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Abstract. We consider evolutions for a material model which couples scalar damage
with strain gradient plasticity, in small strain assumptions. For strain gradient
plasticity, we follow the Gurtin-Anand formulation [19]. The aim of the present
model is to account for different phenomena: on the one hand the elastic stiffness
reduces and the plastic yield surface shrinks due to material’s degradation, on the
other hand the dislocation density affects the damage growth. The main result
of this paper is the existence of a globally stable quasistatic evolution (in the so-
called energetic formulation). Furthermore we study the limit model as the strain
gradient terms tend to zero. Under stronger regularity assumptions, we show that
the evolutions converge to the ones for the coupled elastoplastic–damage model
studied in [8].
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Introduction

Plasticity and damage describe the inelastic behavior of materials in response to applied
forces, respectively accounting for permanent deformations and for discontinuities on mi-
croscales, both of surface type (microcracks) and of volume type (microvoids). In spite of
their different macroscopical implications, the initial causes of the two phenomena are identi-
cal, in particular in metals they are originated by movement and accumulation of dislocations
(cf. [24, Chapter 7]). Several strain gradient plasticity models have been proposed (see e.g.
[1, 6, 14, 21, 18, 19]) in order to provide a description of the interaction among dislocations,
and to capture size effects, such as strengthening and strain hardening, caused by these defects
in the range 500 nm–50 µm.

In this paper, we present a mathematical model coupling scalar damage with the Gurtin-
Anand gradient plasticity in small strain assumptions (for Gurtin-Anand plasticity see the
original paper [19], and the mathematical treatment of the model in [30], [16], [15]). The aim
of the present formulation is to account for different phenomena occurring in solid mechanics:
on the one hand the elastic stiffness reduces and the plastic yield surface shrinks due to
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material’s degradation, on the other hand the dislocation density affects the damage growth.
The coupling between plasticity and damage is also investigated for instance in [2] and in [8],
[9], by models that do not include plastic strain derivatives. The inclusion of such terms in
the formulation permits to describe size effects.

We prove the existence of quasistatic evolutions for the present model in the framework of
the energetic approach to rate-independent processes (see e.g. [26] for the abstract formulation,
[10] and [33] for applications to perfect plasticity, [27] and [36] for damage, [8], and [16]).
Moreover we study the asymptotics of these evolutions as the strain gradient terms tend to
zero: precisely we show, under stronger regularity assumptions, the convergence to evolutions
for the coupled elastoplastic damage model studied in [8].

We now present the strong formulation and next our existence result for the corresponding
energetic solutions. Let the reference configuration of a given elasto-plastic body be a Lipschitz
set Ω ⊂ Rn, n ≥ 2, with ∂Ω partitioned into ∂DΩ and ∂NΩ. According to the classical theory
for isotropic plastic materials in small strain assumptions, the variables

u : [0, T ]× Ω→ Rn , e : [0, T ]× Ω→Mn×n
sym , p : [0, T ]× Ω→Mn×n

D

respectively denoting the displacement, the elastic strain and the plastic strain, satisfy for

every t ∈ [0, T ] the additive decomposition (we denote the total strain as Eu = ∇u+∇uT
2 )

Eu(t) = e(t) + p(t) in Ω . (sf1a)

Moreover, assuming isotropic damage, we employ the variable α : [0, T ] × Ω → [0, 1] for the
damage state of the body: here α(t, x) = 1 stands for no damage and α(t, x) = 0 for maximal
damage in the vicinity of a point x ∈ Ω at time t. In this presentation of the strong formulation
we consider smooth variables, both is space and in time.

We study the evolution for u, e, p, and α in a time interval [0, T ] when the body undergoes
an imposed boundary displacement w(t) : ∂DΩ→ Rn on ∂DΩ, namely

u(t) = w(t) on ∂DΩ , (sf1b)

and volume and surface forces (on ∂NΩ), whose densites are denoted by f(t) : Ω → Rn and
g(t) : ∂NΩ→ Rn.

The starting point, as in the approach of Gurtin and Anand [19], is to consider ė(t), ṗ(t),
and∇ṗ(t) as independent rate-like kinematical descriptors with conjugated internal forces σ(t),
σp(t), and Kp(t) such that the (internal) power expenditure within a subdomain B ⊂ Ω at a
time t is expressed by

Wint(B, t) =

∫
B
σ(t) · ė(t) + σp(t) · ṗ(t) + Kp(t) · ∇ṗ(t) dx . (0.1)

Then the stress configuration of the system is described by σ(t), which is the usual Cauchy
stress, by a second order tensor σp(t) and by a third order tensor Kp(t). (We denote by “ · ”
the scalar product between tensors of the same order, independently of the order.) In [19] a
balance between the power of the internal forces (0.1) and the one of the external forces usually
considered in gradient plasticity is imposed for every subdomain and every virtual velocity of
the fields u, e, p; then the following macroforce and microforce balance conditions are deduced:{

− div σ(t) = f(t) in Ω

σ(t)ν = g(t) on ∂NΩ
(sf2a)

and

σp(t) = σD(t) + div Kp(t) in Ω , (sf2b)

where ν is the outward normal to Ω and we denote the deviatoric part of a matrix A by
AD. Moreover we have that for every subbody B with outward normal ν, the deviatoric
matrix Kpν represents the surface density of microtractions associated to the plastic strain (cf.
[18, Sections 9 and 11] for the connection between microtractions and thermodynamic force
between dislocations). As in [19, Section 8] we assume null microscopic power expenditure at
the boundary, namely

Kp(t)ν = 0 on ∂Ω . (sf2c)
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The total energy density for our model is

ψ = µ(α)|eD|2 +
1

2
k(α)| tr e|2 +

L2

2
µ(α)| curl p|2 +

`2

2
|∇α|2 + d(α) ,

where µ and k are nonincreasing and positive functions giving respectively the elastic shear
and the bulk modulus, d is a continuous nonnegative function, and L, ` are length scales. We
can look at ψ as the sum of two parts: the first three terms correspond to the free energy
density proposed by Gurtin and Anand, with the elastic moduli depending on the damage; the
part of ψ depending only on α and ∇α is taken as in [2] and [29], and comes from mechanical
considerations in [29]. In particular the density of energy dissipated by the material in the
process of damage growth is included in the free energy and the dependence on the damage
gradient is quadratic. The assumptions on µ and k imply that the elastic tensor C(α), defined
by

C(α)e := 2µ(α)eD + k(α)(tr e)I ,

is equicoercive and nonincreasing with respect to α; then we consider incomplete damage

with softening. The term L2

2 µ(α)| curl p|2 is the density of energy stored by the geometrically
necessary dislocations.

Dislocations are line defects within a crystal structure that are characterized by two vectors:
the Burgers vector, b, that measures the slip displacement associated with the line defect, and
a unit vector t, that points in the direction of the dislocation line. There are two main
types of dislocations: the edge dislocations, where b and t are perpendicular, and the screw
dislocations, where the two vectors are parallel. In the most general case the dislocation
line lies at an arbitrary angle to its Burgers vector and the dislocation has a mixed edge
and screw character. The energy stored per unit length by a dislocation is proportional to
µ|b|2, see e.g. in [22, Section 4.4] and [24, Section 1]. The macroscopic Burgers tensor curl p
measures the incompatibility of the field p and, for every unit vector m, (curl p)m is the
Burgers vector, measured per unit area, associated with small loops orthogonal to m, namely
with those dislocation whose lines pierce the plane with normal m (see [19, Section 3]); then
curl p provides a measure of the dislocation density.

Therefore, in order to minimize µ(α)| curl p|2 it is convenient to damage portions of the
material with high dislocation density (recall that µ is nondecreasing). Actually this type
of interplay between damage and dislocations complies with various models of microcrack
formation and coalescence by dislocation pile-up (see e.g. [38], [34], [7], [32]); moreover one
can use the length scale L as a parameter tuning the relevance of this term in the process of
damage growth.

By the standard assumption that σ := ∂ψ
∂e , the constitutive equation for the effective Cauchy

stress

σ(t) := C(α(t))e(t) (sf3a)

is derived.
In analogy to [19], we define the energetic higher order stress Kpen as the symmetric-

deviatoric part in the first two components (cf. (1.1)) of the partial derivative of ψ with
respect to curl p, namely

Kpen (t) · ∇A := µ(α(t))L2curl p(t) · curlA (sf3b)

for every Mn×n
sym -valued function A, the dissipative higher order stress Kpdiss by

Kpdiss := Kp −Kpen . (sf3c)

Moreover, we impose a maximum plastic dissipation principle requiring the constraint condi-
tion

(σp(t, x),Kpdiss (t, x)) ∈ K(α(t, x)) :=

{
(A,B) :

|A|2

S1(α(t, x))2
+

|B|2

l2S2(α(t, x))2
≤ 1

}
, (sf4)

with K(α(t, x)) an ellipsoid in the product space of the deviatoric matrices with the third
order tensors symmetric-deviatoric in the first two components, and the flow rule

(ṗ(t, x),∇ṗ(t, x)) ∈ NK(α(t,x)) ((σp(t, x),Kpdiss (t, x))) , (sf5)
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where NE(ξ) denotes the normal cone to a convex set E at ξ ∈ E. In other words, if
(ṗ(t, x),∇ṗ(t, x)) 6= (0, 0) then (σp(t, x),Kpdiss (t, x)) belongs to the boundary of K(α(t, x))
and

ṗ(t, x) = λ(t, x)
σp(t, x)

S1(α(t, x))2
, ∇ṗ(t, x) = λ(t, x)

Kpdiss (t, x)

l2S2(α(t, x))2

for a suitable λ(t, x) > 0. Here l > 0 is a dissipative length scale and S1, S2 are nondecreasing
positive functions of damage. Notice that we can deal with two different softening-type behav-
iors corresponding to different directions of the generalized constraint sets, as proposed in [19,
Remark in Subsection 6.3] for a generalization of the model with a further internal variable.
The three length scales l, `, and L are constitutive parameters of the material.

In order to derive the equation governing the evolution of the damage variable we introduce
the total energy E , that is obtained by integrating ψ, and then it reads as

E(α, e, curl p) := Q1(α, e) +Q2(α, curl p) +
`2

2
‖∇α‖2L2 +D(α) ,

with

Q1(α, e) :=
1

2

∫
Ω

C(α)e · edx , Q2(α, curl p) :=
L2

2

∫
Ω

µ(α)|curl p|2 dx , D(α) :=

∫
Ω

d(α) dx .

Following e.g. [29], the strong formulation of damage evolution is provided by the Kuhn-Tucker
conditions

α̇(t) ≤ 0 in Ω , (sf6a)

〈∂αE(α(t), e(t), curl p(t)), β − α̇(t)〉 ≥ 0 for every β ≤ 0 . (sf6b)

where ∂αE is the Gâteaux derivative of E with respect to α. The expression above makes
sense for β sufficiently regular, see Proposition 5.3 for details. Notice that, under regularity
assumptions, (sf6b) implies that{

−∂αψ + `24α ≥ 0 in Ω ,
∂α
∂ν ≤ 0 on ∂Ω ,

and

{(
−∂αψ + `24α

)
α̇ = 0 in Ω ,

∂α
∂ν α̇ = 0 on ∂Ω ,

(0.2)

where ∂αψ = µ′(α)|eD|2 + 1
2k
′(α)| tr e|2 + L2

2 µ
′(α)| curl p|2 + d′(α).

The conditions (sf1)–(sf6) constitute the strong formulation of the present model of Gurtin-
Anand gradient plasticity coupled with damage. We now give the weak formulation of this
model in the sense of [26]: the existence of a corresponding evolution is the main result of the
paper.

Recalling (0.1) and (0.2) we get that the energy dissipated on a subbody B, namely the
difference between the power expended and the rate of the free energy, is∫

B
σp · ṗ+ Kpdiss · ∇ṗ dx .

We have only a plastic term, since the density of the energy dissipated by damage growth is
comprised in ψ. By (sf5), the expression above is nonnegative (as expected from thermody-
namical considerations) and we are led to define the plastic potential as the relaxation of the
functional

(α, p) 7→
√
S1(α)2|p|2 + l2S2(α)2|∇p|2 .

We therefore consider for every α ∈ H1(Ω) and p ∈ BV (Ω;Mn×n
D )

H(α, p) :=

∫
Ω

√
S1(α)2|p|2 + l2S2(α)2|∇p|2 dx+ l

∫
Ω

S2(α̃) d|Dsp| .

with ∇p and Dsp the absolutely continuous and the singular part of Dp with respect to the
Lebesgue measure Ln, and α̃ the precise representative of α, which is well defined at Hn−1–a.e.
x ∈ Ω.

We remark that the H1 damage regularization employed here is the one used in engineering
(see for instance [2] and [25]). This is an improvement with respect to the elastoplastic-damage
models in [8] and [9]: the strong damage regularizations therein (respectively W 1,γ , γ > n,
and Hm, m > n

2 ) permitted us to work with a continuous field α (see also e.g. [23], with Hm
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regularization), and therefore to use Reshetnyak’s Theorem for the plastic dissipation. Here, in
contrast, in order to get the lower semicontinuity of H we prove an abstract Reshetnyak-type
lower semicontinuity theorem (Theorem 3.1) tailored to the discontinuous functions and to the
special measures considered. The proof exploits also tools from the theory of capacity.

As in [8] and in [9] the plastic dissipation corresponding to an evolution of α and p in a
time interval [s, t] is the H-variation of p with respect to α on [s, t], namely

VH(α, p; s, t) := sup

{ N∑
j=1

H(α(tj), p(tj)− p(tj−1)) : s = t0 < t1 < · · · < tN = t , N ∈ N
}
.

Thus if w, f , g are absolutely continuous from [0, T ] into H1(Ω;Rn), Ln(Ω;Rn), Ln(∂NΩ;Rn),
respectively, we define quasistatic evolution for the Gurtin-Anand model coupled with damage
any function

[0, T ]3 t 7→ (α(t), u(t), e(t), p(t))∈H1(Ω; [0, 1])×W 1, n
n−1 (Ω;Rn)×L2(Ω;Mn×n

sym )×BV (Ω;Mn×n
D )

that satisfies the following conditions:

(qs0) irreversibility : for every x ∈ Ω the function [0, T ] 3 t 7→ α(t, x) is nonincreasing;
(qs1) global stability : (u(t), e(t), p(t)) is admissible for the boundary condition w(t) (i.e., its

energy is finite and (sf1) hold) for every t ∈ [0, T ] and

E(α(t), e(t), curl p(t))− 〈L(t), u(t)〉 ≤ E(β, η, curl q)− 〈L(t), v〉+H(β, q − p(t))

for every β ≤ α(t) and every triple (v, η, q) admissible for w(t), where

〈L(t), u〉 :=

∫
Ω

f(t) ·udx+

∫
∂NΩ

g(t) ·udHn−1 ;

(qs2) energy balance: the function t 7→ p(t) from [0, T ] into BV (Ω;Mn×n
D ) has bounded

variation and for every t ∈ [0, T ]

E(α(t), e(t), curl p(t))− 〈L(t), u(t)〉+ VH(α, p; 0, t)

= E(α(0), e(0), curl p(0))− 〈L(0), u(0)〉+

∫ t

0

〈σ(s),Eẇ(s)〉ds

−
∫ t

0

〈L̇(s), u(s)〉ds−
∫ t

0

〈L(s), ẇ(s)〉ds .

Our existence result (Theorem 2.5) for quasistatic evolutions is based on time discretization and
on approximation by means of solutions to incremental minimization problems, as common
for globally stable quasistatic evolutions. The condition (qs0) corresponds to (sf6a), while
(qs1) provides the desired balance equations (sf2) and the constraint condition (sf4). In order
to deduce the plastic flow rule (sf5) and the activation condition for damage (sf6b), we have
to assume more regularity on α and p to differentiate in time the energy balance (qs2). In
particular, to recover the strong formulation from the weak one we have to work with a
continuous damage field. Let us also mention that the mathematical treatment of the evolution
problem for a model with a damage regularization of the type W 1,γ , γ > 1, instead of H1, is
analogous to the one developed here.

In the last part of the paper we study the limit evolutions as the length scales l and L tend to
zero. In [16] it is proven that, in this case, evolutions for the classical Gurtin-Anand formulation
converge weakly for every time to evolutions for von Mises perfect plasticity model. We show an
analogous convergence of the quasistatic evolutions for the present model to evolutions for the
coupled elastoplastic damage model proposed in [8], which corresponds to the perfect plasticity
for heterogeneous materials studied in [33] when the damage is constant in time. However, we
have to consider a stronger (gradient) damage regularization for the Gurtin-Anand model with
damage, since in [8] (and [9]) the space continuity of α is needed. An important difference
with respect to the analysis in [16] relies on the fact that we cannot still characterize the global
stability in the limit model by the equilibrium conditions for the Cauchy stress and the plastic
constraint (cf. [10, Theorem 3.6]). Therefore our proof is different from that in [16]. Indeed
we exploit the approximation in a strong sense of every admissibile triple for perfect plasticity
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with more regular ones that assume the boundary datum in a classical sense; in a forthcoming
work M.G. Mora proves such approximation for every Lipschitz domain, here we show it in
dimension two, and in higher dimension for a star-shaped domain.

The structure of the paper is the following: in Section 1 we fix the notation and recall some
basic facts about the theory of capacity, in Section 2 we introduce the model starting from the
mathematical formulation of the classical Gurtin-Anand model provided in [15], we give the
definition of quasistatic evolutions, and state the existence result, which is proved in Sections 3
and 4. The connection between strong and energetic formulation of the evolution is studied in
Section 5, while Section 6 is devoted to the asymptotic analysis for vanishing strain gradient
terms.

1. Notation and preliminaries

We recall in this section the definitions and the main properties of the mathematical objects
employed in the paper.

Measures and function spaces. We denote by Ln the Lebesgue measure on Rn and by Hs
the s-dimensional Hausdorff measure, for every s > 0. Given a locally compact subset B of
Rn and a finite dimensional Hilbert space X, we use the symbol Mb(B;X) for the space of
bounded X-valued Radon measures on B, the indication of X being omitted when X=R. This
space is endowed with the norm ‖µ‖1 := |µ|(B), where |µ| ∈ Mb(B) is the total variation of
the measure µ. For every µ ∈Mb(B;X) we denote by µa and µs the absolutely continuous and
the singular part of µ with respect to Ln. By the Riesz Representation Theorem, Mb(B;X)
can be regarded as the dual of C0(B;X), the space of continuous functions ϕ : B → X such
that {|ϕ| ≥ ε} is compact for every ε > 0 (see, e.g., [31, Theorem 6.19]). The weak∗ topology
of Mb(B;X) is defined using this duality. Moreover we say that a sequence (µk)k ⊂Mb(B;X)
converges strictly to a bounded Radon measure µ if and only if it converges in the weak∗

topology and |µk|(B) → |µ|(B). We use the symbol ‖ · ‖p for the Lp norm and ‖ · ‖1,q for
the norm of the Sobolev spaces W 1,q. Notice that if L1(B;X) is identified with the space of
bounded measures µ with µs = 0 (considering the density of µa with respect to Ln), then ‖ · ‖1
coincides with the induced norm, so that the notation is consistent. Throughout the paper we

adopt the brackets 〈·, ·〉 to denote the product between dual spaces, the arrows →, ⇀, and
∗
⇀

for the strong, weak, and weak∗ convergences, respectively, and
s→ for the strict convergence

of measures.
Given an open subset U of Rn the space BV (U ;X) is the set of the functions u ∈ L1(U ;X)

whose distributional derivative Du is a vector-valued bounded Radon measure. This is a
Banach space with respect to the norm

‖u‖BV := ‖u‖1 + ‖Du‖1 .

A sequence (uk)k converges to u weakly∗ in BV if and only if uk → u in L1 and Duk
∗
⇀ Du in

Mb. We recall that if U is bounded and has Lipschitz boundary then every bounded sequence
in BV (U ;X) has a weakly∗ convergent subsequence and BV (U ;X) is continuously embedded
into Lq(U ;X) for every 1 ≤ q ≤ n

n−1 , the embedding being compact for 1 ≤ q < n
n−1 . For the

general theory of BV functions we refer to [3].

Capacity. We recall some facts about the theory of capacity, referring to [20] for a complete
treatment of the subject. Given an open subset U of Rn and 1 ≤ q < +∞, for every E ⊂ U
the q-capacity of E in U is defined by

Cq(E,U) := inf

{∫
U

|∇u|q dx : u ∈W 1,q
0 (U), u ≥ 1 a.e. in a neighbourhood of E

}
.

We shall use the shorter notation Cq(E) when there is no ambiguity on the domain. The
q-capacity is indeed a Carathéodory outer measure such that if 1 < q < n and Cq(E) = 0,
then the Hausdorff dimension of E is at most n − q. We say that a real valued function u is
Cq-quasicontinuous in U if for every ε > 0 there is an open set G such that Cq(G) < ε and
the restriction of u to U \ G is continuous. A sequence of real valued functions uk converges
Cq-quasiuniformly in U to u if for every ε > 0 there is an open set G such that Cq(G) < ε
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and uk → u uniformly in U \ G. For every (uk)k ⊂ C(U) ∩ W 1,q(U) that is a Cauchy
sequence in W 1,q(U), there exist a function u ∈W 1,q(U) and a subsequence converging locally
Cq-quasiuniformly (namely, quasiuniformly in the compact subsets of U) to u. It follows
that such a limit u is Cq-quasicontinuous, that uk → u pointwise Cq-quasieverywhere in
U (that is, pointwise except on a set of Cq-capacity zero), and that every W 1,q function
admits a quasicontinuous representative uniquely defined up to a Cq-negligible set. For every
u ∈ W 1,q(U) its precise representative ũ, that is defined as the approximate limit of u in the
Lebesgue points and takes value zero elsewhere, is a Cq-quasicontinuous representative of u.
When uk ⇀ u in W 1,q(U) there exists a subsequence (uj)j such that ũj → ũ in µ-measure,
for every µ nonnegative bounded Radon measure that vanishes on all Cq-negligible Borel sets
(cf. [5, Proposition 3.5 and Remark 3.4]). These results hold also for vector-valued functions,
as one can see considering each component.

Matrices. We denote by Mn×n (respectively by Mn×n×n) the space of n × n real matrices
(resp. third order tensors) endowed with the Euclidean scalar product ξ · η :=

∑
i,j ξijηij

(resp. A · B :=
∑
i,j,k AijkBijk) and with the corresponding Euclidean norm |ξ| := (ξ · ξ)1/2.

Moreover Mn×n
sym denotes the subspace of symmetrix matrices and Mn×n

D the subspace of trace

free matrices in Mn×n
sym . Given ξ ∈ Mn×n

sym , its orthogonal projection on Mn×n
D is the deviator

ξD := ξ − 1
n (tr ξ)I.

The symmetrized gradient of an Rn-valued function u(x) is the Mn×n
sym -valued function Eu(x)

with components Eiju := 1
2 (Djui + Diuj), where Di denotes the derivative ∂

∂xi
for 1 ≤ i ≤ n.

The gradient, the divergence, and the curl of a Mn×n-valued function ξ(x) = (ξij(x)) are
defined as

(∇ξ)ijk := Dk ξij , (div ξ)i :=
∑
j

Dj ξij , (curl ξ)ij :=
∑
p,q

εipq Dp ξjq ,

where εipq is the standard permutation symbol.
We say that a third order tensor A = (aijk) is symmetric deviatoric in its first two compo-

nents, and we write A ∈Mn×n×n
D , if

aijk = ajik and
∑
p

appk = 0 . (1.1)

The divergence of a Mn×n×n-valued function A(x) = (aijk(x)) is the Mn×n-valued function
given by

(div A)ij :=
∑
k

Dk aijk .

2. Quasistatic evolutions for the Gurtin-Anand model coupled with damage

In this section we introduce the weak formulation of our model, corresponding to the
strong formulation described in the Introduction, and we specify the mathematical framework
adopted.

The reference configuration. The reference configuration of the elasto-plastic body consid-
ered is a bounded, open, and Lipschitz set Ω ⊂ Rn, n ≥ 2, whose boundary is decomposed as

∂Ω = ∂DΩ ∪ ∂NΩ, ∂DΩ ∩ ∂NΩ = ∅ , (2.1a)

∂DΩ being the part of ∂Ω where the displacement is prescribed, while traction forces are
applied on ∂NΩ. Here ∂DΩ and ∂NΩ are open (in the relative topology), with the same
boundary Γ such that

Hn−2(Γ) < +∞ . (2.1b)
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The external loading. We consider an evolution up to a time T > 0, driven by an absolutely
continuous loading: this is given by an imposed boundary displacement (in the sense of trace
on ∂DΩ)

w ∈ AC(0, T ;H1(Ω;Rn)) , (2.2a)

and by volume and surface forces (on ∂NΩ) with densites

f ∈ AC(0, T ;Ln(Ω;Rn)) , g ∈ AC(0, T ;Ln(∂NΩ;Rn)) . (2.2b)

For every t ∈ [0, T ] we define L(t) : W 1, n
n−1 (Ω;Rn)→ R as

〈L(t), u〉 :=

∫
Ω

f(t) ·udx+

∫
∂NΩ

g(t) ·udHn−1 .

It is easily seen that L(t) is linear and continuous on W 1, n
n−1 (Ω;Rn).

Admissible configurations. As usual in linarized plasticity, the variables

u : [0, T ]× Ω→ Rn , e : [0, T ]× Ω→Mn×n
sym , p : [0, T ]× Ω→Mn×n

D ,

denoting the displacement and the elastic and plastic strains respectively, satisfy for every
t ∈ [0, T ] the additive strain decomposition

Eu(t) = e(t) + p(t) in Ω ,

that corresponds to small strain assumptions (Eu = ∇u+∇uT
2 is the linearized strain). Given

w ∈ H1(Ω;Rn), an admissible configuration relative to w is a triple (u, e, p) such that

u ∈W 1, n
n−1 (Ω;Rn) , e ∈ L2(Ω;Mn×n

sym ) , p ∈ BV (Ω;Mn×n
D ) , (2.3a)

Eu = e+ p in Ω , u = w on ∂DΩ , curl p ∈ L2(Ω;Mn×n
sym ) , (2.3b)

the second equality in (2.3b) being in the sense of traces. The set of admissible configurations
is then

A(w) := {(u, e, p) : (2.3) hold} .
Notice that if u : Ω → Rn measurable, e ∈ L2(Ω;Mn×n

sym ), p ∈ BV (Ω;Mn×n
D ) satisfy (2.3b),

then u ∈W 1, n
n−1 (Ω;Rn) by properties of BV functions and Korn’s inequality.

The damage variable. The damage state of the body is described by a scalar internal variable

α : [0, T ]× Ω→ R .

We shall see that during the evolution α(t) ∈ H1(Ω; [0, 1]) for every t ∈ [0, T ], by the expression
of our total energy. At a given x ∈ Ω, as α(·, x) decreases from 1 to 0, the material point x
passes from a sound state to a fully damaged one.

The elastic energy. In our formulation the elastic shear and bulk moduli of the body, denoted
respectively by µ and k, depend on the damage state α. We assume that they are Lipschitz
and nondecreasing functions defined on R and constant in R− with

µ(α) > c > 0, 2µ(α) + k(α) > c for every α ∈ [0, 1]. (2.4)

This corresponds to say that the stiffness decreases as the damage grows and that an elastic
response is present even in the most damaged state. Defining for every α ∈ R the elastic tensor
C(α) by

C(α)e := 2µ(α)eD + k(α)(tr e)I , (2.5)

the assumptions above imply that

C : R→ Lin(Mn×n
sym ;Mn×n

sym ) is Lipschitz and C(R−) = {C(0)} , (2.6a)

α 7→ C(α) ξ · ξ is nondecreasing for every ξ ∈Mn×n
sym , (2.6b)

γ1|ξ|2 ≤ C(α) ξ · ξ ≤ γ2|ξ|2 for everyα ∈ R , ξ ∈Mn×n
sym (2.6c)

for suitable positive constants γ1 and γ2. The elastic energy is

Q1(α, e) :=
1

2

∫
Ω

C(α) e · edx . (2.7)
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The energy stored by the dislocations. As explained in [19, Section 3], the macroscopic
Burgers tensor curl p measures the incompatibility of the field p and it provides a measure of
the dislocation density. Following the approach of Gurtin-Anand, the energy stored by the
dislocations is given by

Q2(α, curl p) :=
L2

2

∫
Ω

µ(α)|curl p|2 dx ,

with L > 0 a length scale and µ the shear modulus. Notice that, since µ is nondecreasing, in
order to minimize µ(α)| curl p|2 it is convenient to damage portions of the material with high
dislocation density.

Remark 2.1. Let us consider the functionals Q1 and Q2: their densities are the functions

(α, ξ) 7→ 1
2C(α) ξ · ξ and (α, ξ) 7→ L2

2 µ(α)|ξ|2, convex in ξ and continuous. Then the Ioffe-
Olach Semicontinuity Theorem gives that Q1 and Q2 are lower semicontinuous with respect to
the strong convergence of the first variable in L1(Ω) and the weak convergence of the second
variable in L2(Ω;Mn×n

sym ), namely for i ∈ {1, 2}

Qi(α, η) ≤ lim inf
k→∞

Qi(αk, ηk) for every αk → α in L1(Ω), ηk ⇀ η in L2(Ω;Mn×n
sym ) . (2.8)

The total energy. The total energy of a quadruple (α, u, e, p) such that α ∈ H1(Ω) and
(u, e, p) ∈ A(w) for some w is given by:

E(α, e, curl p) := Q1(α, e) +Q2(α, curl p) +
`2

2
‖∇α‖22 +D(α) ,

where ` > 0 is an internal length and

D(α) :=

∫
Ω

d(α) dx , (2.9a)

with

d : R→ R+∪{0} continuous and d(x) > d(0) for x < 0 . (2.9b)

We include in the total energy the function D and a quadratic gradient damage term. This
choice is motivated by [29], where an analogous expression of (elastic) strain work is derived
for an isotropic material in absence of prestress, under the assumption that the strain work
depends also on ∇α, by an expansion up to the second order in the strain and in ∇α. The
term D(α) is related to the energy dissipated during the damage growth up to α.

The plastic dissipation. We now introduce a term which accounts for the energy dissipated
in the evolution of plasticity. Let us first define the plastic potential H for every (α, p) ∈
H1(Ω)×BV (Ω;Mn×n

D ) as

H(α, p) :=

∫
Ω

√
S1(α)2|p|2 + l2S2(α)2|∇p|2 dx+ l

∫
Ω

S2(α̃) d|Dsp| , (2.10)

with α̃ the precise representative of α, which is well defined at Hn−1–a.e. x ∈ Ω (indeed it is
a C2-quasicontinuous representative of α), and ∇p and Dsp the absolutely continuous and the
singular part of Dp with respect to the Lebesgue measure Ln. We recall that∫

Ω

S2(α̃) d|Dsp| =
∫
Jp

S2(α̃) |p+ − p−|dHn−1 +

∫
Ω

S2(α̃) d|Dcp| ,

where Jp is the jump set of p, the functions p+ and p− are the approximate upper and lower
limit of p, respectively, and Dcp is the Cantor part of Dp (see [3, Section 3.9]). We assume for
i ∈ {1, 2}

Si : R→ R bounded, Lipschitz and nondecreasing, Si(α) = Si(0) > 0 for α < 0 . (2.11)

This definition of H is a generalization of the one in [16], where S1(α) = S2(α) = S0
Y > 0.

Notice that for every α in H1(Ω) and p1, p2 in BV (Ω;Mn×n
D )

H(α, p1 + p2) ≤ H(α, p1) +H(α, p2)
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andH is positively 1-homogeneous in p. Moreover, for every α in H1(Ω) and p ∈ BV (Ω;Mn×n
D )

r‖p‖BV ≤ H(α, p) ≤ R‖p‖BV , (2.12)

where r := S1(0) ∧ (lS2(0)) and R := supR S1 ∨ (l supR S2).
Given α : [s, t] → H1(Ω) and p : [s, t] → BV (Ω;Mn×n

D ) evolutions of damage and plastic
strain in a time interval [s, t], the plastic dissipation corresponding is defined as theH-variation
of p with respect to α on [s, t], namely

VH(α, p; s, t) := sup

{ N∑
j=1

H(α(tj), p(tj)− p(tj−1)) : s = t0 < t1 < · · · < tN = t , N ∈ N
}
.

(2.13)

We denote the variation of p on [s, t] by

V(p; s, t) := sup

{ N∑
j=1

‖p(tj)− p(tj−1)‖BV : s = t0 < t1 < · · · < tN = t , N ∈ N
}
.

The safe load conditions. Besides the assumptions (2.2), we require that the forces satisfy
the following strong safe load condition: for every t ∈ [0, T ] there exists %(t) ∈ Ln(Ω;Mn×n

sym )
such that {

−div %(t) = f(t) in Ω

%(t)ν = g(t) on ∂NΩ
(2.14a)

and there exists c0 > 0 such that for every A ∈Mn×n
D with |A| ≤ c0 we have

|A+ %D(t)| ≤ S1(0) ∧ S2(0) a.e. in Ω . (2.14b)

We also assume that the functions t 7→ %(t) and t 7→ %D(t) are absolutely continuous from [0, T ]
into L2(Ω;Mn×n

sym ) and L∞(Ω;Mn×n
D ) respectively. Notice that the second equality in (2.14a) is

well defined in the dual of the space of traces on ∂NΩ of W 1, n
n−1 (Ω;Rn) since %(t) and div %(t)

are in Ln for every t, and that for every (u, e, p) ∈ A(w) the representation formula

〈L(t), u〉 = −〈%(t)ν, w〉∂DΩ +

∫
Ω

%(t) · e dx+

∫
Ω

%D(t) · p dx (2.15)

holds, where 〈· , ·〉 denotes the pairing between H−1/2(∂DΩ;Rn) and H1/2(∂DΩ;Rn) (here we
use Hn−2(Γ) <∞).

Remark 2.2. Adapting the proof of [16, Lemma 4.3], we also have the coercivity estimate

H(α, p)−
∫

Ω

%D(t) · p dx ≥ c0
2 ‖p‖1 + min{l c02 , lS2(0)}‖Dp‖1 , (2.16)

and then

H(α, p)−
∫

Ω

%D(t) · p dx ≥ C(c0, l, S2(0))‖p‖BV (2.17)

for every t ∈ [0, T ], α ∈ H1(Ω), and p ∈ BV (Ω;Mn×n
D ).

Quasistatic evolutions. We are now ready to give the definition of quasistatic evolution for
the present model. We define, for given α ∈ H1(Ω) and w ∈ H1(Ω;Rn),

A(α,w) := {(β, u, e, p) : β ∈ H1(Ω), β ≤ α, and (u, e, p) ∈ A(w)} . (2.18)

Definition 2.3. A quasistatic evolution for the Gurtin-Anand model coupled with damage is
a function

[0, T ]3 t 7→ (α(t), u(t), e(t), p(t))∈H1(Ω; [0, 1])×W 1, n
n−1 (Ω;Rn)×L2(Ω;Mn×n

sym )×BV (Ω;Mn×n
D )

that satisfies the following conditions:

(qs0) irreversibility : for every x ∈ Ω the function [0, T ] 3 t 7→ α(t, x) is nonincreasing;
(qs1) global stability : for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)) and

E(α(t), e(t), curl p(t))− 〈L(t), u(t)〉 ≤ E(β, η, curl q)− 〈L(t), v〉+H(β, q − p(t))
for every (β, v, η, q) ∈ A(α(t), w(t));
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(qs2) energy balance: the function t 7→ p(t) from [0, T ] into BV (Ω;Mn×n
D ) has bounded

variation and for every t ∈ [0, T ]

E(α(t), e(t), curl p(t))− 〈L(t), u(t)〉+ VH(α, p; 0, t)

= E(α(0), e(0), curl p(0))− 〈L(0), u(0)〉+

∫ t

0

〈σ(s),Eẇ(s)〉ds

−
∫ t

0

〈L̇(s), u(s)〉ds−
∫ t

0

〈L(s), ẇ(s)〉ds ,

where σ(s) := C(α(s))e(s).

Remark 2.4. We shall prove in Lemma 4.1 that such an evolution is measurable and the
integrals in (qs2) are well defined.

We now state the main result of the paper, that will be proved in Sections 3 and 4.

Theorem 2.5 (Existence of quasistatic evolutions). Assume (2.1), (2.2), (2.4)–(2.7), (2.9)–
(2.11) and (2.14), and let (α0, (u0, e0, p0)) ∈ H1(Ω; [0, 1]) × A(w(0)) satisfy the stability con-
dition

E(α0, e0, curl p0)− 〈L(0), u0〉 ≤ E(β, η, curl q)− 〈L(0), v〉+H(β, q − p0)

for every (β, v, η, q) ∈ A(α0, w(0)). Then there exists a quasistatic evolution for the Gurtin-
Anand model coupled with damage t 7→ (α(t), u(t), e(t), p(t)) such that α(0) = α0, u(0) = u0,
e(0) = e0, p(0) = p0.

3. The minimization problem

This section is focused on the minimization problem employed in the construction of time
discrete approximations for a quasistatic evolution. If α ∈ H1(Ω; [0, 1]) and p ∈ BV (Ω;Mn×n

D )
are the current values of the damage variable and of the plastic strain, and w ∈ H1(Ω;Rn),
f ∈ Ln(Ω;Rn), g ∈ Ln(∂NΩ;Rn) are the updated values of the boundary displacement and of
the body and surface loads, the updated values of the internal variables α, u, e, p are obtained
by solving the problem

argmin {E(α, e, curl p)− 〈L, u〉+H(α, p− p) : (α, u, e, p) ∈ A(α,w)} , (3.1)

where

〈L, u〉 :=

∫
Ω

f ·udx+

∫
∂NΩ

g ·udHn−1 . (3.2)

First we show the existence of solutions to this problem and their main properties, and after-
wards a stability property of the solutions with respect to variations of the data.

The following semicontinuity theorem will be used several times in the following, for instance
to prove the existence of solutions to (3.1). Notice that in the case when the energy includes
a gradient damage term ‖∇α‖γγ , with γ > n the result follows easily from Reshetnyak’s Lower
Semicontinuity Theorem (see [8] and [9]). Instead for γ = 2 the proof relies on the specific
form of H; in particular we use the fact that Dp is the gradient of a BV function and then it
vanishes on sets with dimension lower than n− 1.

Theorem 3.1. The plastic potential H defined in (2.10) is lower semicontinuous with respect
to the weak–H1(Ω) convergence of αk and the weak∗–BV (Ω;Mn×n

D ) convergence of pk, namely

H(α, p) ≤ lim inf
k→∞

H(αk, pk) (3.3)

for every αk ⇀ α in H1(Ω) and pk
∗
⇀ p in BV (Ω;Mn×n

D ).

Proof. Let (αk)k and (pk)k be two sequences in H1(Ω) and BV (Ω;Mn×n
D ) such that αk ⇀ α

in H1(Ω) and pk
∗
⇀ p in BV (Ω;Mn×n

D ). We divide the proof into two steps, starting from the
case when the functions pk are uniformly bounded, that is ‖pk‖∞ < M , for a suitable M > 0.

Step 1 (pk uniformly bounded). Notice that for β ∈ H1(Ω)∩L∞(Ω) and q ∈ BV (Ω;Mn×n
D )∩

L∞(Ω;Mn×n
D ) we have that β q ∈ BV (Ω;Mn×n

D ) and

D(β q) = β̃Dq + q ⊗∇β in Mb(Ω;Mn×n×n
D ) , (3.4)
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where β̃ is the precise representative of β. Indeed it is well-known that this formula holds
for β ∈ C1(Ω); thus we can argue by approximation, considering a sequence (βk)k ⊂ C1(Ω)
uniformly bounded in L∞(Ω) such that βk → β in H1(Ω). Therefore the total variations
‖D(βk q)‖1 are uniformly bounded and then up to a subsequence

D(βk q)
∗
⇀ D(β q) in Mb(Ω;Mn×n×n

D ) .

Moreover, up to a further subsequence βk(x)→ β̃(x) for |Dq|–a.e. x ∈ Ω; then we recover (3.4)
by using the fact that q ∈ L∞(Ω;Mn×n

D ) and the Dominated Convergence Theorem for the
convergence of the right-hand side.

We now take q = pk, β = Si(αk), and recall that Si are bounded and Lipschitz maps
(cf. (2.11)). Since Si(αk) → Si(α) in L2(Ω) and the sequences (Si(αk))k are equibounded
in L∞(Ω) and in H1(Ω), we get that Si(αk) → Si(α) in Lr(Ω) for every r ∈ [1,+∞) and
Si(αk) ⇀ Si(α) in H1(Ω), for i = 1, 2. In particular

Si(αk)pk → Si(α)p in L1(Ω;Mn×n
D ) . (3.5)

Evaluating (3.4) with q = pk and β = S2(αk) we get

D(S2(αk)pk) = S2(α̃k)Dpk + pk ⊗∇(S2(αk)) in Mb(Ω;Mn×n×n
D ) .

Hence the measures D(S2(αk)pk) have uniformly bounded total variations, and (3.5) implies
that

D(S2(αk)pk)
∗
⇀ D(S2(α)p) in Mb(Ω;Mn×n×n

D ) .

On the other hand, since pk → p in L1(Ω;Mn×n
D ) and we are assuming the pk uniformly

bounded, then pk → p in Lr(Ω;Mn×n
D ) for every r ∈ [1,+∞) and

pk ⊗∇S2(αk) ⇀ p⊗∇S2(α) in L1(Ω;Mn×n×n
D ) .

By difference (and (3.4) with q = p and β = α) we obtain that

S2(α̃k)Dpk
∗
⇀ S2(α̃)Dp in Mb(Ω;Mn×n×n

D ) . (3.6)

In order to prove (3.3), we observe that by definition H is the total variation of a convex
function of a measure, defined in the sense of [17]; precisely for every β ∈ H1(Ω) and q ∈
BV (Ω;Mn×n

D )

H(β, q) = ‖f
(
(S1(β)q, S2(β̃)Dq)

)
‖1 ,

where
f(ξ,A) :=

√
|ξ|2 + l2|A|2 for every (ξ,A) ∈Mn×n

D ×Mn×n×n
D

and (S1(β)q, S2(β̃)Dq) ∈ Mb(Ω;Mn×n
D × Mn×n×n

D ) is the product measure of S1(β)q and

S2(β̃)Dq. From (3.5) and (3.6) it follows that

(S1(αk)pk, S2(α̃k)Dpk)
∗
⇀ (S1(α)p, S2(α̃)Dp) in Mb(Ω;Mn×n

D ×Mn×n×n
D )

and then we get (3.3) by general results on convex functions of measures.

Step 2 (General case). We now approximate the functions pk with bounded functions,
without increasing the total variation of the gradient. For every x ∈ Ω, q ∈ BV (Ω;Mn×n

D ),
and R > 1 we define

ϕR(q)(x) := ωR(|q(x)|)q(x)

where ωR ∈ C1(R+ ∪ {0}; [0, 1]) is a nonincreasing map such that

ωR(%) = 1 for every % ≤ R ,

ωR(%) = 0 for every % ≥ R̂ ,
ωR(%) + %2(ω′R(%))2 ≤ 1 for every % ≥ 0 .

and R̂(R) is some radius bigger than R. We can take for instance

ωR(%) =


1− (%−R)2

4(R+1)2 for % ∈ [R,R+ 1] ,

1− 1
4(R+1)2 −

1
2(R+1) ln %

R+1 =: gR(%) for % ∈ [R+ 1, (R+ 1)e
4(R+1)2−1

2(R+1) ] ,

0 for % ∈ [(R+ 1)e
4(R+1)2−1

2(R+1) ,+∞) .
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Figure 1. The cut-off function ωR.

The resulting function ωR has a C1 discontinuity at (R + 1)e
4(R+1)2−1

2(R+1) , where gR vanishes;
however we can modify it near the corner to obtain a C1 function by using a smooth cut-off
hR such that |h′R(%)| ≤ |g′R(%)| and hR(%) + %2(h′R(%))2 ≤ 1.

By construction |ϕR(q)| ≤ R̂ a.e. in Ω, and we can see that ϕR(q) ∈ BV (Ω;Mn×n
D ) with

|DϕR(q)| ≤ |Dq| in Mb(Ω;Mn×n×n
D ) . (3.7)

Let us prove (3.7) first in the case q ∈ C1(Ω;Mn×n
D ). Here we see every matrix ξ as a vector

in Rn2

; then

Di(ϕR(q)j) = ωR(|q|)Diqj + ω′R(|q|)q ·Diq

|q|
qj in Ω, for every i ∈ [1, n], j ∈ [1, n2]

which gives

|D(ϕR(q))|2 = (ωR(|q|))2|Dq|2 + (ω′R(|q|))2
n∑
i=1

(q ·Diq)
2 + 2

ωR(|q|)
|q|

ω′R(|q|)
n∑
i=1

(q ·Diq)
2

≤ (ωR(|q|))2|Dq|2 + (ω′R(|q|))2|q|2|Dq|2 ≤ |Dq|2 in Ω ,

by the Cauchy inequality and the fact that ωR is nonnegative and nondecreasing. Therefore
the inequality (3.7) is proved when q ∈ C1(Ω;Mn×n

D ). We now show the general case: since

these measures are regular, it is sufficient to prove (3.7) on open sets. Given q ∈ BV (Ω;Mn×n
D )

and U an open subset of Ω, by the Anzellotti-Giaquinta Approximation Theorem there exists

(qk)k ⊂ C1(U ;Mn×n
D ) such that qk

∗
⇀ q�U in BV (U ;Mn×n

D ) and

‖Dq‖1,U = lim
k→∞

‖∇qk‖1,U = lim
k→∞

∫
U

|∇qk|dx ;

by regularity of ωR we get that

D(ϕR(qk))
∗
⇀ D(ϕR(q)) in Mb(U ;Mn×n×n

D ) (3.8)

as k → ∞. By semicontinuity of the total variation with respect to weak∗ convergence the
inequality (3.7) is proved for open sets, and this concludes the proof of (3.7).

By (3.8) we have that ϕR(pk)
∗
⇀ ϕR(p) in BV (Ω;Mn×n

D ) as k → ∞; then from the Step 1

(recall that |ϕR(pk)| ≤ R̂ a.e. in Ω) it follows that

H(α,ϕR(p)) ≤ lim inf
k→∞

H(αk, ϕR(pk)) for every R > 1 ,

and we want to pass to the limit as R→∞. First we prove that for every k

H(αk, ϕR(pk)) ≤ H(αk, pk) . (3.9)

To this end it is useful to rewrite H as

H(β, q) =

∫
Ω

S2(β̃) d
∣∣(S1(β)S2(β)−1q, lDq

)∣∣ ,



14 VITO CRISMALE

where
∣∣(S1(β)S2(β)−1q, lDq

)∣∣ is the variation of the product measure

(S1(β)S2(β)−1q, lDq) = (S1(β)S2(β)−1q, l∇q)Ln + (0, lDcq) + (0, l (q+ − q−)⊗ νqHn−1bJq ) .

Since by construction |ϕR(q)| ≤ |q| a.e. in Ω for every q ∈ BV (Ω;Mn×n
D ) we get by (3.7) that

|(S1(β)S2(β)−1ϕR(q), lD(ϕR(q)))| ≤ |(S1(β)S2(β)−1q, lDq)| in Mb(Ω)

for every β ∈ H1(Ω), q ∈ BV (Ω;Mn×n
D ), and R > 1. Taking β = αk, q = pk, and integrating

the positive function S2(α̃k), we obtain (3.9).
Therefore the proof is completed if we show that

H(α, p) = lim
R→∞

H(α,ϕR(p)) . (3.10)

The chain rule for BV functions proved in [37] gives in our case

DϕR(p) = ∇ϕR(p)∇pLn +∇ϕR(p̃) Dcp+ (ϕR(p+)− ϕR(p−))⊗ νpHn−1bJp ,

where p̃(x) is the approximate limit of p at any Lebesgue point x, and then

H(α,ϕR(p)) =

∫
Ω

√
S1(α)2|ϕR(p)|2 + l2S2(α)2|∇(ϕR(p))|2 dx

+ l

∫
Ω\Jp

S2(α̃)

∣∣∣∣∇ϕR(p̃)
dDcp

d|Dcp|

∣∣∣∣d|Dcp|+ l

∫
Jp

S2(α̃)|ϕR(p+)− ϕR(p−)|dHn−1 .

(3.11)

It is known from the theory of BV functions that p+(x), p−(x) ∈ R for Hn−1–a.e. x ∈ Ω and
hence Hn−1–a.e. x ∈ Ω \ Jp is a Lebesgue point for p. Since ωR(|x|) = 1 if |x| ≤ R, it follows
that

lim
R→∞

ϕR(p±(x)) = p±(x) for Hn−1–a.e. x ∈ Jp ,

and

lim
R→∞

[
∇ϕR(p̃)

dDcp

d|Dcp|

]
=

dDcp

d|Dcp|
for |Dcp|–a.e. x ∈ Ω \ Jp .

By (3.7) we have that

|∇(ϕR(p))| ≤ |∇p| ,
∣∣∣∣∇ϕR(p̃)

dDcp

d|Dcp|

∣∣∣∣ ≤ 1 , |ϕR(p+)− ϕR(p−)| ≤ |p+ − p−| .

Then we can pass to the limit in (3.11) using the Dominated Convergence Theorem and obtain
(3.10). Therefore the proof is concluded. �

Using Theorem 3.1, we can prove the existence of solutions to the minimization problem
(3.1) by applying the direct method of the Calculus of Variations.

Lemma 3.2. Problem (3.1) admits a solution, and for every (α, u, e, p) solution of (3.1) it
holds that α ∈ H1(Ω; [0, 1]).

Proof. Let

(αk, uk, ek, pk) ∈ A(α,w)

be a minimizing sequence for (3.1); by (2.9b), (2.6a), and (2.11) we can assume αk ∈ H1(Ω; [0, 1])
for every k. Since (0, w,Ew, 0) ∈ A(α,w) and

E(0,Ew, 0)− 〈L, w〉+H(0, p) =: C ∈ R

we get that E(αk, ek, curl pk)− 〈L, uk〉+H(αk, pk − p) is uniformly bounded in k and

E(αk, ek, curl pk)−
∫

Ω

%(t) · ek dx+H(αk, pk − p)−
∫

Ω

%D(t) · (pk − p) dx

≤ C +

∫
Ω

%D(t) · p dx− 〈%(t)ν, w〉∂DΩ

by the representation formula (2.15). By definition of E and (2.17) we obtain that

‖∇αk‖22 + ‖ek‖22 + ‖curl pk‖22 + ‖pk − p‖BV ≤ C1 ,
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and hence there exist α ∈ H1(Ω; [0, 1]), e ∈ L2(Ω;Mn×n
sym ), p ∈ BV (Ω;Mn×n

D ) such that up to
a subsequence

αk ⇀ α in H1(Ω) , ek ⇀ e in L2(Ω;Mn×n
sym ) , pk

∗
⇀ p in BV (Ω;Mn×n

D ) .

Moreover curl p ∈ L2(Ω;Mn×n
sym ) and

curl pk ⇀ curl p in L2(Ω;Mn×n
sym ) .

Using the embedding BV (Ω;Mn×n
D ) ↪→ L

n
n−1 (Ω;Mn×n

D ) and Korn’s inequality it follows easily

from (uk, ek, pk) ∈ A(w) that uk are uniformly bounded in W
n
n−1 (Ω;Rn): then up to a further

subsequence

uk ⇀ u in W
n
n−1 (Ω;Rn)

for a suitable u such that (u, e, p) ∈ A(w). Collecting the semicontinuity properties (2.8) and
(3.3) we get that (α, u, e, p) is a minimizer, and the proof is completed. �

In the very same way of [8, Lemma 3.2], we deduce the remark below from the properties
of H.

Remark 3.3. If (α, u, e, p) solves (3.1) then

E(α, e, curl p)− 〈L, u〉 ≤ E(α̃, ẽ, curl p̃)− 〈L, ũ〉+H(α̃, p̃− p) , (3.12)

for every (α̃, ũ, ẽ, p̃) ∈ A(α,w).

The following lemma states some differential conditions for a triple (u, e, p) such that
(α, u, e, p) satisfies (3.12). We shall make use of these conditions to recover the classical
formulation of the model.

Lemma 3.4. Let (α, u, e, p) satisfy (3.12). Then∣∣∣〈σ, η〉+ 〈L2µ(α) curl p, curl q〉 − 〈L, v〉
∣∣∣ ≤ H(α, q) (3.13)

for every (v, η, q) ∈ A(0), where σ := C(α)e. Moreover{
−div σ = f in Ω ,

σν = g on ∂NΩ .
(3.14)

Proof. Let us fix (v, η, q) ∈ A(0). Since for every ε ∈ R

(α, u+ εv, e+ εη, p+ εq) ∈ A(α,w) ,

from the remark above we have

Q1(α, e+ εη) +Q2(α, curl (p+ εq)) +H(α, εq) ≥ Q1(α, e) +Q2(α, curl p) for every ε ∈ R .

Then the positive homogeneity of H gives that

Q1(α, e± εη) +Q2(α, curl (p± εq)) + εH(α,±q) ≥ Q1(α, e) +Q2(α, curl p) for every ε ∈ R .

Dividing by ε and passing to the limit as ε→ 0, we recover (3.13).
Choosing in (3.13) (v,Ev, 0) for every v ∈ C∞(Ω;Rn) with v = 0 on ∂DΩ, we get (3.14). No-

tice that the normal trace of σ on ∂Ω is well defined in H−1/2(∂Ω;Rn) since σ ∈ L2(Ω;Mn×n
sym )

with divergence in L2(Ω;Rn). �

The lemma below will permit us to say that when both α and p are continuous at a given
time then all the evolution is there continuous. In contrast with [8, Lemma 3.4], here it is not
useful to write ω12 in terms of ‖α1 − α2‖∞; indeed we will consider the case when a sequence
of functions α1 tends to a function α2 weakly in H1(Ω), and this does not provide uniform
convergence in Ω.
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Lemma 3.5. For i = 1, 2 let wi ∈ H1(Ω;Rn), fi ∈ Ln(Ω;Rn), gi ∈ L∞(∂NΩ;Rn), and let
Li be defined by (3.2) with f = fi and g = gi. Suppose that (αi, ui, ei, pi) satisfies (3.12) with
data w = wi, L = Li, and let

ω12 :=
∥∥[C(α2)− C(α1)]e1

∥∥
2

+
∥∥(µ(α2)− µ(α1))curl p1

∥∥
2

+ ‖p2 − p1‖1/2BV

+ ‖p2 − p1‖1 + ‖f2 − f1‖n + ‖g2 − g1‖∞,∂NΩ + ‖Ew2 − Ew1‖2 .

Then there exists a positive constant C depending on L, µ(0), γ1, γ2, R, Ω, ∂NΩ such that

‖e2 − e1‖2 + ‖curl p2 − curl p1‖2 ≤ C ω12 ,

‖u2 − u1‖1, n
n−1
≤ C(ω12 + ‖w2 − w1‖2) .

(3.15)

Proof. Let

v := (u2 − w2)− (u1 − w1) , η := (e2 − Ew2)− (e1 − Ew1) , q := p2 − p1 .

Since (v, η, q) ∈ A(0), by (3.13) we have that

−H(α1, p2 − p1) ≤〈C(α1)e1, η〉+ L2 〈µ(α1) curl p1, curl (p2 − p1)〉 − 〈L1, v〉 ,
〈C(α2)e2, η〉+ L2 〈µ(α2) curl p2, curl (p2 − p1)〉 − 〈L2, v〉 ≤ H(α2, p2 − p1) .

Gathering the inequalities above and using (2.12) we obtain that

〈C(α2)(e2 − e1), η)〉+ L2

∫
Ω

µ(α2)|curl (p2 − p1)|2 dx

≤ 〈[C(α1)− C(α2)]e1, η〉+ L2 〈[µ(α1)− µ(α2)]curl p1, curl (p2 − p1)〉+ 〈L2 − L1, v〉
+ 2R‖p2 − p1‖BV ,

and then, by the definition of η,

〈C(α2)(e2 − e1), e2 − e1〉+ L2

∫
Ω

µ(α2)|curl (p2 − p1)|2 dx

≤ 〈C(α2)(e2 − e1),Ew2 − Ew1〉+ 〈[C(α1)− C(α2)]e1, e2 − e1 + (Ew1 − Ew2)〉
+ L2 〈[µ(α1)− µ(α2)]curl p1, curl (p2 − p1)〉+ 〈L2 − L1, v〉+ 2R‖p2 − p1‖BV ,

(3.16)

Arguing as in the proof of [10, Theorem 3.8] we see that there exists a constant Ĉ depending
only on Ω and ∂NΩ such that

|〈L2 − L1, v〉| ≤ Ĉ
(
‖f2 − f1‖n + ‖g2 − g1‖∞,∂NΩ

)(
‖e2 − e1‖2 + ‖Ew2 − Ew1‖2 + ‖p2 − p1‖1

)
.

Since

γ1‖e2−e1‖22+L2 µ(0)‖curl (p2−p1)‖22 ≤ 〈C(α2)(e2−e1), e2−e1〉+L2

∫
Ω

µ(α2)|curl (p2−p1)|2 dx ,

we conclude the former of (3.15) from (3.16) using the Cauchy inequality. The latter estimate
is easily shown using the compatibility conditions (2.3b) and Korn’s Inequality. �

We now prove a stability result for the solutions of (3.12) with respect to the weak conver-
gence of the data.

Theorem 3.6 (Stability of solutions to (3.12)). Let wk ∈ H1(Ω;Rn), Lk ∈
(
W

n
n−1 (Ω;Rn)

)′
,

αk ∈ H1(Ω; [0, 1]), and (uk, ek, pk) ∈ A(wk) for every k. Assume that αk ⇀ α∞ in H1(Ω),

uk ⇀ u∞ in W
n
n−1 (Ω;Rn), ek ⇀ e∞ in L2(Ω;Mn×n

sym ), pk
∗
⇀ p∞ in BV (Ω;Mn×n

D ), wk ⇀ w∞

in H1(Ω;Rn), Lk ⇀ L in
(
W

n
n−1 (Ω;Rn)

)′
. Then (u∞, e∞, p∞) ∈ A(w∞). If, in addition,

E(αk, ek, curl pk)− 〈Lk, uk〉 ≤ E(α̂k, êk, curl p̂k)− 〈Lk, ûk〉+H(α̂k, p̂k − pk) (3.17)

for every k and every (α̂k, ûk, êk, p̂k) ∈ A(αk, wk), then

E(α∞, e∞, curl p∞)− 〈L, u∞〉 ≤ E(α, e, curl p)− 〈L, u〉+H(α, p− p∞) (3.18)

for every (α, u, e, p) ∈ A(α∞, w∞).
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Proof. The fact that (u∞, e∞, p∞) ∈ A(w∞) is immediate by the definition of admissible triple
and the weak convergences assumed.

Let us now fix (α, u, e, p) ∈ A(α∞, w∞) and test (3.17) by

α̂k := α ∧ αk , ûk := u− u∞ + uk , êk := e− e∞ + ek , p̂k := p− p∞ + pk .

Indeed by assumption (α̂k, ûk, êk, p̂k) ∈ A(αk, wk), and moreover α̂k ⇀ α and α ∨ αk ⇀ α∞
in H1(Ω), ûk ⇀ u in W 1, n

n−1 (Ω;Rn), êk ⇀ e in L2(Ω;Mn×n
sym ), p̂k

∗
⇀ p in BV (Ω;Mn×n

D ).

Since for every α ∈ H1(Ω) and every η1, η2 ∈ L2(Ω;Mn×n
sym ) we have that

Q1(α, η1)−Q1(α, η2) = 1
2 〈C(α)(η1 + η2), η1 − η2〉 , (3.19)

Q2(α, η1)−Q2(α, η2) = L2

2 〈µ(α)(η1 + η2), η1 − η2〉 , (3.20)

and for every α, β ∈ H1(Ω)

‖∇(α ∨ β)‖22 + ‖∇(α ∧ β)‖22 = ‖∇α‖22 + ‖∇β‖22 ,
then the inequality (3.17) can be rewritten, adding to both sides −Q1(α̂k, ek)−Q2(α̂k, curl pk),
thus obtaining

γk := Q1(αk, ek)−Q1(α̂k, ek) +Q2(αk, curl pk)−Q2(α̂k, curl pk) +D(αk)

+
`2

2
‖∇(α ∨ αk)‖22 −

`2

2
‖∇α‖22

≤ 1
2 〈C(α̂k)(e− e∞ + 2ek), e− e∞〉+ L2

2 〈µ(α̂k) curl (p− p∞ + 2pk), curl (p− p∞)〉
+D(α̂k) +H(α̂k, p− p∞)− 〈Lk, u− u∞〉 =: δk .

Notice that for every η ∈ L2(Ω;Mn×n
sym )

Q1(αk, η)−Q1(α̂k, η) = 1
2 〈[C(αk)− C(α̂k)]η, η〉 ,

Q2(αk, η)−Q2(α̂k, η) = L2

2 〈(µ(αk)− µ(α̂k))η, η〉 .

Moreover (x, β, ξ) 7→ [C(β) − C(β ∧ α(x))]ξ · ξ and (x, β, ξ) 7→ (µ(β) − µ(β ∧ α(x)))|ξ|2 are
measurable functions from Ω × R ×Mn×n

sym into R+ ∪ {0}, continuous in the variable β and
convex in ξ. Therefore the Ioffe-Olach Semicontinuity Theorem (cf. [4, Theorem 2.3.1]) implies
that

Qi(α∞, η∞)−Qi(α, η∞) ≤ lim inf
k→∞

[
Qi(αk, ηk)−Qi(α̂k, ηk)

]
for every i ∈ {1, 2} and ηk ⇀ η∞ in L2(Ω;Mn×n

sym ). Then it follows that

E(α∞, e∞, curl p∞)−Q1(α, e∞)−Q2(α, curl p∞)− `2

2
‖∇α‖22 ≤ lim inf

k→∞
γk . (3.21)

On the other hand

lim
k→∞

δk = E(α, e, curl p)−Q1(α, e∞)−Q2(α, curl p∞)− `
2

2
‖∇α‖22 +H(α, p−p∞)−〈L, u−u∞〉 .

(3.22)

Indeed, since α̂k ⇀ α in H1(Ω), up to a subsequence ˜̂αk(x)→ α̃(x) for |D(p−p∞)|–a.e. x ∈ Ω;
therefore, by the Dominated Convergence Theorem

lim
k→∞

H(α̂k, p− p∞) = H(α, p− p∞) .

The convergence of D(α̂k) to D(α) follows easily from (2.9). Let us consider the first term in
δk: the simmetry of C(β) for every β ∈ R gives that

1
2 〈C(α̂k)(e− e∞ + 2ek), e− e∞〉 = 1

2 〈e− e∞ + 2ek,C(α̂k)(e− e∞)〉 .
Since C(β) is bounded uniformly with respect to β ∈ R and α̂k ⇀ α in H1(Ω), by the
Dominated Convergence Theorem we get that

C(α̂k)(e− e∞)→ C(α)(e− e∞) in L2(Ω;Mn×n
sym ) .

From the fact that ek ⇀ e∞ in L2(Ω;Mn×n
sym ) we conclude that

lim
k→∞

1
2 〈C(α̂k)(e− e∞ + 2ek), e− e∞〉 = Q1(α, e)−Q1(α, e∞) ,
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recalling (3.19). In the same way we get that

lim
k→∞

L2

2 〈µ(α̂k) curl (p− p∞ + 2pk), curl (p− p∞)〉 = Q2(α, curl p)−Q2(α, curl p∞)

and then we conclude (3.22). Gathering (3.21) and (3.22) we get (3.18) and the proof is
completed. �

4. Existence of quasistatic evolutions

This section is devoted to the proof of Theorem 2.5, basing on discrete time approximation.
First we construct a sequence of approximate evolutions by solving, for the k-th approximant,
k incremental problems of the type (3.1) which we have studied in Section 3; then we show
that this sequence converges in a suitable sense to a quasistatic evolution for the Gurtin-Anand
model coupled with damage. Henceforth we assume the hypoteses of Theorem 2.5, in particular
the stability condition on the initial datum (α0, u0, e0, p0).

Before starting the proof of the existence result, we prove that the integrals in the energy
balance (qs2) of Definition 2.3 are well defined. This follows immediately by the following
lemma.

Lemma 4.1. Let (α, u, e, p) be a quasistatic evolution and σ(t) := C(α(t))e(t), according
to Definition 2.3. Let r ∈ [1,∞). Then the functions t 7→ α(t) ∈ Lr(Ω), t 7→ u(t) ∈
W 1, n

n−1 (Ω;Rn), t 7→ e(t) ∈ L2(Ω;Mn×n
sym ), and t 7→ σ(t) ∈ L2(Ω;Mn×n

sym ) are strongly con-
tinuous except at most for a countable subset of [0, T ], and

(α, u, e, p) ∈ L∞(0, T ;H1(Ω)×W 1, n
n−1 (Ω;Rn)×L2(Ω;Mn×n

sym )×BV (Ω;Mn×n
D )) .

Proof. By the irreversibility condition and [8, Lemma A.2] it follows that there exists a count-
able set E1 ⊂ [0, T ] such that α is continuous at every t ∈ [0, T ] \ E1 with respect to the Lr

norm, for every r ∈ [1,∞). The condition (qs2) gives that p ∈ L∞(0, T ;BV (Ω;Mn×n
D )); then

by (qs1), taking (β, v, η, q) = (0, w(t),Ew(t), 0) for every t, we deduce that α(t), u(t), e(t)

are uniformly bounded in H1(Ω), W 1, n
n−1 (Ω;Rn), L2(Ω;Mn×n

sym ), respectively. Thus for every
t ∈ [0, T ] \ E1

α(s) ⇀ α(t) in H1(Ω), α(s)→ α(t) in Lr(Ω) as s→ t . (4.1)

Since p has bounded variation into the space BV (Ω;Mn×n
D ), the set E2 of its discontinuity

points is at most countable. Moreover, by the uniform bound for µ(α) and C(α), (4.1), and
the Dominated Convergence Theorem it follows that for every t ∈ [0, T ] \ E1

C(α(s))e(t)→ C(α(t))e(t) , µ(α(s))curl p(t)→ µ(α(t))curl p(t) in L2(Ω;Mn×n
sym ) as s→ t .

Then, using Lemma 3.5 (recall that the loading is continuous in time) we obtain that e and

u are strongly continuous in L2(Ω;Mn×n
sym ) and W 1, n

n−1 (Ω;Rn) at every t ∈ [0, T ] \ E, with
E = E1 ∪ E2.

Hence, by (4.1), σ(s) → σ(t) in L1(Ω;Mn×n
sym ) as s → t for every t ∈ [0, T ] \ E. Since

C(α) is uniformly bounded, and then |σ(s)| ≤ C|e(s)| in Ω, we deduce that this convergence
is indeed strong in L2(Ω;Mn×n

sym ), applying the Dominated Convergence Theorem. Finally, α

is measurable into H1(Ω) by the former of (4.1) and the fact that H1(Ω) is separable. This
concludes the proof. �

For every k ∈ N we define approximate evolutions (αk, uk, ek, pk) by induction. Let us set
tik := T i

k for i = 0, . . . , k and

(α0
k, u

0
k, e

0
k, p

0
k) := (α0, u0, e0, p0) ∈ A(1, w(0)) .

For i = 1, . . . , k let (αik, u
i
k, e

i
k, p

i
k) be a solution to the incremental problem

argmin {E(α, e, curl p)− 〈Lik, u〉+H(α, p− pi−1
k ) : (α, u, e, p) ∈ A(αi−1

k , wik)} , (4.2)
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where wik := w(tik) and Lik := L(tik). Notice that Lemma 3.2 ensures the existence of solutions.

Then we define for i = 0, . . . , k − 1 and t ∈ [tik, t
i+1
k )

αk(t) := αik , uk(t) := uik , ek(t) := eik , pk(t) := pik ,

σk(t) := C(αik)eik , wk(t) := wik , Lk(t) := Lik ,
(4.3)

while (αk(T ), ek(T ), uk(T ), pk(T )) := (αkk, u
k
k, e

k
k, p

k
k).

The proposition below gives that these piecewise constant approximants satisfy a discretized
version of the stability condition (qs1), a discretized energy inequality, and some a-priori
estimates. The proof follows the line of [16, Proposition 6.2], with some modifications due to
the presence of the damage variable.

Proposition 4.2. For every k ∈ N the evolution (αk, uk, ek, pk) defined in (4.3) satisfies the
following conditions:

(qs0)k for every x ∈ Ω the function t ∈ [0, T ] 7→ αk(t, x) is nonincreasing;
(qs1)k for every t ∈ [0, T ] we have (uk(t), ek(t), pk(t)) ∈ A(wk(t)) and

E(αk(t), ek(t), curl pk(t))− 〈Lk(t), uk(t)〉 ≤ E(β, η, curl q)− 〈Lk(t), v〉+H(β, q − pk(t))

for every (β, v, η, q) ∈ A(αk(t), wk(t));
(qs2)k for every t ∈ [tik, t

i+1
k )

E(αk(t), ek(t), curl pk(t))− 〈Lk(t), uk(t)〉+ VH(αk, pk; 0, t) ≤ E(α0, e0, curl p0)− 〈L(0), u0〉

+

∫ tik

0

〈σk(s), Eẇ(s)〉ds−
∫ tik

0

〈L̇(s), uk(s)〉ds−
∫ tik

0

〈Lk(s), ẇ(s)〉ds+ δk ,

where δk → 0 as k →∞.

Moreover there exists a positive constant C independent of k and t ∈ [0, T ] such that

‖αk(t)‖1,2 + ‖uk(t)‖1, n
n−1

+ ‖ek(t)‖2 + ‖ curl pk(t)‖2 + V(pk; 0, t) ≤ C . (4.4)

Proof. The condition (qs0)k holds since αik ≤ αi−1
k . Moreover (uk(t), ek(t), pk(t)) ∈ A(wk(t))

for every t ∈ [0, T ], by definition of the approximate evolutions. By (4.2) and Remark 3.3 we
get

E(αik, e
i
k, curl pik)− 〈Lik, uik〉 ≤ E(β, e, curl p)− 〈Lik, u〉+H(β, p− pik)

for every k, i = 1, . . . , k, and (β, u, e, p) ∈ A(αik, w
i
k), which gives (qs1)k.

In order to prove (qs2)k let us fix i ∈ {1, . . . , k}, t ∈ [ti−1
k , tik), u := uh−1

k −wh−1
k +whk , and

e := eh−1
k − Ewh−1

k + Ewhk for a given integer h with 1 ≤ h ≤ i. Testing (4.2) for i = h by

(αh−1
k , (u, e, ph−1

k )) ∈ A(αh−1
k , whk ) we get

E(αhk , e
h
k , curl phk)− 〈Lhk , uhk〉+H(αhk , p

h
k − ph−1

k )

≤ E(αh−1
k , eh−1

k , curl ph−1
k ) +Q1(αh−1

k ,Ewhk − Ewh−1
k ) + 〈C(αh−1

k )eh−1
k ,Ewhk − Ewh−1

k 〉

− 〈Lhk , uh−1
k + whk − wh−1

k 〉

= E(αh−1
k , eh−1

k , curl ph−1
k ) +

∫ thk

th−1
k

〈σh−1
k , Eẇ(s)〉ds− 〈Lh−1

k , uh−1
k 〉

−
∫ thk

th−1
k

〈L̇(s), uk(s)〉ds−
∫ thk

th−1
k

〈Lk(s), ẇ(s)〉ds+ δk,h ,

(4.5)

where

δk,h := Q1(αh−1
k ,Ewhk − Ewh−1

k )− 〈Lhk − Lh−1
k , whk − wh−1

k 〉 .

Iterating for 1 ≤ h ≤ i we deduce (qs2)k, with δk =
∑i
h=1 δk,h. Indeed, since pk is piecewise

constant and continuous from the right, and αk is nonincreasing, the supremum in the definition
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of VH is attained by the subdivision (thk)h, namely (cf. [8, Lemma A.1])

VH(αk, pk; 0, t) =

i∑
h=1

H(αhk , p
h
k − ph−1

k ) .

Moreover, the absolute continuity of the loading (2.2) implies that δk → 0 as k →∞.
Let us now prove (4.4). By (2.15) we can rewrite the inequality in (4.5) as

E(αhk , e
h
k , curl phk)−

∫
Ω

%(thk) · ehk dx−
∫

Ω

%D(thk) · phk dx+H(αhk , p
h
k − ph−1

k )

≤ E(αh−1
k , eh−1

k , curl ph−1
k ) +Q1(αh−1

k ,Ewhk − Ewh−1
k ) + 〈C(αh−1

k )eh−1
k ,Ewhk − Ewh−1

k 〉

−
∫

Ω

%(thk) · (eh−1
k + Ewhk − Ewh−1

k ) dx−
∫

Ω

%D(thk) · ph−1
k dx .

By the absolute continuity of w and %

E(αhk , e
h
k , curl phk)−

∫
Ω

%(thk) · ehkdx+H(αhk , p
h
k − ph−1

k )−
∫

Ω

%D(thk) · (phk − ph−1
k ) dx

≤ E(αh−1
k , eh−1

k , curl ph−1
k )−

∫
Ω

%(th−1
k ) · eh−1

k dx−
∫ thk

th−1
k

∫
Ω

%̇(s) · ek(s) dx ds

−
∫ thk

th−1
k

〈%(thk),Eẇ(s)〉ds+

∫ thk

th−1
k

〈σk(s),Eẇ(s)〉ds+ ωk,h

with ωk,h := Q1(αh−1
k ,Ewhk − Ewh−1

k ) → 0 as k → ∞. Let t ∈ [tik, t
i+1
k ); summing up for

h = 1, . . . , i we get

E(αk(t), ek(t), curl pk(t))−
∫

Ω

%(tik) · ek(t)dx+

i∑
h=1

[
H(αhk , p

h
k − ph−1

k )−
∫

Ω

%D(thk) · (phk − ph−1
k ) dx

]

≤ E(α0, e0, curl p0)−
∫

Ω

%(0) · e0 dx−
∫ thk

0

∫
Ω

%̇(s) · ek(s) dxds−
∫ thk

0

〈%̄k(s),Eẇ(s)〉ds

+

∫ thk

0

〈σk(s), Eẇ(s)〉ds+ ωk

with %̄k(s) = %(tjk) if s ∈ (tj−1
k , tjk] and ωk =

∑i
h=1 ωk,h → 0 as k → ∞. By (2.17) we obtain

the estimate
i∑

h=1

[
H(αhk , p

h
k − ph−1

k )−
∫

Ω

%D(thk) · (phk − ph−1
k ) dx

]
≥ C(c0, l, S2(0))V(pk; 0, t) .

Therefore ‖ek(t)‖2 is uniformly bounded in k and t by the hypoteses on Q1 and the regularity
assumptions on the external loading; hence αk(t), V(pk; 0, t), and curl pk(t) are bounded as
well. Finally, also uk(t) is bounded by Korn’s inequality. This concludes the proof. �

The following lemma shows (in the spirit of [10, Theorem 4.7]) that in order to prove that
an evolution satisfies Definition 2.3, it is sufficient to verify the irreversibility and the global
stability condition (qs0), (qs1), and (qs2) as an inequality.

Lemma 4.3. Let (α, u, e, p) : [0, T ]→ H1(Ω; [0, 1])×W 1, n
n−1 (Ω;Rn)×L2(Ω;Mn×n

sym )×BV (Ω;Mn×n
D )

be such that the conditions (qs0) and (qs1) of Definition 2.3 hold. Moreover assume that p is
a function with bounded variation from [0, T ] into BV (Ω;Mn×n

D ) and that for every t ∈ [0, T ]

E(α(t), e(t), curl p(t))− 〈L(t), u(t)〉+ VH(α, p; 0, t)

≤ E(α(0), e(0), curl p(0))− 〈L(0), u(0)〉+

∫ t

0

〈σ(s), Eẇ(s)〉ds

−
∫ t

0

〈L̇(s), u(s)〉ds−
∫ t

0

〈L(s), ẇ(s)〉ds ,

(4.6)
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where σ(s) := C(α(s))e(s). Then (α, u, e, p) is a quasistatic evolution for the Gurtin-Anand
model coupled with damage.

Proof. Let us fix t ∈ [0, T ] and let us define sik := i
k t for every k ∈ N and i = 0, 1, . . . , k. For

given k and i we set u := u(sik)−w(sik)+w(si−1
k ) and e := e(sik)−Ew(sik)+Ew(si−1

k ); from the

fact that (α(sik), u, e, p(sik)) ∈ A(α(si−1
k ), w(si−1

k )), the global stability condition (qs1) implies

E(α(si−1
k ), e(si−1

k ), curl p(si−1
k ))− 〈L(si−1

k ), u(si−1
k )〉 ≤ E(α(sik), e(sik), curl p(sik))− 〈L(si−1

k ), u〉
+Q1(α(sik),Ew(si−1

k )− Ew(sik))− 〈σ(sik),Ew(sik)− Ew(si−1
k )〉+H(α(sik), p(sik)− p(si−1

k )) .

This inequality can be rewritten as

E(α(si−1
k ), e(si−1

k ), curl p(si−1
k ))− 〈L(si−1

k ), u(si−1
k )〉+

∫ sik

si−1
k

〈σk(s), Eẇ(s)〉ds

−
∫ sik

si−1
k

〈L̇(s), uk(s)〉ds−
∫ sik

si−1
k

〈Lk(s), ẇ(s)〉ds+ δk,i

≤ E(α(sik), e(sik), curl p(sik))− 〈L(sik), u(sik)〉+H(α(sik), p(sik)− p(si−1
k )) ,

where for s ∈ (si−1
k , sik] we define

uk(s) := u(sik), σk(s) := σ(sik), Lk(s) := L(sik)

and

δk,i := −Q1(α(sik),Ew(si−1
k )− Ew(sik))− 〈L(sik)− L(si−1

k ), w(sik)− w(si−1
k )〉 .

Since
∑
iH(α(sik), p(sik)−p(si−1

k )) ≤ VH(α, p; 0, t), iterating the last inequality for 1 ≤ i ≤ k
we obtain

E(α(0), e(0), curl p(0))− 〈L(0), u(0)〉+

∫ t

0

〈σk(s), Eẇ(s)〉ds−
∫ t

0

〈L̇(s), uk(s)〉ds

−
∫ t

0

〈Lk(s), ẇ(s)〉ds+ δk ≤ E(α(t), e(t), curl p(t))− 〈L(t), u(t)〉+ VH(α, p; 0, t) ,

(4.7)

where δk :=
∑k
i=1 δk,i → 0 as k →∞. Lemma 4.1 implies that σk(s)→ σ(s) in L2(Ω;Mn×n

sym )

and uk(s) → u(s) in W 1, n
n−1 (Ω;Rn) for a.e. s ∈ (0, t). Taking into account the continuity in

time of the external loading and using the Dominated Convergence Theorem, the inequality
(4.7) passes to the limit as k →∞ and we deduce that

E(α(0), e(0), curl p(0))− 〈L(0), u(0)〉+

∫ t

0

〈σ(s), Eẇ(s)〉ds−
∫ t

0

〈L̇(s), u(s)〉ds

−
∫ t

0

〈L(s), ẇ(s)〉ds ≤ E(α(t), e(t), curl p(t))− 〈L(t), u(t)〉+ VH(α, p; 0, t) .

Then the energy balance (qs2) is proved. �

In the following theorem we prove that the piecewise constant interpolants defined in (4.3)
converge in a suitable sense, up to subsequences, to a quasistatic evolution for the Gurtin-
Anand model coupled with damage.

Theorem 4.4. In the hypoteses of Theorem 2.5, for every k ∈ N let (αk, uk, ek, pk) be the evo-
lution defined in (4.3). Then there exist a subsequence (not relabeled) and a quasistatic evolu-
tion (α, u, e, p) for the Gurtin-Anand model coupled with damage such that (α(0), u(0), e(0), p(0)) =



22 VITO CRISMALE

(α0, u0, e0, p0) and for every t ∈ [0, T ]

αk(t)→ α(t) in H1(Ω) , (4.8a)

uk(t) ⇀ u(t) in W 1, n
n−1 (Ω;Rn) , (4.8b)

ek(t)→ e(t) in L2(Ω;Mn×n
sym ) , (4.8c)

pk(t) ⇀ p(t) in BV (Ω;Mn×n
D ) , (4.8d)

curl pk(t)→ curl p(t) in L2(Ω;Mn×n
sym ) . (4.8e)

Proof. Since the functions αk are nonincreasing in time and αk(t, x) ∈ [0, 1], we get that
the αk are uniformly bounded in BV (0, T ;L1(Ω)). Moreover, by the a priori estimates (4.4),
‖αk(t)‖1,2 ≤ C for every k and t. Therefore we can apply the generalized version of the classical
Helly Theorem given in [11, Helly Theorem] to conclude that there exist a subsequence (not
relabeled) and a function α : [0, T ]→ H1(Ω; [0, 1]) nonincreasing in time such that αk(t) ⇀ α(t)
in H1(Ω) for every t ∈ [0, T ]. By (4.4) it also follows that V(pk; 0, T ) ≤ C for every k; then [10,
Lemma 7.2] implies the existence of p ∈ BV (0, T ;BV (Ω;Mn×n

D )) such that the convergence
(4.8d) holds up to a subsequence. The uniform bound in L2(Ω;Mn×n

sym ) for the curl pk gives

also that curl pk(t) ⇀ curl p(t) in L2(Ω;Mn×n
sym ).

Let us fix t ∈ [0, T ]. The a priori estimates on uk and ek imply that there exist two

functions û ∈W 1, n
n−1 (Ω;Rn) and ê ∈ L2(Ω;Mn×n

sym ), and an increasing sequence (kj)j (possibly

depending on t) such that ukj (t) ⇀ û in W 1, n
n−1 (Ω;Rn) and ekj (t) ⇀ ê in L2(Ω;Mn×n

sym ). By
Theorem 3.6, the global stability condition (qs1)k proved in Proposition 4.2 for the approximate
evolutions passes to the limit, so the quadruple (α(t), û, ê, p(t)) is a solution to the minimization
problem

argmin {E(β, η, curl q)− 〈L(t), v〉+H(β, q − p(t)) : (β, v, η, q) ∈ A(α(t), w(t))} .

In particular (û, ê) minimizes the functional (u, e) 7→ Q1(α(t), e) − 〈L(t), u〉, which is strictly
convex in e, on the convex set K := {(u, e) : (u, e, p(t)) ∈ A(w(t))}. Then (û, ê) is uniquely
determined, using also Korn’s inequality; if we define (u(t), e(t)) := (û, ê), we obtain that
(4.8b) holds and that ek(t) ⇀ e(t) in L2(Ω;Mn×n

sym ), without passing to further subsequences.
By construction, the quadruple (α, u, e, p) satisfies the conditions (qs0), (qs1) in Defini-

tion 2.3, and p ∈ BV (0, T ;BV (Ω;Mn×n
D )). By Lemma 4.3, it is enough to show the inequality

(4.6) for every t ∈ [0, T ] in order to conclude that (α, u, e, p) is a quasistatic evolution for the
Gurtin-Anand model coupled with damage.

Let us then fix t ∈ [0, T ] and consider the discrete inequality (qs2)k in Proposition 4.2 given
by

E(αk(t), ek(t), curl pk(t))− 〈Lk(t), uk(t)〉+ VH(αk, pk; 0, t) ≤ E(α0, e0, curl p0)− 〈L(0), u0〉

+

∫ tik

0

〈σk(s), Eẇ(s)〉ds−
∫ tik

0

〈L̇(s), uk(s)〉ds−
∫ tik

0

〈Lk(s), ẇ(s)〉ds+ δk .

By the approximation properties already shown, the fact that Lk(t) → L(t) strongly in

(W 1, n
n−1 (Ω;Rn))′, and the Dominated Convergence Theorem, the right-hand side converges

to the right-hand side of (qs2) and

〈Lk(t), uk(t)〉 → 〈L(t), u(t)〉 (4.9)

as k →∞. On the other hand, from the lower semicontinuity of H proved in Lemma 3.3 and
the definition of plastic dissipation (2.13) it follows that

VH(α, p; 0, t) ≤ lim inf
k→∞

VH(αk, pk; 0, t) . (4.10)

Moreover the weak lower semicontinuity of the energetic terms implies that

E(α(t), e(t), curl p(t)) ≤ lim inf
k→∞

E(αk(t), ek(t), curl pk(t)) . (4.11)

By (4.9), (4.10), and (4.11), we can pass to the limit in (qs2)k and deduce (4.6) and the
existence result. Furthermore, we obtain the convergence of the total energy and thus, again
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by lower semicontinuity,

‖α(t)‖1,2 = lim
k→∞

‖αk(t)‖1,2 ,

Q1(α(t), e(t)) = lim
k→∞

Q1(αk(t), ek(t)) ,

Q2(α(t), curl p(t)) = lim
k→∞

Q2(αk(t), curl pk(t)) ,

and then (4.8a), (4.8c), (4.8e), by strict convexity. This concludes the proof. �

The main existence result, Theorem 2.5, is now a consequence of the previous theorem.

5. Properties of quasistatic evolutions and classical formulation

In this section we study the connection between the energetic formulation for the Gurtin-
Anand model coupled with damage, given in Definition 2.3, and the strong formulation of
the model, described in the Introduction. We shall prove that the classical balance equations
(sf2) and the constraint condition (sf4) are satisfied during every evolution. Moreover, under
additional regularity assumptions, also the flow rule (sf5) holds almost everywhere in space
and time, and the evolution of damage is governed by the Kuhn-Tucker type conditions (sf6).

In the following we assume that (α, u, e, p) is a quasistatic evolution for the Gurtin-Anand
model coupled with damage, according to Definition 2.3. For every t ∈ [0, T ] let Kpen (t) ∈
Mn×n×n
D be given by

Kpen (t) · ∇A = µ(α(t))L2curl p(t) · curlA for every Mn×n
sym -valued function A , (5.1)

and let σ(t) := C(α(t))e(t).
As in perfect plasticity [10], the balance equations for the Cauchy stress σ easily follow

from the global stability condition (qs1), computing the corresponding Euler equation. By
Lemma 3.4 we get that for every t ∈ [0, T ] and every (v, η, q) ∈ A(0)∣∣∣〈σ(t), η〉+ 〈L2µ(α(t)) curl p(t), curl q〉 − 〈L(t), v〉

∣∣∣ ≤ H(α(t), q) , (5.2)

and then {
− div σ(t) = f(t) in Ω ,

σ(t)ν = g(t) on ∂NΩ .

Following [16], we now characterize the plastic potential H as the supremum of certain duality
products. A similar type of characterization for the plastic potential is given also in perfect
plasticity (cf. [33, Corollary 3.8] and [8, equation (2.23)]). In view of the dependence of H on
the damage α, we have to introduce the closed space of measures that vanishes on sets with
2-capacity zero, which was not useful in [16].

Lemma 5.1. Let us define the closed linear subspace of Mb(Ω;Mn×n×n
D )

M2
b (Ω;Mn×n×n

D ) := {µ ∈Mb(Ω;Mn×n×n
D ) : µ(E) = 0 if C2(E) = 0} ,

where we recall that C2(E) is the 2-capacity of the set E, and let us set for every α ∈ H1(Ω)

Kα(Ω) :=
{

(A,B,L) ∈ L∞(Ω;Mn×n
D )× L∞(Ω;Mn×n×n

D )× (M2
b (Ω;Mn×n×n

D ))′ :

|A(x)|2

S1(α(x))2
+

|B(x)|2

l2S2(α(x))2
≤ 1 a.e. in Ω, |〈L, µ〉| ≤ l

∫
Ω

S2(α̃) d|µ| ∀µ
}
.

(5.3)

Then for every α ∈ H1(Ω) and p ∈ BV (Ω;Mn×n
D )

H(α, p) = sup
(A,B,L)∈Kα(Ω)

〈(A,B,L), (p,∇p,Dsp)〉 , (5.4)

where 〈(A,B,L), (p,∇p,Dsp)〉 := 〈A, p〉 + 〈B,∇p〉 + 〈L,Dsp〉 is the duality pairing between
L1(Ω;Mn×n

D )× L1(Ω;Mn×n×n
D )×M2

b (Ω;Mn×n×n
D ) and its dual space.
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Proof. Let us fix α ∈ H1(Ω) and consider the function

F(α; ·, ·, ·) : L1(Ω;Mn×n
D )× L1(Ω;Mn×n×n

D )×M2
b (Ω;Mn×n×n

D )→ [0,+∞[

defined by

F(α;A′,B′,L′) =

∫
Ω

√
S1(α)2|A′|2 + l2S2(α)2|B′|2 dx+ l

∫
Ω

S2(α̃) d|L′| .

This definition is well posed because α̃ ∈ L∞(Ω;L) for every L ∈M2
b (Ω;Mn×n×n

D ), and

H(α, p) = F(α; p,∇p,Dsp)

for every p ∈ BV (Ω;Mn×n
D ).

Since F(α; ·, ·, ·) is strongly continuous and convex we have F(α; ·, ·, ·) = F(α; ·, ·, ·)∗∗, where
∗ is the symbol for the Fenchel transformation. Moreover, using the fact that

ξ1 · ξ2 + ζ1 · ζ2 =: (ξ1, ζ1) · (ξ2, ζ2) ≤
√
ε2|ξ1|2 + δ2|ζ1|2

√
ε−2|ξ2|2 + δ−2|ζ2|2 (5.5)

for every ε, δ > 0, ξ1, ξ2 ∈ Rd, ζ1, ζ2 ∈ Rm, with the equality if and only if ξ1 = Cδ2ξ2 and
ζ1 = Cε2ζ2 for any C > 0, it is not difficult to show that F∗(α; ·, ·, ·) is the indicator function of
the set Kα(Ω). Therefore we deduce that F(α; ·, ·, ·) is the Fenchel transform of the indicator
of Kα(Ω), that gives (5.4). �

We now derive the existence of three higher order stresses conjugated to p(t), ∇p(t), Dsp(t)
for every t, and prove that they satisfy the constitutive relations and the constraint condition
(sf4) in the classical formulation.

Proposition 5.2. For every t ∈ [0, T ] there exists a triple (σp(t),Kpdiss (t),Sp(t)) ∈ Kα(t)(Ω)
such that, setting Kp(t) := Kpen (t) + Kpdiss (t), it holds the following

〈σ(t), η〉+ 〈σp(t), q〉+ 〈Kp(t),∇q〉+ 〈Sp(t),Dsq〉 = 〈L(t), v〉 for every (v, η, q) ∈ A(0) , (5.6)

which implies the balance equations{
σp(t) = σD(t) + div Kp(t) in Ω ,

Kp(t)ν = 0 on ∂Ω .
(5.7)

Proof. Let us fix t ∈ [0, T ]. From the inequality (5.2) we can deduce that the linear functional

A(0) 3 (v, η, q) 7→ 〈σ(t), η〉+ 〈L2µ(α(t)) curl p(t), curl q〉 − 〈L(t), v〉 ,
depends only on q. Indeed, since A(0) is a linear space, if both (v1, η1, q) and (v2, η2, q) belong
to A(0) we have (v1 − v2, η1 − η2, 0) ∈ A(0) and then 〈σ(t), η1 − η2〉 − 〈L(t), v1 − v2〉 = 0. We
can thus consider the linear functional

ϕ(q,∇q,Dsq) := 〈σ(t), η〉+ 〈L2µ(α(t)) curl p(t), curl q〉 − 〈L(t), v〉 (5.8)

defined on the linear subspace of L1(Ω;Mn×n
D )× L1(Ω;Mn×n×n

D )×M2
b (Ω;Mn×n×n

D )

X = {(q,∇q,Dsq) : (v, η, q) ∈ A(0) for some v ∈W 1, n
n−1 (Ω;Rn), η ∈ L2(Ω;Mn×n

sym )} .
By the Hahn-Banach Theorem for seminorms (see [12, Theorem 5.7]), we can extend in a
continuous way ϕ to the whole L1(Ω;Mn×n

D )×L1(Ω;Mn×n×n
D )×M2

b (Ω;Mn×n×n
D ) keeping the

constraint condition in (5.2):

|ϕ(A,B,L)| ≤
∫

Ω

√
S1(α(t))2|A|2 + l2S2(α(t))2|B|2 dx+ l

∫
Ω

S2(α̃(t)) d|L| (5.9)

for every (A,B,L) ∈ L1(Ω;Mn×n
D ) × L1(Ω;Mn×n×n

D ) × M2
b (Ω;Mn×n×n

D ). Since ϕ is linear

and bounded there exist σp(t) ∈ L∞(Ω;Mn×n
D ), Kpdiss (t) ∈ L∞(Ω;Mn×n×n

D ), and Sp(t) ∈
(M2

b (Ω;Mn×n×n
D ))′ such that

ϕ(A,B,L) = −〈σp(t), A〉 − 〈Kpdiss (t),B〉 − 〈Sp(t),L〉 .
Therefore, choosing (A,B, 0) and (0, 0,L) in (5.9) we get that (σp(t),Kpdiss (t),Sp(t)) ∈ Kα(t)(Ω)
(recall (5.5) and the definition (5.3)). Moreover, by (5.8) it follows that

〈σ(t), η〉+ 〈L2µ(α(t)) curl p(t), curl q〉 − 〈L(t), v〉 = −〈σp(t), q〉 − 〈Kpdiss (t),∇q〉 − 〈Sp(t),Dsq〉
(5.10)
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for every (v, η, q) ∈ A(0). Hence (5.6) follows recalling the definition of Kpen (t).
In order to show (5.7) let us consider q ∈ C∞(Ω;Mn×n

D ) and choose (0,−q, q) ∈ A(0) in
(5.6). We obtain that

−〈σ(t), q〉+ 〈σp(t), q〉+ 〈Kp(t),∇q〉 = 0 .

Since q(x) ∈Mn×n
D for every x, we can replace σ(t) by σD(t) and rewrite the inequality above

as

〈σp(t)− σD(t), q〉+ 〈Kp(t),∇q〉 = 0 . (5.11)

The former equation in (5.7) follows immediately; as for the latter, it is enough to integrate by
parts, taking into account that the normal trace of Kp(t) on ∂Ω is in H−1/2(∂Ω;Rn×n) since
Kp(t) ∈ L2(Ω;Mn×n×n

D ) with divergence in L2(Ω;Mn×n
D ) by (5.1), (5.11), and the fact that

(σp(t),Kpdiss (t),Sp(t)) ∈ Kα(t)(Ω). Hence (5.7) is proved and the proof is concluded. �

The classical flow rule (sf5) and the Kuhn-Tucker condition for the evolution of the damage
can be derived by differentiating the energy balance equation (qs2); therefore some regularity
assumptions are needed both on the constitutive coefficients and on the evolution. For instance,
if α and p are absolutely continuous from [0, T ] respectively into C(Ω) and BV (Ω;Mn×n

D ), then,
adapting the argument of [8, Lemma A.4], we have that for every t ∈ [0, T ]

VH(α, p, 0, t) =

∫ t

0

H(α(s), ṗ(s)) ds . (5.12)

Proposition 5.3 (Kuhn-Tucker conditions and maximum plastic work principle). Assume
that the elastic moduli µ, k in (2.5), and the constitutive functions d, S1, S2 are of class C1.

Moreover let α, u, e, p be absolutely continuous from [0, T ] into C(Ω)∩H1(Ω), W 1, n
n−1 (Ω;Rn),

L2(Ω;Mn×n
sym ), BV (Ω;Mn×n

D ), respectively. Then for every t ∈ [0, T ] the functional C(Ω) ∩
H1(Ω) 3 β 7→ E(β, e(t), curl p(t)) is differentiable at α(t) with Gâteaux derivative in the direc-
tion β ∈ C(Ω) ∩H1(Ω) given by

〈∂αE(α(t), e(t), curl p(t)), β〉 = 1
2 〈C

′(α(t))β e(t), e(t)〉+ L2

2 〈µ
′(α(t))β curl p(t), curl p(t)〉

+

∫
Ω

d′(α(t))β dx+ `2
∫

Ω

∇α(t) · ∇β dx .

Moreover

〈∂αE(α(t), e(t), curl p(t)), β〉 ≥ 0 (5.13)

for every t ∈ [0, T ] and every β ∈ C(Ω) ∩H1(Ω), β ≤ 0 in Ω,

〈∂αE(α(t), e(t), curl p(t)), α̇(t)〉 = 0 (5.14)

for a.e. t ∈ (0, T ). Finally, for a.e. t ∈ (0, T )

H(α(t), ṗ(t)) = 〈(σp(t),Kpdiss (t),Sp(t)), (ṗ(t),∇ṗ(t),Dsṗ(t))〉
= 〈σp(t), ṗ(t)〉+ 〈Kpdiss (t),∇ṗ(t)〉+ 〈Sp(t),Dsṗ(t)〉 ,

(5.15)

where (σp(t),Kpdiss (t),Sp(t)) ∈ Kα(t)(Ω) is given by Proposition 5.2.

Proof. The differentiability of β 7→ E(β, e(t), curl p(t)) and the expression of its derivative
follow from the regularity assumptions on the constitutive functions and on the evolution.
Let t ∈ [0, T ] and β ∈ C(Ω) ∩ H1(Ω), β ≤ 0 in Ω. For every h > 0, considering (α(t) +
hβ, u(t), e(t), p(t)) ∈ A(α(t), w(t)) as a test pair in (qs1), we get

E(α(t) + hβ, e(t), curl p(t))− E(α(t), e(t), curl p(t))

h
≥ 0 .

Letting h→ 0 we obtain (5.13).
Since the evolution is assumed to be absolutely continuous, we can differentiate with respect

to t the energy balance (qs2). Recalling (5.12) we get that for a.e. t

〈∂αE(α(t), e(t), curl p(t)), α̇(t)〉+ 〈σ(t), ė(t)〉+ L2〈µ(α(t)) curl p(t), curl ṗ(t)〉
− 〈L(t), u̇(t)〉+H(α(t), ṗ(t)) = 〈σ(t), Eẇ(t)〉 − 〈L(t), ẇ(t)〉 .
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It is easy to see that (u̇(t)− ẇ(t), ė(t)− Eẇ(t), ṗ(t)) ∈ A(0), when it exists; thus, using (5.6)
(cf. also (5.10)), the previous inequality gives that for a.e. t

0 = H(α(t), ṗ(t))− (〈σp(t), ṗ(t)〉+ 〈Kpdiss (t),∇ṗ(t)〉+ 〈Sp(t),Dsṗ(t)〉)
+ 〈∂αE(α(t), e(t), curl p(t)), α̇(t)〉 .

(5.16)

Since (σp(t),Kpdiss (t),Sp(t)) ∈ Kα(t)(Ω), by (5.4) and (5.13) (recall that α̇(t) ≤ 0 in Ω) the
equality (5.16) implies (5.14) and (5.15) for a.e. t. �

We can interpret the equality (5.15) as a maximum plastic work principle, i.e., the supremum
in (5.4) is attained on (σp(t),Kpdiss (t),Sp(t)). From this we deduce a weak form of the flow
rule, expressed by the following conditions.

Corollary 5.4. Gathering (5.4) and (5.15) we get that

〈σp(t)−A, ṗ(t)〉+ 〈Kpdiss (t)− B,∇ṗ(t)〉 ≥ 0 (5.17a)

for every (A,B) ∈ L∞(Ω;Mn×n
D ) × L∞(Ω;Mn×n×n

D ) with |A(x)|2
S1(α(t,x))2 + |B(x)|2

l2S2(α(t,x))2 ≤ 1 a.e. in

Ω, and

〈Sp(t)− L,Dsṗ(t)〉 ≥ 0 (5.17b)

for every L ∈ (M2
b (Ω;Mn×n×n

D ))′ such that |〈L, µ〉| ≤ l
∫

Ω
S2(α̃(t)) d|µ| for µ ∈M2

b (Ω;Mn×n×n
D ).

Indeed both (5.4) and (5.15) hold if and only if

〈σp(t)−A, ṗ(t)〉+ 〈Kpdiss (t)− B,∇ṗ(t)〉+ 〈Sp(t)− L,Dsṗ(t)〉 ≥ 0

for every (A,B,L) ∈ Kα(t)(Ω).

We are now ready to prove that the classical flow rule (sf5) holds for a.e. (t, x).

Proposition 5.5 (Flow rule). In the hypoteses of Proposition 5.3, let t ∈ [0, T ] such that ṗ(t)
and ∇ṗ(t) exist and let x ∈ Ω be a Lebesgue point for σp(t), Kpdiss (t), ṗ(t) and ∇ṗ(t). Then
the condition

|σp(t, x)|2

S1(α(t, x))2
+
|Kpdiss (t, x)|2

l2S2(α(t, x))2
< 1

implies that

(ṗ(t, x),∇ṗ(t, x)) = (0, 0) ,

while if
|σp(t, x)|2

S1(α(t, x))2
+
|Kpdiss (t, x)|2

l2S2(α(t, x))2
= 1

we have

ṗ(t, x) = λ(t, x)
σp(t, x)

S1(α(t, x))2
, ∇ṗ(t, x) = λ(t, x)

|Kpdiss (t, x)|
l2S2(α(t, x))2

with

λ(t, x) =
√
S1(α(t, x))2|ṗ(t, x)|+ l2S2(α(t, x))2|∇ṗ(t, x)|2 .

Proof. Let us fix t and x satisfying the assumption in the statement, and let us define the
convex set

Ct,x :=

{
(F0,G0) ∈Mn×n

D ×Mn×n×n
D :

|F0|2

S1(α(t, x))2
+

|G0|2

l2S2(α(t, x))2
≤ 1

}
.

By assumption (σp(t, x),Kpdiss (t, x)) ∈ Ct,x. Given (F0,G0) ∈ Ct,x we set

(F (z),G(z)) :=

(
F0
S1(α(t, z))

S1(α(t, x))
,G0

S2(α(t, z))

S2(α(t, x))

)
for every z ∈ Ω .

Since α(t) ∈ C(Ω) we get (F,G) ∈ C(Ω;Mn×n
D )×C(Ω;Mn×n×n

D ); by construction (F (x),G(x)) =

(F0,G0) and |F (z)|2
S1(α(t,z))2 + |G(z)|2

l2S2(α(t,z))2 ≤ 1 in Ω. We now fix r > 0 and test (5.17a) by

(Ar,Gr) :=

{
1
2 (σp(t) + F,Kpdiss (t) + G) inBr(x)

(σp(t),Kpdiss (t)) outsideBr(x)
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which is an admissible test function by convexity of the constraint set. Hence we obtain that
for every r > 0

1

rn

[∫
Br(x)

(σp(t)− F ) · ṗ(t) dx+

∫
Br(x)

(Kpdiss (t)−G) · ∇ṗ(t) dx

]
≥ 0 .

As r → 0 we get (recall that x is a Lebesgue point for the functions involved)

(F0 − σp(t, x)) · ṗ(t, x) + (G0 −Kpdiss (t, x)) · ∇ṗ(t, x) ≤ 0 .

Since (F0,G0) is arbitrary in Ct,x, it follows that (ṗ(t, x),∇ṗ(t, x)) is in the normal cone to
Ct,x at (σp(t, x),Kpdiss (t, x)) and this proves the result. �

6. Asymptotic analysis for vanishing strain gradient effects

In this section we study the relation between the Gurtin-Anand model coupled with damage
and the coupled elastoplastic damage model proposed in [8].

In [16] it is proven that quasistatic evolutions for the Gurtin-Anand model converge in a
suitable sense, as the strain gradient terms vanish, to evolutions for perfectly plastic bodies in
the formulation of [10]. Then we expect, when l, L tend to zero, the convergence of quasistatic
evolutions in Definition 2.3 to evolutions for perfectly plastic bodies with damage studied in
[8]. Indeed the latter model corresponds, when the damage is constant in time, to the perfect
plasticity model for heterogeneous materials in [33]. However, while the classical Gurtin-
Anand formulation reduces to von Mises perfect plasticity model by setting l and L equal to
zero (recall that l is related to the thickness of the plastic shear bands and L to the energy
stored by the geometrically necessary dislocations), in the presence of damage the models have
two different gradient damage regularizations, because in [8] and [9] the space continuity of α
is needed. Thus we start from a coupled gradient plasticity-damage model with a regularizing
term ‖∇α‖γγ , γ > n, instead of ‖∇α‖22. Moreover, in the model in [8] there is a term related
to a fatigue phenomenon, which depends on a parameter λ. For simplicity, we do not consider
here the fatigue and thus we take λ = 0.

For technical reasons (see Remark 6.2) we also require that the only loading is the displace-
ment field w applied to the whole of ∂Ω.

Under this assumptions, Theorem 6.1 shows that evolutions for the Gurtin-Anand model
coupled with damage converge weakly for every time to evolutions in [8].

For lk → 0 and Lk → 0, let

Ek(β, η, curl q) := Q1(β, η) +
L2
k

2

∫
Ω

µ(β)|curl q|2 dx+ ‖∇β‖γγ +D(β) ,

Hk(β, q) :=

∫
Ω

√
S1(β)2|q|2 + l2kS2(β)2|∇q|2 dx+ lk

∫
Ω

S2(β̃) d|Dsq|

be the total energy and the plastic dissipation of the Gurtin-Anand model coupled with damage
for the length scales l = lk, L = Lk, ` =

√
2. Moreover let

t 7→ (αk(t), uk(t), ek(t), pk(t))∈W 1,γ(Ω; [0, 1])×W 1, n
n−1 (Ω;Rn)×L2(Ω;Mn×n

sym )×BV (Ω;Mn×n
D )

be a corresponding quasistatic evolution with the prescribed displacement w. Namely the
following conditions hold:

(qs0) irreversibility : for every x ∈ Ω the function [0, T ] 3 t 7→ αk(t, x) is nonincreasing;
(qs1) global stability : for every t ∈ [0, T ] we have (uk(t), ek(t), pk(t)) ∈ A(w(t)) and

Ek(αk(t), ek(t), curl pk(t)) ≤ Ek(β, η, curl q) +Hk(β, q − pk(t))

for every (β, v, η, q) ∈ A(α(t), w(t));
(qs2) energy balance: the function t 7→ pk(t) from [0, T ] into BV (Ω;Mn×n

D ) has bounded
variation and for every t ∈ [0, T ]

Ek(αk(t), ek(t), curl pk(t)) + VHk(αk, pk; 0, t)

= Ek(αk(0), ek(0), curl pk(0)) +

∫ t

0

〈σk(s), Eẇ(s)〉ds ,
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where σk(s) := C(αk(s))ek(s).

We now recall the notion of globally stable evolution for the coupled elastoplastic-damage
model considered in [8], when the parameter λ therein is zero.

The class of admissible configurations for a given boundary datum w ∈ H1(Ω;Rn) in perfect
plasticity is the set

App(w) := {(u, e, p) ∈ BD(Ω)× L2(Ω;Mn×n
sym )×Mb(Ω;Mn×n

D ) :

Eu = e+ p in Ω, p = (w − u)� νHn−1 on ∂Ω} ,

and we define in analogy to (2.18)

App(α,w) := {(β, u, e, p) : β ∈W 1,γ(Ω), β ≤ α, and (u, e, p) ∈ App(w)} .

Here

BD(Ω) := {u ∈ L1(Ω;Rn) : Eu ∈Mb(Ω;Mn×n
sym )} ,

endowed with the norm

‖u‖BD := ‖u‖1 + ‖Eu‖1 ,
is the Banach space of functions with bounded deformation on Ω; for its general properties
we refer to [35]. Notice that we use the subscripts “pp” (perfect plasticity with damage)
to distinguish objects with analogous meaning in the two models, and that the term w − u
appearing in the definition of App is intended in the sense of traces on ∂Ω.

For every β ∈ C(Ω) and q ∈Mb(Ω;Mn×n
D ) we set

Hpp(β, q) :=

∫
Ω

S1(β) d|q| ,

in analogy to H. Here we adopt a multiplicative formulation for the constraint sets (indeed
we are in von Mises setting). The plastic dissipation VHpp(β, q) is defined in the same way of
VH, starting from Hpp, and the total energy is

Epp(β, η) := Q1(β, η) +D(β) + ‖∇β‖γγ ,

with Q1 and D as in (2.7) and (2.9a).
A quasistatic evolution for the coupled perfect plasticity-damage model is a function

[0, T ] 3 t 7→ (α(t), u(t), e(t), p(t)) ∈W 1,γ(Ω; [0, 1])×BD(Ω)×L2(Ω;Mn×n
sym )×Mb(Ω;Mn×n

D )

satisfying the following conditions:

(qs0)pp irreversibility : for every x ∈ Ω the function [0, T ] 3 t 7→ α(t, x) is nonincreasing;
(qs1)pp global stability : for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ App(w(t)) and

Epp(α(t), e(t)) ≤ Epp(β, η) +Hpp(β, q − p(t))

for every (β, v, η, q) ∈ App(α(t), w(t));

(qs2)pp energy balance: the function t 7→ p(t) from [0, T ] into Mb(Ω;Mn×n
D ) has bounded

variation and for every t ∈ [0, T ]

Epp(α(t), e(t)) + VHpp(α, p; 0, t) = Epp(α(0), e(0)) +

∫ t

0

〈σ(s),Eẇ(s)〉ds ,

where σ(s) := C(α(s))e(s).

Assuming Ω Lipschitz and (2.2a), (2.4), (2.6), (2.9b), and (2.11), it is proven in [8] that for
every initial data (α0, u0, e0, p0) ∈ App(1, w(0)) such that

Epp(α0, e0) ≤ Epp(β, η) +Hpp(β, q − p0)

for every (β, v, η, q) ∈ App(α0, w(0)), there exists a quasistatic evolution for the coupled perfect
plasticity-damage model (α, u, e, p) such that (α(0), u(0), e(0), p(0)) = (α0, u0, e0, p0).

Now we consider the limit as k →∞, assuming for the initial conditions that

αk(0) ⇀ α0 in W 1,γ(Ω), uk(0)
∗
⇀ u0 in BD(Ω),

ek(0) ⇀ e0 in L2(Ω;Mn×n
sym ), pk(0)

∗
⇀ p0 in Mb(Ω;Mn×n

D )
(6.1a)
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for suitable α0, e0, u0, p0, and

Ek(αk(0), ek(0), curl pk(0))→ Epp(α0, e0) . (6.1b)

Under this assumption, we can prove the convergence result below.

Theorem 6.1. Let Ω ⊂ Rn be open, bounded, and Lipschitz; if n ≥ 3, let Ω be also star-
shaped. Assume ∂DΩ = ∂Ω, (2.2a), (2.4), (2.6), (2.9b), and (2.11). Moreover, for lk → 0
and Lk → 0, let (αk, uk, ek, pk) be a quasistatic evolution for the Gurtin-Anand model coupled
with damage associated with lk and Lk such that the conditions (6.1) hold. Then there exists
a quasistatic evolution for the perfect plasticity model coupled with damage (α, u, e, p) with
α(0) = α0, u(0) = u0, e(0) = e0, p(0) = p0 such that, up to a subsequence,

αk(t)→ α(t) in W 1,γ(Ω) , (6.2a)

uk(t)
∗
⇀ u(t) in BD(Ω) , (6.2b)

ek(t)→ e(t) in L2(Ω;Mn×n
sym ) , (6.2c)

pk(t)
∗
⇀ p(t) in Mb(Ω;Mn×n

D ) (6.2d)

for every t ∈ [0, T ].

Remark 6.2. An important difference with respect to the analysis in [16] relies on the fact
that we cannot still characterize the global stability in the limit evolution by the equilibrium
conditions for the Cauchy stress and the plastic constraint (see [10, Theorem 3.6]). This
calls for the approximation in a strong sense of admissible triples for perfect plasticity with
ones that are admissible for the Gurtin-Anand model. We show this relaxation result in the
lemmas below both in the case of dimension two, and in dimension three under the additional
assumption that the domain is star shaped. Actually, in the paper [28], M.G. Mora proves the
approximation property for every Lipschitz domain; then Theorem 6.1 can be proved for this
domains.

Lemma 6.3 (Approximation, n ≥ 3). Let Ω ⊂ Rn, n ≥ 3, be open, bounded, star-shaped and
Lipschitz. Then for every (u, e, p) ∈ App(0) there exists a sequence of triples (uk, ek, pk) ∈ A(0)
such that

uk → u in L1(Ω;Rn), ek → e in L2(Ω;Mn×n
sym ), pk

s→ p in Mb(Ω;Mn×n
D ) .

Proof. Without loss of generality we can assume that Ω is star-shaped with respect to 0. For

an open set Ω̃ such that Ω ⊂ Ω̃ let us define

û :=

{
u in Ω

0 in Ω̃ \ Ω
, ê :=

{
e in Ω

0 in Ω̃ \ Ω
, p̂ :=

{
p in Ω

0 in Ω̃ \ Ω
,

For k large enough we set

ûk(x) := (1 + 1
k )−1u

(
(1 + 1

k )x
)
, êk(x) := e

(
(1 + 1

k )x
)

for every x ∈ Ωk := Ω +B 1
k
,

and

p̂k := Eûk − êk in Ωk .

Then it is not difficult to see that

ûk(x) = 0 for every x ∈ Ωk \
[
(1 + 1

k )−1Ω
]
,

|p̂k|(∂Ω) = 0 , (6.3)

and that, taking the restriction of ûk, êk, p̂k to Ω, we have

ûk → u in L1(Ω;Rn), êk → e in L2(Ω;Mn×n
sym ) , p̂k

s→ p in Mb(Ω;Mn×n
D ) .

Moreover, if we regularize by convolution for every k with the sequence of mollifiers (% 1
h

)N3h>k,

we get (taking the restrictions to Ω) a sequence of functions

(ûhk , ê
h
k , p̂

h
k) ∈ A(0) ∩ C∞(Ω;Rn ×Mn×n

sym ×Mn×n
D )
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such that

ûhk → ûk in L1(Ω;Rn), êhk → êk in L2(Ω;Mn×n
sym ) , p̂hk

s→ p̂k in Mb(Ω;Mn×n
D )

as h → ∞. Indeed, by (6.3) it is enough to show that p̂hk
s→ p̂k in Mb(Ω;Mn×n

D ), and
this holds again by (6.3) since the regularization by convolution of a measure entails strict
convergence on open subsets whose boundaries are not charged by the measure itself (see [3,
Theorem 2.2]).

By a diagonal argument we obtain (uk, ek, pk) as (ûhkk , êhkk , p̂hkk ) with h = hk sufficiently
large. �

We now show the relaxation property for perfect plasticity triples in a bidimensional domain.
The construction of the approximants is similar to the one made in [13, Theorem 6.2, Step 1].

Lemma 6.4 (Approximation, n = 2). Let Ω ⊂ R2 be open, bounded, and Lipschitz. Then for
every (u, e, p) ∈ App(0) there exists a sequence of triples (uk, ek, pk) ∈ A(0) such that

uk → u in L1(Ω;Rn), ek → e in L2(Ω;Mn×n
sym ), pk

s→ p in Mb(Ω;Mn×n
D ) .

Proof. Let us define

û :=

{
u in Ω

0 in R2 \ Ω
, ê :=

{
e in Ω

0 in R2 \ Ω
, p̂ :=

{
p in Ω

0 in R2 \ Ω
.

Since (u, e, p) ∈ App(0), we get that

Eû = ê+ p̂ in R2 .

Let {Qνk(xk, rk)}k∈I be a finite covering of ∂Ω made of open cubes with centers xk ∈ ∂Ω, side
2rk, with rk > 0, and a face orthogonal to νk ∈ R2 such that Ω ∩ Qνk(xk, rk) is a Lipschitz
subgraph in the direction νk. Let {φk}k∈I be an associated partition of unity of ∂Ω. Then

û =
∑
k∈I

φkû+

(
1−

∑
k∈I

φk

)
û ,

and the last term has a support compactly contained in Ω. Set

êk := φkê+∇φk � û and p̂k := φkp̂ , (6.4)

so that êk ∈ L2(R2;M2×2
sym) (indeed û ∈ BD(R2) ⊂ L2(R2;R2)) and p̂k ∈Mb(R2;M2×2

D ) with

E(φkû) = êk + p̂k in R2 .

For h ∈ N so large that the support of the functions φ̂k(x) := φk
(
x+ νk

h

)
is compactly

contained in Qνk(xk, rk) for every k ∈ I, let us define

uk,h(x) := φk

(
x+

νk
h

)
û
(
x+

νk
h

)
;

we also define ek,h, ph,k following (6.4). Set

uh :=
∑
k∈I

uk,h +

(
1−

∑
k∈I

φk

)
û , eh :=

∑
k∈I

ek,h +

(
1−

∑
k∈I

φk

)
ê−

∑
k∈I

∇φk � û

ph :=
∑
k∈I

pk,h +

(
1−

∑
k∈I

φk

)
p̂

Notice that

(uh, eh, ph) ∈ BD(R2)× L2(R2;M2×2
sym)×Mb(R2;M2×2

D )

with

Euh = eh + ph in R2 ,

and that uh, eh, ph vanish outside a compact subset of Ω. This last condition and fact that
we have only used local translations imply that restricting to Ω

uh → u in L2(Ω;R2) , eh → e in L2(Ω;M2×2
sym) , ph

s→ p in Mb(Ω;M2×2
D ) .
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Moreover, if we regularize (uh, eh, ph) by convolution with a sequence of mollifiers (% 1
m

)m, we

get for m sufficiently large that

(umh , e
m
h , p

m
h ) ∈ C∞c (Ω;R2 ×M2×2

sym ×M2×2
D ) ∩A(0) ,

using again that uh, eh, ph have compact support in Ω. Recalling that the regularization by
convolution of a measure entails strict convergence on open subsets whose boundaries are not
charged by the measure itself, and that ph = 0 on ∂Ω, we have

umh → uh in L2(Ω;R2) , emh → eh in L2(Ω;M2×2
sym) , pmh

s→ ph in Mb(Ω;M2×2
D ) ,

and then we conclude by a diagonal argument. �

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. The proof is divided into two steps.

Step 1: Compactness and global stability. By definition of Hk we have that for every
β ∈W 1,γ(Ω), q ∈ BV (Ω;Mn×n

D ), and k ∈ N

Hk(β, q) ≥ S1(0)‖q‖1 ,

and then

VHk(αk, pk; 0, t) ≥ S1(0)V1(pk; 0, t) ,

with V1(pk; 0, t) the variation of pk with respect to L1(Ω;Mn×n
D ) in (0, t). Then, by (6.1),

the fact that Q1 is quadratic, and Korn’s inequality, we get that there exists a constant C
independent of k and t such that

‖αk(t)‖1,γ + ‖uk(t)‖BD + ‖ek(t)‖2 + V1(pk; 0, t) ≤ C . (6.5)

Let Ω̃ be a smooth open set such that Ω ⊂ Ω̃, and let us define for every k and t the functions

ûk(t) ∈W 1, n
n−1 (Ω̃;Rn), êk(t) ∈ L2(Ω̃;Mn×n

sym ), and p̂k(t) ∈ BV (Ω̃;Mn×n
D ) as

ûk(t) :=

{
uk(t) in Ω

w(t) in Ω̃ \ Ω
, êk(t) :=

{
ek(t) in Ω

Ew(t) in Ω̃ \ Ω
, p̂k(t) :=

{
pk(t) in Ω

0 in Ω̃ \ Ω
.

The αk are nonincreasing in time and αk(t, x) ∈ [0, 1] with ‖αk(t)‖1,γ ≤ C and the functions pk
from [0, T ] to L1(Ω̃;Mn×n

D ) have uniformly bounded variations; therefore, taking into account
(6.1) we get the existence of two functions α : [0, T ] → W 1,γ(Ω; [0, 1]) nonincreasing in time

and p̂ : [0, T ] → Mb(Ω̃;Mn×n
D ) with bounded variation such that up to a subsequence (not

relabeled)

αk(t) ⇀ α(t) in W 1,γ(Ω) , p̂k(t)
∗
⇀ p̂(t) in Mb(Ω̃;Mn×n

D )

for every t ∈ [0, T ]. Notice that we have applied [10, Theorem 7.2] considering Mb(Ω̃;Mn×n
D )

as a subspace of L1(Ω̃;Mn×n
D ).

Let us fix t ∈ [0, T ]. By the a priori estimate (6.5) we deduce that there exist an increasing

sequence (kj)j (that could depend on t) and two functions û ∈ BD(Ω̃) and ê ∈ L2(Ω̃;Mn×n
sym )

such that

ûkj
∗
⇀ û in BD(Ω̃) , êkj ⇀ ê in L2(Ω̃;Mn×n

sym ) .

As in [16, Lemma 9.1] (that holds in our assumptions on Ω), we obtain that

ukj (t)
∗
⇀ û in BD(Ω), ekj (t) ⇀ ê in L2(Ω;Mn×n

sym ), pk(t)
∗
⇀ p(t) in Mb(Ω;Mn×n

D ) ,
(6.6)

and

(û, ê, p(t)) ∈ App(w(t)) ,

where p(t) denotes the restriction of p̂(t) to Ω and we have not relabeled the restrictions of û,
ê to Ω. We claim that the quadruple (α(t), û, ê, p(t)) satisfies the stability condition (qs1)pp,
namely

Epp(α(t), ê) ≤ Epp(β, η) +Hpp(β, q − p(t)) (6.7)
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for every (β, (v, η, q)) ∈ App(α(t), w(t)). Then, since (û, ê) minimizes the functional (v, η) 7→
Epp(β, η) on the convex set {(v, e) : (v, e, p(t)) ∈ App(w(t))}, we have that (û, ê) = (u(t), e(t))
and

uk(t)
∗
⇀ u(t) in BD(Ω) , ek(t) ⇀ e(t) in L2(Ω;Mn×n

sym ) , (6.8a)

for the whole subsequence. We have already shown that

αk(t) ⇀ α(t) in W 1,γ(Ω) , pk(t)
∗
⇀ p(t) in Mb(Ω;Mn×n

D ) . (6.8b)

Let us now prove the claim (6.7); since we work with a given t, we can neglect the dependence
on j in (6.6). By assumption, for every k we have the stability condition:

Ek(αk(t), ek(t), curl pk(t)) ≤ Ek(β, η, curl q) +Hk(β, q − pk(t)) (6.9)

for every (β, v, η, q) ∈ A(αk(t), wk(t)).
Let us fix (β, v0, η0, q0) ∈ A(α(t), 0), and test (6.9) by

(α̂k, v̂k, η̂k, q̂k) := (β ∧ αk(t), uk(t) + v0, ek(t) + η0, pk(t) + q0) ∈ A(αk(t), wk(t)) .

Arguing as in Theorem 3.6 we deduce that

γk := Q1(αk(t), ek(t))−Q1(α̂k, ek(t)) +D(αk(t)) + ‖∇(β ∨ αk(t))‖γγ − ‖∇β‖γγ
≤ 1

2 〈C(α̂k)(η0 + 2ek(t)), η0〉+
L2
k

2 〈µ(α̂k) curl (q0 + 2pk(t)), curl q0〉+D(α̂k)

+Hpp(α̂k, q0) + lk

∫
Ω

S2(α̂k) d|Dq0| =: δk .

(6.10)

To get the above inequality we have also used that

L2
k

2

∫
Ω

(µ(αk(t))− µ(α̂k))| curl pk(t)|2 dx ≥ 0

and that for every α ∈W 1,γ(Ω) and p ∈ BV (Ω;Mn×n
D )

Hk(α, p) ≤ Hpp(α, p) + lk

∫
Ω

S2(α) d|Dp| .

By (6.1) and the energy balance for (αk, uk, ek, pk) we get

L2
k

2

∫
Ω

µ(αk(t))| curl pk(t)|2 dx ≤ C ,

for C independent of k; by the Hölder inequality and the monotonicity of µ it follows that

L2
k〈µ(α̂k) curl pk(t), curl q0〉 ≤ Lk

(∫
Ω

L2
k µ(αk(t))| curl pk(t)|2 dx

) 1
2
(∫

Ω

µ(α̂k)| curl q0|2 dx

) 1
2
.

Thus, letting k → 0 in (6.10) we obtain as in Theorem 3.6 the inequality

Epp(α(t), ê)−Q1(β, ê)− ‖∇β‖γγ ≤ 1
2 〈C(β)(η0 + 2ê), η0〉+D(β) +Hpp(β, q0) . (6.11)

Let us consider a triple (v, η, q) ∈ App(w(t)); then (v − û, η − ê, q − p(t)) ∈ App(0). By
Lemmas 6.3 and 6.4 there exist triples (vk, ηk, qk) ∈ A(0) such that

vk → v − û in L1(Ω;Rn), ηk → η − ê in L2(Ω;Mn×n
sym ),

qk
s→ q − p(t) in Mb(Ω;Mn×n

D ) .

In particular Reshetnyak’s Continuity Theorem (cf. [3, Theorem 2.39]) implies that

Hpp(β, qk)→ Hpp(β, q − p(t)) .

Therefore, considering (vk, ηk, qk) in place of (v0, η0, q0) in (6.11) and taking the limit of the
right-hand side as k →∞ we deduce (6.7).
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Step 2: Energy balance. From (6.8b) it follows that

VHpp(α, p; 0, T ) ≤ lim inf
k→∞

VHk(αk, pk; 0, T ) . (6.12)

Indeed, for every βk ⇀ β in W 1,γ(Ω) and (qk)k ⊂ BV (Ω;Mn×n
D ) with qk

∗
⇀ q in Mb(Ω;Mn×n

D ),
it holds

Hpp(β, q) ≤ lim inf
k→∞

∫
Ω

S1(βk) d|qk| = lim inf
k→∞

∫
Ω

S1(βk(x))|qk(x)|dx ≤ lim inf
k→∞

Hk(βk, qk) ,

and then we get (6.12) by the definition of VHpp
and VHk . By lower semicontinuity and the

fact that Q2(αk(t), curl pk(t)) is nonnegative it follows that

Epp(α(t), e(t)) ≤ lim inf
k→∞

Ek(αk(t), ek(t), curl pk(t)) . (6.13)

Collecting (6.1), (6.12), and (6.13) we deduce that

Epp(α(T ), e(T )) + VHpp
(α, p; 0, T ) ≤ Epp(α(0), e(0)) +

∫ T

0

〈σ(s), Eẇ(s)〉ds .

From the stability condition (qs1)pp, with arguments similar to those in Lemma 4.3 (cf. [10,
Theorem 4.7]), we can prove that the opposite energy imbalance holds and then (α, u, e, p) is a
quasistatic evolution for the coupled perfect plasticity-damage model. By (6.1), (6.12), (6.13),
and the energy balance (evaluated in [0, t]) it follows that for every t ∈ [0, T ]

Epp(α(t), e(t)) = lim
k→∞

Ek(αk(t), ek(t), curl pk(t)) ,

which implies

Q1(αk(t), ek(t))→ Q1(α(t), e(t)), ‖∇αk(t)‖γ → ‖∇α(t)‖γ , Qk2(αk(t), curl pk(t))→ 0 ,

and then (6.2a) and (6.2c). This concludes the proof. �
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[20] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equa-
tions, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993.

Oxford Science Publications.
[21] Y. Huang, H. Gao, W. D. Nix, and J. W. Hutchinson, Mechanism-based strain gradient plasticity. II.

Analysis, J. Mech. Phys. Solids, 48 (2000), pp. 99–128.

[22] D. Hull and D. Bacon, Introduction to Dislocations, Butterworth Heinemann, Butterworth-Heinemann,
2011.

[23] D. Knees, R. Rossi, and C. Zanini, A vanishing viscosity approach to a rate-independent damage model,

Math. Models Methods Appl. Sci., 23 (2013), pp. 565–616.
[24] J. Lemaitre and J. Chabouche, Mechanics of solid materials, Cambridge University Press, Avon, 1990.

[25] E. Lorentz and A. Benallal, Gradient constitutive relations: numerical aspects and application to

gradient damage, Computer methods in applied mechanics and engineering, 194 (2005), pp. 5191–5220.
[26] A. Mielke, Evolution of rate-independent systems, in Evolutionary equations. Vol. II, Handb. Differ.

Equ., Elsevier/North-Holland, Amsterdam, 2005, pp. 461–559.
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