THE BREZIS-NIRENBERG PROBLEM FOR THE FRACTIONAL p-LAPLACIAN

SUNRA MOSCONI, KANISHKA PERERA, MARCO SQUASSINA, AND YANG YANG

Abstract

We obtain nontrivial solutions to the Brezis-Nirenberg problem for the fractional p-Laplacian operator, extending some results in the literature for the fractional Laplacian. The quasilinear case presents two serious new difficulties. First an explicit formula for a minimizer in the fractional Sobolev inequality is not available when $p \neq 2$. We get around this difficulty by working with certain asymptotic estimates for minimizers recently obtained in [4]. The second difficulty is the lack of a direct sum decomposition suitable for applying the classical linking theorem. We use an abstract linking theorem based on the cohomological index proved in [48] to overcome this difficulty.

Contents

1. Introduction and main result 1

Acknowledgments 5
2. Preliminaries 5
2.1. Minimizers for the Sobolev inequality 5
2.2. Regularity estimates 6
2.3. Auxiliary estimates 10
3. Proof of the main result 12
3.1. Case 1: $N \geq s p^{2}$ and $0<\lambda<\lambda_{1} \quad 12$
3.2. Case 2: $N>s p^{2}$ and $\lambda>\lambda_{1}$ is not one of the eigenvalues $\lambda_{k} 13$
3.3. Case 3: $N^{2} /(N+s)>s p^{2}$ and $\lambda=\lambda_{k} \quad 18$
3.4. Case 4: $\left(N^{3}+s^{3} p^{3}\right) / N(N+s)>s p^{2}, \partial \Omega \in C^{1,1}$, and $\lambda=\lambda_{k} \quad 20$

References

1. Introduction and main result

For $1<p<\infty, s \in(0,1)$, and $N>s p$, the fractional p-Laplacian $(-\Delta)_{p}^{s}$ is the nonlinear nonlocal operator defined on smooth functions by

$$
(-\Delta)_{p}^{s} u(x)=2 \lim _{\varepsilon \searrow 0} \int_{B_{\varepsilon}(x)^{c}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{N+s p}} d y, \quad x \in \mathbb{R}^{N} .
$$

This definition is consistent, up to a normalization constant depending on N and s, with the usual definition of the linear fractional Laplacian operator $(-\Delta)^{s}$ when $p=2$. There is, currently, a rapidly growing literature on problems involving these nonlocal operators. In particular, fractional p-eigenvalue problems have been studied in Brasco et al. [7], Brasco and Parini [6], Franzina and Palatucci [21], Iannizzotto and Squassina [30], and Lindgren and Lindqvist [35]. Regularity of solutions was obtained in Brasco and Lindgren [5], Di Castro et al. [16, 17], Iannizzotto et al. [29], Kuusi et al. [32], and Lindgren [34]. Existence

2010 Mathematics Subject Classification. Primary 35R11, 35J92, 35B33, Secondary 35A15.
Key words and phrases. Fractional p-Laplacian, Brezis-Nirenberg problem, nontrivial solutions, variational methods, cohomological index.
via Morse theory was investigated in Iannizzotto et al. [28]. This operator appears in some recent works, see $[2,31]$ as well as [9] for the motivations, that led to its introduction.

Let Ω be a bounded domain in \mathbb{R}^{N} with Lipschitz boundary. We consider the problem

$$
\begin{cases}(-\Delta)_{p}^{s} u=\lambda|u|^{p-2} u+|u|^{p_{s}^{*}-2} u & \text { in } \Omega \tag{1.1}\\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

where $\lambda>0$ and $p_{s}^{*}=N p /(N-s p)$ is the fractional critical Sobolev exponent. Let us recall the weak formulation of problem (1.1). Let

$$
[u]_{s, p}=\left(\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y\right)^{1 / p}
$$

be the Gagliardo seminorm of a measurable function $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$, and let

$$
W^{s, p}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{p}\left(\mathbb{R}^{N}\right):[u]_{s, p}<\infty\right\}
$$

be the fractional Sobolev space endowed with the norm

$$
\|u\|_{s, p}=\left(|u|_{p}^{p}+[u]_{s, p}^{p}\right)^{1 / p}
$$

where $|\cdot|_{p}$ is the norm in $L^{p}\left(\mathbb{R}^{N}\right)$. We work in the closed linear subspace

$$
W_{0}^{s, p}(\Omega)=\left\{u \in W^{s, p}\left(\mathbb{R}^{N}\right): u=0 \text { a.e. in } \mathbb{R}^{N} \backslash \Omega\right\}
$$

equivalently renormed by setting $\|\cdot\|=[\cdot]_{s, p}$, which is a uniformly convex Banach space. The imbedding $W_{0}^{s, p}(\Omega) \hookrightarrow L^{r}(\Omega)$ is continuous for $r \in\left[1, p_{s}^{*}\right]$ and compact for $r \in\left[1, p_{s}^{*}\right)$. A function $u \in W_{0}^{s, p}(\Omega)$ is a weak solution of problem (1.1) if

$$
\begin{aligned}
\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(v(x)-v(y))}{|x-y|^{N+s p}} d x d y & =\lambda \int_{\Omega}|u|^{p-2} u v d x \\
& +\int_{\Omega}|u|^{p_{s}^{*}-2} u v d x, \quad \forall v \in W_{0}^{s, p}(\Omega) .
\end{aligned}
$$

See [28] and the references therein for further details for this framework. In the semilinear case $p=2$ problem (1.1) reduces to the critical fractional Laplacian problem

$$
\begin{cases}(-\Delta)^{s} u=\lambda u+|u|^{2 *-2} u & \text { in } \Omega \tag{1.2}\\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

where $\lambda>0$ and $2_{s}^{*}=2 N /(N-2 s)$. This nonlocal problem generalizes the well-known Brezis-Nirenberg problem, which has been extensively studied beginning with the seminal paper [8] (see, e.g., [1, 10-13, 18, 22, 24-27, 45-47, 49] and references therein). Consequently, many results known in the local case $s=1$ have been extended to problem (1.2). In particular, Servadei [41,42] and Servadei and Valdinoci [43, 44] have shown that problem (1.2) has a nontrivial weak solution in the following cases:
(i) $2 s<N<4 s$ and λ is sufficiently large;
(ii) $N=4 s$ and λ is not an eigenvalue of $(-\Delta)^{s}$ in Ω;
(iii) $N>4 s$.

This extends to the fractional setting some well-known results of Brezis and Nirenberg [8], Capozzi et al. [10], Zhang [49], and Gazzola and Ruf [24] for critical Laplacian problems.

In the present paper we consider the quasilinear case $p \neq 2$ of problem (1.1). This presents us with two serious new difficulties. Let

$$
\dot{W}^{s, p}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{p_{s}^{*}}\left(\mathbb{R}^{N}\right):[u]_{s, p}<\infty\right\}
$$

endowed with the norm $\|\cdot\|$, and let

$$
\begin{equation*}
S=\inf _{u \in \dot{W}^{s, p}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\|u\|^{p}}{|u|_{p_{s}^{*}}^{p}}, \tag{1.3}
\end{equation*}
$$

which is positive by the fractional Sobolev inequality. Our first major difficulty is the lack of an explicit formula for a minimizer for S. It has been conjectured that all minimizers are of the form $c U\left(\left|x-x_{0}\right| / \varepsilon\right)$, where

$$
U(x)=\frac{1}{\left(1+|x|^{p^{\prime}}\right)^{(N-s p) / p}}, \quad x \in \mathbb{R}^{N}
$$

$p^{\prime}=p /(p-1)$ is the Hölder conjugate of $p, c \neq 0, x_{0} \in \mathbb{R}^{N}$, and $\varepsilon>0$. This has been proved in Lieb [33] for $p=2$, but for $p \neq 2$ it is not even known if these functions are minimizers. We will get around this difficulty by working with certain asymptotic estimates for minimizers recently obtained in Brasco et al. [4].

Our second main difficulty is that the linking arguments based on eigenspaces of $(-\Delta)^{s}$ used in the case $p=2$ do not work when $p \neq 2$ since the nonlinear operator $(-\Delta)_{p}^{s}$ does not have linear eigenspaces. We will use a more general construction based on sublevel sets as in Perera and Szulkin [39] (see also Perera et al. [37, Proposition 3.23]). Moreover, the standard sequence of variational eigenvalues of $(-\Delta)_{p}^{s}$ based on the genus does not give enough information about the structure of the sublevel sets to carry out this linking construction. Therefore we will use a different sequence of eigenvalues introduced in Iannizzotto et al. [28] that is based on the \mathbb{Z}_{2}-cohomological index of Fadell and Rabinowitz [20].

Let us recall the definition of the cohomological index. Let W be a Banach space and let \mathcal{A} denote the class of symmetric subsets of $W \backslash\{0\}$. For $A \in \mathcal{A}$, let $\bar{A}=A / \mathbb{Z}_{2}$ be the quotient space of A with each u and $-u$ identified, let $f: \bar{A} \rightarrow \mathbb{R} \mathrm{P}^{\infty}$ be the classifying map of \bar{A}, and let $f^{*}: H^{*}\left(\mathbb{R} P^{\infty}\right) \rightarrow H^{*}(\bar{A})$ be the induced homomorphism of the Alexander-Spanier cohomology rings. The cohomological index of A is defined by

$$
i(A)= \begin{cases}\sup \left\{m \geq 1: f^{*}\left(\omega^{m-1}\right) \neq 0\right\}, & A \neq \emptyset \\ 0, & A=\emptyset\end{cases}
$$

where $\omega \in H^{1}\left(\mathbb{R} P^{\infty}\right)$ is the generator of the polynomial ring $H^{*}\left(\mathbb{R} P^{\infty}\right)=\mathbb{Z}_{2}[\omega]$. For example, the classifying map of the unit sphere S^{m-1} in $\mathbb{R}^{m}, m \geq 1$ is the inclusion $\mathbb{R} \mathrm{P}^{m-1} \subset \mathbb{R} \mathrm{P}^{\infty}$, which induces isomorphisms on H^{q} for $q \leq m-1$, so $i\left(S^{m-1}\right)=m$.

The Dirichlet spectrum of $(-\Delta)_{p}^{s}$ in Ω consists of those $\lambda \in \mathbb{R}$ for which the problem

$$
\begin{cases}(-\Delta)_{p}^{s} u=\lambda|u|^{p-2} u & \text { in } \Omega \tag{1.4}\\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

has a nontrivial weak solution. Although a complete description of the spectrum is not known when $p \neq 2$, we can define an increasing and unbounded sequence of variational eigenvalues via a suitable minimax scheme. The standard scheme based on the genus does not give the index information necessary for our purposes here, so we will use the following
scheme based on the cohomological index as in Iannizzotto et al. [28] (see also Perera [36]). Let

$$
\Psi(u)=\frac{1}{|u|_{p}^{p}}, \quad u \in \mathcal{M}=\left\{u \in W_{0}^{s, p}(\Omega):\|u\|=1\right\} .
$$

Then eigenvalues of problem (1.4) coincide with critical values of Ψ. We use the standard notation

$$
\Psi^{a}=\{u \in \mathcal{M}: \Psi(u) \leq a\}, \quad \Psi_{a}=\{u \in \mathcal{M}: \Psi(u) \geq a\}, \quad a \in \mathbb{R}
$$

for the sublevel sets and superlevel sets, respectively. Let \mathcal{F} denote the class of symmetric subsets of \mathcal{M}, and set

$$
\lambda_{k}:=\inf _{M \in \mathcal{F}, i(M) \geq k} \sup _{u \in M} \Psi(u), \quad k \in \mathbb{N} .
$$

Then $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow+\infty$ is a sequence of eigenvalues of problem (1.4), and

$$
\begin{equation*}
\lambda_{k}<\lambda_{k+1} \Longrightarrow i\left(\Psi^{\lambda_{k}}\right)=i\left(\mathcal{M} \backslash \Psi_{\lambda_{k+1}}\right)=k \tag{1.5}
\end{equation*}
$$

(see Iannizzotto et al. [28, Proposition 2.4]). The asymptotic behavior of these eigenvalues was recently studied in Iannizzotto and Squassina [30]. Making essential use of the index information in (1.5), we will prove the following theorem.

Theorem 1.1 (Nonlocal Brezis-Nirenberg problem). Let $1<p<\infty, s \in(0,1), N>s p$, and $\lambda>0$. Then problem (1.1) has a nontrivial weak solution in the following cases:
(i) $N=s p^{2}$ and $\lambda<\lambda_{1}$;
(ii) $N>s p^{2}$ and λ is not one of the eigenvalues λ_{k};
(iii) $N^{2} /(N+s)>s p^{2}$;
(iv) $\left(N^{3}+s^{3} p^{3}\right) / N(N+s)>s p^{2}$ and $\partial \Omega \in C^{1,1}$.

This theorem extends to the fractional setting some well-known results of García Azorero and Peral Alonso [23], Egnell [19], Guedda and Véron [27], Arioli and Gazzola [3], and Degiovanni and Lancelotti [15] for critical p-Laplacian problems.

Weak solutions of problem (1.1) coincide with critical points of the C^{1}-functional

$$
\begin{equation*}
I_{\lambda}(u)=\frac{1}{p}\|u\|^{p}-\frac{\lambda}{p}|u|_{p}^{p}-\frac{1}{p_{s}^{*}}|u|_{p_{s}^{*}}^{p_{s}^{*}}, \quad u \in W_{0}^{s, p}(\Omega) . \tag{1.6}
\end{equation*}
$$

Proof of Theorem 1.1 will be based on the following abstract critical point theorem proved in Yang and Perera (cf. [48, Theorem 2.2]).

Theorem 1.2. Let W be a Banach space, let $S=\{u \in W:\|u\|=1\}$ be the unit sphere in W, and let $\pi: W \backslash\{0\} \rightarrow S, u \mapsto u /\|u\|$ be the radial projection onto S. Let I be a C^{1}-functional on W and let A_{0} and B_{0} be disjoint nonempty closed symmetric subsets of S such that

$$
i\left(A_{0}\right)=i\left(S \backslash B_{0}\right)<\infty
$$

Assume that there exist $R>r>0$ and $v \in S \backslash A_{0}$ such that

$$
\sup I(A) \leq \inf I(B), \quad \sup I(X)<\infty,
$$

where

$$
\begin{aligned}
& A=\left\{t u: u \in A_{0}, 0 \leq t \leq R\right\} \cup\left\{R \pi((1-t) u+t v): u \in A_{0}, 0 \leq t \leq 1\right\}, \\
& B=\left\{r u: u \in B_{0}\right\} \\
& X=\{t u: u \in A,\|u\|=R, 0 \leq t \leq 1\}
\end{aligned}
$$

Let $\Gamma=\left\{\gamma \in C(X, W): \gamma(X)\right.$ is closed and $\left.\left.\gamma\right|_{A}=i d_{A}\right\}$, and set

$$
c:=\inf _{\gamma \in \Gamma} \sup _{u \in \gamma(X)} I(u) .
$$

Then

$$
\begin{equation*}
\inf I(B) \leq c \leq \sup I(X) \tag{1.7}
\end{equation*}
$$

in particular, c is finite. If, in addition, I satisfies the $(\mathrm{PS})_{c}$ condition, then c is a critical value of I.

Theorem 1.2 generalizes the linking theorem of Rabinowitz [40]. The linking construction in its proof was also used in Perera and Szulkin [39] to obtain nontrivial solutions of p-Laplacian problems with nonlinearities that interact with the spectrum. A similar construction based on the notion of cohomological linking was given in Degiovanni and Lancelotti [14]. See also Perera et al. [37, Proposition 3.23].
The following compactness result, proved in Perera et al. [38, Proposition 3.1], will be crucial for applying Theorem 1.2 to our functional I_{λ}.

Proposition 1.3. Let $1<p<\infty, s \in(0,1), N>s p$, and let S be as in (1.3). Then for any $\lambda \in \mathbb{R}, I_{\lambda}$ satisfies the $(\mathrm{PS})_{c}$ condition for all $c<\frac{s}{N} S^{N / s p}$.
Notations. We use the following notations throughout the paper. For $a \in \mathbb{R}$ and $q>0$, we write $a^{q}=|a|^{q-1} a$. For $1 \leq q \leq \infty,|\cdot|_{q}$ denotes the norm in $L^{q}(\Omega)$ and

$$
q^{\prime}= \begin{cases}\infty, & q=1 \\ q /(q-1), & 1<q<\infty \\ 1, & q=\infty\end{cases}
$$

is the Hölder conjugate of q.

Acknowledgments

Project supported by NSFC-Tian Yuan Special Foundation (No. 11226116), Natural Science Foundation of Jiangsu Province of China for Young Scholars (No. BK2012109), and the China Scholarship Council (No. 201208320435). The research was partially supported by Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (INdAM).

2. Preliminaries

2.1. Minimizers for the Sobolev inequality. We have the following proposition from Brasco et al. [4] regarding the minimization problem (1.3).

Proposition 2.1. Let $1<p<\infty, s \in(0,1), N>s p$, and let S be as in (1.3). Then
(i) there exists a minimizer for S;
(ii) for every minimizer U, there exist $x_{0} \in \mathbb{R}^{N}$ and a constant sign monotone function $u: \mathbb{R} \rightarrow \mathbb{R}$ such that $U(x)=u\left(\left|x-x_{0}\right|\right)$;
(iii) for every minimizer U, there exists $\lambda_{U}>0$ such that

$$
\int_{\mathbb{R}^{2 N}} \frac{(U(x)-U(y))^{p-1}(v(x)-v(y))}{|x-y|^{N+s p}} d x d y=\lambda_{U} \int_{\mathbb{R}^{N}} U^{p_{s}^{*}-1} v d x \quad \forall v \in \dot{W}^{s, p}\left(\mathbb{R}^{N}\right)
$$

In the following, we shall fix a radially symmetric nonnegative decreasing minimizer $U=U(r)$ for S. Multiplying U by a positive constant if necessary, we may assume that

$$
\begin{equation*}
(-\Delta)_{p}^{s} U=U^{p_{s}^{*}-1} . \tag{2.1}
\end{equation*}
$$

Testing this equation with U and using (1.3) shows that

$$
\begin{equation*}
\|U\|^{p}=|U|_{p_{s}^{*}}^{p_{s}^{*}}=S^{N / s p} . \tag{2.2}
\end{equation*}
$$

For any $\varepsilon>0$, the function

$$
\begin{equation*}
U_{\varepsilon}(x)=\frac{1}{\varepsilon^{(N-s p) / p}} U\left(\frac{|x|}{\varepsilon}\right) \tag{2.3}
\end{equation*}
$$

is also a minimizer for S satisfying (2.1) and (2.2), so after a rescaling we may assume that $U(0)=1$. Henceforth, U will denote such a normalized (with respect to constant multiples and rescaling) minimizer and U_{ε} will denote the associated family of minimizers given by (2.3). In the absence of an explicit formula for U, we will use the following asymptotic estimates.

Lemma 2.2. There exist constants $c_{1}, c_{2}>0$ and $\theta>1$ such that for all $r \geq 1$,

$$
\begin{equation*}
\frac{c_{1}}{r^{(N-s p) /(p-1)}} \leq U(r) \leq \frac{c_{2}}{r^{(N-s p) /(p-1)}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{U(\theta r)}{U(r)} \leq \frac{1}{2} \tag{2.5}
\end{equation*}
$$

Proof. The inequalities in (2.4) were proved in Brasco et al. [4]. They imply

$$
\frac{U(\theta r)}{U(r)} \leq \frac{c_{2}}{c_{1}} \frac{1}{\theta^{(N-s p) /(p-1)}},
$$

and (2.5) follows for sufficiently large θ.
2.2. Regularity estimates. Weak solutions of the equation $(-\Delta)_{p}^{s} u=f(x)$ enjoy the natural L^{q}-estimates given in the following lemma.

Lemma 2.3. Let $f \in L^{q}(\Omega), 1<q \leq \infty$ and let $u \in W_{0}^{s, p}(\Omega)$ be a weak solution of $(-\Delta)_{p}^{s} u=f(x)$ in Ω. Then

$$
\begin{equation*}
|u|_{r} \leq C|f|_{q}^{1 /(p-1)}, \tag{2.6}
\end{equation*}
$$

where

$$
r= \begin{cases}\frac{N(p-1) q}{N-s p q}, & 1<q<\frac{N}{s p} \\ \infty, & \frac{N}{s p}<q \leq \infty\end{cases}
$$

and $C=C(N, \Omega, p, s, q)>0$. In particular, if $f \in L^{\infty}(\Omega)$, then

$$
|u|_{\infty} \leq C|f|_{\infty}^{1 /(p-1)} .
$$

Proof. For $k>0, t \in \mathbb{R}$, and $\alpha>0$, set $t_{k}=\max \{-k, \min \{t, k\}\}$ and consider the nondecreasing function $g(t)=t_{k}^{\alpha}$. Using Brasco and Parini [6, Lemma A.2] and testing the equation $(-\Delta)_{p}^{s} u=f(x)$ with $g(u) \in W_{0}^{s, p}(\Omega)$ gives

$$
\|G(u)\|^{p} \leq \int_{\mathbb{R}^{2 N}} \frac{(u(x)-u(y))^{p-1}(g(u(x))-g(u(y)))}{|x-y|^{N+s p}} d x d y=\int_{\Omega} f(x) g(u(x)) d x
$$

where

$$
G(t)=\int_{0}^{t} g^{\prime}(\tau)^{1 / p} d \tau=\frac{\alpha^{1 / p} p}{\alpha+p-1} t_{k}^{(\alpha+p-1) / p}
$$

Using the Sobolev inequality on the left and the Hölder inequality on the right we get

$$
\begin{equation*}
\left|u_{k}^{(\alpha+p-1) / p}\right|_{p_{s}^{*}}^{p} \leq C|f|_{q}\left|u_{k}^{\alpha}\right|_{q^{\prime}} . \tag{2.7}
\end{equation*}
$$

If $1<q<N / s p$, take

$$
\alpha=\frac{(p-1) p_{s}^{*}}{p q^{\prime}-p_{s}^{*}}=\frac{N(p-1)(q-1)}{N-s p q}>0,
$$

so that

$$
\frac{\alpha+p-1}{p} p_{s}^{*}=\alpha q^{\prime}=: r .
$$

Then $r=N(p-1) q /(N-s p q)$ and (2.7) gives

$$
\left|u_{k}\right|_{r}^{p r / p_{s}^{*}} \leq C|f|_{q}\left|u_{k}\right|_{r}^{r / q^{\prime}},
$$

so

$$
\left|u_{k}\right|_{r} \leq C|f|_{q}^{1 /(p-1)}
$$

Letting $k \rightarrow+\infty$ gives (2.6) for this case. If $N / s p<q \leq \infty$, then

$$
\begin{equation*}
|u|_{\infty} \leq C\left(|u|_{q^{\prime}}+|f|_{q}^{1 /(p-1)}\right) \tag{2.8}
\end{equation*}
$$

by Brasco and Parini [6, Theorem 3.1] and the Hölder inequality. Noting that $q^{\prime}<p_{s}^{*}$ in this case, Hölder inequality and (2.7) with $\alpha=1$ give us

$$
\left|u_{k}\right|_{q^{\prime}}^{p} \leq C\left|u_{k}\right|_{p_{s}^{*}}^{p} \leq C|f|_{q}\left|u_{k}\right|_{q^{\prime}},
$$

so

$$
\left|u_{k}\right|_{q^{\prime}} \leq C|f|_{q}^{1 /(p-1)} .
$$

Letting $k \rightarrow+\infty$ and combining with (2.8) gives (2.6) for this case.
We also have the following Caccioppoli-type inequality.
Lemma 2.4. Let $f \in L^{q}(\Omega), 1<q \leq \infty$ and let $u \in W_{0}^{s, p}(\Omega)$ be a weak solution of $(-\Delta)_{p}^{s} u=f(x)$ in Ω. If $u|\varphi|^{p} \in W_{0}^{s, p}(\Omega)$, then

$$
\begin{align*}
\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}|\varphi(x)|^{p}}{|x-y|^{N+s p}} d x d y & \leq 2 \int_{\Omega} f(x) u(x)|\varphi(x)|^{p} d x \tag{2.9}\\
& +C \int_{\mathbb{R}^{2 N}} \frac{|u(y)|^{p}|\varphi(x)-\varphi(y)|^{p}}{|x-y|^{N+s p}} d x d y
\end{align*}
$$

where $C=C(p)>0$.

Proof. Testing the equation $(-\Delta)_{p}^{s} u=f(x)$ with $u|\varphi|^{p}$ gives

$$
\begin{align*}
& \int_{\Omega} f(x) u(x)|\varphi(x)|^{p} d x \\
& =\int_{\mathbb{R}^{2 N}} \frac{(u(x)-u(y))^{p-1}\left(u(x)|\varphi(x)|^{p}-u(y)|\varphi(y)|^{p}\right)}{|x-y|^{N+s p}} d x d y \\
& =\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}|\varphi(x)|^{p}}{|x-y|^{N+s p}} d x d y \\
& +\int_{\mathbb{R}^{2 N}} \frac{(u(x)-u(y))^{p-1} u(y)\left(|\varphi(x)|^{p}-|\varphi(y)|^{p}\right)}{|x-y|^{N+s p}} d x d y \tag{2.10}
\end{align*}
$$

By the elementary inequality $\left||a|^{p}-|b|^{p}\right| \leq p|a-b|\left(|a|^{p-1}+|b|^{p-1}\right)$ valid for all $a, b \in \mathbb{R}$ and the Young's inequality,

$$
\begin{aligned}
& -\int_{\mathbb{R}^{2 N}} \frac{(u(x)-u(y))^{p-1} u(y)\left(|\varphi(x)|^{p}-|\varphi(y)|^{p}\right)}{|x-y|^{N+s p}} d x d y \\
& \leq p \int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p-1}|u(y)||\varphi(x)-\varphi(y)|\left(|\varphi(x)|^{p-1}+|\varphi(y)|^{p-1}\right)}{|x-y|^{N+s p}} d x d y \\
& \leq \frac{1}{4} \int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}\left(|\varphi(x)|^{p}+|\varphi(y)|^{p}\right)}{|x-y|^{N+s p}} d x d y \\
& +C \int_{\mathbb{R}^{2 N}} \frac{|u(y)|^{p}|\varphi(x)-\varphi(y)|^{p}}{|x-y|^{N+s p}} d x d y \\
& =\frac{1}{2} \int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}|\varphi(x)|^{p}}{|x-y|^{N+s p}} d x d y+C \int_{\mathbb{R}^{2 N}} \frac{|u(y)|^{p}|\varphi(x)-\varphi(y)|^{p}}{|x-y|^{N+s p}} d x d y .
\end{aligned}
$$

Combining this with (2.10) gives (2.9).
As a consequence of Lemmas 2.3 and 2.4, we have the following lemma.
Lemma 2.5. Let $f \in L^{q}(\Omega), N / s p<q \leq \infty$ and let $u \in W_{0}^{s, p}(\Omega)$ be a weak solution of $(-\Delta)_{p}^{s} u=f(x)$ in Ω. Then

$$
\begin{equation*}
\|u \varphi\|^{p} \leq C|f|_{q}^{p /(p-1)}\left(|\varphi|_{p q^{\prime}}^{p}+\|\varphi\|^{p}\right) \quad \forall \varphi \in L^{p q^{\prime}}(\Omega) \cap W_{0}^{s, p}(\Omega) \tag{2.11}
\end{equation*}
$$

where $C=C(N, \Omega, p, s, q)>0$.
Proof. Setting $t_{k}=\max \{-k, \min \{t, k\}\}$ for $k>0$ and $t \in \mathbb{R}$, noting that $u\left|\varphi_{k}\right|^{p} \in W_{0}^{s, p}(\Omega)$, and applying Lemma 2.4 gives

$$
\begin{align*}
\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}\left|\varphi_{k}(x)\right|^{p}}{|x-y|^{N+s p}} d x d y & \leq 2 \int_{\Omega} f(x) u(x)\left|\varphi_{k}(x)\right|^{p} d x \tag{2.12}\\
& +C \int_{\mathbb{R}^{2 N}} \frac{|u(y)|^{p}\left|\varphi_{k}(x)-\varphi_{k}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y
\end{align*}
$$

Since $N / s p<q \leq \infty$,

$$
\begin{equation*}
|u|_{\infty} \leq C|f|_{q}^{1 /(p-1)} \tag{2.13}
\end{equation*}
$$

by Lemma 2.3. By (2.12), (2.13), and the Hölder inequality,

$$
\begin{aligned}
\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}\left|\varphi_{k}(x)\right|^{p}}{|x-y|^{N+s p}} d x d y & \leq C|f|_{q}^{p /(p-1)}\left(\left|\varphi_{k}\right|_{p q^{\prime}}^{p}+\left\|\varphi_{k}\right\|^{p}\right) \\
& \leq C|f|_{q}^{p /(p-1)}\left(|\varphi|_{p q^{\prime}}^{p}+\|\varphi\|^{p}\right),
\end{aligned}
$$

and letting $k \rightarrow+\infty$ gives

$$
\begin{equation*}
\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}|\varphi(x)|^{p}}{|x-y|^{N+s p}} d x d y \leq C|f|_{q}^{p /(p-1)}\left(|\varphi|_{p q^{\prime}}^{p}+\|\varphi\|^{p}\right) . \tag{2.14}
\end{equation*}
$$

Since

$$
\begin{aligned}
\int_{\mathbb{R}^{2 N}} \frac{|u(x) \varphi(x)-u(y) \varphi(y)|^{p}}{|x-y|^{N+s p}} d x d y & \leq C\left(\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}|\varphi(x)|^{p}}{|x-y|^{N+s p}} d x d y\right. \\
& \left.+\int_{\mathbb{R}^{2 N}} \frac{|u(y)|^{p}|\varphi(x)-\varphi(y)|^{p}}{|x-y|^{N+s p}} d x d y\right)
\end{aligned}
$$

(2.11) readily follows from (2.14) and (2.13).

Now let θ be as in Lemma 2.2, let $\eta \in C^{\infty}\left(\mathbb{R}^{N},[0,1]\right)$ be such that

$$
\eta(x)= \begin{cases}0, & |x| \leq 2 \theta \\ 1, & |x| \geq 3 \theta\end{cases}
$$

and let $\eta_{\delta}(x)=\eta\left(\frac{x}{\delta}\right)$ for $\delta>0$.
Lemma 2.6. Assume that $0 \in \Omega$. Then there exists a constant $C=C(N, \Omega, p, s)>0$ such that for any $v \in W_{0}^{s, p}(\Omega)$ such that $(-\Delta)_{p}^{s} v \in L^{\infty}(\Omega)$ and $\delta>0$ such that $B_{5 \theta \delta}(0) \subset \Omega$,

$$
\left\|v \eta_{\delta}\right\|^{p} \leq\|v\|^{p}+C\left|(-\Delta)_{p}^{s} v\right|_{\infty}^{p /(p-1)} \delta^{N-s p} .
$$

Proof. We have

$$
\begin{align*}
\left\|v \eta_{\delta}\right\|^{p} & \leq \int_{A_{1}} \frac{|v(x)-v(y)|^{p}}{|x-y|^{N+s p}} d x d y+\int_{A_{2}} \frac{\left|v(x) \eta_{\delta}(x)-v(y) \eta_{\delta}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y \tag{2.15}\\
& +2 \int_{A_{3}} \frac{\left|v(x) \eta_{\delta}(x)-v(y)\right|^{p}}{|x-y|^{N+s p}} d x d y=: I_{1}+I_{2}+2 I_{3},
\end{align*}
$$

where

$$
A_{1}=B_{3 \theta \delta}(0)^{c} \times B_{3 \theta \delta}(0)^{c}, \quad A_{2}=B_{4 \theta \delta}(0) \times B_{4 \theta \delta}(0), \quad A_{3}=B_{3 \theta \delta}(0) \times B_{4 \theta \delta}(0)^{c} .
$$

Clearly, $I_{1} \leq\|v\|^{p}$. To estimate I_{2}, let $\varphi \in C_{0}^{\infty}\left(B_{5 \theta}(0),[0,1]\right)$ with $\varphi=\eta$ in $B_{4 \theta}(0)$ and let $\varphi_{\delta}(x)=\varphi(x / \delta)$. Then

$$
I_{2}=\int_{A_{2}} \frac{\left|v(x) \varphi_{\delta}(x)-v(y) \varphi_{\delta}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y \leq\left\|v \varphi_{\delta}\right\|^{p} \leq C\left|(-\Delta)_{p}^{s} v\right|_{\infty}^{p /(p-1)}\left\|\varphi_{\delta}\right\|^{p}
$$

by Lemma 2.5 applied to φ_{δ} with $q=\infty$, and $\left\|\varphi_{\delta}\right\|^{p}=\delta^{N-s p}\|\varphi\|^{p}$. Since $|x-y| \geq|y|-3 \theta \delta \geq$ $|y| / 4$ on A_{3},

$$
I_{3} \leq C|v|_{\infty}^{p} \int_{A_{3}} \frac{d x d y}{|y|^{N+s p}} \leq C\left|(-\Delta)_{p}^{s} v\right|_{\infty}^{p /(p-1)} \delta^{N-s p}
$$

by Lemma 2.3.
2.3. Auxiliary estimates. We now construct some auxiliary functions and estimate their norms. In what follows θ is the universal constant in Lemma 2.2 that depends only on N, p, and s. We may assume without loss of generality that $0 \in \Omega$. For $\varepsilon, \delta>0$, let

$$
m_{\varepsilon, \delta}=\frac{U_{\varepsilon}(\delta)}{U_{\varepsilon}(\delta)-U_{\varepsilon}(\theta \delta)},
$$

let

$$
g_{\varepsilon, \delta}(t)= \begin{cases}0, & 0 \leq t \leq U_{\varepsilon}(\theta \delta) \\ m_{\varepsilon, \delta}^{p}\left(t-U_{\varepsilon}(\theta \delta)\right), & U_{\varepsilon}(\theta \delta) \leq t \leq U_{\varepsilon}(\delta) \\ t+U_{\varepsilon}(\delta)\left(m_{\varepsilon, \delta}^{p-1}-1\right), & t \geq U_{\varepsilon}(\delta)\end{cases}
$$

and let

$$
G_{\varepsilon, \delta}(t)=\int_{0}^{t} g_{\varepsilon, \delta}^{\prime}(\tau)^{1 / p} d \tau= \begin{cases}0, & 0 \leq t \leq U_{\varepsilon}(\theta \delta) \tag{2.16}\\ m_{\varepsilon, \delta}\left(t-U_{\varepsilon}(\theta \delta)\right), & U_{\varepsilon}(\theta \delta) \leq t \leq U_{\varepsilon}(\delta) \\ t, & t \geq U_{\varepsilon}(\delta)\end{cases}
$$

The functions $g_{\varepsilon, \delta}$ and $G_{\varepsilon, \delta}$ are nondecreasing and absolutely continuous. Consider the radially symmetric nonincreasing function

$$
u_{\varepsilon, \delta}(r)=G_{\varepsilon, \delta}\left(U_{\varepsilon}(r)\right),
$$

which satisfies

$$
u_{\varepsilon, \delta}(r)= \begin{cases}U_{\varepsilon}(r), & r \leq \delta \tag{2.17}\\ 0, & r \geq \theta \delta\end{cases}
$$

We have the following estimates for $u_{\varepsilon, \delta}$.
Lemma 2.7. There exists a constant $C=C(N, p, s)>0$ such that for any $\varepsilon \leq \delta / 2$,

$$
\begin{gather*}
\left\|u_{\varepsilon, \delta}\right\|^{p} \leq S^{N / s p}+C\left(\frac{\varepsilon}{\delta}\right)^{(N-s p) /(p-1)}, \tag{2.18}\\
\left|u_{\varepsilon, \delta}\right|_{p}^{p} \geq \begin{cases}\frac{1}{C} \varepsilon^{s p} \log \left(\frac{\delta}{\varepsilon}\right), & N=s p^{2} \\
\frac{1}{C} \varepsilon^{s p}, & N>s p^{2},\end{cases} \tag{2.19}\\
\left|u_{\varepsilon, \delta}\right|_{p_{s}^{*}}^{p_{s}^{*}} \geq S^{N / s p}-C\left(\frac{\varepsilon}{\delta}\right)^{N /(p-1)} \tag{2.20}
\end{gather*}
$$

Proof. Using Brasco and Parini [6, Lemma A.2] and testing the equation $(-\Delta)_{p}^{s} U_{\varepsilon}=U_{\varepsilon}^{p_{s}^{*}-1}$ with $g_{\varepsilon, \delta}\left(U_{\varepsilon}\right) \in W_{0}^{s, p}(\Omega)$ gives

$$
\begin{aligned}
\left\|G_{\varepsilon, \delta}\left(U_{\varepsilon}\right)\right\|^{p} & \leq \int_{\mathbb{R}^{2 N}} \frac{\left(U_{\varepsilon}(x)-U_{\varepsilon}(y)\right)^{p-1}\left(g_{\varepsilon, \delta}\left(U_{\varepsilon}(x)\right)-g_{\varepsilon, \delta}\left(U_{\varepsilon}(y)\right)\right)}{|x-y|^{N+s p}} d x d y \\
& =\int_{\mathbb{R}^{N}} U_{\varepsilon}(x)^{p_{s}^{*}-1} g_{\varepsilon, \delta}\left(U_{\varepsilon}(x)\right) d x \\
& =\left|U_{\varepsilon}\right|_{p_{s}^{*}}^{p_{s}^{*}}+\int_{\mathbb{R}^{N}}\left(g_{\varepsilon, \delta}\left(U_{\varepsilon}(x)\right)-U_{\varepsilon}(x)\right) U_{\varepsilon}(x)^{p_{s}^{*}-1} d x
\end{aligned}
$$

We have $\left|U_{\varepsilon}\right|_{p_{s}^{*}}^{p_{s}^{*}}=S^{N / s p}$ by (2.2),

$$
\begin{aligned}
g_{\varepsilon, \delta}(t)-t \leq U_{\varepsilon}(\delta) m_{\varepsilon, \delta}^{p-1} & =\frac{1}{\varepsilon^{(N-s p) / p}} U\left(\frac{\delta}{\varepsilon}\right)\left[1-U\left(\frac{\theta \delta}{\varepsilon}\right) / U\left(\frac{\delta}{\varepsilon}\right)\right]^{-(p-1)} \\
& \leq 2^{p-1} c_{2} \frac{\varepsilon^{(N-s p) / p(p-1)}}{\delta^{(N-s p) /(p-1)}}, \quad \forall t \geq 0
\end{aligned}
$$

by (2.4) and (2.5),

$$
\int_{\mathbb{R}^{N}} U_{\varepsilon}(x)^{p_{s}^{*}-1} d x=\varepsilon^{(N-s p) / p} \int_{\mathbb{R}^{N}} U(x)^{p_{s}^{*}-1} d x
$$

and the last integral is finite by (2.4) again, so (2.18) follows. Using (2.17),

$$
\int_{\mathbb{R}^{N}} u_{\varepsilon, \delta}(x)^{p} d x \geq \int_{B_{\delta}(0)} u_{\varepsilon, \delta}(x)^{p} d x=\int_{B_{\delta}(0)} U_{\varepsilon}(x)^{p} d x=\varepsilon^{s p} \int_{B_{\delta / \varepsilon}(0)} U(x)^{p} d x
$$

and the last integral is greater than or equal to

$$
\int_{1}^{\delta / \varepsilon} U(r)^{p} r^{N-1} d r \geq c_{1}^{p} \int_{1}^{\delta / \varepsilon} r^{-\left(N-s p^{2}\right) /(p-1)-1} d r
$$

by (2.4). A direct evaluation of the integral on the right gives (2.19) since $\delta / \varepsilon \geq 2$. Using (2.17) again,

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} u_{\varepsilon, \delta}(x)^{p_{s}^{*}} d x & \geq \int_{B_{\delta}(0)} u_{\varepsilon, \delta}(x)^{p_{s}^{*}} d x=\int_{B_{\delta}(0)} U_{\varepsilon}(x)^{p_{s}^{*}} d x \\
& =S^{N / s p}-\int_{B_{\delta / \varepsilon}(0)^{c}} U(x)^{p_{s}^{*}} d x
\end{aligned}
$$

by (2.2). By (2.4), the last integral is less than or equal to

$$
c_{2}^{p_{s}^{*}} \int_{\delta / \varepsilon}^{\infty} r^{-N /(p-1)-1} d r=\frac{(p-1) c_{2}^{p_{s}^{*}}}{N}\left(\frac{\varepsilon}{\delta}\right)^{N /(p-1)}
$$

so (2.20) follows.
We note that Lemma 2.7 gives the following estimate for

$$
S_{\varepsilon, \delta}(\lambda):=\frac{\left\|u_{\varepsilon, \delta}\right\|^{p}-\lambda\left|u_{\varepsilon, \delta}\right|_{p}^{p}}{\left|u_{\varepsilon, \delta}\right|_{p_{s}^{*}}^{p}}:
$$

there exists a constant $C=C(N, p, s)>0$ such that for any $\varepsilon \leq \delta / 2$,

$$
S_{\varepsilon, \delta}(\lambda) \leq \begin{cases}S-\frac{\lambda}{C} \varepsilon^{s p} \log \left(\frac{\delta}{\varepsilon}\right)+C\left(\frac{\varepsilon}{\delta}\right)^{s p}, & N=s p^{2} \tag{2.21}\\ S-\frac{\lambda}{C} \varepsilon^{s p}+C\left(\frac{\varepsilon}{\delta}\right)^{(N-s p) /(p-1)}, & N>s p^{2}\end{cases}
$$

3. Proof of the main result

In this section we prove Theorem 1.1. For $0<\lambda<\lambda_{1}$, mountain pass theorem and (2.21) will give us a positive critical level of I_{λ} below the threshold level for compactness given in Proposition 1.3. For $\lambda \geq \lambda_{1}$, we will use the abstract linking theorem, Theorem 1.2.
3.1. Case 1: $N \geq s p^{2}$ and $0<\lambda<\lambda_{1}$. We have

$$
I_{\lambda}(u) \geq \frac{1}{p}\left(1-\frac{\lambda}{\lambda_{1}}\right)\|u\|^{p}-\frac{1}{p_{s}^{*} S_{s}^{p_{s}^{*}} / p}\|u\|^{p_{s}^{*}},
$$

so the origin is a strict local minimizer of I_{λ}. Fix $\delta>0$ so small that $B_{\theta \delta}(0) \subset \subset \Omega$, so that $\operatorname{supp} u_{\varepsilon, \delta} \subset \Omega$ by (2.17). Noting that

$$
I_{\lambda}\left(R u_{\varepsilon, \delta}\right)=\frac{R^{p}}{p}\left(\left\|u_{\varepsilon, \delta}\right\|^{p}-\lambda\left|u_{\varepsilon, \delta}\right|_{p}^{p}\right)-\frac{R^{p_{s}^{*}}}{p_{s}^{*}}\left|u_{\varepsilon, \delta}\right|_{p_{s}^{*}}^{p_{s}^{*}} \rightarrow-\infty \quad \text { as } R \rightarrow+\infty,
$$

fix $R_{0}>0$ so large that $I_{\lambda}\left(R_{0} u_{\varepsilon, \delta}\right)<0$. Then let

$$
\Gamma=\left\{\gamma \in C\left([0,1], W_{0}^{s, p}(\Omega)\right): \gamma(0)=0, \gamma(1)=R_{0} u_{\varepsilon, \delta}\right\}
$$

and set

$$
c:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{\lambda}(\gamma(t))>0 .
$$

Since $t \mapsto t R_{0} u_{\varepsilon, \delta}$ is a path in Γ,

$$
\begin{equation*}
c \leq \max _{t \in[0,1]} I_{\lambda}\left(t R_{0} u_{\varepsilon, \delta}\right)=\frac{s}{N}\left(\frac{\left\|u_{\varepsilon, \delta}\right\|^{p}-\lambda\left|u_{\varepsilon, \delta}\right|_{p}^{p}}{\left|u_{\varepsilon, \delta}\right|_{p_{s}^{*}}^{p}}\right)^{N / s p}=\frac{s}{N} S_{\varepsilon, \delta}(\lambda)^{N / s p} . \tag{3.1}
\end{equation*}
$$

By (2.21),

$$
S_{\varepsilon, \delta}(\lambda) \leq \begin{cases}S+\left(C-\frac{\lambda}{C}|\log \varepsilon|\right) \varepsilon^{s p}, & N=s p^{2} \\ S-\left(\frac{\lambda}{C}-C \varepsilon^{\left(N-s p^{2}\right) /(p-1)}\right) \varepsilon^{s p}, & N>s p^{2}\end{cases}
$$

so $S_{\varepsilon, \delta}(\lambda)<S$ if $\varepsilon>0$ is sufficiently small. So

$$
c<\frac{s}{N} S^{N / s p}
$$

by (3.1), and hence I_{λ} satisfies the (PS $)_{c}$ condition by Proposition 1.3. Then c is a critical level of I_{λ} by the mountain pass theorem.
3.2. Case 2: $N>s p^{2}$ and $\lambda>\lambda_{1}$ is not one of the eigenvalues λ_{k}. We have $\lambda_{k}<\lambda<$ λ_{k+1} for some $k \in \mathbb{N}$, and then $i\left(\Psi^{\lambda_{k}}\right)=i\left(\mathcal{M} \backslash \Psi_{\lambda_{k+1}}\right)=k$ by (1.5). In what follows

$$
\pi(u)=\frac{u}{\|u\|}, \quad \pi_{p}(u)=\frac{u}{|u|_{p}}, \quad u \in W_{0}^{s, p}(\Omega) \backslash\{0\}
$$

are the radial projections onto

$$
\mathcal{M}=\left\{u \in W_{0}^{s, p}(\Omega):\|u\|=1\right\}, \quad \mathcal{M}_{p}=\left\{u \in W_{0}^{s, p}(\Omega):|u|_{p}=1\right\}
$$

respectively.
Proposition 3.1. If $\lambda_{k}<\lambda_{k+1}$, then $\Psi^{\lambda_{k}}$ has a compact symmetric subset E with $i(E)=k$ such that

$$
\left|(-\Delta)_{p}^{s} v\right|_{\infty} \leq C \quad \forall v \in E,
$$

where $C=C(N, \Omega, p, s, k)>0$. In particular,

$$
|v|_{\infty} \leq C \quad \forall v \in E
$$

Proof. For $w \in L^{q}(\Omega)$ with $q \geq \max \left\{1,(p-1)\left(p_{s}^{*}\right)^{\prime}\right\}$, the equation $(-\Delta)_{p}^{s} u=|w|^{p-2} w$ has a unique weak solution $u=\mathcal{B}(w) \in W_{0}^{s, p}(\Omega)$. By Lemma 2.3,

$$
\begin{equation*}
|\mathcal{B}(w)|_{\gamma(q)} \leq C(q)|w|_{q}, \tag{3.2}
\end{equation*}
$$

where

$$
\gamma(q)= \begin{cases}\frac{N(p-1) q}{N(p-1)-s p q}, & \frac{q}{p-1}<\frac{N}{s p} \\ \infty, & \frac{N}{s p}<\frac{q}{p-1} \leq \infty\end{cases}
$$

For $w \in \mathcal{M}_{p}$, let $J(w)=\pi_{p}(u) \in \mathcal{M}_{p}$, where $u=\mathcal{B}(w)$. Testing $(-\Delta)_{p}^{s} u=|w|^{p-2} w$ with u, w and using the Hölder inequality gives

$$
\begin{aligned}
\|u\|^{p} & =\int_{\Omega}|w|^{p-2} w u d x \leq|w|_{p}^{p-1}|u|_{p}=|u|_{p} \\
1 & =|w|_{p}^{p}=\int_{\mathbb{R}^{2 N}} \frac{(u(x)-u(y))^{p-1}(w(x)-w(y))}{|x-y|^{N+s p}} d x d y \leq\|u\|^{p-1}\|w\|
\end{aligned}
$$

respectively, so

$$
\begin{equation*}
\|J(w)\|=\frac{\|u\|}{|u|_{p}} \leq \frac{1}{\|u\|^{p-1}} \leq\|w\|, \quad|\mathcal{B}(w)|_{p}=|u|_{p} \geq\|u\|^{p} \geq \frac{1}{\|w\|^{p /(p-1)}} \tag{3.3}
\end{equation*}
$$

Let

$$
A=\pi_{p}\left(\Psi^{\lambda_{k}}\right)=\left\{w \in \mathcal{M}_{p}:\|w\|^{p} \leq \lambda_{k}\right\} .
$$

Then $i(A)=i\left(\Psi^{\lambda_{k}}\right)=k$ by the monotonicity of the index and (1.5), and A is strongly compact in $L^{p}(\Omega)$. By (3.3), $J(A) \subset A$ and

$$
\begin{equation*}
|\mathcal{B}(w)|_{p} \geq \frac{1}{\lambda_{k}^{1 /(p-1)}} \quad \forall w \in A \tag{3.4}
\end{equation*}
$$

For $w \in A$, if $p /(p-1)>N / s p$, then $\gamma(p)=\infty$ and hence

$$
|J(w)|_{\infty}=\frac{|\mathcal{B}(w)|_{\infty}}{|\mathcal{B}(w)|_{p}} \leq C(p) \lambda_{k}^{1 /(p-1)}|w|_{p}=C(p) \lambda_{k}^{1 /(p-1)}
$$

by (3.2) and (3.4). Otherwise, take $\max \left\{1,(p-1)\left(p_{s}^{*}\right)^{\prime}\right\} \leq q_{0}<p$ and define the sequence $\left(q_{i}\right)$ recursively by setting $q_{i}=\gamma\left(q_{i-1}\right)$ if $q_{i-1} /(p-1)<N / s p$, in which case

$$
q_{i}-q_{i-1}=\frac{s p q_{i-1}^{2}}{N(p-1)-s p q_{i-1}} \geq \frac{s p}{N(p-1)-s p}>0
$$

Hence q_{0} may be chosen so that $q_{n-1} /(p-1)<N / s p<q_{n} /(p-1)$ for some $n \geq 1$. Iterating (3.2) and (3.4), and using the Hölder inequality at the last step then gives

$$
\begin{align*}
\left|J^{n}(w)\right|_{\infty} & =\frac{\left|\mathcal{B}\left(J^{n-1}(w)\right)\right|_{\infty}}{\left|\mathcal{B}\left(J^{n-1}(w)\right)\right|_{p}} \leq C\left(q_{n}\right) \lambda_{k}^{1 /(p-1)}\left|J^{n-1}(w)\right|_{q_{n}} \leq \cdots \tag{3.5}\\
& \leq C\left(q_{n}\right) \cdots C\left(q_{0}\right) \lambda_{k}^{(n+1) /(p-1)}|w|_{q_{0}} \leq C \lambda_{k}^{(n+1) /(p-1)}
\end{align*}
$$

Let $\widetilde{A}=J^{n+1}(A) \subset A$. For each $\widetilde{v} \in \widetilde{A}$, there exists $\widetilde{w} \in J^{n}(A) \subset A$ such that $\widetilde{v}=J(\widetilde{w})=$ $u /|u|_{p}$, where $u=\mathcal{B}(\widetilde{w})$. Then

$$
(-\Delta)_{p}^{s} \widetilde{v}=\frac{(-\Delta)_{p}^{s} u}{|u|_{p}^{p-1}}=\frac{|\widetilde{w}|^{p-2} \widetilde{w}}{|\mathcal{B}(\widetilde{w})|_{p}^{p-1}}
$$

so

$$
\begin{equation*}
\left|(-\Delta)_{p}^{s} \widetilde{v}\right|_{\infty}=\frac{|\widetilde{w}|_{\infty}^{p-1}}{|\mathcal{B}(\widetilde{w})|_{p}^{p-1}} \leq C \lambda_{k}^{n+2} \tag{3.6}
\end{equation*}
$$

by (3.4) and (3.5). Since the imbedding $W_{0}^{s, p}(\Omega) \hookrightarrow L^{p}(\Omega)$ is compact and J is an odd continuous map from $L^{p}(\Omega)$ to $W_{0}^{s, p}(\Omega), \widetilde{A}$ is a compact set and $i(\widetilde{A})=i(A)=k$.

Let $E=\pi(\widetilde{A})$ and note that E is compact with $i(E)=i(\widetilde{A})=k$. For each $v \in E$, there exists $\widetilde{v} \in \widetilde{A} \subset A$ such that $v=\widetilde{v} /\|\widetilde{v}\|$. Then

$$
\Psi(v)=\frac{\|\widetilde{v}\|^{p}}{|\widetilde{v}|_{p}^{p}} \leq \lambda_{k},
$$

so $E \subset \Psi^{\lambda_{k}}$. Since $1=|\widetilde{v}|_{p} \leq C\|\widetilde{v}\|$,

$$
\left|(-\Delta)_{p}^{s} v\right|_{\infty}=\frac{\left|(-\Delta)_{p}^{s} \widetilde{v}\right|_{\infty}}{\|\widetilde{v}\|^{p-1}} \leq C \lambda_{k}^{n+2}
$$

by (3.6).
For $v \in E$, let $v_{\delta}=v \eta_{\delta}$, where η_{δ} is the cut-off function in Lemma 2.6, and let

$$
E_{\delta}=\left\{\pi\left(v_{\delta}\right): v \in E\right\} .
$$

Proposition 3.2. There exists a constant $C=C(N, \Omega, p, s, k)>0$ such that for all sufficiently small $\delta>0$,

$$
\begin{gather*}
\frac{1}{C} \leq|w|_{q} \leq C \quad \forall w \in E_{\delta}, 1 \leq q \leq \infty, \tag{3.7}\\
\sup _{w \in E_{\delta}} \Psi(w) \leq \lambda_{k}+C \delta^{N-s p}, \tag{3.8}
\end{gather*}
$$

$E_{\delta} \cap \Psi_{\lambda_{k+1}}=\emptyset, i\left(E_{\delta}\right)=k$, and $\operatorname{supp} w \subset B_{2 \theta \delta}(0)^{c}$ for all $w \in E_{\delta}$. In particular, the supports of w and $\pi\left(u_{\varepsilon, \delta}\right)$ are disjoint and hence $\pi\left(u_{\varepsilon, \delta}\right) \notin E_{\delta}$.

Proof. Let $v \in E$ and let $w=\pi\left(v_{\delta}\right)$. We have

$$
\int_{\Omega}|v|^{q} d x=\int_{\Omega \backslash B_{3 \theta \delta}(0)}\left|v_{\delta}\right|^{q} d x+\int_{B_{3 \theta \delta}(0)}|v|^{q} d x \leq \int_{\Omega}\left|v_{\delta}\right|^{q} d x+C|v|_{\infty}^{q} \delta^{N},
$$

so

$$
\begin{equation*}
\int_{\Omega}\left|v_{\delta}\right|^{q} d x \geq \int_{\Omega}|v|^{q} d x-C \delta^{N} \tag{3.9}
\end{equation*}
$$

by Proposition 3.1. In particular, $\left|v_{\delta}\right|_{1} \geq|v|_{1}-C \delta^{N}$. On the other hand,

$$
1=\|v\|^{p}=\int_{\Omega} v(-\Delta)_{p}^{s} v d x \leq\left|(-\Delta)_{p}^{s} v\right|_{\infty} \int_{\Omega}|v| d x \leq C|v|_{1}
$$

by Proposition 3.1 again, so $\left|v_{\delta}\right|_{1} \geq 1 / C-C \delta^{N}$. Since

$$
\begin{equation*}
\left\|v_{\delta}\right\|^{p} \leq 1+C \delta^{N-s p} \tag{3.10}
\end{equation*}
$$

by Lemma 2.6 and Proposition 3.1, then

$$
|w|_{1}=\frac{\left|v_{\delta}\right|_{1}}{\left\|v_{\delta}\right\|} \geq \frac{\frac{1}{C}-C \delta^{N}}{1+C \delta^{(N-s p) / p}}=\frac{1}{C}+\mathrm{O}\left(\delta^{(N-s p) / p}\right)
$$

which together with the Hölder inequality gives the first half of (3.7). By (3.9) with $q=p$,

$$
\begin{equation*}
\left|v_{\delta}\right|_{p}^{p} \geq|v|_{p}^{p}-C \delta^{N} \geq \frac{1}{\lambda_{k}}-C \delta^{N} \tag{3.11}
\end{equation*}
$$

since $E \subset \Psi^{\lambda_{k}}$. So $\left|v_{\delta}\right|_{p}$, and hence also $\left\|v_{\delta}\right\|$, is bounded away from zero. Since $|v|_{\infty}$ is bounded by Proposition 3.1 and $0 \leq \eta_{\delta} \leq 1,\left|v_{\delta}\right|_{\infty}$ is bounded, so this shows that $|w|_{\infty}=$ $\left|v_{\delta}\right|_{\infty} /\left\|v_{\delta}\right\|$ is bounded, which gives the second half of (3.7).

Combining (3.10) and (3.11) gives

$$
\Psi(w)=\frac{\left\|v_{\delta}\right\|^{p}}{\left|v_{\delta}\right|_{p}^{p}} \leq \frac{1+C \delta^{N-s p}}{\frac{1}{\lambda_{k}}-C \delta^{N}}=\lambda_{k}+\mathrm{O}\left(\delta^{N-s p}\right)
$$

Fix $\delta>0$ so small that $\lambda_{k}+C \delta^{N-s p}<\lambda_{k+1}$. Then $E_{\delta} \subset \mathcal{M} \backslash \Psi_{\lambda_{k+1}}$ by (3.8), and hence $i\left(E_{\delta}\right) \leq i\left(\mathcal{M} \backslash \Psi_{\lambda_{k+1}}\right)=k$ by the monotonicity of the index and (1.5). On the other hand, $E \rightarrow E_{\delta}, v \mapsto \pi\left(v_{\delta}\right)$ is an odd continuous map and hence $i\left(E_{\delta}\right) \geq i(E)=k$. So $i\left(E_{\delta}\right)=k$.

Finally, $\operatorname{supp} \pi\left(v_{\delta}\right)=\operatorname{supp} v_{\delta} \subset \operatorname{supp} \eta_{\delta} \subset B_{2 \theta \delta}(0)^{c}$ for all $v \in E$, and

$$
\operatorname{supp} \pi\left(u_{\varepsilon, \delta}\right)=\operatorname{supp} u_{\varepsilon, \delta} \subset \overline{B_{\theta \delta}(0)},
$$

by virtue of (2.17).
We are now ready to apply Theorem 1.2 to obtain a nontrivial critical point of I_{λ} in the case where $\lambda>\lambda_{1}$ is not one of the eigenvalues λ_{k}. Fix λ^{\prime} such that $\lambda_{k}<\lambda^{\prime}<\lambda<\lambda_{k+1}$, and let $\delta>0$ be so small that the conclusions of Proposition 3.2 hold with $\lambda_{k}+C \delta^{N-s p}<\lambda^{\prime}$, in particular,

$$
\begin{equation*}
\Psi(w)<\lambda^{\prime} \quad \forall w \in E_{\delta} . \tag{3.12}
\end{equation*}
$$

Then take $A_{0}=E_{\delta}$ and $B_{0}=\Psi_{\lambda_{k+1}}$, and note that A_{0} and B_{0} are disjoint nonempty closed symmetric subsets of \mathcal{M} such that

$$
i\left(A_{0}\right)=i\left(\mathcal{M} \backslash B_{0}\right)=k
$$

by Proposition 3.2 and (1.5). Now let $0<\varepsilon \leq \delta / 2$, let $R>r>0$, let $v_{0}=\pi\left(u_{\varepsilon, \delta}\right) \in \mathcal{M} \backslash E_{\delta}$, and let A, B and X be as in Theorem 1.2.

For $u \in \Psi_{\lambda_{k+1}}$,

$$
I_{\lambda}(r u) \geq \frac{1}{p}\left(1-\frac{\lambda}{\lambda_{k+1}}\right) r^{p}-\frac{1}{p_{s}^{*} S^{p_{s}^{*} / p}} r^{p_{s}^{*}} .
$$

Since $\lambda<\lambda_{k+1}$, it follows that $\inf I_{\lambda}(B)>0$ if r is sufficiently small.
Next we show that $I_{\lambda} \leq 0$ on A if R is sufficiently large. For $w \in E_{\delta}$ and $t \geq 0$,

$$
I_{\lambda}(t w) \leq \frac{t^{p}}{p}\left(1-\frac{\lambda}{\Psi(w)}\right) \leq 0
$$

by (3.12). Now let $w \in E_{\delta}$ and $0 \leq t \leq 1$, and set $u=\pi\left((1-t) w+t v_{0}\right)$. Clearly, $\left\|(1-t) w+t v_{0}\right\| \leq 1$, and since the supports of w and v_{0} are disjoint by Proposition 3.2,

$$
\left|(1-t) w+t v_{0}\right|_{p_{s}^{*}}^{p_{s}^{*}}=(1-t)^{p_{s}^{*}}|w|_{p_{s}^{*}}^{p_{s}^{*}}+t^{p_{s}^{*}}\left|v_{0}\right|_{p_{s}^{*}}^{p_{s}^{*}} .
$$

In view of (3.7) and since

$$
\begin{equation*}
\left|v_{0}\right|_{p_{s}^{*}}^{p_{s}^{*}}=\frac{\left|u_{\varepsilon, \delta}\right|_{p_{s}^{*}}^{p_{s}^{*}}}{\left\|u_{\varepsilon, \delta}\right\|^{p_{s}^{*}}} \geq \frac{1}{S^{N /(N-s p)}}+\mathrm{O}\left(\varepsilon^{(N-s p) /(p-1)}\right) \tag{3.13}
\end{equation*}
$$

by Lemma 2.7, it follows that

$$
|u|_{p_{s}^{*}}^{p_{s}^{*}}=\frac{\left|(1-t) w+t v_{0}\right|_{p_{s}^{*}}^{p_{s}^{*}}}{\left\|(1-t) w+t v_{0}\right\|^{p_{s}^{*}}} \geq \frac{1}{C}
$$

if ε is sufficiently small, where $C=C(N, \Omega, p, s, k)>0$. Then

$$
I_{\lambda}(R u) \leq \frac{R^{p}}{p}-\frac{R^{p_{s}^{*}}}{p_{s}^{*}}|u|_{p_{s}^{*}}^{p_{s}^{*}} \leq \frac{R^{p}}{p}-\frac{R^{p_{s}^{*}}}{p_{s}^{*} C} \leq 0
$$

if R is sufficiently large. In view of (1.7) and Proposition 1.3, it only remains to show that

$$
\sup I_{\lambda}(X)<\frac{s}{N} S^{N / s p}
$$

if ε is sufficiently small. Noting that

$$
X=\left\{\rho \pi\left((1-t) w+t v_{0}\right): w \in E_{\delta}, 0 \leq t \leq 1,0 \leq \rho \leq R\right\},
$$

let $w \in E_{\delta}$ and $0 \leq t \leq 1$, and set $u=\pi\left((1-t) w+t v_{0}\right)$. Then

$$
\begin{align*}
\sup _{0 \leq \rho \leq R} I_{\lambda}(\rho u) & \leq \sup _{\rho \geq 0}\left[\frac{\rho^{p}}{p}\left(1-\lambda|u|_{p}^{p}\right)-\frac{\rho_{p_{s}^{*}}^{p_{s}^{*}}}{p_{s}^{*}}|u|_{p_{s}^{*}}^{p_{s}^{*}}\right]=\frac{s}{N}\left[\frac{\left(1-\lambda|u|_{p}^{p}\right)^{+}}{|u|_{p_{s}^{*}}^{p}}\right]^{N / s p} \tag{3.14}\\
& =\frac{s}{N}\left[\frac{\left(\left\|(1-t) w+t v_{0}\right\|^{p}-\lambda\left|(1-t) w+t v_{0}\right|_{p}^{p}\right)^{+}}{\left|(1-t) w+t v_{0}\right|_{p_{s}^{*}}^{p}}\right]^{N / s p}
\end{align*}
$$

Since $w=0$ in $B_{2 \theta \delta}(0)$ by Proposition 3.2 and $v_{0}=0$ in $B_{\theta \delta}(0)^{c}$ by (2.17),

$$
\begin{align*}
\left\|(1-t) w+t v_{0}\right\|^{p} & \leq(1-t)^{p} \int_{A_{1}} \frac{|w(x)-w(y)|^{p}}{|x-y|^{N+s p}} d x d y+t^{p} \int_{A_{2}} \frac{\left|v_{0}(x)-v_{0}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y \tag{3.15}\\
& +2 \int_{A_{3}} \frac{\left|(1-t) w(x)-t v_{0}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y=:(1-t)^{p} I_{1}+t^{p} I_{2}+2 I_{3},
\end{align*}
$$

where

$$
A_{1}=B_{\theta \delta}(0)^{c} \times B_{\theta \delta}(0)^{c}, \quad A_{2}=B_{2 \theta \delta}(0) \times B_{2 \theta \delta}(0), \quad A_{3}=B_{2 \theta \delta}(0)^{c} \times B_{\theta \delta}(0)
$$

We estimate I_{3} using the following elementary inequality: given $\kappa>1$ and $p-1<q<p$, there exists a constant $C=C(\kappa, q)>0$ such that

$$
|a+b|^{p} \leq \kappa|a|^{p}+|b|^{p}+C|a|^{p-q}|b|^{q} \quad \forall a, b \in \mathbb{R}
$$

Taking $\kappa=\lambda / \lambda^{\prime}$ and, thanks to $N>s p^{2}$, choosing $\left.q \in\right] N(p-1) /(N-s p), p[$, we get

$$
\begin{align*}
I_{3} & \leq \frac{\lambda}{\lambda^{\prime}}(1-t)^{p} \int_{A_{3}} \frac{|w(x)-w(y)|^{p}}{|x-y|^{N+s p}} d x d y+t^{p} \int_{A_{3}} \frac{\left|v_{0}(x)-v_{0}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y \tag{3.16}\\
& +C \int_{A_{3}} \frac{|w(x)|^{p-q} v_{0}(y)^{q}}{|x-y|^{N+s p}} d x d y=: \frac{\lambda}{\lambda^{\prime}}(1-t)^{p} I_{4}+t^{p} I_{5}+C J_{q} .
\end{align*}
$$

Clearly, $I_{1}+2 I_{4} \leq\|w\|^{p}=1$ and $I_{2}+2 I_{5} \leq\left\|v_{0}\right\|^{p}=1$. By (3.7) and since

$$
|x-y| \geq|x|-\theta \delta \geq|x| / 2, \quad \text { on } A_{3}
$$

we have

$$
J_{q} \leq \frac{C}{\left\|u_{\varepsilon, \delta}\right\|^{q}} \int_{A_{3}} \frac{u_{\varepsilon, \delta}(y)^{q}}{|x|^{N+s p}} d x d y \leq \frac{C}{\delta^{s p}} \int_{\mathbb{R}^{N}} u_{\varepsilon, \delta}(y)^{q} d y
$$

since (2.20) implies that $\left|u_{\varepsilon, \delta}\right|_{p_{s}^{*}}$, and hence also $\left\|u_{\varepsilon, \delta}\right\|$, is bounded away from zero if ε is sufficiently small. Recalling (2.16), it holds $G_{\varepsilon, \delta}(t) \leq t$ for all $t \geq 0$, and thus

$$
\int_{\mathbb{R}^{N}} u_{\varepsilon, \delta}(y)^{q} d y \leq \int_{\mathbb{R}^{N}} U_{\varepsilon}(y)^{q} d y=\varepsilon^{N-(N-s p) q / p} \int_{\mathbb{R}^{N}} U(y)^{q} d y
$$

and the last integral is finite by (2.4) since $q>N(p-1) /(N-s p)$. So combining (3.15) and (3.16) gives

$$
\begin{equation*}
\left\|(1-t) w+t v_{0}\right\|^{p} \leq \frac{\lambda}{\lambda^{\prime}}(1-t)^{p}+t^{p}+C \varepsilon^{N-(N-s p) q / p} \tag{3.17}
\end{equation*}
$$

On the other hand, since the supports of w and v_{0} are disjoint,

$$
\begin{align*}
\left|(1-t) w+t v_{0}\right|_{p}^{p} & =(1-t)^{p}|w|_{p}^{p}+t^{p}\left|v_{0}\right|_{p}^{p}, \tag{3.18}\\
\left|(1-t) w+t v_{0}\right|_{p_{s}^{*}}^{p_{s}^{*}} & =(1-t)^{p_{s}^{*}}|w|_{p_{s}^{s}}^{p_{s}^{*}}+t^{p_{s}^{*}}\left|v_{0}\right|_{p_{s}^{*}}^{p_{s}^{*}} .
\end{align*}
$$

By (3.12), $|w|_{p}^{p}=1 / \Psi(w)>1 / \lambda^{\prime}$. By (3.7), $|w|_{p_{s}^{*}}$ is bounded away from zero, and (3.13) implies that so is $\left|v_{0}\right|_{p_{s}^{*}}$ if ε is sufficiently small, so the last expression in (3.18) is bounded away from zero. It follows from (3.17) and (3.18) that

$$
\frac{\left\|(1-t) w+t v_{0}\right\|^{p}-\lambda\left|(1-t) w+t v_{0}\right|_{p}^{p}}{\left|(1-t) w+t v_{0}\right|_{p_{s}^{*}}^{p}} \leq \frac{1-\lambda\left|v_{0}\right|_{p}^{p}}{\left|v_{0}\right|_{p_{s}^{*}}^{p}}+C \varepsilon^{N-(N-s p) q / p} .
$$

Since $v_{0}=u_{\varepsilon, \delta} /\left\|u_{\varepsilon, \delta}\right\|$, the right-hand side is less than or equal to

$$
S_{\varepsilon, \delta}(\lambda)+C \varepsilon^{N-(N-s p) q / p} \leq S-\left(\frac{\lambda}{C}-C \varepsilon^{\left(N-s p^{2}\right) /(p-1)}-C \varepsilon^{(N-s p)(1-q / p)}\right) \varepsilon^{s p}
$$

by (2.21). Since $N>s p^{2}$ and $q<p$, it follows from this that the last expression in (3.14) is strictly less than $\frac{s}{N} S^{N / s p}$ if ε is sufficiently small.
3.3. Case 3: $N^{2} /(N+s)>s p^{2}$ and $\lambda=\lambda_{k}$. Let $\lambda=\lambda_{k}<\lambda_{k+1}$, let $\delta>0$ be so small that the conclusions of Proposition 3.2 hold with $\lambda_{k}+C \delta^{N-s p}<\lambda_{k+1}$, in particular, $\Psi(w)<\lambda_{k+1}$ for all $w \in E_{\delta}$, and take $A_{0}=E_{\delta}$ and $B_{0}=\Psi_{\lambda_{k+1}}$ as in the last subsection. Then let $0<\varepsilon \leq \delta / 2$, let $R>r>0$, let $v_{0}=\pi\left(u_{\varepsilon, \delta}\right) \in \mathcal{M} \backslash E_{\delta}$, and let A, B and X be as in Theorem 1.2. As before, $\inf I_{\lambda}(B)>0$ if r is sufficiently small and

$$
I_{\lambda}\left(R \pi\left((1-t) w+t v_{0}\right)\right) \leq 0 \quad \forall w \in E_{\delta}, 0 \leq t \leq 1
$$

if R is sufficiently large. On the other hand,

$$
I_{\lambda}(t w) \leq \frac{t^{p}}{p}\left(1-\frac{\lambda_{k}}{\Psi(w)}\right) \leq C R^{p} \delta^{N-s p} \quad \forall w \in E_{\delta}, 0 \leq t \leq R
$$

by (3.8), where C denotes a generic positive constant independent of ε and δ. It follows that

$$
\sup I_{\lambda}(A) \leq C R^{p} \delta^{N-s p}<\inf I_{\lambda}(B)
$$

if δ is sufficiently small. As in the last proof, it only remains to show that (see (3.14))

$$
\begin{equation*}
\sup _{(w, t) \in E_{\delta} \times[0,1]} \frac{\left\|(1-t) w+t v_{0}\right\|^{p}-\lambda_{k}\left|(1-t) w+t v_{0}\right|_{p}^{p}}{\left|(1-t) w+t v_{0}\right|_{p_{s}^{*}}^{p}}<S \tag{3.19}
\end{equation*}
$$

if ε and δ are suitably small. We estimate the integral I_{3} in (3.15) using the elementary inequality

$$
\begin{equation*}
|a+b|^{p} \leq|a|^{p}+|b|^{p}+C\left(|a|^{p-1}|b|+|a||b|^{p-1}\right) \quad \forall a, b \in \mathbb{R} \tag{3.20}
\end{equation*}
$$

to get

$$
\begin{align*}
I_{3} & \leq(1-t)^{p} \int_{A_{3}} \frac{|w(x)-w(y)|^{p}}{|x-y|^{N+s p}} d x d y+t^{p} \int_{A_{3}} \frac{\left|v_{0}(x)-v_{0}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y \tag{3.21}\\
& +C(1-t)^{p-1} \int_{A_{3}} \frac{|w(x)|^{p-1} v_{0}(y)}{|x-y|^{N+s p}} d x d y+C(1-t) \int_{A_{3}} \frac{|w(x)| v_{0}(y)^{p-1}}{|x-y|^{N+s p}} d x d y \\
& =(1-t)^{p} I_{4}+t^{p} I_{5}+C(1-t)^{p-1} J_{1}+C(1-t) J_{p-1} .
\end{align*}
$$

As before, $I_{1}+2 I_{4}, I_{2}+2 I_{5} \leq 1$ and for $q=1, p-1$,

$$
\begin{aligned}
J_{q} & :=\int_{A_{3}} \frac{|w(x)|^{p-q} v_{0}(y)^{q}}{|x-y|^{N+s p}} d x d y \leq C \int_{A_{3}} \frac{u_{\varepsilon, \delta}(y)^{q}}{|x|^{N+s p}} d x d y \leq \frac{C}{\delta^{s p}} \int_{B_{\theta \delta}(0)} U_{\varepsilon}(y)^{q} d y \\
& \leq \frac{C \varepsilon^{N-(N-s p) q / p}}{\delta^{s p}} \int_{B_{\theta \delta / \varepsilon}(0)} U(y)^{q} d y .
\end{aligned}
$$

We take $\delta=\varepsilon^{\alpha}$ with $\alpha \in(0,1)$ and use (2.4) to estimate the last integral to get

$$
J_{q} \leq C \varepsilon^{(N-s p)[p(p-q-1) \alpha+q] / p(p-1)} .
$$

So combining (3.15) and (3.21) gives

$$
\begin{equation*}
\left\|(1-t) w+t v_{0}\right\|^{p} \leq(1-t)^{p}+t^{p}+\widetilde{J}_{1}+\widetilde{J}_{p-1}, \tag{3.22}
\end{equation*}
$$

where

$$
\widetilde{J}_{q}:=C(1-t)^{p-q} J_{q} \leq C(1-t)^{p-q} \varepsilon^{(N-s p)[p(p-q-1) \alpha+q] / p(p-1)} .
$$

Young's inequality then gives

$$
\begin{equation*}
\widetilde{J}_{q} \leq \frac{\kappa}{3}(1-t)^{p_{s}^{*}}+C \varepsilon^{s p+\beta_{q}(\alpha)} \kappa^{-\gamma_{q}} \tag{3.23}
\end{equation*}
$$

for any $\kappa>0$, where

$$
\beta_{q}(\alpha)=\frac{\left[N^{2}-s p^{2}(N+s)\right](p-1)(p-q)-N p(N-s p)(p-q-1)\left(\alpha_{0}-\alpha\right)}{\left[(N-s p) q+s p^{2}\right](p-1)},
$$

and

$$
\alpha_{0}=\frac{N-s p^{2}}{N-s p}, \quad \gamma_{q}=\frac{(N-s p)(p-q)}{N p-(N-s p)(p-q)} .
$$

Then

$$
\begin{equation*}
\left\|(1-t) w+t v_{0}\right\|^{p} \leq(1-t)^{p}+t^{p}+\frac{2 \kappa}{3}(1-t)^{p_{s}^{*}}+C \varepsilon^{s p}\left(\varepsilon^{\beta_{1}(\alpha)} \kappa^{-\gamma_{1}}+\varepsilon^{\beta_{p-1}(\alpha)} \kappa^{-\gamma_{p-1}}\right) \tag{3.24}
\end{equation*}
$$

by (3.22) and (3.23). Using $N^{2} /(N+s)>s p^{2}$, we fix $\alpha<\alpha_{0}$ so close to α_{0} that $\beta_{q}(\alpha)>0$ for $q=0,1, p-1, p$. By (3.8) and Young's inequality,

$$
\begin{equation*}
\lambda_{k}(1-t)^{p}|w|_{p}^{p} \geq(1-t)^{p}\left(1-C \varepsilon^{(N-s p) \alpha}\right) \geq(1-t)^{p}-\frac{\kappa}{3}(1-t)^{p_{s}^{*}}-C \varepsilon^{s p+\beta_{0}(\alpha)} \kappa^{-\gamma_{0}} \tag{3.25}
\end{equation*}
$$

By (3.24), (3.18), and (3.25), the quotient $Q(w, t)$ in (3.19) satisfies

$$
\begin{equation*}
Q(w, t) \leq \frac{\left(1-\lambda_{k}\left|v_{0}\right|_{p}^{p}\right) t^{p}+\kappa(1-t)^{p_{s}^{*}}+C \varepsilon^{s p+\beta(\alpha)} \kappa^{-\gamma}}{\left[(1-t)^{p_{s}^{*}}|w|_{p_{s}^{*}}^{p_{s}^{*}}+t^{p_{s}^{*}}\left|v_{0}\right|_{p_{s}^{*}}^{p_{*}^{*}}\right]^{p / p_{s}^{*}}}, \tag{3.26}
\end{equation*}
$$

where

$$
\beta(\alpha)=\min \left\{\beta_{0}(\alpha), \beta_{1}(\alpha), \beta_{p-1}(\alpha)\right\}>0, \quad \gamma=\max \left\{\gamma_{0}, \gamma_{1}, \gamma_{p-1}\right\}=\frac{N}{s p}-1
$$

As before, the denominator is bounded away from zero if ε is sufficiently small, so it follows that

$$
\sup _{(w, t) \in E_{\varepsilon} \alpha \times\left[0, t_{0}\right)} Q(w, t) \leq C\left(t_{0}^{p}+\kappa+\varepsilon^{s p+\beta(\alpha)} \kappa^{-\gamma}\right)<S
$$

for some $t_{0}>0$ if κ and ε are sufficiently small. For $t \geq t_{0}$, rewriting the right-hand side of (3.26) as

$$
\frac{\frac{1-\lambda_{k}\left|v_{0}\right|_{p}^{p}}{\left|v_{0}\right|_{p_{s}^{*}}^{p}}+\frac{\kappa(1-t)^{p_{s}^{*}}+C \varepsilon^{s p+\beta(\alpha)} \kappa^{-\gamma}}{t^{p}\left|v_{0}\right|_{p_{s}^{*}}^{p}}}{\left[\frac{|w|_{p_{s}^{*}}^{p_{s}^{*}}}{t^{p_{s}^{*}}\left|v_{0}\right|_{p_{s}^{*}}^{p_{s}^{*}}}(1-t)^{p_{s}^{*}}+1\right]^{p / p_{s}^{*}}}
$$

gives $Q(w, t) \leq g\left((1-t)^{p_{s}^{*}}\right)$, where

$$
g(\tau)=\frac{S_{\varepsilon, \varepsilon^{\alpha}}\left(\lambda_{k}\right)+C\left(\kappa \tau+\varepsilon^{s p+\beta(\alpha)} \kappa^{-\gamma}\right)}{\left(1+C^{-1} \tau\right)^{p / p_{s}^{*}}}, \quad C=C\left(N, p, s, t_{0}\right)
$$

Since $0 \leq(1-t)^{p_{s}^{*}}<1$, then

$$
Q(w, t) \leq S_{\varepsilon, \varepsilon^{\alpha}}\left(\lambda_{k}\right)+C\left(\kappa+\varepsilon^{s p+\beta(\alpha)} \kappa^{-\gamma}\right) .
$$

If $S_{\varepsilon_{j}, \varepsilon_{j}^{\alpha}}\left(\lambda_{k}\right)<S / 2$ for some sequence $\varepsilon_{j} \rightarrow 0$, then the right-hand side is less than S for sufficiently small κ and $\varepsilon=\varepsilon_{j}$ with sufficiently large j, so we may assume that $S_{\varepsilon, \varepsilon^{\alpha}}\left(\lambda_{k}\right) \geq$ $S / 2$ for all sufficiently small ε. Then it is easily seen that if $\kappa \leq\left(p / p_{s}^{*}\right) S / 2(C+1)$, then $g^{\prime}(\tau) \leq 0$ for all $\tau \in[0,1]$ and hence the maximum of $g\left((1-t)^{p_{s}^{*}}\right)$ on $\left[t_{0}, 1\right]$ occurs at $t=1$. So, we reach

$$
Q(w, t) \leq S_{\varepsilon, \varepsilon^{\alpha}}\left(\lambda_{k}\right)+C \varepsilon^{s p+\beta(\alpha)} \kappa^{-\gamma} \leq S-\left(\frac{\lambda_{k}}{C}-C \varepsilon^{\beta_{p}(\alpha)}-C \varepsilon^{\beta(\alpha)} \kappa^{-\gamma}\right) \varepsilon^{s p}
$$

by (2.21), and the desired conclusion follows for sufficiently small κ and ε.
3.4. Case 4: $\left(N^{3}+s^{3} p^{3}\right) / N(N+s)>s p^{2}, \partial \Omega \in C^{1,1}$, and $\lambda=\lambda_{k}$. By Iannizzotto et al. [29, Theorem 4.4], there exists a constant $C=C(N, \Omega, p, s)>0$ such that for any $v \in W_{0}^{s, p}(\Omega)$ with $(-\Delta)_{p}^{s} v \in L^{\infty}(\Omega)$,

$$
\begin{equation*}
|v(x)| \leq C\left|(-\Delta)_{p}^{s} v\right|_{\infty}^{1 /(p-1)} d^{s}(x) \quad \forall x \in \mathbb{R}^{N}, \tag{3.27}
\end{equation*}
$$

where $d(x)=\operatorname{dist}\left(x, \mathbb{R}^{N} \backslash \Omega\right)$.
Lemma 3.3. Assume that $\partial \Omega \in C^{1,1}$. Given $\alpha, \beta>1$, there exists a constant $C=$ $C(N, \Omega, p, s, \alpha, \beta)>0$ such that if $B_{\beta r}(0) \subset\{x \in \Omega: d(x)<\alpha r\}$, then for any $v \in W_{0}^{s, p}(\Omega)$ with $(-\Delta)_{p}^{s} v \in L^{\infty}(\Omega)$,

$$
|v(x)-v(y)| \leq C\left|(-\Delta)_{p}^{s} v\right|_{\infty}^{1 /(p-1)}|x-y|^{s} \quad \forall x \in B_{r}(0), y \in \Omega \backslash B_{\beta r}(0)
$$

Proof. By (3.27),

$$
|v(x)-v(y)| \leq C\left|(-\Delta)_{p}^{s} v\right|_{\infty}^{1 /(p-1)}\left(d^{s}(x)+d^{s}(y)\right) .
$$

Since $d(x) \leq \alpha r$ and $|x-y| \geq(\beta-1) r$,

$$
d(x) \leq \frac{\alpha}{\beta-1}|x-y|,
$$

and since $d(y) \leq d(x)+|x-y|$ by the triangle inequality and $s<1$,

$$
d^{s}(y) \leq d^{s}(x)+|x-y|^{s} .
$$

So the desired inequality holds with the constant $C\left(2 \alpha^{s} /(\beta-1)^{s}+1\right)$.
Let η_{δ} be the cut-off function in Lemma 2.6.
Lemma 3.4. Assume that $\partial \Omega \in C^{1,1}$. Then there exists a constant $C=C(N, \Omega, p, s)>0$ such that for any $v \in W_{0}^{s, p}(\Omega)$ such that $(-\Delta)_{p}^{s} v \in L^{\infty}(\Omega)$ and $\delta>0$ such that $B_{6 \theta \delta}(0) \subset$ $\{x \in \Omega: d(x)<12 \theta \delta\}$,

$$
\begin{equation*}
\left\|v \eta_{\delta}\right\|^{p} \leq\|v\|^{p}+C\left|(-\Delta)_{p}^{s} v\right|_{\infty}^{p /(p-1)} \delta^{N} . \tag{3.28}
\end{equation*}
$$

Proof. Set $f=(-\Delta)_{p}^{s} v$ and $K=|f|_{\infty}<\infty$. Then

$$
\begin{equation*}
|v(x)| \leq C K^{1 /(p-1)} \delta^{s} \quad \forall x \in B_{6 \theta \delta}(0) \tag{3.29}
\end{equation*}
$$

by (3.27), and for $k=3,5$,

$$
\begin{equation*}
|v(x)-v(y)| \leq C K^{1 /(p-1)}|x-y|^{s} \quad \forall x \in B_{k \theta \delta}(0), y \in \Omega \backslash B_{(k+1) \theta \delta}(0) \tag{3.30}
\end{equation*}
$$

by Lemma 3.3. We proceed splitting $\left\|v \eta_{\delta}\right\|^{p}$ as in the proof of Lemma 2.6, and estimate the integral

$$
I_{3}=\int_{A_{3}} \frac{\left|v(x)-v(y)+v(x)\left(\eta_{\delta}(x)-1\right)\right|^{p}}{|x-y|^{N+s p}} d x d y
$$

in (2.15) using the elementary inequality

$$
|a+b|^{p} \leq|a|^{p}+C\left(|a|^{p-1}|b|+|b|^{p}\right) \quad \forall a, b \in \mathbb{R}
$$

to get

$$
\begin{aligned}
I_{3} \leq & \int_{A_{3}} \frac{|v(x)-v(y)|^{p}}{|x-y|^{N+s p}} d x d y+C \int_{A_{3}} \frac{|v(x)-v(y)|^{p-1}|v(x)|}{|x-y|^{N+s p}} d x d y \\
& +C \int_{A_{3}} \frac{|v(x)|^{p}}{|x-y|^{N+s p}} d x d y=: I_{4}+C I_{5}+C I_{6} .
\end{aligned}
$$

We have $I_{1}+2 I_{4} \leq\|v\|^{p}$. By (3.29) and (3.30), and since $|x-y| \geq|y| / 4$ on A_{3},

$$
\begin{aligned}
& I_{5} \leq C K^{p /(p-1)} \delta^{s} \int_{A_{3}} \frac{d x d y}{|y|^{N+s}}=C K^{p /(p-1)} \delta^{N} \\
& I_{6} \leq C K^{p /(p-1)} \delta^{s p} \int_{A_{3}} \frac{d x d y}{|y|^{N+s p}}=C K^{p /(p-1)} \delta^{N}
\end{aligned}
$$

To estimate I_{2}, let φ_{δ} be as in the proof of Lemma 2.6. Since $\varphi_{\delta}=\eta_{\delta}$ in A_{2},
$I_{2} \leq C\left(\int_{A_{2}} \frac{|v(x)|^{p}\left|\varphi_{\delta}(x)-\varphi_{\delta}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y+\int_{A_{2}} \frac{|v(x)-v(y)|^{p} \varphi_{\delta}(y)^{p}}{|x-y|^{N+s p}} d x d y\right)=: C\left(I_{7}+I_{8}\right)$.
By (3.29) and $\left\|\varphi_{\delta}\right\|^{p}=\delta^{N-p s}\|\varphi\|^{p}$ by scaling, we get

$$
\begin{equation*}
I_{7} \leq C K^{p /(p-1)} \delta^{s p}\left\|\varphi_{\delta}\right\|^{p}=C K^{p /(p-1)} \delta^{N} . \tag{3.31}
\end{equation*}
$$

By Lemma 2.4,

$$
I_{8} \leq 2 \int_{\Omega} f(x) v(x) \varphi_{\delta}(x)^{p} d x+C \int_{\mathbb{R}^{2 N}} \frac{|v(x)|^{p}\left|\varphi_{\delta}(x)-\varphi_{\delta}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y=: 2 I_{9}+C I_{10} .
$$

Since $\varphi=0$ outside $B_{5 \theta \delta}(0)$,

$$
I_{9} \leq \int_{B_{5 \theta \delta}(0)}|f(x)||v(x)| d x \leq C K^{p /(p-1)} \delta^{N+s}
$$

by (3.29) again. Changing variables gives

$$
I_{10}=\delta^{N-s p} \int_{\mathbb{R}^{2 N}} \frac{|v(\delta x)|^{p}|\varphi(x)-\varphi(y)|^{p}}{|x-y|^{N+s p}} d x d y .
$$

We have $|v(\delta x)| \leq C K^{1 /(p-1)} d^{s}(\delta x)$ by (3.27), and $d(\delta x) \leq d(0)+\delta|x| \leq C \delta$ since $d(0) \leq 6 \theta \delta$ and Ω is bounded, so the last integral is less than or equal to $C K^{p /(p-1)} \delta^{s p}\|\varphi\|^{p}$. Hence $I_{10} \leq C K^{p /(p-1)} \delta^{N}$.

Since $\partial \Omega \in C^{1,1}$, for all sufficiently small $\delta>0$, the ball $B_{6 \theta \delta}(0)$ is contained in $\{x \in \Omega: d(x)<12 \theta \delta\}$ after a translation. Then by Lemma 3.4 and Proposition 3.1,

$$
\left\|v_{\delta}\right\|^{p} \leq 1+C \delta^{N} \quad \forall v \in E,
$$

and using this inequality in place of (3.10) in the proof of Proposition 3.2 shows that (3.8) can now be strengthened to

$$
\begin{equation*}
\sup _{w \in E_{\delta}} \Psi(w) \leq \lambda_{k}+C \delta^{N} \tag{3.32}
\end{equation*}
$$

Proceeding as in the last subsection, we have to verify (3.19) for suitably small ε and δ. Since the argument is similar, we only point out where it differs. Let $v \in E$ and let

$$
w=\pi\left(v_{\delta}\right)=v_{\delta} /\left\|v_{\delta}\right\|
$$

As noted in the proof of Proposition 3.2, $\left\|v_{\delta}\right\|$ is bounded away from zero, so

$$
J_{q} \leq C \int_{A_{3}} \frac{\left|v_{\delta}(x)\right|^{p-q} u_{\varepsilon, \delta}(y)^{q}}{|x-y|^{N+s p}} d x d y
$$

where $A_{3}=B_{2 \theta \delta}(0)^{c} \times B_{\theta \delta}(0)$. By Lemma 3.3, (3.27), and Proposition 3.1, and since

$$
|x-y| \geq|x| / 2 \geq \theta \delta, \quad \text { on } A_{3},
$$

we get

$$
\begin{aligned}
\left|v_{\delta}(x)\right|^{p-q} & \leq|v(x)|^{p-q} \leq C\left(|v(x)-v(y)|^{p-q}+|v(y)|^{p-q}\right) \\
& \leq C\left(|x-y|^{s(p-q)}+\delta^{s(p-q)}\right) \leq C|x-y|^{s(p-q)},
\end{aligned}
$$

so

$$
J_{q} \leq C \int_{A_{3}} \frac{u_{\varepsilon, \delta}(y)^{q}}{|x|^{N+s q}} d x d y \leq \frac{C}{\delta^{s q}} \int_{B_{\theta \delta}(0)} U_{\varepsilon}(y)^{q} d y \leq C \varepsilon^{\{p[(p-q-1) N+s q] \alpha+(N-s p) q\} / p(p-1)} .
$$

Then (3.23) holds with
$\beta_{q}(\alpha)=\frac{\left[N^{3}+s^{3} p^{3}-s p^{2} N(N+s)\right](p-1)(p-q)-N p(N-s p)[N(p-q-1)+s q]\left(\alpha_{0}-\alpha\right)}{(N-s p)\left[(N-s p) q+s p^{2}\right](p-1)}$,
and so does (3.25) by (3.32). Using

$$
\left(N^{3}+s^{3} p^{3}\right) / N(N+s)>s p^{2},
$$

we fix $\alpha<\alpha_{0}$ so close to α_{0} that $\beta_{q}(\alpha)>0$ for $q=0,1, p-1, p$ and proceed as before.

References

[1] A. Ambrosetti, M. Struwe. A note on the problem $-\Delta u=\lambda u+u|u|^{2^{*}-2}$. Manuscripta Math., 54(4):373379, 1986. 2
[2] F. Andreu, J. M. Mazón, J. D. Rossi, J. Toledo. A nonlocal p-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions. SIAM J. Math. Anal., 40:1815-185, 2009. 2
[3] G. Arioli, F. Gazzola. Some results on p-Laplace equations with a critical growth term. Differential Integral Equations, 11(2):311-326, 1998. 4
[4] L. Brasco, S. Mosconi, M. Squassina. Optimal decay of extremal functions for the fractional Sobolev inequality. preprint, arXiv:1508.00132 1, 3, 5, 6
[5] L. Brasco, E. Lindgren. Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case. preprint, cvgmt.sns.it/paper/2759/ 1
[6] L. Brasco, E. Parini. The second eigenvalue of the fractional p-Laplacian. Adv. Calc. Var., to appear. arXiv:1409.6284 1, 7, 11
[7] L. Brasco, E. Parini, M. Squassina. Stability of variational eigenvalues for the fractional p-Laplacian. Discrete Contin. Dyn. Syst. Series A, to appear. arXiv:1503.04182 1
[8] H. Brézis, L. Nirenberg. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math., 36(4):437-477, 1983. 2
[9] L. Caffarelli. Non-local diffusions, drifts and games. In Nonlinear Partial Differential Equations, volume 7 of Abel Symposia, pages 37-52, 2012. 2
[10] A. Capozzi, D. Fortunato, G. Palmieri. An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2(6):463-470, 1985. 2
[11] G. Cerami, D. Fortunato, M. Struwe. Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(5):341-350, 1984. 2
[12] M. Comte. Solutions of elliptic equations with critical Sobolev exponent in dimension three. Nonlinear Anal., 17(5):445-455, 1991. 2
[13] D. G. Costa, E. A. Silva. A note on problems involving critical Sobolev exponents. Differential Integral Equations, 8(3):673-679, 1995. 2
[14] M. Degiovanni, S. Lancelotti. Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(6):907-919, 2007. 5
[15] M. Degiovanni, S. Lancelotti. Linking solutions for p-Laplace equations with nonlinearity at critical growth. J. Funct. Anal., 256(11):3643-3659, 2009. 4
[16] A. Di Castro, T. Kuusi, G. Palatucci. Local behavior of fractional p-minimizers. Ann. Inst. H. Poincar Anal. Non Linaire, (2015), DOI: 10.1016/j.anihpc.2015.04.003. 1
[17] A. Di Castro, T. Kuusi, G. Palatucci. Nonlocal Harnack inequalities. J. Funct. Anal., 267(6):1807-1836, 2014. 1
[18] P. Drábek, Y. Xi Huang. Multiplicity of positive solutions for some quasilinear elliptic equation in \mathbb{R}^{N} with critical Sobolev exponent. J. Differential Equations, 140(1):106-132, 1997. 2
[19] H. Egnell. Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents. Arch. Rational Mech. Anal., 104(1):57-77, 1988. 4
[20] E. R. Fadell, P. H. Rabinowitz. Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math., 45(2):139-174, 1978. 3
[21] G. Franzina, G. Palatucci. Fractional p-eigenvalues. Riv. Mat. Univ. Parma, 5(2):373-386, 2014. 1
[22] J. García Azorero, I. Peral Alonso. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Amer. Math. Soc., 323(2):877-895, 1991. 2
[23] J. P. García Azorero, I. Peral Alonso. Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues. Comm. Partial Differential Equations, 12(12):1389-1430, 1987. 4
[24] F. Gazzola, B. Ruf. Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations. Adv. Differential Equations, 2(4):555-572, 1997. 2
[25] N. Ghoussoub, C. Yuan. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Amer. Math. Soc., 352(12):5703-5743, 2000. 2
[26] J. V. Gonçalves, C. O. Alves. Existence of positive solutions for m-Laplacian equations in \mathbb{R}^{N} involving critical Sobolev exponents. Nonlinear Anal., 32(1):53-70, 1998. 2
[27] M. Guedda, L. Véron. Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal., 13(8):879-902, 1989. 2, 4
[28] A. Iannizzotto, S. Liu, K. Perera, M. Squassina. Existence results for fractional p-Laplacian problems via Morse theory. Adv. Calc. Var., to appear. arXiv:1403.5388 2, 3, 4
[29] A. Iannizzotto, S. Mosconi, M. Squassina. Global Hölder regularity for the fractional p-Laplacian. preprint, arXiv:1411.2956. 1, 20
[30] A. Iannizzotto, M. Squassina. Weyl-type laws for fractional p-eigenvalue problems. Asymptot. Anal., 88(4):233-245, 2014. 1, 4
[31] H. Ishii, G. Nakamura. class of integral equations and approximation of p-Laplace equations. Calc. Var. Partial Differential Equations, 37:485-522, 2010. 2
[32] T. Kuusi, G. Mingione, Y. Sire. Nonlocal Equations with Measure Data. Comm. Math. Phys., 337(3):1317-1368, 2015. 1
[33] E.H. Lieb. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math. (2), 118(2):349-374, 1983. 3
[34] E. Lindgren. Hölder estimates for viscosity solutions of equations of fractional p-Laplace type. preprint. arXiv:1405.6612 1
[35] E. Lindgren, P. Lindqvist. Fractional eigenvalues. Calc. Var. Partial Differential Equations, 49(1-2):795826, 2014. 1
[36] K. Perera. Nontrivial critical groups in p-Laplacian problems via the Yang index. Topol. Methods Nonlinear Anal., 21(2):301-309, 2003. 4
[37] K. Perera, R.P. Agarwal, D. O'Regan. Morse theoretic aspects of p-Laplacian type operators, volume 161 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010. 3, 5
[38] K. Perera, M. Squassina, Y. Yang. Bifurcation and multiplicity results for critical fractional p-Laplacian problems. Math. Nachr., to appear. arXiv:1407.8061 5
[39] K. Perera, A. Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete Contin. Dyn. Syst., 13(3):743-753, 2005. 3, 5
[40] P.H. Rabinowitz. Some critical point theorems and applications to semilinear elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5(1):215-223, 1978. 5
[41] R. Servadei. The Yamabe equation in a non-local setting. Adv. Nonlinear Anal., 2(3):235-270, 2013. 2
[42] R. Servadei. A critical fractional Laplace equation in the resonant case. Topol. Methods Nonlinear Anal., 43(1):251-267, 2014. 2
[43] R. Servadei, E. Valdinoci. A Brezis-Nirenberg result for non-local critical equations in low dimension. Commun. Pure Appl. Anal., 12(6):2445-2464, 2013. 2
[44] R. Servadei, E. Valdinoci. The Brezis-Nirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc., 367(1):67-102, 2015. 2
[45] E.A.B. Silva, S.H.M. Soares. Quasilinear Dirichlet problems in \mathbb{R}^{n} with critical growth. Nonlinear Anal., 43(1):1-20, 2001. 2
[46] E.A.B. Silva, M.S. Xavier. Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(2):341-358, 2003. 2
[47] Z.H. Wei, X.M. Wu. A multiplicity result for quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal., 18(6):559-567, 1992. 2
[48] Y. Yang, K. Perera. N-Laplacian problems with critical Trudinger-Moser nonlinearities. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), to appear, arXiv:1406.6242. 1, 4
[49] D. Zhang. On multiple solutions of $\Delta u+\lambda u+|u|^{4 /(n-2)} u=0$. Nonlinear Anal., 13(4):353-372, 1989. 2
(S. Mosconi) Dipartimento di Informatica

Università degli Studi di Verona
Verona, Italy
E-mail address: sunrajohannes.mosconi@univr.it
(K. Perera) Department of Mathematical Sciences

Florida Institute of Technology
150 W University Blvd, Melbourne, FL 32901, USA
E-mail address: kperera@fit.edu
(M. Squassina) Dipartimento di Informatica

Università degli Studi di Verona
Verona, Italy
E-mail address: marco.squassina@univr.it
(Y. Yang) School of Science

Jiangnan University
Wuxi, Jiangsu 214122, China
E-mail address: yynjnu@126.com

