) , s > εo,
εo−s
εo−εi uh(t, εi) + s−εi

εo−εi u(t, εo) if t ∈ (a, b), s ∈ [εi, εo],

uh(t, s) if t ∈ (a, b) , s < εi

(4.9)

satisfies
lim inf
h→+∞

A
(
vh, (a, b)× (εi, εo)

)
≤ C

[
1 +M

]
|εo − εi|, (4.10)

where C > 0 depends on lip(u) and b− a, and is independent of εo and εi.
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Proof. Let Sεoεi := (a, b)× (εi, εo). The Jacobian matrix of vh at almost every (t, s) ∈ Sεoεi is:

1

εo − εi

(
(εo − s)∂tuh(t, εi) + (s− εi)∂tu(t, εo)

∣∣∣∣∣ u(t, εo)− uh(t, εi)

)
.

We control the area of the graph of vh in Sεoεi as

A(vh, S
εo
εi ) ≤ C

∫
Sεo
εi

[
[1 + |∂tvh|+ |∂svh|+ |det∇vh|

]
dt ds, (4.11)

where C > 0 is an absolute constant. We estimate each of the four integrals on the right hand side of
(4.11) as follows.

- The first term is obviously bounded by (εo − εi)(b− a).

- Concerning the second term, we have∫ εo

εi

∫ b

a

|∂tvh| dt ds ≤ (εo − εi)
∫ b

a

(|∂tuh(t, εi)|+ |∂tu(t, εo)|) dt

≤ (εo − εi)

[∫ b

a

|∂tuh(t, εi)| dt+ lip(u)(b− a)

]
.

(4.12)

- Similarly, for the third term we have∫ εo

εi

∫ b

a

|∂svh(t, s)| dt ds ≤
∫ b

a

[
|u(t, εo)− u(t, εi)|+ |u(t, εi)− uh(t, εi)|

]
dt

≤ lip(u)(b− a)(εo − εi) + ||u(·, εi)− uh(·, εi)||L1((a,b);R2).

(4.13)

- Concerning the term with the determinant:∫ εo

εi

∫ b

a

|det∇vh(t, s)| dtds

≤2

∫ b

a

|u(t, εo)− uh(t, εi)|
(
|∂tuh(t, εi)|+ |∂tu(t, εo)|

)
dt

=2

∫ b

a

|u(t, εo)− uh(t, εi)||∂tu(t, εo)| dt+ 2

∫ b

a

|u(t, εo)− uh(t, εi)||∂tuh(t, εi)| dt

= : Ih + IIh.

We have

Ih ≤2lip(u)

∫ b

a

(|u(t, εo)− u(t, εi)|+ |u(t, εi)− uh(t, εi)|) dt

≤2(lip(u))2(b− a)(εo − εi) + 2lip(u)||u(·, εi)− uh(·, εi)||L1((a,b);R2).

(4.14)

Next

IIh ≤ 2

∫ b

a

|u(t, εo)− u(t, εi)||∂tuh(t, εi)| dt+ 2

∫ b

a

|u(t, εi)− uh(t, εi)||∂tuh(t, εi)| dt

≤ 2
(
lip(u)(εo − εi) + ||u(·, εi)− uh(·, εi)||L∞((a,b);R2)

) ∫ b

a

|∂tuh(t, εi)| dt.
(4.15)
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Finally, using (4.12), (4.13), (4.14) and (4.15) we get:

A(vh, S
εo
εi ) ≤C(εo − εi)

[
1 + ||u(·, εi)− uh(·, εi)||L1((a,b);R2)

+ (1 + ||u(·, εi)− uh(·, εi)||L∞((a,b);R2))

∫ b

a

|∂tuh(t, εi)| dt
]
.

Using hypotheses (i)− (iii), and passing to the limit, we get

lim inf
h→+∞

A(vh, S
εo
εi ) ≤ C[1 +M ](εo − εi), (4.16)

where C depends just on b− a and lip(u).

We are now in the position to prove Theorem 4.3.

Proof. We can suppose that A(uh,R) is uniformly bounded with respect to h ∈ N, otherwise the
result is trivial. Moreover, passing to a not relabeled subsequence, we can suppose also that there
exist

lim
h→+∞

A(uh,R) < +∞, lim
h→+∞

A(uh,R
+) < +∞, lim

h→+∞
A(uh,R

−) < +∞.

Since uh → u uniformly on every compact set of R+ as h→ +∞, hypothesis (i) of Proposition 4.9 is
verified for any choice of the level ε1 ∈ (0, 1). Using Fatou’s lemma we get∫ 1

0

lim inf
h→+∞

(∫ b

a

|∂tuh(t, s)| dt

)
ds ≤ lim inf

h→+∞
A(uh,R

+) < +∞.

Thus we can select a level ε1 ∈ (0, 1), a subsequence (uhj ) and a constant M(ε1) both depending on
ε1, such that

lim
j→+∞

∫ b

a

|∂tuhj (t, ε1)| dt ≤M(ε1).

Repeating the argument a countably number of times and using the same procedure on R−, we can
select a subsequence (uhj

) of (uh), and an infinitesimal sequence (εk) of positive levels such that
uhj

(·,±εk) satisfies the hypotheses (i)− (iii) of Proposition 4.9.
Let us choose also an infinitesimal sequence (δk) of positive numbers such that

δkM(εk)
k→+∞−→ 0 (4.17)

and such that ∂tu(t, s)|s=±(εk+δk) exists for almost every t ∈ (a, b) for any k ∈ N.

Now, we define the maps vkhj
similarly to (4.9):

vkhj
(t, s) :=


u(t, s) if t ∈ (a, b), εk + δk < |s| < 1,
εk+δk−s

δk
uhj

(t, εk) + s−εk
δk

u(t, εk + δk) if t ∈ (a, b), εk ≤ s ≤ εk + δk,
εk+δk+s

δk
uhj

(t,−εk) + −s−εk
δk

u(t,−(εk + δk)) if t ∈ (a, b), −(εk + δk) ≤ s ≤ −εk,
uhj

(t, s) if t ∈ (a, b), |s| < εk.

We claim that for any k ∈ N we have

lim inf
j→+∞

A(vkhj
,R) ≤ lim

h→+∞
A(uh,R) + C [1 +M(εk)] δk, (4.18)

where C is the constant given in (4.10).
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For any λ ∈ (0, 1) set R+
λ := (a, b)× (0, λ). Without loss of generality we can suppose that there exists

lim
h→+∞

A(uh,R
+ \ R+

εk+δk
) for any k ∈ N. Using the same notation of the proof of Proposition 4.9,

and since A
(
uhj

,R+
εk

)
≤ A

(
uhj

,R
)
−A

(
uhj

,R+ \ R+
εk+δk

)
, we get:

A
(
vkhj

,R+
)

= A
(
u,R+ \ R+

εk+δk

)
+A

(
vkhj

, Sεk+δk
εk

)
+A

(
uhj ,R

+
εk

)
≤ A

(
u,R+ \ R+

εk+δk

)
−A

(
uhj ,R

+ \ R+
εk+δk

)
+A

(
vkhj

, Sεk+δk
εk

)
+A

(
uhj ,R

+
)
.

Passing to the limit as j → +∞, recalling that A(·,R+ \R+
εk+δk

) is lower semicontinuous, using (4.10),

and making similar computations also in R−, we get claim (4.18).
Finally, the proof of (4.2) is concluded by remembering (4.17), choosing a suitable subsequence (khj )

and defining vhj
:= v

khj

hj
.

5 Condition II: upper bound

In this short section and in Section 6 we discuss the case where Ω and u satisfy condition II. In
Proposition 5.1, following the strategy of [4], we prove the upper bound in Theorem 1.4 (see inequality
(5.2)). We recall that D = [[σ−, σ+]] is the (fixed) domain defined in Definition 2.5. As for the case
when Ω and u satisfy condition I, this upper bound implies also that As(u,Ω) ≤ m(D; Γ−,Γ+), since
in general A(u,Ω) ≤ A∞(u,Ω). In Section 7 we describe some examples where the previous inequality
is strict.

The proof of the next proposition is similar to the one in [4, Theorem 4.1]. We briefly report it for
the sake of completeness.

Proposition 5.1 (Upper bound, II). Let Ω and u satisfy condition II. Then there exists a sequence
(uh) ⊂ H1(Ω;R2) converging to u in L1(Ω;R2) and uniformly out of Ju, such that

lim inf
h→+∞

A(uh,Ω) =

∫
Ω

|M(∇u)| dt ds+m(D; Γ−[u],Γ+[u]). (5.1)

Hence
A∞s (u,Ω) ≤ m(D; Γ−[u],Γ+[u]). (5.2)

Remark 5.2. We notice thatm(D; Γ−[u],Γ+[u]) is well defined; indeed the two traces of u on the sides
of Ju are defined and coincide at the end points of the jump, since Ju ⊂⊂ Ω, and u ∈W 1,∞(Ω\Ju;R2).

Proof. We can suppose without loss of generality that D = [[σ−, σ+]] with |σ±| < 1, and hence D ⊂ R.
Let Ψh ∈ semicart(D; Γ−,Γ+) be such that limh→+∞

∫
D
|∂tΦh ∧∂sΦh| dt ds = m(D; Γ−,Γ+). For any

ε ∈ (0, 1) we set Rε := (a, b) × (−ε, ε) and Dε := [[σ−ε , σ
+
ε ]] with σ±ε := εσ±; we define also the map

Tε : Rε \Dε → Rε \ (a, b)× {0} as follows:

Tε(t, s) :=


(
t, s−εσ

+(t)
1−σ+(t)

)
if (t, s) ∈ (R \D) ∩ {s > 0},(

t, s−εσ
−(t)

1+σ−(t)

)
if (t, s) ∈ (R \D) ∩ {s < 0}.

Next, let us consider the sequence (uhε ) ⊂ H1(Ω;R2) given by

uhε (t, s) :=


u(t, s) if (t, s) ∈ Ω \ Rε

u(Tε(t, s)) if (t, s) ∈ Rε \Dε

φh(t, s/ε) if (t, s) ∈ Dε,
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where Φh(t, s) = (t, φh(t, s)). Since Tε and its derivatives are bounded by a constant depending only
on lip(σ±), with computations similar to the ones in Proposition 3.1 we get

lim
ε→0+

A(uhε ,Ω) =

∫
Ω

|M(∇u)| dt ds+

∫
D

|∂tΦh ∧ ∂sΦh| dt ds.

Hence the required sequence is obtained as (uh) := (uhεh), for a suitable infinitesimal sequence (εh) of
positive numbers such that Rεh ⊂ Ω for every h ∈ N.

6 Condition II: lower bound

In this section we want to prove inequality (6.1) which, coupled with Proposition 5.1, concludes the
proof of Theorem 1.4.

Theorem 6.1 (Lower bound, II). Let Ω and u satisfy condition II. Let (uh) ⊂ Lip(Ω;R2) be a
sequence converging to u in L1(Ω;R2) and uniformly out of Ju. Then

lim inf
h→+∞

A(uh,Ω) ≥
∫

Ω

|M(∇u)| dt ds+m(D; Γ−[u],Γ+[u]).

Hence
A∞s (u,Ω) ≥ m(D; Γ−[u],Γ+[u]). (6.1)

As in Section 4, we shall divide the proof in two steps: in the first step we prove the theorem under
the further hypothesis that

uh = u in Ω \Nh, (6.2)

where (Nh) is a decreasing sequence of neighbourhoods of Ju such that
⋂
h∈N

Nh = Ju. In order to prove

this step we shall need the analogous of Lemma 4.5. In the second step we prove that for any sequence
(uh) converging to u in L1(Ω,R2) and uniformly out of Ju, there exists a sequence (vh) ⊂ Lip(Ω;R2)
satisfying (6.2) and such that

lim inf
h→+∞

A(vh,Ω) ≤ lim inf
h→+∞

A(uh,Ω). (6.3)

In order to prove this step we shall need the analogous of Proposition 4.9.
Let us fix some notation. For any ε ∈ (0, b−a2 ), let λε : Rt → Rt be defined as

λε(t) :=
b− a− 2ε

b− a+ 2ε
(t− (a− ε)) + a+ ε,

so that λε((a− ε, b+ ε)) = (a+ ε, b− ε). The map Λε : R2
(t,s) → R2

(t,s) is, instead, defined as

Λε(t, s) = (λε(t), s).

We set Oε := [[σ−ε , σ
+
ε ]], where σ±ε ∈ Lip([a − ε, b + ε]) are such that σ−ε (a − ε) = σ+

ε (a − ε) and
σ−ε (b+ ε) = σ+

ε (b+ ε), and such that Λε(Oε) ⊂⊂ D, see Figure 4. We shall also require ∂Oε without
any horizontal cusp.
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a a+εa−ε b b+εb−ε

Λε(Oε) Oε

D

Figure 4: For any ε > 0 small enough, Oε = [[σ−ε , σ
+
ε ]] is such that its image through the map Λε is compactly

contained in the fixed domain D.

Lemma 6.2. Let γ± ∈ Lip([a, b];R2) be such that γ−(a) = γ+(a) and γ−(b) = γ+(b). Let (εh) be
an infinitesimal sequence of positive numbers and let γ±h ∈ Lip([a − εh, b + εh];R2) be maps with the
following properties:

(i) γ−h (a− εh) = γ+
h (a− εh) and γ−h (b+ εh) = γ+

h (b+ εh) for any h ∈ N;

(ii) lim
h→+∞

γ−h (a− εh) = γ−(a) and lim
h→+∞

γ−h (b+ εh) = γ−(b);

(iii) lim
h→+∞

||γ±h ◦ λεh − γ
±||L1((a+εh,b−εh);R2) = 0.

Moreover we also suppose:

(iv) there exists a constant C1 > 0 such that ||γ̇±
h
||L∞((a−εh,b+εh);R2) ≤ C1 for any h ∈ N.

Then
m(D; Γ−,Γ+) ≤ lim inf

h→+∞
m(Oεh ; Γ−h ,Γ

+
h ), (6.4)

where Γ± := graph(γ±), Γ±h := graph(γ±h ).(8)

Proof. Let Ψh be a semicartesian map in H1(Oεh ;R3) spanning Γh such that∫
Oεh

|∂tΨh ∧ ∂sΨh| dt ds ≤ m(Oεh ; Γ−h ,Γ
+
h ) + εh, (6.5)

with Ψh(t, s) = (t, ψh(t, s)). Let us define Φh ∈ H1(Λεh(Oεh);R3) as

Φh(t, s) := (t, ψh(λ−1
εh

(t), s)) =: (t, φh(t, s)), (t, s) ∈ Λεh(Oεh).

In words, we start from a point in Λεh(Oεh), we take its image in Oεh through the dilation Λ−1
εh

, we
pass to its image through the semicartesian map Ψh, and we contract in the t-direction through the
map (t, ξ, η) → (λεh(t), ξ, η). Recalling (6.5) and since the determinant of the Jacobian of Λεh tends
to 1 as h→ +∞, we get∫

Λεh
(Oεh

)

|∂tΦh ∧ ∂sΦh| dt ds = m(Oεh ; Γ−h ,Γ
+
h ) +O(εh). (6.6)

(8)We denote by m(Oεh ; Γ−h ,Γ
+
h ) the infimum of

∫
Oεh
|∂tΨ ∧ ∂sΨ| dtds among all semicartesian parametrizations

(Oεh ,Ψ) spanning Γh := Γ−h ∪ Γ+
h such that Ψ ∈ H1(Oεh ;R3).
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Recalling that Λεh(Oεh) ⊂⊂ D, we can extend Φh to a semicartesian map in semicart(D; Γ−,Γ+): if
Λ(Oεh) := [[σ−εh , σ

+
εh

]], we define Φh in S+
εh

:= {(t, s) ∈ D : t ∈ (a+ εh, b− εh), s ∈ (σ+
εh

(t), σ+(t))} as

Φh(t, s) :=

(
t,

s− σ+
εh

(t)

σ+(t)− σ+
εh(t)

γ+(t) +
σ+(t)− s

σ+(t)− σ+
εh(t)

φh(t, σ+
εh

(t))

)
.

Similarly, we define Φh on S−εh := {(t, s) ∈ D : t ∈ (a + εh, b − εh), s ∈ (σ−(t), σ−εh(t))}. Thanks to
hypotheses and recalling Lemma 4.4 (see inequality (4.4)), we deduce∫

S−εh∪S
+
εh

|∂tΦh ∧ ∂sΦh| dt ds
h→+∞−→ 0. (6.7)

Now, we define Φh on the curved triangles T ah := {(t, s) ∈ D : t ∈ (a, a+ εh]} and T bh := {(t, s) ∈ D :
t ∈ [b− εh, b)}. Let us define fah ∈ Lip([a, a+ εh];R2) as

fah (t) :=
φh(a+ εh, 0)− γ+(a)

εh
(t− a) + γ+(a),

so that its graph is the segment joining (a, γ+(a)) and (a+ εh, φh(a+ εh, 0)). Next, for (t, s) ∈ T ah , set

Φh(t, s) :=


(
t, s
σ+(t)γ

+(t) + σ+(t)−s
σ+(t) fah (t)

)
if s ≥ 0,(

t, s
σ−(t)γ

−(t) + σ−(t)−s
σ−(t) fah (t)

)
if s < 0,

and similarly on T bh. Again, Lemma 4.4 and our hypotheses imply∫
Ta
h∪T

b
h

|∂tΦh ∧ ∂sΦh| dt ds
h→+∞−→ 0. (6.8)

Thus, using (6.6), (6.7) and (6.8) we obtain, for any h ∈ N,

m(D; Γ−,Γ+) ≤
∫
D

|∂tΦh ∧ ∂sΦh| dt ds ≤ m(Oεh ; Γ−h ,Γ
+
h ) +O(εh).

Passing to the limit as h→ +∞, (6.4) follows.

For any d > 0, define Jdu := {(t, s) ∈ R2 : dist((t, s), Ju) < d}. We parametrize the curve {s > 0}∩∂Jdu
on the interval (a− π

2 , b+ π
2 ) by the map β+

d defined by

β+
d (θ) :=


(a+ d sin(θ − a), d cos(θ − a)) if θ ∈ (a− π/2, a),

(θ, d) if θ ∈ [a, b],

(b+ d sin(θ − b), d cos(θ − b)) if θ ∈ (b, b+ π/2),

and, similarly, we define the parametrization β−d for {s < 0} ∩ ∂Jdu. We can now introduce the
coordinates (θ, r) in R2 \ {s = 0} such that (t, s) = β+

r (θ) if s > 0, and (t, s) = β−r (θ) if s < 0.
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Proposition 6.3 (Interpolation, II). Let Ω+ := Ω ∩ {s > 0}, let (uh) ⊂ Lip(Ω+;R2), u ∈
Lip(Ω+;R2), and suppose that uh → u in L1(Ω+;R2) as h → +∞. Let εo > 0 be fixed so that
Jεou ∩ {s > 0} ⊂ Ω+. For any ε ∈ (0, εo] we define γεh := uh ◦ β+

ε and γε := u ◦ β+
ε . Let us suppose

that γ̇εo exists almost everywhere in I := (a− π
2 , b+ π

2 ), and let εi ∈ (0, εo) be such that:

(i) ||γεih − γεi ||L∞(I;R2) → 0 as h→ +∞;

(ii) γ̇εih exists almost everywhere in I for any h ∈ N;

(iii) lim inf
h→+∞

||γ̇εih ||L1(I;R2) ≤M , where the constant M may depend on εi.

Let us define the sequence (vh) ⊂ Lip(Ω+;R2) as vh := u on Ω+ \ Jεou , vh := uh in Ω+ ∩ Jεiu , and
such that its representation in (θ, r) coordinates in the curvilinear strip Sεoεi := Ω+ ∩ (Jεou \ Jεiu ) is

ṽh(θ, r) :=
εo − r
εo − εi

γεih (θ) +
r − εi
εo − εi

γεo(θ).

Then
lim inf
h→+∞

A
(
vh,Ω

+ ∩ (Jεou \ Jεiu )
)
≤ C(1 +M)|εo − εi|, (6.9)

where C = C(lip(u)).

Proof. The term A(vh, S
εo
εi ∩ {t ∈ (a, b)}) can be estimated by the right hand side of (6.9) using

Proposition 4.9, since in Sεoεi ∩ {t ∈ (a, b)} we have θ(t, s) = t and r(t, s) = s.
We prove the estimate for A(vh, S

εo
εi ∩ {t < a}), the computations for A(vh, S

εo
εi ∩ {t > b}) being

similar. We have:

A(vh, S
εo
εi ∩ {t < a}) =

∫ εo

εi

∫ a

a−π/2

√
r2 + |∂θṽh|2 + r2|∂rṽh|2 + (det∇θ,rṽh)2 dθ dr

≤ C
∫ εo

εi

∫ a

a−π/2

[
r + |∂θṽh|+ r|∂rṽh|+ |det∇θ,rṽh|

]
dθ dr

where ∇θ,r denotes the Jacobian with respect to (θ, r), and C is an absolute positive constant. Again
we estimate the right hand side as in the proof of Proposition 4.9 and using our assumptions:

-

∫ εo

εi

∫ π

a−π/2
r dr dθ = π/2(ε2

o − ε2
i ),

-

∫ εo

εi

∫ a

a−π/2
|∂θṽh| dθ dr ≤

∫ εo

εi

∫ a

a−π/2
[|γ̇εo |+ |γ̇εih |] dθ dr ≤ πεolip(u)(εo − εi) + (εo − εi)M,

-

∫ εo

εi

∫ a

a−π/2
r|∂rṽh| dθ dr =

∫ εo

εi

∫ a

a−π/2
r
|γεo − γεih |
εo − εi

dθ dr

≤
∫ εo

εi

∫ a

a−π/2
r
|γεo − γεi |+ |γεi − γεih |

εo − εi
dθ dr ≤ π

4
lip(u)(ε2

o − ε2
i ) +

εo + εi
2

∫ a

a−π/2
|γεi − γεih | dθ,

-

∫ εo

εi

∫ a

a−π/2
|det∇θ,rṽh| dθ dr ≤ 2

∫ εo

εi

∫ a

a−π/2
|∂rṽh||∂θṽh| dθ dr ≤ 2

∫ a

a−π/2
|γεo−γεih ||γ̇

εo+γ̇εih | dθ

≤
∫ a

a−π/2
|γ̇εo ||γεo − γεih | dθ +

∫ a

a−π/2
|γ̇εih ||γ

εo − γεih | dθ

≤ εolip(u)
(
lip(u)|εo − εi|+ ||γεi − γεih ||L1(I,R2)

)
+M

(
lip(u)|εo − εi|+ ||γεi − γεih ||L∞(I;R2)

)
.

Using our assumptions and the previous estimates, we get

lim inf
h→+∞

A(vh, S
εo
εi ∩ {t < a}) ≤ C(1 +M)|εo − εi|,

where C = C(lip(u)).
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We are now in the position to prove Theorem 6.1.

Proof. Let us suppose first that (uh) satisfies (6.2). Let (εh) and (ε̃h) be two infinitesimal sequences
of positive numbers such that

Nh ⊂⊂
{

(t, s) :

(
t,
s

ε̃h

)
∈ Oεh

}
⊂ Ω,

where Oεh = [[σ−εh , σ
+
εh

]] is defined as in Lemma 6.2. Let γ±h ∈ Lip([a− εh, b+ εh];R2) be defined as

γ±h (t) := uh(t, ε̃hσ
±
εh

(t)) = u(t, ε̃hσ
±
εh

(t))

Following the same computation as in Lemma 4.6 we get

A
(

uh,

{
(t, s) :

(
t,
s

ε̃h

)
∈ Oεh

})
≥ m(Oεh ; Γ−h ,Γ

+
h ),

where Γ±h := graph(γ±h ). Due to the regularity assumptions on u, the sequences (γ±h ) satisfy the
hypotheses of Lemma 6.2, and thus we can conclude that

lim inf
h→+∞

A(uh,Ω) ≥
∫

Ω

|M(∇u)| dt ds+ lim inf
h→+∞

m(Oεh ; Γ−h ,Γ
+
h ) ≥

∫
Ω

|M(∇u)| dt ds+m(D; Γ−,Γ+).

Now, we have to prove that for any sequence (uh) converging to u in L1(Ω;R2) and uniformly out
of Ju we can build a sequence (vh) satisfying (6.2) and (6.3). The proof follows along the same lines
of Theorem 4.3, where the choice of an infinitesimal sequence (εk) ⊂ (0,+∞) satisfying hypotheses
(i)-(iii) of Proposition 6.3 is guaranteed by Fatou’s lemma applied to the area functional in the (θ, r)
coordinates.

7 Examples for which A < A∞

In this section we exhibit some examples of pairs (Ω,u) satisfying condition II and for which A(u,Ω) <
A∞(u,Ω). The idea is that, under certain circumstances, sequences converging to u in L1(Ω;R2), but
not uniformly out of Ju, can provide an upper bound lower than the right hand side of (5.1). What
is suggested by these examples is that we could extend in some way the jump, adding to Ju a sort of
“virtual” jump, and build sequences converging uniformly to u out of this extension. How choosing
these extensions seems not easy. We present different possibilities that confirm the strong non-local
behaviour of the functional A(u, ·).

7.1 Virtual jump starting from an end-point of Ju

In [1, Section 5] the authors study A(uV , BR), with uV (t, s) := (t,s)
|(t,s)| , (t, s) ∈ R2 \ {0} (the vortex

map), providing two different upper bounds. In [1, Lemma 5.2] they boundAs(uV , BR) by the measure
of the 2-dimensional unit disk, while in [1, Lemma 5.3] by the lateral area of a cylinder, whose height
is the distance between the vortex and the boundary of BR (namely, R), and whose basis is the unit
disk.
The idea of [1, Lemma 5.3] is the following. Let us express the map uV in polar coordinates (r, θ),
without renaming it, i.e., uV (r, θ) = (cos θ, sin θ). Let (θh) and (rh) be two infinitesimal sequences of
positive numbers, and let us define the functions fh : [−π, π]→ R, gh : [0, R)→ [0,+∞) as

fh(θ) :=


−π−θhθh

(θ + π) if θ ∈ [−π,−π + θh),

θ if θ ∈ [−π + θh, π − θh),

−π−θhθh
(θ − π) if θ ∈ [π − θh, π),

gh(r) :=

{
r
rh

if r ∈ (0, rh],

1 if r ∈ (rh, R).
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Then, the sequence (uh) ⊂ Lip(BR;R2) defined by

uh(r, θ) :=
(

cos
(
gh(r)fh(θ)

)
, sin

(
gh(r)fh(θ)

))
converges to uV in L1(BR;R2) and limh→+∞A(uh, BR) ≤

∫
BR
|M(∇uV )| dt ds+ 2πR.(9)

We adapt the procedure of [1, Lemma 5.3] when Ω and u satisfy condition II, and we build a sequence
(uh) ⊂ Lip(R;R2) converging to u in L1(Ω;R2) and uniformly out of a curve containing Ju and having
an end-point on ∂Ω. In this case the virtual jump connects one end-point of Ju and ∂Ω. The singular
contribution

lim
h→+∞

A(uh,Ω)−
∫

Ω

|M(∇u)| dt ds

can be interpreted as the area of a suitable semicartesian parametrization (Remark 7.2) with non-
empty partially free boundary and, under certain circumstances, it is lower than m(D; Γ−[u],Γ+[u]),
see inequality (7.10); compare also with (1.6).

a b+ δa1

Ω
Cεh

b t

s

Figure 5: The set Ω and, in grey, the triangle Cεh built in Proposition 7.1. The map uh defined in (7.6) is constant
on the horizontal segments in Cεh . The sequence (uh) converges to u in L1(Ω;R2) and uniformly out of the segment
Jext = (a, b + δ) × {0}, union of Ju (the bold segment) and of the virtual jump [b, b + δ] × {0}, represented by a bold
dotted line.

Proposition 7.1. Let Ω and u satisfy condition II, with the further conditions that Ω ∩ {s = 0} =
(a1, b+ δ)× {0} for some a1 < a and δ > 0, and

u ∈ C1
(

Ω ∩ {s > 0};R2
)
∩ C1

(
Ω ∩ {s < 0};R2

)
. (7.1)

Then there exists a sequence (uh) ⊂ Lip(Ω;R2) converging to u in L1(Ω;R2) such that

lim
h→+∞

A(uh,Ω) ≤
∫

Ω

|M(∇u)| dt ds+ (b+ δ− a)

{∫ b

a

[
|γ̇−[u]|+ |γ̇+[u]|

]
dt+ 2

∫ b+δ

b

|∂tu(t, 0)| dt

}
.

(7.2)
Hence

As(u,Ω) ≤ (b+ δ − a)

{∫ b

a

[
|γ̇−[u]|+ |γ̇+[u]|

]
dt+ 2

∫ b+δ

b

|∂tu(t, 0)| dt

}
. (7.3)

(9)It is possible to improve the estimate of [1, Lemma 5.3], obtaining, as singular contribution, the area of a catenoid
in place of the lateral area of a cylinder. Let us suppose R > 0 to be so small that there exists a catenary c : (0, R)→
(0,+∞) such that c(0) = c(R) = 1. Then, taken an infinitesimal sequence (ωh) with ωh > θh and ωh/θh → 1 as
h → +∞, we define ρh ∈ Lip(BR) such that ρh(r, θ) := c(r) if θ ∈ [−π,−π + θh) ∪ [π − θh, θ) and ρh(r, θ) := 1

if θ ∈ (−π + ωh, π − ωh). Then the sequence (uh) defined by uh(r, θ) := ρh(r, θ)
(

cos(gh(r)fh(θ)), sin(gh(r)fh(θ))
)

provides the desired estimate.
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Proof. Given an infinitesimal sequence (εh) of positive numbers, define (Figure 5)

Cεh := {(t, s) ∈ Ω : t > a, |s| < εh(t− a)}, (7.4)

and rεh : Ω→ Ω \ Cεh as

rεh(t, s) :=


(t, s) (t, s) ∈ Ω \ Cεh ,(
s
εh

+ a, s
)

(t, s) ∈ Cεh , s ≥ 0,(
− s
εh

+ a, s
)

(t, s) ∈ Cεh , s < 0,

(7.5)

that is the retraction mapping each point (t, s) ∈ Cεh into the point of ∂Cεh ∩ Ω having s as second
coordinate.
Let us define the sequence (uh) ⊂ Lip(Ω;R2) as

uh(t, s) := u(rεh(t, s)), (t, s) ∈ Ω. (7.6)

We observe that (uh) converges to u in L1(Ω;R2) but not uniformly out of Ju, as h → +∞. In-
cidentally, we notice that (uh) converges to u uniformly out of a suitable “extension” of the jump,
Jext := (a, b+ δ)× {0}.
Denoting by ∂1u and ∂2u the derivative with respect to the first and second variable of u, let us
compute the area of the graph of uh on Cεh ∩ {s ≥ 0}(10):

A(uh, Cεh ∩ {s ≥ 0}) =

∫ b+δ

a

∫ εh(t−a)

0

√
1 +

1

ε2
h

∣∣∣∣∂1u

(
s

εh
+ a, s

)∣∣∣∣2 +

∣∣∣∣∂2u

(
s

εh
+ a, s

)∣∣∣∣2 ds dt
=

∫ b+δ

a

∫ εh(t−a)

0

1

εh

√∣∣∣∣∂1u

(
s

εh
+ a, s

)∣∣∣∣2 +O(ε2
h) ds dt

=

∫ b+δ

a

∫ t

a

√
|∂1u(τ, εh(τ − a))|2 +O(ε2

h) dτ dt

≤ (b+ δ − a)

∫ b+δ

a

√
|∂1u(τ, εh(τ − a))|2 +O(ε2

h) dτ.

Similarly

A(uh, Cεh ∩ {s < 0}) ≤ (b+ δ − a)

∫ b+δ

a

√
|∂1u(τ,−εh(τ − a))|2 +O(ε2

h) dτ.

Thus, noticing that |∂1u(τ,±εh(τ−a))| are uniformly bounded and that ∂1u(τ,±εh(τ−a))→ γ̇±[u](τ)
pointwise for τ ∈ (a, b), and ∂1u(τ,±εh(τ − a)) = ∂1u(τ, 0) in (b, b+ δ), possibly passing to a subse-
quence we get (7.2)

Remark 7.2 (Semicartesian interpretation). The right hand side of (7.3) can be interpreted as
the area of the semicartesian parametrization built in Example 2.12, with b+ δ in place of b and with
C := γ([0, 2(b+ δ − a)]), where γ : [0, 2(b+ δ − a)]→ R2 is defined as follows:

γ(t) :=


u(b+ δ − t, 0) if t ∈ (0, δ),

γ+(b+ δ − t) if t ∈ (δ, b+ δ − a),

γ−(t+ 2a− b− δ) if t ∈ (b+ δ − a, 2(b− a) + δ),

u(t+ 2a− b− δ, 0) if t ∈ (2(b− a) + δ, 2(b− a+ δ)).

We notice also that this construction can be done even if Ω and u satisfy condition I and γ−(a) = γ+(a)
(or, symmetrically, if γ−(b) = γ+(b)). In this case the sequence (uh) built in Proposition 7.1 would

(10)The computation is done supposing that the triangle {(t, s) : t ∈ (a, b+ δ), |t| ≤ εh(t− a)} is contained in Ω, but it
can be easily arranged to a more general situation.
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converge to u in L1(R;R2) and uniformly out of Ju, and limh→+∞A(uh,R) −
∫

R
|M(∇u)| dt ds ≥

A∞s (u,R) = m(R; Γ−[u],Γ+[u]).

Remark 7.3 (Relations with the vortex). Even if Proposition 7.1 has been inspired by the
construction in [1, Lemma 5.3], it is worth to underline some important differences. When Ω = BR
and u = uV , we could interpret the origin as a “collapsed” jump, and the radius {(t, 0) : t ∈ (−R, 0)}
as the virtual jump. Differently from the case where Ω and u satisfy condition II, the vortex map
uV (which belongs to W 1,p(BR;S1) for any p ∈ [1, 2)) does not admit any limit as (t, s) → (0, 0),
(t, s) ∈ BR \ {(t, 0) : t ∈ (−R, 0)}. Intuitively if we would interpret the bound As(uV , BR) ≤ 2πR
in terms of area of semicartesian parametrizations, this lack of continuity of uV at (0, 0) would force
us to consider only surfaces having as trace on the plane {t = 0} × R2

(ξ,η) the unit circumference,

covered with the right orientation. We also notice that in [1, Lemma 5.3] the sequence (uh) is defined
as the composition of uV and a suitable retraction from BR to BR \Cεh , where (Cεh) is a decreasing
sequence of circular sectors containing {(t, 0) : t ∈ (−R, 0)} and converging to it. In [1] the image of
Cεh through this retraction covers the whole of BR \ Cεh , while in our case (for Cεh now as in (7.4))
it is contained in ∂Cεh , see (7.5); this difference is due to the fact that, contrary to our case, the trace
of the vortex map on the boundary of each circular sector is not continuous.

In the next example we exhibit a map u for which the sequence built in Proposition 7.1 provides an
upper bound that is lower than m(D; Γ−,Γ+). This example, coupled with Theorem 1.4, shows that
A(u,Ω) < A∞(u,Ω).

Example 7.4 (Difference in the two relaxations). Let Ω be as in Proposition 7.1, and define(11)

u(t, s) :=


(1, 0) in {(t, s) ∈ Ω : s ≥ 0},
(1, 0) in {(t, s) ∈ Ω : s < 0, t < a or t > b},
ρ
(

cos (θ(t)) , sin (θ(t))
)

+ (1− ρ, 0) in {(t, s) ∈ Ω : s < 0, a ≤ t ≤ b},
(7.7)

where
ρ > 2(b+ δ − a), (7.8)

and θ : [a, b] → [0, 2π] is defined in (2.11). We observe that γ+ is constant, γ− covers once the
circumference centered at (1− ρ, 0) and with radius ρ, and ∂tu(t, 0) = 0 for t ∈ (b, b+ δ). In this case,
formula (7.3) reads as

As(u,Ω) ≤ (b+ δ − a)

∫ b

a

|γ̇−| dt = (b+ δ − a)2πρ. (7.9)

On the other hand, we have already observed in Example 2.13 that a(Γ) ≥ πρ2. Thus, from (7.8) we
obtain that a(Γ) is strictly greater than the right hand side of (7.9). Since in general m(D; Γ−,Γ+) ≥
a(Γ), see Remark 2.11, we have, using Theorem 1.4,

As(u,Ω) < m(D; Γ−[u],Γ+[u]) = A∞s (u,Ω). (7.10)

Remark 7.5 (Joining two components of Ju). Example 7.4 suggests that, if the jump set of a
discontinuous map u : Ω→ R2 is not connected, it could be convenient (as far as only the L1(Ω;R2)-
convergence is involved) considering sequences (uh) ⊂ Lip(Ω;R2) converging to u in L1(Ω;R2) and

uniformly out of a connected curve containing Ju. Let Ω be as in Example 7.4 and let Ω̃ be the union
of Ω and of its symmetrized with respect to the axis {t = c}, for some c ∈ (b, b+ δ), see Figure 6. Let

us define u and (uh) in Ω̃ as in Example 7.4 for (t, s) ∈ Ω, and by reflection elsewhere in Ω̃. Then

lim
h→+∞

A(uh, Ω̃)−
∫

Ω̃

|M(∇u)| dt ds ≤ 4πρ(c− a). (7.11)

If ρ > 2(c− a), the right hand side of (7.11) is smaller than 2m(D; Γ−,Γ+) (where Γ± are the graph

(11)The map u defined in this way does not satisfy (7.1); anyway the fact that it does not depend on s in Ω ∩ {s > 0}
and in Ω ∩ {s < 0} allows to obtain (7.2).
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of the traces of u on (a, b)× {0}), that would be the bound obtained reasoning as in Proposition 5.1
in distinct neighbourhoods of the two connected components of Ju. Indeed, as observed in Example
7.4, m(D; Γ−,Γ+) ≥ a(Γ) ≥ πρ2 > 4πρ(c− a). Moreover if Ju is far from ∂Ω̃, the right hand side of

(7.11) is also smaller than the upper bound obtained by connecting each component of Ju with ∂Ω̃,
using the construction in Proposition 7.1.

Ω̃

Ju

Figure 6: Remark 7.5. The set Ω̃ is built by reflecting, with respect to the vertical axis in the figure, the set Ω

considered in Proposition 7.1. The map u : Ω̃→ R2 is defined again by reflecting the map in (7.7), so that Ju has two
connected components. It is then possible to build a sequence (uh) ⊂ Lip(Ω;R2), again by reflection, converging to u

in L1(Ω̃;R2) and uniformly out of the curve composed of Ju and of the bold dotted segment (the virtual jump) joining

the two components of the jump. This sequence provides an upper bound for A(u, Ω̃) lower than the one obtained by
any sequence converging to u uniformly out of Ju.

7.2 Virtual jump starting from an interior point of Ju

In this section we show, for a particular pair (Ω,u) satisfying condition II, how to build a sequence
of maps (uh) converging to u in L1(Ω;R2) and uniformly out of Jext, union of Ju and a virtual jump
connecting an interior point of Ju and ∂Ω. Such phenomena indicate that the characterization of As
is involved, and justify, once more, the study of the functional A∞s .
Let the bounded connected open set Ω be such that {(t, s) : s > 0}∩Ω = {t}×(0, δ) for some t ∈ (a, b).
Without loss of generality we can suppose t = 0 and a = −b; we take Ω := (−L,L) × (−1, δ), for
L > b > 0 and δ ∈ (0, 1), see Figure 7. For ρ > 2(δ + b) we define u : Ω→ R2 (similarly to Example
7.4) as

u(t, s) :=

{
ρ
(

cos
(π
b
t+ π

)
, sin

(π
b
t+ π

))
+ (1− ρ, 0) if |t| ≤ b, s < 0,

(1, 0) otherwise.

We want to build a sequence (uh) ⊂ Lip(Ω;R2) converging to u in L1(Ω;R2) and uniformly out of

Jext := Ju ∪
(
{0} × (0, δ)

)
,

where Jext \ Ju = {0} × (0, δ) takes the role of the virtual jump (see (7.13) below) and such that

lim
h→+∞

A(uh,Ω) =

∫
Ω

|M(∇u)| dt ds+ 2πρ(δ + b). (7.12)

To this purpose, for ε ∈ (0,min{δ/2, b/2}) set (see Figure 7)

Tε := {(t, s) ∈ Ω : |t| < b, s > 0, dist((t, s), Jext) < ε},

T−ε := Tε ∩ {t < 0}, T+
ε := Tε ∩ {t > 0}.
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The definitions will be given on T+
ε and next extended on the whole of Tε by reflection with respect

to the s-axis. Let us parametrize the (closure of the) curve Ω ∩ {t > 0} ∩ ∂Tε by the arc-length
parametrization λε ∈ Lip([0, δ + 2b − ε];R2) with λε(0) = (ε, δ) and λε(δ + 2b − ε) = (0, 0). Let
us also parametrize the (closure of the) set J+

ext := ({0} × [0, δ)) ∪ ([0, b) × {0}) by the arc-length
parametrization α̃ ∈ Lip([0, δ + b];R2), with α̃(0) = (0, δ) and α̃(b+ δ) = (b, 0).

−b b

δ

ε
Tε

T+
ε

−1

L−L
ε t

s

Figure 7: In the left picture the set Ω and, in bold, the jump set (−b, b) × {0} of u. The virtual jump {0} × (0, δ)
is represented by a dotted segment, while the set Tε is in grey. In the right picture we show the details of T+

ε and
of the retraction rε. For each of the point of T+

ε we define the coordinates (p, d); points belonging to the same
segment have the same p-coordinate, the d-coordinate being the distance from the point of the segment belonging to
Jext := Ju ∩ ({0} × (0, δ)).

On T+
ε we consider the change of coordinates (p, d) : T+

ε → S+
ε defined as follows(12):

- p(t, s) ∈ (0, δ+ b) is the image through α̃−1 of the end-point on J+
ext of the segment represented

in Figure 7 passing through (t, s);

- d(t, s) is the distance between (t, s) and α̃(p(t, s)).

The set S+
ε is therefore {(p, d) ∈ R2 : p ∈ (0, δ + b), d ∈ (0, dmax(p))}, where

dmax(p) =


ε if p ∈ (0, δ − ε],√
ε2 + (p− δ + ε)2 if p ∈ (δ − ε, δ],√
ε2 + (−p+ δ + ε)2 if p ∈ (δ, δ + ε],

ε if p ∈ (δ + ε, δ + b).

Now, we define a function `ε : S+
ε → (0, δ + 2b − ε), linear on each segment {p} × (0, dmax(p)) and

such that:

- for p ∈ (0, δ − ε], `ε(p, 0) = δ + 2b− ε and `ε(p, dmax(p)) = p;

- for p ∈ (δ − ε, δ], `ε(p, 0) = δ + 2b− ε and `ε(p, dmax(p)) = δ − ε;

- for p ∈ (δ, δ + ε], `ε(p, 0) = 2δ + 2b− ε− p and `ε(p, dmax(p)) = δ − ε;

- for p ∈ (δ + ε, δ + b), `ε(p, 0) = 2δ + 2b− ε− p and `ε(p, dmax(p)) = p− 2ε.

Thus we can define the retraction rε = (rε,1, rε,1) : Ω→ Ω \ Tε as:

- rε := id on Ω \ Tε;
(12)Even if not explicitly written, the coordinates (p, d) depend on ε.
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- rε(t, s) := λε
(
`ε
(
p(t, s), d(t, s)

))
if (t, s) ∈ T+

ε ;

- rε(0, s) := (0, 0) if s ∈ [0, δ);

- rε(t, s) := (−rε,1(−t, s), rε,2(−t, s)) if (t, s) ∈ T−ε .

In words, on T+
ε the map rε sends each segment in Figure 7 into ∂Tε ∩ {t > 0} in such a way that:

- if both the end-points of the segment lie on ∂Tε∩{t > 0} (namely, the vertical segments and the
oblique segments below the diagonal), the image of the segment is the portion of ∂Tε ∩ {t > 0}
bounded by the two end-points;

- if only one of the end-points of the segment lies on ∂Tε ∩ {t > 0}, the image of the segment is
the portion of ∂Tε ∩ {t > 0} bounded by that end-point and (0, 0).

Let Aε := r−1
ε (Ju) ⊂ Tε;. the image of Aε ∩ T+

ε through the coordinate change (p, d) is the subset of
S+
ε given by {(p, d) : p ∈ (0, δ + b), d ∈ (0, dJu(p)]}, where

dJu(p) :=



b
δ+2b−ε−pε if p ∈ (0, δ − ε],
dmax(p)

2 if p ∈ (δ − ε, 0],

δ+b−p
δ+2b−pdmax(p) if p ∈ (0, δ + ε],

δ+b−p
2δ+2b−2p+εε if p ∈ (δ + ε, δ + b).

We are now in the position to define (uh) ⊂ Lip(Ω;R2) as

uh(t, s) :=

{
u(rεh(t, s)) if (t, s) ∈ Ω \Aεh ,
γ−[u](rεh,1(t, s)) if (t, s) ∈ Aεh ,

(7.13)

where (εh) ⊂ (0,min{δ/2, b/2}) is an infinitesimal sequence.
Since ∂2u = 0 almost everywhere(13), we have

A(uh,Ω) =

∫
Ω

√
1 + |∂1u(rεh)|2 ((∂trεh)2 + (∂srεh)2) dt ds.

We observe also that rεh(Tεh \Aεh) ⊆ Ω ∩ (∂Tεh \ Ju), where also ∂1u = 0.
Let us compute the area of the graph of the map uh on T+

εh
∩ {s > εh}, on T+

εh
∩ {t > εh} and on

(0, εh)× (0, εh), separately.
On T+

εh
∩ {s > εh} we have that p(t, s) = δ − s and d(t, s) = t. Thus

Aεh ∩ (T+
εh
∩ {s > εh}) =

{
(t, s) ∈ T+

εh
: s ∈ (ε, δ), t ∈

(
0,

bεh
2b− ε+ s

)}
,

and for (t, s) in this set, uh(t, s) = γ−[u]
(

2b−εh+s
εh

t
)

. Hence

A(uh,T+
εh
∩ {s > εh}) = A(uh, (T+

εh
\Aεh) ∩ {s > εh}) +A(uh, Aεh ∩ T+

εh
∩ {s > εh})

=

∫ δ

εh

∫ εh

bεh
2b+s−εh

1 dt ds+

∫ δ

εh

∫ bεh
2b+s−εh

0

√
1 +

∣∣∣∣γ̇−(2b+ s− εh
εh

t

)∣∣∣∣2( (2b+ s− εh)2

εh2
+

t2

εh2

)
dt ds

=εh

∫ δ

εh

(
b+ s− εh
2b+ s− εh

)
ds+

∫ δ

εh

∫ b

0

√
O(εh2) + |γ̇−(τ)|2(1 +O(εh2)) dτ ds

h→+∞−→ δ

∫ a

0

|γ̇−(τ)| dτ = πρδ.

(13)Again, ∂1 and ∂2 denote the derivative with respect to the first and the second variable, respectively.
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On T+
εh
∩ {t > εh} we have p(t, s) = δ + t and d(t, s) = s. Thus

Aεh ∩ (T+
εh
∩ {t > εh}) =

{
(t, s) ∈ T+

ε : t ∈ (εh, b), s ∈
(

0,
(b− t)εh

2b− 2t+ εh

)}
,

and for (t, s) in this set, uh(t, s) = γ−[u]
(

2b−2t+εh
εh

s+ t
)

. Hence

A(uh,T+
εh
∩ {t > εh}) = A(uh, (T+

εh
\Aεh) ∩ {t > εh}) +A(uh, Aεh ∩ T+

εh
∩ {t > εh})

=

∫ b

εh

∫ εh

(b−t)εh
2b−2t+εh

1 dt ds

+

∫ b

εh

∫ (b−t)εh
2b−2t+εh

0

√√√√1 +

∣∣∣∣γ̇−(t+
2b− 2t+ εh

εh
s

)∣∣∣∣2
((

1− 2s

εh

)2

+
(2b− 2t+ εh)2

εh2

)
ds dt

=εh

∫ b

εh

(
b− t+ εh

2b− 2t+ εh

)
dt+

∫ b

εh

∫ b

0

√
O(εh2) + |γ̇−(τ)|2(1 +O(εh2)) dτ dt

h→+∞−→ b

∫ b

0

|γ̇−(τ)| dτ = πρb.

In order to estimate the area of the graph of uh on (0, εh) × (0, εh), is it enough to notice that
|∇rεh,1| = O(ε−1

h ). Therefore

A(uh, (0, εh)× (0, εh)) =

∫ εh

0

∫ εh

0

√
1 + |∂1u(rεh)|2 ((∂trεh)2 + (∂srεh)2) dt ds

≤ ε−1
h

∫ εh

0

∫ εh

0

√
O(ε2

h) +O(1)
h→+∞−→ 0.

Since by symmetry lim
h→+∞

A(uh,T+
εh

) = lim
h→+∞

A(uh,T−εh), (7.12) follows. This implies thatAs(u,Ω) ≤

2πρ(δ+b). Due to our choice of ρ, we conclude, as in Example 7.4, thatAs(u,Ω) < m(D; Γ−[u],Γ+[u]).

8 Non-subadditivity of A
Let us suppose that Ω and u satisfy condition I, and choose a map u of the form

u(t, s) :=

{
(f(t), 0) if (t, s) ∈ R−,

(f(t), 1) if (t, s) ∈ R+,
(8.1)

where f ∈ Lip([a, b]) is a piecewise C1-function(14); for simplicity, we fix f(a) = 0. Clearly γ−(t) =
(f(t), 0) and γ+(t) = (f(t), 1).
The aim of this section is to prove the following result.

Theorem 8.1 (Non-subadditivity of A(u, ·)). Let u be as in (8.1) for a non-constant function f .
Then A(u, ·) is not subadditive.

Remark 8.2. It is worth to recall that in [1] it is proven that if f is constant then As(u, ·) = |Dsu|(·),
and thus A(u, ·) is subadditive.

(14)That is, there exist t0 = a < t1 < · · · < t` < t`+1 = b so that f ∈ C1([tj , tj+1]) for j = 0, . . . , `.
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In order to prove Theorem 8.1, we need some intermediate results: Proposition 8.3, that provides
an estimate from above of As(u,R), in terms of the area of a suitable semicartesian parametrization
(see Figure 8); Proposition 8.4, where we show that, if A(u, ·) were subadditive, than As(u, ·) would
be forced to coincide with |Dsu|(·) (see (8.3)); Proposition 8.6, that characterizes suitable “vertical”
bidimensional currents in R4, whose mass is controlled from above.
We stress that from Proposition 8.4 it follows that there exist coplanar curves Γ± such that the image
of an area-minimizing semicartesian parametrization (if it exists) spanning Γ− ∪Γ+ is not planar, see
Remark 8.5: this is a consequence of the fact that the area of the rectangle E bounding Γ− and Γ+

in Figure 8 can be larger than the sum of the area of its orthogonal projection on the tη-plane and
the areas of the two triangles T0 and T1 (see inequality (8.4)).

Proposition 8.3. Let u be as in (8.1). Then

A(u,R) ≤
∫

R

|M(∇u)| dt ds+ |Dsu|(R) + lip(f)(b− a)2.

Proof. Since |u+(t, 0)− u−(t, 0)| = 1 for any t ∈ (a, b), we have

|Dsu|(R) = b− a = H2(V ),

where V is the rectangle V := [a, b]× {0} × [0, 1] ⊂ R3
(t,ξ,η) (see Figure 8). Let

T0 := {(t, ξ, 0) : t ∈ (a, b), ξ ∈ (0, f(t)) if 0 ≤ f(t), ξ ∈ (f(t), 0) otherwise}

and T1 := T0 + (0, 0, 1). We observe that, since f(a) = 0,

H2(T0) = H2(T1) ≤ lip(f)

2
(b− a)2,

and hence, if
Σ := T0 ∪ V ∪ T1, (8.2)

we have
H2(Σ) ≤ |Dsu|(R) + lip(f)(b− a)2.

Recalling Proposition 3.1, the result follows if we prove that Σ can be parametrized by an injective
map Φ ∈ semicart(R; Γ−,Γ+). This is true, by considering for example the map Φ(t, s) := (t, φ(t, s)),
with φ ∈ H1(R;R2) defined by

φ(t, s) :=


1−s
2/3 (0, 1) + s−1/3

2/3 γ+(t) in R ∩ {s ≥ 1/3},
s+1/3

2/3 (0, 1) in R ∩ {−1/3 ≤ s < 1/3},
− s+1/3

2/3 γ−(t) in R ∩ {−1 < s < −1/3},

which satisfies Φ(R) = Σ.

Proposition 8.4 (Subadditivity and coincidence with |Dsu|). Let u be as in (8.1) for a non-
constant function f . If the functional A(u, ·) were subadditive, then

As(u,R) = |Dsu|(R). (8.3)

Proof. Fix δ ∈ (0, (b− a)/2) and let N(δ) ∈ N be such that a+N(δ)δ < b ≤ a+ (N(δ) + 1)δ. Define

Ri := [(a+ iδ, a+ (i+ 1)δ) ∩ (a, b)]× (−1, 1), for i = 0, . . . , N(δ),

Pi := [(a+ iδ − δ2, a+ iδ + δ2) ∩ (a, b)]× (−1, 1), for i = 1, . . . , N(δ).
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Γ−

Γ+

1

T1

T0

V

1

t

ξ

η

a

b

t

Figure 8: The curves Γ− = {(t, f(t), 0) : t ∈ [a, b]}, Γ+ = {(t, f(t), 1) : t ∈ [a, b]} for a linear non-constant function f ,
the rectangle V , and the sets T0, and T1 (in this case two triangles at different height). The broken dotted curve is the
image through the map Φ of the vertical segment R ∩ {t = t}.

From Proposition 8.3, applied with Ri and Pi in place of R, it follows

A(u,Ri) ≤
∫

Ri

|M(∇u)| dt ds+ |Dsu|(Ri) + lip(f)δ2,

A(u,Pi) ≤
∫

Pi

|M(∇u)| dt ds+ |Dsu|(Pi) + 4lip(f)δ4.

If A(u, ·) were subadditive, we would get

A(u,R) ≤
N(δ)∑
i=0

A(u,Ri) +

N(δ)∑
i=1

A(u,Pi)

≤
∫

R

|M(∇u)| dt ds+ |Dsu|(R) +

N(δ)∑
i=1

∫
Pi

|M(∇u)| dt ds+

N(δ)∑
i=1

|Dsu|(Pi) +O(δ) +O(δ3)

≤
∫

R

|M(∇u)| dt ds+ |Dsu|(R) +O(δ).

Since by [1, Theorem 3.7] we have

A(u,R) ≥
∫

R

|M(∇u)| dt ds+ |Dsu|(R),

the thesis follows letting δ → 0+.

Remark 8.5 (Non-planarity). Let us consider a map as in (8.1), for a linear function f(t) = c(t−a),
c > 0 (Figure 8). In this case the curves Γ± are coplanar. The map Ψ ∈ semicart(R; Γ−,Γ+) defined
by

Ψ(t, s) :=

(
t, c(t− a),

s+ 1

2

)
, t ∈ (a, b), s ∈ (−1, 1),

parametrizes the rectangle E bounded by Γ− and Γ+ and the two vertical segments {(a, 0, η) : η ∈
(0, 1)}, and {(b, c(b− a), η) : η ∈ (0, 1)}. We have

H2(E) = (b− a)
√

1 + c2 =

∫
R

|∂tΨ ∧ ∂sΨ| dt ds.

34



On the other hand, the sets T0 and T1 built in Proposition 8.4 are two triangles of area c(b−a)2

2 , so
that H2(Σ) = c(b− a)2 + (b− a), where Σ is defined in (8.2). A simple computation shows that

H2(E) > H2(Σ) (8.4)

provided that b− a ∈
(

0,
√

1+c2−1
c

)
. Interestingly, this implies that an area-minimizing semicartesian

surface (if it exists, recall the beginning of Remark 2.11) spanning two coplanar curves is not necessarily
planar.

The next proposition is a modification of [1, Lemma 4.8]. We refer to [1] and [9] for all notations and
results concerning cartesian currents.

Proposition 8.6 (Mass lower bound of cartesian two-currents). Let T = τ(ST , θT , ζT ) be a
2-dimensional integer rectifiable current with bounded support in U := R×R2 ⊂ R2

(t,s)×R
2
(ξ,η). Denote

by p : U → R2
(t,s) the orthogonal projection. Suppose that

(i) L2(p(ST )) = 0,

(ii) ∂T = [[{(t, 0, f(t), 1)}t∈(a,b)]] − [[{(t, 0, f(t), 0)}t∈(a,b)]] in U , where f ∈ Lip([a, b]) is piecewise
C1.

Then

f non constant ⇒ MU (T ) >

∫ b

a

|(f(t), 1)− (f(t), 0)| dt = b− a.

Proof. Assume by contradiction that MU (T ) ≤ b − a. Let π : U → R × Rη and q : R × Rη → R
be the orthogonal projections, so that p = q ◦ π. Since T has bounded support in U , it follows that
∂(π]T ) = π](∂T ) (see [9, Sec 2.3]) and thus, from assumption (ii), ∂(π]T ) = [[{(t, 0, 1)}t∈(a,b)]] −
[[{(t, 0, 0)}t∈(a,b)]] =: [[(a, 0), (b, 0)]] × [[1]] − [[(a, 0), (b, 0)]] × [[0]] in R × Rη. Since T is rectifiable,
also π]T is rectifiable, and π]T = τ(Sπ]T , θπ]T , ζπ]T ). Moreover Sπ]T ⊆ π(ST ) and thus, applying the
projection q and recalling assumption (i), we get L2(q(Sπ]T )) = 0. Applying the one-codimensional
result in [1, Lemma 4.7], we deduce that π]T = [[(a, 0), (b, 0)]]× [[0, 1]]. In particular Sπ]T = (a, b)×
{0} × {0} × [0, 1], θπ]T = 1, and ζπ]T = (1, 0, 0, 0) ∧ (0, 0, 0, 1).
Now, we use the assumption on the mass of the current T , obtaining

b− a = H2(Sπ]T ) ≤ H2(π(ST )) ≤ H2(ST ) ≤MU (T ) ≤ b− a;

hence the above inequalities are indeed equalities and in particular

π(ST ) ' (a, b)× {0} × {0} × [0, 1]

in the sense of H2. Moreover, since H2(π(ST )) = H2(ST ) = MU (T ), it follows that θT = 1 H2-almost
everywhere on ST , and ζT = et ∧ εη, where et = (1, 0, 0, 0) and εη = (0, 0, 0, 1), see [1, Lemma 4.8].
Thus, if we write any smooth 2-form ω compactly supported in U as

ω :=ωt,s(1, 0, 0, 0) ∧ (0, 1, 0, 0) + ωt,ξ(1, 0, 0, 0) ∧ (0, 0, 1, 0) + ωt,η(1, 0, 0, 0) ∧ (0, 0, 0, 1)

+ ωs,ξ(0, 1, 0, 0) ∧ (0, 0, 1, 0) + ωs,η(0, 1, 0, 0) ∧ (0, 0, 0, 1) + ωξ,η(0, 0, 1, 0) ∧ (0, 0, 0, 1),

we have

T (ω) =

∫
ST

ωt,η dH2(t, s, ξ, η).

Let α := αtdt+ αsds+ αξdξ + αηdη be a smooth 1-form compactly supported in U . Then

∂T (α) = T (dα) =

∫
ST

(∂tα
η − ∂ηαt) dH2(t, s, ξ, η). (8.5)
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On the other hand, from assumption (ii) it follows

∂T (α) =

∫ b

a

[
αt(t, 0, f(t), 1)− αt(t, 0, f(t), 0)

]
+ f ′(t)

[
αξ(t, 0, f(t), 1)− αξ(t, 0, f(t), 0)

]
dt. (8.6)

Now, we choose the 1−form α such that αt = 0, αη = 0, so that the right hand side of (8.5) vanishes,
and (8.6) reduces to

∂T (α) =

∫ b

a

f ′(t)
[
αξ(t, 0, f(t), 1)− αξ(t, 0, f(t), 0)

]
dt.

Since f is not constant and piecewise C1, there exists a non-empty open interval I ⊂ (a, b) where f ′ is
either positive or negative. It is then sufficient to choose αξ such that αξ(t, 0, f(t), 1) 6= αξ(t, 0, f(t), 0)
for any t ∈ I, to obtain that the right hand side of (8.6) is non-zero, which is a contradiction.

Now, we are in a position to prove Theorem 8.1

Proof. Let us suppose by contradiction that A(u; ·) is subadditive. As a consequence of Proposition
8.4 and [1, Lemma 3.3], we can select a sequence (uh) ⊂ C1(R;R2) converging to u in L1(R;R2) and
bounded in L∞(R;R2), and such that

A(uh,R)→ A(u,R) =

∫
R

|M(∇u)| dt ds+ |Dsu|(R) as h→ +∞.

From [1, Theorem 2.6 and Remark 2.4] it follows that the sequence of the graphs [[Guh
]] (as currents)

of the maps uh converges weakly in the distributional sense to a cartesian (integer rectifiable) 2-current
T = τ(S, θ, ζ), thus with zero boundary, in U := R×R2, decomposable in its regular part Tr = [[Gu]]
and its singular part Ts = τ(Ss, θ, ζ); recall that L2(p(Ss)) = 0. By the lower semicontinuity of the
mass we have

M(T ) ≤ lim inf
h→+∞

M([[Guh
]]) = A(u,R)

and

M(T ) = M(Tr) + M(Ts) = M([[Gu]]) + M(Ts) =

∫
R

|M(∇u)| dt ds+ M(Ts).

In addition, the support of Ts is bounded in U , since (uh) is bounded in L∞(R;R2), and ∂Ts =
−∂Tr = −∂[[Gu]] = [[{(t, 0, f(t), 1)}t∈(a,b)]] − [[{(t, 0, f(t), 0)}t∈(a,b)]] in U . Therefore Ts satisfies all
hypotheses of Proposition 8.6, hence f has to be constant, providing a contradiction.
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