IMPLICIT PDES WITH A LINEAR CONSTRAINT

LAURA POGGIOLINT*

Abstract. We study implicit differential systems with a linear constraint on the gradient
variable and we prove the existence of infinitely many Lipschitz continuous solutions. The result
is obtained by a density argument in a suitable complete metric space.
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1. Introduction

We deal with the existence of Lipschitz continuous solutions to a first order
differential system of the following kind:

F(x,u(x), Du(z)) =0 a.e. x € Q
L(z,u(x), Du(z)) =0 a.e. x € Q (1.1)
u e ¢+ Wy (Q,R")

where the function F satisfies a certain coercivity condition with respect to the
gradient variable, while the function L is quasi-affine on the same variable. The
boundary datum ¢ is affine on 2.

Differential systems of this type, without the quasi-linear constraint L = 0,
have been recently introduced and investigated by Dacorogna and Marcellini in the
context of implicit partial differential equations and systems [1]. The book (and the
related wide bibliography) gives conditions (in particular a compatibility condition
on the boundary datum) in order to obtain a Lipschitz solution to the system.
Several extensions are also considered. However, the constrained problem (1.1) did
not enter in the results in [1], and in fact in Section 1.5.7 the authors posed the
constrained problem as an open one.

Problems with quasi-affine constraints were first studied by Miiller and Sverak
[4] and by Dacorogna and Tanteri [2], with two different approaches. In such papers
L = L(Du) = det(Du).

Here we assume that L is any linear function of Du, i.e. L(Du) = 31| ajul,
for some matrix (a;;) and, by some algebraic manipulations of the involved matrices,
in particular by some product decomposition (see the book [3] by G. H. Golub and
C. F. Van Loan), we obtain existence of W, (Q, R™) solutions to (1.1).

As a particular case of our general results, we will prove for example that the
differential problem

F(Du(z))=0 ae.xz€f
L(Du(z))=¢ ae. xz€ (1.2)
U= ¢ on 0f)

has a W1°(Q, R"™) solution under the assumption that F' is a continuous coercive
n

quasi-convex function and L = L(§) = Z a;;&;; is any linear function. Moreover
i,j=1
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we emphasize that the method of proof in the two cases, respectively L linear
function of Du and L the determinant of the matrix Du, is different and doesn’t
allow us to treat at the same time any quasi-affine function L of Du.

A wide bibliography on implicit partial differential equations can be found in

[1].
2. The approximation lemma

In this section we give a technical lemma which is the main tool to prove the
existence Theorem 3.2.

Lemma 2.1. Let Q C R” be an open bounded set. Let ¢: Q — R™ be an
affine function such that Dp(x) = tA+ (1 —t)B, where A, B € R™*" are such that
rank(A — B) = 1 i.e. there exist p, v € R™, ||[v|| = 1 such that A— B = pQv

and t € (0,1). Let L: R™" - R, L: € = (&j)ijm1...n — 3 @ij&i; be a linear
i,j=1

operator, L = (oj)ij=1,..n @ given matriz. Let us assume L(A) = L(B) and

Lv#0. Lete > 0. Then there exists u € ¢+ Wy (Q,R") and an open set Q. € Q

with the following properties:

[Q\ Q| <e

Du(z) € {A,B} a.e.x €,

L(Du(z)) = L(D¢(x)) = L(A) = L(B) a.e. x € Q
dist(Du(z), Rco{A,B}) <e a.e. z €

[u—¢llo <€

Remark 2.2. Since L is a linear operator, L(A) = L(B) is equivalent to
L(A—B) =0 and to L(D¢) = L(A). In Section 4 we will discuss the assumption
Lv #£ 0 in Lemma 2.1.

Proof. Step 1 Let us assume A — B = p ® e, where e; = (1,0,...,0) is the first
element of the canonical basis of R™ and £ is an upper triangular matrix of the
following kind i.e.

Q11 Q12 0 Oqp c A1n
0 (6P 0 e 0
0 0
L= (aj) = Oy (2.1)
0
0 0 0 0

with 7 = rankC (ie. [[_, i # 0). Ler # 0 is equivalent to ai; # 0, since
L(A — B) = aq1p1 this implies pq = 0.

Without loss of generality we can assume Q = (0,1)™. If this is not the case
we know that Q can be covered with a finite family {4} of subsets homotetics to
(0,1)™ and a set of small measure. We solve the problem in each set ) and we are
done.



We are given a linear operator

7 J
L(X) = XL: Zainij, X e R™*?

j=1i=1

We want to find a linear differential functional ®: C*(R",R") — C°(R",R") such
that

L(DB®(v)) =0 Vo e CHQR"). (2.2)

We will not define the differential operator ® explicitly, but only prove that an
operator ® and a function w = w(x;) with the required properties exist. Let us call

®,, s =1,...,n its components. @, will be of the following kind
n n
Ou(v) = Y apvs,
=1 m=1
Condition (2.2) gives us for any s = 1,...,n the following linear algebraic system
in the unknowns a’; where k,i=1,...,n.
aial; =0 (2.3)
aqpaly + aprak, =0 Vk=2,...,r (2.4)
anial, = —agal, — agra® Vk=2,...,r (2.5)
Qmaly + amma™ = —aygal, —appa®, VE=3,.. .1, ¥Ym=2,... k-1 (2.6)
apal, =0 VeE=r+1,...,n (2.7)
apial, = —aggal, Vik=r+1,...,n (2.8)
Qmaly, + Omma™ = —aqgal, VE=r+1,...,n, Ym=2,...,r  (2.9)
almaik:—alka;m Ve=r+2,...,n,Vm=r+1,...,k—1
(2.10)
Of course all these systems admit the trivial solution a’; = 0, Vs, k,i = 1,...,n,

but this is not what we want. For some reason we will see later on we want the
matrix (aél)s,izgw,n to be non singular. Let us consider the equations where only
the unknowns a’; appear. We have only equation (2.3). Since we assume a1y # 0
we have al; = 0 Vs = 1,...,n but this is not important since we are interested only
in (a§1)s,z‘:2,...,n-

From now on we shall fix s and solve the system by induction on the index
k =2,...,n. Let us assume ass # 0 and let us consider the equations where al,
appear and the other aik appear only if k = 1. They are

(2'4)k:2 Oqgaig + 0422a§2 =0

1 1
2.5)_5 QiiGg = —Q220

It is a diagonal system in the unknown aly, a2, and the determinant of the incom-
plete matrix associated to the system is a11ai09 # 0 S0 we can solve it for any value
of the right hand side. Let us assume we solved the subsystem of equations where
a;k appearsonly if k < K — 1 < r.



Let us consider the equations where a’ ;. appear and the other a’, appear only
if k < K — 1. They are

1 K
(24)—x MK T KK g =0
1 K 1 K
(2'6)k:K,m:K71 Q1 K105 T QK1 K105 — 1= —QKGg g1 — OKKOs g1
1 1 K
(2'5)k:K 1106 = —O1KGg] — OKKOg
It is a triangular system in the unknown a’,, i =1,..., K and the determinant of

the incomplete matrix associated to the system is Hfil a;; # 0 so we can solve it
for any value of the right hand side.

Note that at each step k the unknown a’;, i > k remain undetermined.

Now we want to show that we can solve the sub-system of equations where the
unknown a;r 41 appear and the other aik appear only if k < r. It is given by the
following equations

1 —
(2'7)k:r+1 QLr4+105 r41 =0
1 1
(29) ki1 Qmlg 1 + Qrp1pp105 4 = —Q1 10, YMm=2,...,7
1 —
(2'8)k:r+1 alla’s,r-‘rl =0

which gives
1 —
as,r+1 - 0

1
—Q1 r410
m _ > sm _
agy, = ———— Ym=2,...,r

amm
while a;’tlﬂ remains undetermined.
,

Now let us assume we solved the system up to step k = K —1 with K —1 > r—1
and that in doing so we determined the following coefficients:

1 _
agp = 0
)
1 1 T
A 2as’r‘ o Agp
_ r
a’s,rJrl =0 as,r+1 o a’s,rJrl
1 — 2 C T
a’s,K—l =0 CLs,K—l a’s,K—l

Using this induction hypothesis the system at step K becomes:

(2.7))—k QK =0
(Q'S)k:[( alla;K =0
(29)ir  Mmas g + OKKA] K = —01Kay,, Ym=2,...r
(210),_x  1malx =0 Vm=r+1,...,K -1
which gives
g =0
_ 1
al = ALK Dsm Vm=2,...,r
Umm



. r+1 K . .
while Ug ' Oy ¢ TEMAIN undetermined.

In this way we solve the systems for any prescribed ai;, s,i = 2,...,n and we
choose these in such a way that (a%;)s =2, is a non singular matrix.
Now, let w = w(z1), we want D®(w)(z) € {—tp®e1, (1 —t)u®er} ae x1 €
(0,1).
n
But w = w(z1) implies ®4(w) = Zaflwf(acl) We choose wi(z1) = 0. Since
1=1
0P(w)
&'El

al, =0Vs=1,...,n,

= 0 is satisfied (we have p; = 0). So we need
> ajuf/ (@) = ~tus Vs=2....n
1=2

or Zalslwf’(xl) =1 —-tus Vs=2,...,n
1=2

This can be done since by construction det(afl)l,szgw,n #£0.
Moreover, for any ¢ > 0 we can choose w such that ||w]le < &, |Jw/|eo < €. So
just call

n
I= {xl € (0,1): Zaflwl"(xl) =—tu, Vs=2,... ,n}
1=2

J= {xl € (0,1): Zaflwl"(asl) =(1—tu, Vs= 2,...,n}
1=2

We can assume [ and J to be the union of pairwise disjoint intervals of (0,1) such
that INJ =0, IUJ=1]0,1].
Let Q. € Q2 such that |Q\ Q.| < e and let n € C§°(Q, R) such that

L
N, =1 [Dnl < -

Define

u(z) = ¢(z) + (n(x)w(z1))
We want to show that u is the function we are looking for. Near 92 n = 0 hence
u=¢. InQ:n=1sou=¢+ ®(w) and Du = D¢ + DP(w). We now want to
evaluate D®(w). Define

QAZ{Z‘GQE:1‘1€J} QB:{JZEQE:JJlEI}
We have

Du=B+tu®e; —tpu®e, =B VYrelp

Du=B+tpe+(1-tue=A VreQy

Moreover for any z € Q we have L(Du) = L(D¢) + L(D®(nw)) = L(D¢) = L(A)
by definition of ®.

We only have to evaluate dist(Du,RcoA, B) and ||u — ¢|lcc. Let us consider
@ (nw) = n®(w) + G(Dnw) where G is a linear function. So

lu = ¢llss < [|®(w)lloo + |G(Dnw)|loc < Cmax{s,de™"} < e



if we choose a small enough 4.
With further computation we get

Du = D¢ +nD®(w) + H(Dnwt, D*nw)
where H is a linear function. Since D¢ + nD®(w) € Reo{A, B} we have
dist(Du, Reo{A, B}) < Cmax{éc ', 6%} < ¢

if we choose § small enough.

Step 2 Now let us assume we are in a slightly more general situation; we assume
A—E =p®e and ay; = 0Vi =2,...,n. Hence Ley # 0 if and only if aq1 # 0.
Let £ = (aij); j—o - We know (SVD decomposition, see [3], pages 16-20) that

there exist V, U, both in SO(n — 1) such that

g9 0 0
0
020 = o
0
0
0 0 O
Define
1 0 0 1 0 0
0 0
V= N U= ~
\%4 U
0 0

Then ULV is as in (2.1). Let ¢: VIQ — R, +): y — Ut¢(Vy), then

n

¢(x) = Uy (V'z), L= ) uath v

1,j=1
and
n n n n
k k
L(D¢) = Z Z Qi Uik Yy, Vji = Z Z Uik uijvji |y,
ij=1k,I=1 kd=1 \ij=1
n
_ ¢ k
=3 (U'Lv),, v,
k=1
while

Dy =U'D¢V =U'(B+tp®e)V =U'BV +t({U'n) @ (V'ey)
=U'BV +t(U'u) ® e;

From step 1 we can solve the problem for ¢ in V!Q) with respect to U'LV. Let
uy: VIQ — R™ be a function with the required properties, with its associated
sets Qay and Qpy, then u: Q@ — R", u: x — Uluy(Va) and Q4 = VIQ4y and
Qp = ViQpy are a solution to our problem.



Step 3 Now let us assume we are in the general situation A — B = pu ® v,
peER, ve S and L = (aij),; is such that Lv # 0. Since v € Sn=1 there
exists R € SO(n) such that R'v = e;. Moreover there exists a symmetric matrix
P € SO(n) (actually P is an Householder matrix, see [3], page. 38) such that the

first column of PLR is parallel to e;. Let 8: R'Q — R™ 0: y — P¢(Ry).

¢(x) = PO(R'x), ;7 = Z pikezlrjl
ij=1
and
L(D¢) = > > aupabyrio= > | Y pricijri | 0,
ij=1k,i=1 ki=1 \i.j=1
=2 (PLR), 0y,

k,l=1

while

DO =PD¢RV = P(B +tu®v)R = PBV +t(Pu) ® (R'v)
=PBV 4+ t(Pu) ® e1
Thanks to step 2 we can solve the problem for 6 in RS} with respect to the matrix
PLR. Let ug: R'QY — R™ be a solution with the required properties and let Q4pr

and Qppg its associated sets, then u: Q@ — R" u: x — Pug(R'z) and Q4 = RQug
and Qg = RQgR are a solution to our problem. 0

3. Existence
In this section we define the relaxation property and trough the approximation

Lemma 2.1 we prove the existence theorem.

Definition 3.1 (RELAXATION PROPERTY). Let L: R"*™ — R be a linear operator,
and for any £ € R let L, = {n: L(n) = £}. We say that a set K C Ly has the
relaxation property with respect to a set E C Ly if YV C R™ open bounded subset,
Vue affine in Q such that € = Due € intK (the interior is relative to the affine
manifold L) there exists a sequence u, € Wy, 6 > 0 such that

Uy = ug on 02

u, = ug in WhH(Q,R™)

Du, € EU intK a.e. in Q)

/ dist(Duy (x), E) dr — 0 when v — +00
Q

where .
W, — u € Cpioo(Q,R™): 3 C Q open
7NN\ Qo| < 0 and u is piecewise affine in Qq

Theorem 3.2. Let Q) C R" open. Let F;: R™*™ — Ri=1,...,1I be continuous,
n
quasi-convex functions, L: R"*™ — R, L: { = (&;) — Z a;;&;j a linear operator

i,j=1
and ¢ € R a given number. Let

E={cR™ : F€)=0 Vi=1,...,I, L) =1¢}



Let us assume that RcoE has the relaxation property with respect to E and is com-
pact. Let ¢ be a piecewise affine function such that D¢(x) € E'U int RcoE. Then
there exists u € W1°°(Q,R") such that

Fi(Du) =0 Vi=1,...,1 ae x€
L(Du) =¢ a.e. x €51
u=q¢ on 0N

Proof. Without any loss of generality we can assume that €2 is bounded. Define
Vo={ueWp:u=¢ondd, Du(zx)€ EU int RcoE}

and let V be its closure in the W>°(Q, R™) weak* topology.
The functions F; are quasi-convex hence

u € ¢+ Wy (Q,R")
VcdF(Du(x) <0 Vi=1,....,]ae €
L(Du(z)) =¢

1
Define F(u) = Z/ F;(Du(x))dz. The functions F; are quasi-convex therefore
i=17%

Vu eV  liminf Fluy) > F(u). If u € V then F(u) = 0 if and only if Du(z) €

us eV
E ae z€q.

-1
Define V¥ = {u eV:Flu) > ?} Vk is open since the functions F; are

quasi-convex. It suffices to show that it is also dense in V.

Let u € V, ¢ > 0, we have to show that there exists u. € V* such that |ju —
Ue|loo < €. It suffices to show that this property holds for any u € V4. Since u € Vp
we also have u € Wy. Define u. = u in Q\ Qg. Qp = UQ@ and Du(z) = & €
EU intReoE in Q. If §; € E we are done, if §; € int RcoE we use the relaxation
property. 0

Theorem 3.3. Let F be a continuous, coercive rank one convex function.
Define
E={(cR™": F() =0, L =t}
Then
RcoFE = {5 ERM™ F() <0, L= €}

and the relaxation property holds.

Proof. Define X = {{ e R™*": F(§) <0, L(§) =/¢}. Since E C X, and X is rank
one convex RcoFE C X.

We have to prove that X C RcoE. Let £ € X: if F'(§) = 0 there is nothing left
to prove: £ € E C RcoFE.

If F(§) <0: let n=a®b with £b # 0 and L(n) = 0 (as previously remarked it
suffices to choose a L £b). F' is coercive therefore there exist t; < 0 < t5 such that

F(E+1tn) <0 Vt € (ti,t2)
F(§+tin) =0 Vi=1,2
LiE+tm)=LE)=¢ VYi=1,2



t2 —tl
t
tg—t1(§+ 11) + P

shown that ¢ € RcoF.

Let us show that the relaxation property holds. Let 2 C R™ be an open bounded
set, and let u¢ be affine in {2 such that Dug = £ € RcoF.

We have to find a sequence u, € Wy, € > 0 such that

Since & =

(+ton) and E+t;m € E Vi =1,2 we have

Uy = Ug on 0f)
uy, = ug in Whee(Q,R")
Du, € int RcoE a.e. in Q

/ F(Duy(z))de — 0 asv — +o0
Q

If F(&) = 0 we let u, = ug; if F(§) < 0, L(§) = ¢, consider a rank one matrix
17 =a ® b such that Lb # 0 and L(n) = 0: there exist ¢; < 0 < 3 such that

F(E+1tn) <0 Vi € (ty,ts)
F(§+tmn) =0 Vi=1,2
L&+t =LE&) =4 Vi=1,2

Now it suffices to apply the approximation lemma to A = £ + (¢t; +¢)n, B =

ty — e —(t1 +¢)
to — d¢= O
€+(2 6)77811 6 tg—t1—25 tg—t1—2€

We now prove that if we have only one equation F(Du) = 0, with suitable
compatibility conditions then a Lipschitz solution to (1.2) exists (actually infinitely
many solutions exist).

Corollary 3.4 (EXISTENCE THEOREM FOR ONE EQUATION). Let  C R™ be an

open set. Let F': R®™*™ — R be a continuous, coercive, quasi-convexr function, let
n

L:R"™™ - R, L: £ = (&) — Z a;;&5 be a linear operator and £ € R a given
i,j=1

real number. Let ¢ be a piecewise affine function such that F(D¢(z)) < 0 and

L(D¢(z)) = L. Then there exists u € WH>°(Q,R") such that

F(Du(z)) =0 a.e. x €
L(Du(z)) =¢ a.e. x €
U= ¢ on 0S)

Remark 3.5. The coercivity hypothesis on F' can be weakened. Let us give the
following definition:

Definition 3.6. We say that a function F: R™*"™ — R is coercive in a rank
one direction n = a ® b if for any bounded subset B of R™"*™ there exist m, q € R,
with m > 0 such that

F+tn)>mlt|—q VtER, VEE€B.

1t suffices F' to be coercive in a rank one direction n = a®b such that Lb # 0 and
L(n) = 0. Our chances of finding such an n increase when the rank of L = (a;;)
mcreases.



4. A note on the approximation lemma

Here we want to prove that in Lemma 2.1 the hypothesis Lv # 0 cannot be
removed. In fact we show that a certain Dirichlet problem does not admit a solution,
and that, if the lemma held even if Lv = 0 we could show the existence of solutions.

Let Q = (0,1) x (0,1). The Dirichlet problem we consider is as follows. We want
to find u = (ug,u2) € WH (2, R?) such that

0
?Z; =0 a.e. in Q)
8_2 —1= a.e. in )
u=20 on )
Let (uy,us2), be a solution to this problem, then u; = wuj(z1) and ui’(z1) =

+1 a.e. 1 € (0,1). Hence the boundary condition u; = 0 cannot be fulfilled and
the problem doesn’t admit any Lipschitz solution.
Let us consider F(§) = |&11] — 1. It is coercive in the rank-1 direction A =

(a1,a2) ® (b1,be) if and only if a1b; # 0. In this problem £ = (8 é) therefore

L (21> = (%2) and L(A) = a1be. So the only rank-1 directions A such that F
2

b1 #0
is coercive in the direction A and L(A) = 0 are those which satisfy {albl 7 0
4102 =
. by =0 o
i.e. those A = (ay,a2) ® (b1,be) such that . For all such directions
a1b1 7& 0

L (21> = (8) So we can always assume A = (a1,a2) ® (1,0) with a; # 0. Now
2

let us assume Lemma 2.1 holds even if Lv = 0. We want to show that in such case
we could prove this Dirichlet problem admits a solution.
Let

O} = {g S RZXZ: 512 = Oa ‘611| = 1}3
F(E <0} ={£eR¥?: &y =0, |&| <1}

Step 1 (ReoE = X ): X is rank-1 convex, E C X hence RcoE C X. The reverse
inequality holds: let £ € X: if [§51] = 1, £ € E € RcoE and there is nothing
left to prove. If |{11] < 1, let A = (a1,a2) ® (b1,b2) be a rank-1 matrix such that
L(A) =0 and F is coercive in the direction A. We have shown that we must have
A = (a1,a2) ® (1,0) with ay # 0.

Since F' is coercive in the direction A, there exist t; < 0 < to such that

E={¢eR¥2: L(€) =0, F(¢)
X ={¢eR¥: L(§) =0,

F(E+tA) =0 Yt € (t1, 1)
F(E+tA) = F(E+1A) =0
LE4+tA) = LE) +tL(A) =0 VieR

to —11
th A
PR
Step 2 (the relaxation property holds): Let Q C R? be an open bounded set, let Ug

be an affine function on 2 such that Dus = £ € RcoE. We must find a sequence

We may write £ = (€ 4 t2A) hence € € ReoFE.

10



of positive real numbers, {6,}, decreasing to 0 and a sequence of functions {u,,},

Uy € C’éiec (€2, R?) such that for any n € N

3Q,, C Q, open subset such that |2\ Q,] < 6,
Uy, is piecewise affine in €,
Up, = Ug on 0N
up, = ug in WHe(Q,R?)
Du,, € [RcoFE a.e. in
/ F(Duy(x))dr — 0 as n — oo
Q

If F(¢) = 0 there is nothing to be done, if F(§) < 0, with the same A, ¢; and t2
of the previous step and € > 0, let

A=¢+(t1+e)A, B=E+ (ta—e)A.

We may write

_ ty—e 4 —(t1 +¢)

_tg—t1—2€ t2—t1—25

If we could apply the approximation lemma to these matrixes we would have proved
that the relaxation property holds, and therefore the problem would admit a solu-
tion, see Corollary 3.4 and Remark 3.5.

£
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