IMPLICIT PDES WITH A LINEAR CONSTRAINT

Laura Poggiolini*

Abstract

We study implicit differential systems with a linear constraint on the gradient variable and we prove the existence of infinitely many Lipschitz continuous solutions. The result is obtained by a density argument in a suitable complete metric space.

Key words. quasi-convexity, almost everywhere solutions, systems of p.d.e.

AMS subject classifications. 35G30

1. Introduction

We deal with the existence of Lipschitz continuous solutions to a first order differential system of the following kind:

$$
\left\{\begin{array}{l}
F(x, u(x), D u(x))=0 \text { a.e. } x \in \Omega \tag{1.1}\\
L(x, u(x), D u(x))=0 \text { a.e. } x \in \Omega \\
u \in \phi+W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)
\end{array}\right.
$$

where the function F satisfies a certain coercivity condition with respect to the gradient variable, while the function L is quasi-affine on the same variable. The boundary datum ϕ is affine on Ω.

Differential systems of this type, without the quasi-linear constraint $L=0$, have been recently introduced and investigated by Dacorogna and Marcellini in the context of implicit partial differential equations and systems [1]. The book (and the related wide bibliography) gives conditions (in particular a compatibility condition on the boundary datum) in order to obtain a Lipschitz solution to the system. Several extensions are also considered. However, the constrained problem (1.1) did not enter in the results in [1], and in fact in Section 1.5.7 the authors posed the constrained problem as an open one.

Problems with quasi-affine constraints were first studied by Müller and Sverak [4] and by Dacorogna and Tanteri [2], with two different approaches. In such papers $L=L(D u)=\operatorname{det}(D u)$.

Here we assume that L is any linear function of $D u$, i.e. $L(D u)=\sum_{i, j=1}^{n} \alpha_{i j} u_{x_{j}}^{i}$ for some matrix $\left(\alpha_{i j}\right)$ and, by some algebraic manipulations of the involved matrices, in particular by some product decomposition (see the book [3] by G. H. Golub and C. F. Van Loan), we obtain existence of $W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ solutions to (1.1).

As a particular case of our general results, we will prove for example that the differential problem

$$
\begin{cases}F(D u(x))=0 & \text { a.e. } x \in \Omega \tag{1.2}\\ L(D u(x))=\ell & \text { a.e. } x \in \Omega \\ u=\phi & \text { on } \partial \Omega\end{cases}
$$

has a $W^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ solution under the assumption that F is a continuous coercive quasi-convex function and $L=L(\xi)=\sum_{i, j=1}^{n} \alpha_{i j} \xi_{i j}$ is any linear function. Moreover

[^0]we emphasize that the method of proof in the two cases, respectively L linear function of $D u$ and L the determinant of the matrix $D u$, is different and doesn't allow us to treat at the same time any quasi-affine function L of $D u$.

A wide bibliography on implicit partial differential equations can be found in [1].

2. The approximation lemma

In this section we give a technical lemma which is the main tool to prove the existence Theorem 3.2.

Lemma 2.1. Let $\Omega \subset \mathbb{R}^{n}$ be an open bounded set. Let $\phi: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ be an affine function such that $D \phi(x)=t A+(1-t) B$, where $A, B \in \mathbb{R}^{n \times n}$ are such that $\operatorname{rank}(A-B)=1$ i.e. there exist $\mu, v \in \mathbb{R}^{n},\|v\|=1$ such that $A-B=\mu \otimes v$ and $t \in(0,1)$. Let $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}, L: \xi=\left(\xi_{i j}\right)_{i, j=1, \ldots, n} \rightarrow \sum_{i, j=1}^{n} \alpha_{i j} \xi_{i j}$ be a linear operator, $\mathcal{L}=\left(\alpha_{i j}\right)_{i, j=1, \ldots, n}$ a given matrix. Let us assume $L(A)=L(B)$ and $\mathcal{L} v \neq 0$. Let $\varepsilon>0$. Then there exists $u \in \phi+W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ and an open set $\Omega_{\varepsilon} \Subset \Omega$ with the following properties:

$$
\left\{\begin{array}{l}
\left|\Omega \backslash \Omega_{\varepsilon}\right|<\varepsilon \\
D u(x) \in\{A, B\} \quad \text { a.e. } x \in \Omega_{\varepsilon} \\
L(D u(x))=L(D \phi(x))=L(A)=L(B) \quad \text { a.e. } x \in \Omega \\
\operatorname{dist}(D u(x), R \operatorname{co}\{A, B\})<\varepsilon \quad \text { a.e. } x \in \Omega \\
\|u-\phi\|_{\infty}<\varepsilon
\end{array}\right.
$$

Remark 2.2. Since L is a linear operator, $L(A)=L(B)$ is equivalent to $L(A-B)=0$ and to $L(D \phi)=L(A)$. In Section 4 we will discuss the assumption $\mathcal{L} v \neq 0$ in Lemma 2.1.

Proof. Step 1 Let us assume $A-B=\mu \otimes e_{1}$, where $e_{1}=(1,0, \ldots, 0)$ is the first element of the canonical basis of \mathbb{R}^{n} and \mathcal{L} is an upper triangular matrix of the following kind i.e.

$$
\mathcal{L}=\left(\alpha_{i j}\right)=\left(\begin{array}{ccccccc}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1 r} & \cdots & & \alpha_{1 n} \tag{2.1}\\
0 & \alpha_{22} & 0 & \cdots & & & 0 \\
0 & 0 & \ddots & & & & \\
& & & \alpha_{r r} & \ddots & & \vdots \\
\vdots & & & \ddots & 0 & & \\
& & & & & \ddots & 0 \\
0 & 0 & & \cdots & & 0 & 0
\end{array}\right)
$$

with $r=\operatorname{rank} \mathcal{L}$ (i.e. $\prod_{i=1}^{r} \alpha_{i i} \neq 0$). $\mathcal{L} e_{1} \neq 0$ is equivalent to $\alpha_{11} \neq 0$, since $L(A-B)=\alpha_{11} \mu_{1}$ this implies $\mu_{1}=0$.

Without loss of generality we can assume $\Omega=(0,1)^{n}$. If this is not the case we know that Ω can be covered with a finite family $\left\{\Omega_{k}\right\}$ of subsets homotetics to $(0,1)^{n}$ and a set of small measure. We solve the problem in each set Ω_{k} and we are done.

We are given a linear operator

$$
L(X)=\sum_{j=1}^{n} \sum_{i=1}^{j} \alpha_{i j} X_{i j}, \quad X \in \mathbb{R}^{n \times n}
$$

We want to find a linear differential functional $\Phi: C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \rightarrow C^{0}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
L(D \Phi(v)) \equiv 0 \quad \forall v \in C^{2}\left(\Omega, \mathbb{R}^{n}\right) \tag{2.2}
\end{equation*}
$$

We will not define the differential operator Φ explicitly, but only prove that an operator Φ and a function $w=w\left(x_{1}\right)$ with the required properties exist. Let us call $\Phi_{s}, s=1, \ldots, n$ its components. Φ_{s} will be of the following kind

$$
\Phi_{s}(v)=\sum_{l=1}^{n} \sum_{m=1}^{n} a_{l m}^{s} v_{x_{m}}^{l}
$$

Condition (2.2) gives us for any $s=1, \ldots, n$ the following linear algebraic system in the unknowns $a_{s k}^{i}$ where $k, i=1, \ldots, n$.

$$
\begin{array}{ll}
\alpha_{11} a_{s 1}^{1}=0 & \forall k=2, \ldots, r \\
\alpha_{1 k} a_{s k}^{1}+\alpha_{k k} a_{s k}^{k}=0 & \forall k=2, \ldots, r \\
\alpha_{11} a_{s k}^{1}=-\alpha_{1 k} a_{s 1}^{1}-\alpha_{k k} a_{s m}^{k} & \forall k=r+1, \ldots, n \\
\alpha_{1 m} a_{s k}^{1}+\alpha_{m m} a_{s k}^{m}=-\alpha_{1 k} a_{s m}^{1}-\alpha_{k k} a_{s m}^{k} & \forall k=3, \ldots, r, \forall m=2, \ldots, k-1 \\
\alpha_{1 k} a_{s k}^{1}=0 & \forall k=r+1, \ldots, n \\
\alpha_{11} a_{s k}^{1}=-\alpha_{1 k} a_{s 1}^{1} & \forall k=r+1, \ldots, n, \forall m=2, \ldots, r \\
\alpha_{1 m} a_{s k}^{1}+\alpha_{m m} a_{s k}^{m}=-\alpha_{1 k} a_{s m}^{1} & \forall k=r+2, \ldots, n, \forall m=r+1, \ldots, k-1 \\
\alpha_{1 m} a_{s k}^{1}=-\alpha_{1 k} a_{s m}^{1} & (2.9)
\end{array}
$$

Of course all these systems admit the trivial solution $a_{s k}^{i}=0, \forall s, k, i=1, \ldots, n$, but this is not what we want. For some reason we will see later on we want the matrix $\left(a_{s 1}^{i}\right)_{s, i=2, \ldots, n}$ to be non singular. Let us consider the equations where only the unknowns $a_{s 1}^{i}$ appear. We have only equation (2.3). Since we assume $\alpha_{11} \neq 0$ we have $a_{s 1}^{1}=0 \forall s=1, \ldots, n$ but this is not important since we are interested only in $\left(a_{s 1}^{i}\right)_{s, i=2, \ldots, n}$.

From now on we shall fix s and solve the system by induction on the index $k=2, \ldots, n$. Let us assume $\alpha_{22} \neq 0$ and let us consider the equations where $a_{s 2}^{i}$ appear and the other $a_{s k}^{i}$ appear only if $k=1$. They are

$$
\begin{array}{ll}
(2.4)_{k=2} & \alpha_{12} a_{s 2}^{1}+\alpha_{22} a_{s 2}^{2}=0 \\
(2.5)_{k=2} & \alpha_{11} a_{s 2}^{1}=-\alpha_{22} a_{s 2}^{1}
\end{array}
$$

It is a diagonal system in the unknown $a_{s 2}^{1}, a_{s 2}^{2}$ and the determinant of the incomplete matrix associated to the system is $\alpha_{11} \alpha_{22} \neq 0$ so we can solve it for any value of the right hand side. Let us assume we solved the subsystem of equations where $a_{s, k}^{i}$ appears only if $k \leq K-1<r$.

Let us consider the equations where $a_{s K}^{i}$ appear and the other $a_{s k}^{i}$ appear only if $k \leq K-1$. They are

$$
\begin{array}{lll}
(2.4)_{k=K} & \alpha_{1 K} a_{s K}^{1}+\alpha_{K K} a_{s K}^{K} & =0 \\
(2.6)_{k=K, m=K-1} & \alpha_{1, K-1} a_{s K}^{1}+\alpha_{K-1, K-1} a_{s K}^{K}-1 & =-\alpha_{1 K} a_{s, K-1}^{1}-\alpha_{K K} a_{s, K-1}^{K} \\
\ldots & \ldots & \cdots \\
(2.5)_{k=K} & \alpha_{11} a_{s K}^{1} & =-\alpha_{1 K} a_{s 1}^{1}-\alpha_{K K} a_{s 1}^{K}
\end{array}
$$

It is a triangular system in the unknown $a_{s K}^{i}, i=1, \ldots, K$ and the determinant of the incomplete matrix associated to the system is $\prod_{i=1}^{K} \alpha_{i i} \neq 0$ so we can solve it for any value of the right hand side.

Note that at each step k the unknown $a_{s k}^{i}, i>k$ remain undetermined.
Now we want to show that we can solve the sub-system of equations where the unknown $a_{s, r+1}^{i}$ appear and the other $a_{s k}^{i}$ appear only if $k \leq r$. It is given by the following equations

$$
\begin{array}{lll}
(2.7)_{k=r+1} & \alpha_{1, r+1} a_{s, r+1}^{1} & =0 \\
(2.9)_{k=r+1} & \alpha_{1 m} a_{s, r+1}^{1}+\alpha_{r+1, r+1} a_{s, r+1}^{m} & =-\alpha_{1, r+1} a_{s, m}^{1} \\
(2.8)_{k=r+1} & \alpha_{11} a_{s, r+1}^{1} & =0
\end{array} \quad \forall m=2, \ldots, r
$$

which gives

$$
\left\{\begin{array}{l}
a_{s, r+1}^{1}=0 \\
a_{s, r+1}^{m}=\frac{-\alpha_{1, r+1} a_{s m}^{1}}{\alpha_{m m}}
\end{array} \quad \forall m=2, \ldots, r\right.
$$

while $a_{s, r+1}^{r+1}$ remains undetermined.
Now let us assume we solved the system up to step $k=K-1$ with $K-1>r-1$ and that in doing so we determined the following coefficients:

$$
\begin{gathered}
a_{s 1}^{1}=0 \\
a_{s 2}^{1} \\
\vdots \\
\\
a_{s r}^{1} \\
a_{s r}^{1} \\
a_{s, r+1}^{1}=0 \\
a_{s, r+1}^{2} \\
\vdots \\
\vdots \\
a_{s, K-1}^{1}=0
\end{gathered} a_{s, K-1}^{2} \quad \cdots \quad a_{s, r+1}^{r} \quad \cdots \quad a_{s, K-1}^{r}
$$

Using this induction hypothesis the system at step K becomes:

$$
\begin{array}{llll}
(2.7)_{k=K} & \alpha_{1 K} a_{s K}^{1} & =0 & \\
(2.8)_{k=K} & \alpha_{11} a_{s K}^{1} & =0 & \\
(2.9)_{k=K} & \alpha_{1 m} a_{s, K}^{1}+\alpha_{K K} a_{s, K}^{m} & =-\alpha_{1 K} a_{s, m}^{1} & \forall m=2, \ldots, r \\
(2.10)_{k=K} & \alpha_{1 m} a_{s, K}^{1} & =0 & \forall m=r+1, \ldots, K-1
\end{array}
$$

which gives

$$
\left\{\begin{array}{l}
a_{s K}^{1}=0 \\
a_{s K}^{m}=\frac{-\alpha_{1 K} a_{s m}^{1}}{\alpha_{m m}} \quad \forall m=2, \ldots, r
\end{array}\right.
$$

while $a_{s, K}^{r+1}, \ldots, a_{s, K}^{K}$ remain undetermined.
In this way we solve the systems for any prescribed $a_{s 1}^{i}, s, i=2, \ldots, n$ and we choose these in such a way that $\left(a_{s 1}^{i}\right)_{s, i=2, \ldots, n}$ is a non singular matrix.

Now, let $w=w\left(x_{1}\right)$, we want $D \Phi(w)(x) \in\left\{-t \mu \otimes e_{1},(1-t) \mu \otimes e_{1}\right\}$ a.e. $x_{1} \in$ $(0,1)$.

But $w=w\left(x_{1}\right)$ implies $\Phi_{s}(w)=\sum_{l=1}^{n} a_{l 1}^{s} w_{l}^{\prime}\left(x_{1}\right)$ We choose $w_{1}\left(x_{1}\right) \equiv 0$. Since $a_{s 1}^{1}=0 \forall s=1, \ldots, n, \frac{\partial \Phi(w)}{\partial x_{1}}=0$ is satisfied (we have $\mu_{1}=0$). So we need

$$
\begin{gathered}
\sum_{l=2}^{n} a_{l 1}^{s} w_{l}^{\prime \prime}\left(x_{1}\right)=-t \mu_{s} \quad \forall s=2, \ldots, n \\
\text { or } \sum_{l=2}^{n} a_{l 1}^{s} w_{l}^{\prime \prime}\left(x_{1}\right)=(1-t) \mu_{s} \quad \forall s=2, \ldots, n
\end{gathered}
$$

This can be done since by construction $\operatorname{det}\left(a_{l 1}^{s}\right)_{l, s=2, \ldots, n} \neq 0$.
Moreover, for any $\delta>0$ we can choose w such that $\|w\|_{\infty}<\varepsilon,\|w \prime\|_{\infty}<\varepsilon$. So just call

$$
\begin{aligned}
I & =\left\{x_{1} \in(0,1): \sum_{l=2}^{n} a_{l 1}^{s} w_{l}^{\prime \prime}\left(x_{1}\right)=-t \mu_{s} \quad \forall s=2, \ldots, n\right\} \\
J & =\left\{x_{1} \in(0,1): \sum_{l=2}^{n} a_{l 1}^{s} w_{l}^{\prime \prime}\left(x_{1}\right)=(1-t) \mu_{s} \quad \forall s=2, \ldots, n\right\}
\end{aligned}
$$

We can assume I and J to be the union of pairwise disjoint intervals of $(0,1)$ such that $I \cap J=\emptyset, \bar{I} \cup \bar{J}=[0,1]$.

Let $\Omega_{\varepsilon} \Subset \Omega$ such that $\left|\Omega \backslash \Omega_{\varepsilon}\right|<\varepsilon$ and let $\eta \in C_{0}^{\infty}(\Omega, \mathbb{R})$ such that

$$
\left.\eta\right|_{\Omega_{\varepsilon}} \equiv 1 \quad|D \eta|<\frac{L}{\varepsilon}
$$

Define

$$
u(x)=\phi(x)+\Phi\left(\eta(x) w\left(x_{1}\right)\right)
$$

We want to show that u is the function we are looking for. Near $\partial \Omega \eta 0$ hence $u=\phi$. In $\Omega_{\varepsilon} \eta \equiv 1$ so $u=\phi+\Phi(w)$ and $D u=D \phi+D \Phi(w)$. We now want to evaluate $D \Phi(w)$. Define

$$
\Omega_{A}=\left\{x \in \Omega_{\varepsilon}: x_{1} \in J\right\} \quad \Omega_{B}=\left\{x \in \Omega_{\varepsilon}: x_{1} \in I\right\}
$$

We have

$$
\begin{aligned}
& D u=B+t \mu \otimes e_{1}-t \mu \otimes e_{1}=B \quad \forall x \in \Omega_{B} \\
& D u=B+t \mu \otimes e_{1}+(1-t) \mu \otimes e_{1}=A \quad \forall x \in \Omega_{A}
\end{aligned}
$$

Moreover for any $x \in \Omega$ we have $L(D u)=L(D \phi)+L(D \Phi(\eta w))=L(D \phi)=L(A)$ by definition of Φ.

We only have to evaluate $\operatorname{dist}(D u, \operatorname{Rco} A, B)$ and $\|u-\phi\|_{\infty}$. Let us consider $\Phi(\eta w)=\eta \Phi(w)+G(D \eta w)$ where G is a linear function. So

$$
\|u-\phi\|_{\infty} \leq\|\Phi(w)\|_{\infty}+\|G(D \eta w)\|_{\infty} \leq C \max \left\{\delta, \delta \varepsilon^{-1}\right\}<\varepsilon
$$

if we choose a small enough δ.
With further computation we get

$$
D u=D \phi+\eta D \Phi(w)+H\left(D \eta w^{\prime}, D^{2} \eta w\right)
$$

where H is a linear function. Since $D \phi+\eta D \Phi(w) \in \operatorname{Rco}\{A, B\}$ we have

$$
\operatorname{dist}(D u, \operatorname{Rco}\{A, B\}) \leq C \max \left\{\delta \varepsilon^{-1}, \delta \varepsilon^{-2}\right\}<\varepsilon
$$

if we choose δ small enough.
Step 2 Now let us assume we are in a slightly more general situation; we assume $A-B=\mu \otimes e_{1}$ and $\alpha_{i 1}=0 \forall i=2, \ldots, n$. Hence $\mathcal{L} e_{1} \neq 0$ if and only if $\alpha_{11} \neq 0$. Let $\widehat{\mathcal{L}}=\left(\alpha_{i j}\right)_{i, j=2, \ldots, n}$. We know (SVD decomposition, see [3], pages 16-20) that there exist \widehat{V}, \widehat{U}, both in $S O(n-1)$ such that

$$
\widehat{U}^{t} \widehat{\mathcal{L}} \widehat{V}=\left(\begin{array}{cccccc}
\sigma_{2} & 0 & & \cdots & & 0 \\
0 & \ddots & & & & \\
& & \sigma_{r} & \ddots & & \vdots \\
\vdots & & \ddots & 0 & & \\
& & & & \ddots & 0 \\
0 & & \cdots & & 0 & 0
\end{array}\right)
$$

Define

$$
V=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & \widehat{V} & \\
0 & & &
\end{array}\right) U=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & \widehat{U} & \\
0 & & &
\end{array}\right)
$$

Then $U^{t} \mathcal{L} V$ is as in (2.1). Let $\psi: V^{t} \Omega \rightarrow \mathbb{R}^{n}, \psi: y \rightarrow U^{t} \phi(V y)$, then

$$
\phi(x)=U \psi\left(V^{t} x\right), \quad \phi_{x_{j}}^{i}=\sum_{i, j=1}^{n} u_{i k} \psi_{y_{l}}^{k} v_{j l}
$$

and

$$
\begin{aligned}
L(D \phi) & =\sum_{i, j=1}^{n} \sum_{k, l=1}^{n} \alpha_{i j} u_{i k} \psi_{y_{l}}^{k} v_{j l}=\sum_{k, l=1}^{n}\left(\sum_{i, j=1}^{n} u_{i k} \alpha_{i j} v_{j l}\right) \psi_{y_{l}}^{k} \\
& =\sum_{k, l=1}^{n}\left(U^{t} \mathcal{L} V\right)_{k l} \psi_{y_{l}}^{k}
\end{aligned}
$$

while

$$
\begin{aligned}
D \psi & =U^{t} D \phi V=U^{t}\left(B+t \mu \otimes e_{1}\right) V=U^{t} B V+t\left(U^{t} \mu\right) \otimes\left(V^{t} e_{1}\right) \\
& =U^{t} B V+t\left(U^{t} \mu\right) \otimes e_{1}
\end{aligned}
$$

From step 1 we can solve the problem for ψ in $V^{t} \Omega$ with respect to $U^{t} \mathcal{L} V$. Let $u_{\psi}: V^{t} \Omega \rightarrow \mathbb{R}^{n}$ be a function with the required properties, with its associated sets $\Omega_{A V}$ and $\Omega_{B V}$, then $u: \Omega \rightarrow \mathbb{R}^{n}, u: x \rightarrow U^{t} u_{\psi}(V x)$ and $\Omega_{A} \equiv V^{t} \Omega_{A V}$ and $\Omega_{B} \equiv V^{t} \Omega_{B V}$ are a solution to our problem.

Step 3 Now let us assume we are in the general situation $A-B=\mu \otimes v$, $\mu \in \mathbb{R}^{n}, v \in S^{n-1}$ and $\mathcal{L}=\left(\alpha_{i j}\right)_{i j}$ is such that $\mathcal{L} v \neq 0$. Since $v \in S^{n-1}$, there exists $R \in S O(n)$ such that $R^{t} v=e_{1}$. Moreover there exists a symmetric matrix $P \in S O(n)$ (actually P is an Householder matrix, see [3], page. 38) such that the first column of $P \mathcal{L} R$ is parallel to e_{1}. Let $\theta: R^{t} \Omega \rightarrow \mathbb{R}^{n}, \theta: y \rightarrow P \phi(R y)$.

$$
\phi(x)=P \theta\left(R^{t} x\right), \quad \phi_{x_{j}}^{i}=\sum_{i, j=1}^{n} p_{i k} \theta_{y_{l}}^{k} r_{j l}
$$

and

$$
\begin{aligned}
L(D \phi) & =\sum_{i, j=1}^{n} \sum_{k, l=1}^{n} \alpha_{i j} p_{i k} \theta_{y_{l}}^{k} r_{j l}=\sum_{k, l=1}^{n}\left(\sum_{i, j=1}^{n} p_{k i} \alpha_{i j} r_{j l}\right) \theta_{y_{l}}^{k} \\
& =\sum_{k, l=1}^{n}(P \mathcal{L} R)_{k l} \theta_{y_{l}}^{k}
\end{aligned}
$$

while

$$
\begin{aligned}
D \theta & =P D \phi R V=P(B+t \mu \otimes v) R=P B V+t(P \mu) \otimes\left(R^{t} v\right) \\
& =P B V+t(P \mu) \otimes e_{1}
\end{aligned}
$$

Thanks to step 2 we can solve the problem for θ in $R^{t} \Omega$ with respect to the matrix $P \mathcal{L} R$. Let $u_{\theta}: R^{t} \Omega \rightarrow \mathbb{R}^{n}$ be a solution with the required properties and let $\Omega_{A R}$ and $\Omega_{B R}$ its associated sets, then $u: \Omega \rightarrow \mathbb{R}^{n}, u: x \rightarrow P u_{\theta}\left(R^{t} x\right)$ and $\Omega_{A} \equiv R \Omega_{A R}$ and $\Omega_{B} \equiv R \Omega_{B R}$ are a solution to our problem.

3. Existence

In this section we define the relaxation property and trough the approximation Lemma 2.1 we prove the existence theorem.

Definition 3.1 (RELAXATION PROPERTY). Let $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ be a linear operator, and for any $\ell \in \mathbb{R}$ let $\mathcal{L}_{\ell}=\{\eta: L(\eta)=\ell\}$. We say that a set $K \subset \mathcal{L}_{\ell}$ has the relaxation property with respect to a set $E \subset \mathcal{L}_{\ell}$ if $\forall \Omega \subset \mathbb{R}^{n}$ open bounded subset, $\forall u_{\xi}$ affine in Ω such that $\xi \equiv D u_{\xi} \in$ int K (the interior is relative to the affine manifold \mathcal{L}_{ℓ}) there exists a sequence $u_{\nu} \in W_{\theta}, \theta>0$ such that

$$
\begin{aligned}
& u_{\nu}=u_{\xi} \text { on } \partial \Omega \\
& u_{\nu} \stackrel{*}{\rightharpoonup} u_{\xi} \text { in } W^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right) \\
& D u_{\nu} \in E \cup \text { int } K \text { a.e. in } \Omega \\
& \int_{\Omega} \operatorname{dist}\left(D u_{\nu}(x), E\right) d x \rightarrow 0 \text { when } \nu \rightarrow+\infty
\end{aligned}
$$

where

$$
W_{\theta}=\left\{\begin{array}{c}
u \in C_{p i e c}^{1}\left(\bar{\Omega}, \mathbb{R}^{n}\right): \exists \Omega_{\theta} \subset \Omega \text { open } \\
\left|\Omega \backslash \Omega_{\theta}\right|<\theta \text { and } u \text { is piecewise affine in } \Omega_{\theta}
\end{array}\right\}
$$

Theorem 3.2. Let $\Omega \subset \mathbb{R}^{n}$ open. Let $F_{i}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R} i=1, \ldots, I$ be continuous, quasi-convex functions, $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}, L: \xi=\left(\xi_{i j}\right) \rightarrow \sum_{i, j=1}^{n} \alpha_{i j} \xi_{i j}$ a linear operator and $\ell \in \mathbb{R}$ a given number. Let

$$
E=\left\{\xi \in \mathbb{R}^{n \times n}: F_{i}(\xi)=0 \quad \forall i=1, \ldots, I, \quad L(\xi)=\ell\right\}
$$

Let us assume that RcoE has the relaxation property with respect to E and is compact. Let ϕ be a piecewise affine function such that $D \phi(x) \in E \cup$ int RcoE. Then there exists $u \in W^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ such that

$$
\begin{cases}F_{i}(D u)=0 & \forall i=1, \ldots, I \\ L(D u)=\ell & \text { a.e. } x \in \Omega \\ u=\phi & \text { on } \partial \Omega\end{cases}
$$

Proof. Without any loss of generality we can assume that Ω is bounded. Define

$$
V_{0}=\left\{u \in W_{\theta}: u=\phi \text { on } \partial \Omega, \quad D u(x) \in E \cup \operatorname{int} \operatorname{Rco} E\right\}
$$

and let V be its closure in the $W^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ weak* topology.
The functions F_{i} are quasi-convex hence

$$
V \subset\left\{\begin{array}{c}
u \in \phi+W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right) \\
F_{i}(D u(x)) \leq 0 \quad \forall i=1, \ldots, I \text { a.e. } x \in \Omega \\
L(D u(x))=\ell
\end{array}\right\}
$$

Define $\mathcal{F}(u)=\sum_{i=1}^{I} \int_{\Omega} F_{i}(D u(x)) d x$. The functions F_{i} are quasi-convex therefore $\forall u \in V \quad \liminf _{u_{s} * u} \mathcal{F}\left(u_{s}\right) \geq \mathcal{F}(u)$. If $u \in V$ then $\mathcal{F}(u)=0$ if and only if $D u(x) \in$

$E \quad$ a.e. $x \in \Omega$.
Define $V^{k}=\left\{u \in V: \mathcal{F}(u)>\frac{-1}{k}\right\} . \quad V^{k}$ is open since the functions F_{i} are quasi-convex. It suffices to show that it is also dense in V.

Let $u \in V, \varepsilon>0$, we have to show that there exists $u_{\varepsilon} \in V^{k}$ such that $\| u-$ $u_{\varepsilon} \|_{\infty}<\varepsilon$. It suffices to show that this property holds for any $u \in V_{0}$. Since $u \in V_{0}$ we also have $u \in W_{\theta}$. Define $u_{\varepsilon}=u$ in $\Omega \backslash \Omega_{\theta}$. $\Omega_{\theta}=\cup \Omega_{\theta}^{i}$ and $D u(x)=\xi_{i} \in$ $E \cup \operatorname{int} \operatorname{Rco} E$ in Ω_{θ}^{i}. If $\xi_{i} \in E$ we are done, if $\xi_{i} \in \operatorname{int} \operatorname{Rco} E$ we use the relaxation property.

Theorem 3.3. Let F be a continuous, coercive rank one convex function. Define

$$
E=\left\{\xi \in \mathbb{R}^{n \times n}: F(\xi)=0, \quad L(\xi)=\ell\right\}
$$

Then

$$
R c o E=\left\{\xi \in \mathbb{R}^{n \times n}: F(\xi) \leq 0, \quad L(\xi)=\ell\right\}
$$

and the relaxation property holds.
Proof. Define $X \equiv\left\{\xi \in \mathbb{R}^{n \times n}: F(\xi) \leq 0, \quad L(\xi)=\ell\right\}$. Since $E \subset X$, and X is rank one convex $\mathrm{Rco} E \subset X$.

We have to prove that $X \subset \operatorname{Rco} E$. Let $\xi \in X$: if $F(\xi)=0$ there is nothing left to prove: $\xi \in E \subset \operatorname{Rco} E$.

If $F(\xi)<0$: let $\eta=a \otimes b$ with $\mathcal{L} b \neq 0$ and $L(\eta)=0$ (as previously remarked it suffices to choose $a \perp \mathcal{L} b$). F is coercive therefore there exist $t_{1}<0<t_{2}$ such that

$$
\begin{cases}F(\xi+t \eta)<0 & \forall t \in\left(t_{1}, t_{2}\right) \\ F\left(\xi+t_{i} \eta\right)=0 & \forall i=1,2 \\ L\left(\xi+t_{i} \eta\right)=L(\xi)=\ell & \forall i=1,2\end{cases}
$$

Since $\xi=\frac{t_{2}}{t_{2}-t_{1}}\left(\xi+t_{1} \eta\right)+\frac{-t_{1}}{t_{2}-t_{1}}\left(\xi+t_{2} \eta\right)$ and $\xi+t_{i} \eta \in E \quad \forall i=1,2$ we have shown that $\xi \in \operatorname{Rco} E$.

Let us show that the relaxation property holds. Let $\Omega \subset \mathbb{R}^{n}$ be an open bounded set, and let u_{ξ} be affine in Ω such that $D u_{\xi}=\xi \in \operatorname{Rco} E$.

We have to find a sequence $u_{\nu} \in W_{\theta}, \theta>0$ such that

$$
\begin{cases}u_{\nu}=u_{\xi} & \text { on } \partial \Omega \\ u_{\nu} \stackrel{*}{*} u_{\xi} & \text { in } W^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right) \\ D u_{\nu} \in \operatorname{int} \operatorname{Rco} E & \text { a.e. in } \Omega \\ \int_{\Omega} F\left(D u_{\nu}(x)\right) d x \rightarrow 0 & \text { as } \nu \rightarrow+\infty\end{cases}
$$

If $F(\xi)=0$ we let $u_{\nu}=u_{\xi}$; if $F(\xi)<0, L(\xi)=\ell$, consider a rank one matrix $\eta=a \otimes b$ such that $\mathcal{L} b \neq 0$ and $L(\eta)=0$: there exist $t_{1}<0<t_{2}$ such that

$$
\begin{cases}F(\xi+t \eta)<0 & \forall t \in\left(t_{1}, t_{2}\right) \\ F\left(\xi+t_{i} \eta\right)=0 & \forall i=1,2 \\ L\left(\xi+t_{i} \eta\right)=L(\xi)=\ell & \forall i=1,2\end{cases}
$$

Now it suffices to apply the approximation lemma to $A=\xi+\left(t_{1}+\varepsilon\right) \eta, B=$ $\xi+\left(t_{2}-\varepsilon\right) \eta$ and $\xi=\frac{t_{2}-\varepsilon}{t_{2}-t_{1}-2 \varepsilon} A+\frac{-\left(t_{1}+\varepsilon\right)}{t_{2}-t_{1}-2 \varepsilon} B$.

We now prove that if we have only one equation $F(D u)=0$, with suitable compatibility conditions then a Lipschitz solution to (1.2) exists (actually infinitely many solutions exist).

Corollary 3.4 (Existence theorem for one equation). Let $\Omega \subset \mathbb{R}^{n}$ be an open set. Let $F: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ be a continuous, coercive, quasi-convex function, let $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}, L: \xi=\left(\xi_{i j}\right) \rightarrow \sum_{i, j=1}^{n} \alpha_{i j} \xi_{i j}$ be a linear operator and $\ell \in \mathbb{R}$ a given real number. Let ϕ be a piecewise affine function such that $F(D \phi(x)) \leq 0$ and $L(D \phi(x))=\ell$. Then there exists $u \in W^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ such that

$$
\begin{cases}F(D u(x))=0 & \text { a.e. } x \in \Omega \\ L(D u(x))=\ell & \text { a.e. } x \in \Omega \\ u=\phi & \text { on } \partial \Omega\end{cases}
$$

Remark 3.5. The coercivity hypothesis on F can be weakened. Let us give the following definition:

Definition 3.6. We say that a function $F: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is coercive in a rank one direction $\eta=a \otimes b$ if for any bounded subset B of $\mathbb{R}^{n \times n}$ there exist $m, q \in \mathbb{R}$, with $m>0$ such that

$$
F(\xi+t \eta) \geq m|t|-q \quad \forall t \in \mathbb{R}, \quad \forall \xi \in B
$$

It suffices F to be coercive in a rank one direction $\eta=a \otimes b$ such that $\mathcal{L} b \neq 0$ and $L(\eta)=0$. Our chances of finding such an η increase when the rank of $\mathcal{L}=\left(\alpha_{i j}\right)$ increases.

4. A note on the approximation lemma

Here we want to prove that in Lemma 2.1 the hypothesis $\mathcal{L} v \neq 0$ cannot be removed. In fact we show that a certain Dirichlet problem does not admit a solution, and that, if the lemma held even if $\mathcal{L} v=0$ we could show the existence of solutions.

Let $\Omega=(0,1) \times(0,1)$. The Dirichlet problem we consider is as follows. We want to find $u=\left(u_{1}, u_{2}\right) \in W^{1, \infty}\left(\Omega, \mathbb{R}^{2}\right)$ such that

$$
\begin{cases}\frac{\partial u_{1}}{\partial x_{2}}=0 & \text { a.e. in } \Omega \\ \left|\frac{\partial u_{1}}{\partial x_{1}}\right|-1=0 & \text { a.e. in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Let $\left(u_{1}, u_{2}\right)$, be a solution to this problem, then $u_{1}=u_{1}\left(x_{1}\right)$ and $u_{1}{ }^{\prime}\left(x_{1}\right)=$ ± 1 a.e. $x_{1} \in(0,1)$. Hence the boundary condition $u_{1}=0$ cannot be fulfilled and the problem doesn't admit any Lipschitz solution.

Let us consider $F(\xi)=\left|\xi_{11}\right|-1$. It is coercive in the rank-1 direction $\Lambda=$ $\left(a_{1}, a_{2}\right) \otimes\left(b_{1}, b_{2}\right)$ if and only if $a_{1} b_{1} \neq 0$. In this problem $\mathcal{L}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ therefore $\mathcal{L}\binom{b_{1}}{b_{2}}=\binom{b_{2}}{0}$ and $L(\Lambda)=a_{1} b_{2}$. So the only rank- 1 directions Λ such that F is coercive in the direction Λ and $L(\Lambda)=0$ are those which satisfy $\left\{\begin{array}{l}a_{1} b_{1} \neq 0 \\ a_{1} b_{2}=0\end{array}\right.$ i.e. those $\Lambda=\left(a_{1}, a_{2}\right) \otimes\left(b_{1}, b_{2}\right)$ such that $\left\{\begin{array}{l}b_{2}=0 \\ a_{1} b_{1} \neq 0\end{array}\right.$. For all such directions $\mathcal{L}\binom{b_{1}}{b_{2}}=\binom{0}{0}$. So we can always assume $\Lambda=\left(a_{1}, a_{2}\right) \otimes(1,0)$ with $a_{1} \neq 0$. Now let us assume Lemma 2.1 holds even if $\mathcal{L} v=0$. We want to show that in such case we could prove this Dirichlet problem admits a solution.

Let

$$
\begin{aligned}
& E=\left\{\xi \in \mathbb{R}^{2 \times 2}: L(\xi)=0, F(\xi)=0\right\}=\left\{\xi \in \mathbb{R}^{2 \times 2}: \xi_{12}=0,\left|\xi_{11}\right|=1\right\} \\
& X=\left\{\xi \in \mathbb{R}^{2 \times 2}: L(\xi)=0, F(\xi) \leq 0\right\}=\left\{\xi \in \mathbb{R}^{2 \times 2}: \xi_{12}=0,\left|\xi_{11}\right| \leq 1\right\}
\end{aligned}
$$

Step $1(R \operatorname{co} E=X): X$ is rank-1 convex, $E \subset X$ hence $\operatorname{Rco} E \subset X$. The reverse inequality holds: let $\xi \in X$: if $\left|\xi_{11}\right|=1, \xi \in E \in \operatorname{Rco} E$ and there is nothing left to prove. If $\left|\xi_{11}\right|<1$, let $\Lambda=\left(a_{1}, a_{2}\right) \otimes\left(b_{1}, b_{2}\right)$ be a rank- 1 matrix such that $L(\Lambda)=0$ and F is coercive in the direction Λ. We have shown that we must have $\Lambda=\left(a_{1}, a_{2}\right) \otimes(1,0)$ with $a_{1} \neq 0$.

Since F is coercive in the direction Λ, there exist $t_{1}<0<t_{2}$ such that

$$
\begin{cases}F(\xi+t \Lambda)=0 & \forall t \in\left(t_{1}, t_{2}\right) \\ F\left(\xi+t_{1} \Lambda\right)=F\left(\xi+t_{2} \Lambda\right)=0 & \\ L(\xi+t \Lambda)=L(\xi)+t L(\Lambda)=0 & \forall t \in \mathbb{R}\end{cases}
$$

We may write $\xi=\frac{t_{2}}{t_{2}-t_{1}}\left(\xi+t_{1} \Lambda\right)+\frac{-t_{1}}{t_{2}-t_{1}}\left(\xi+t_{2} \Lambda\right)$ hence $\xi \in \operatorname{Rco} E$.
Step 2 (the relaxation property holds): Let $\Omega \subset \mathbb{R}^{2}$ be an open bounded set, let u_{ξ} be an affine function on Ω such that $D u_{\xi}=\xi \in \operatorname{Rco} E$. We must find a sequence
of positive real numbers, $\left\{\theta_{n}\right\}$, decreasing to 0 and a sequence of functions $\left\{u_{n}\right\}$, $u_{n} \in C_{\text {piec }}^{1}\left(\bar{\Omega}, \mathbb{R}^{2}\right)$ such that for any $n \in \mathbb{N}$

$$
\left\{\begin{array}{l}
\exists \Omega_{n} \subset \Omega, \text { open subset such that }\left|\Omega \backslash \Omega_{n}\right|<\theta_{n} \\
u_{n} \text { is piecewise affine in } \Omega_{n} \\
u_{n}=u_{\xi} \text { on } \partial \Omega \\
u_{n} \stackrel{*}{\rightharpoonup} u_{\xi} \text { in } W^{1, \infty}\left(\Omega, \mathbb{R}^{2}\right) \\
D u_{n} \in \int \operatorname{Rco} E \text { a.e. in } \Omega \\
\int_{\Omega} F\left(D u_{n}(x)\right) d x \rightarrow 0 \text { as } n \rightarrow \infty
\end{array}\right.
$$

If $F(\xi)=0$ there is nothing to be done, if $F(\xi)<0$, with the same Λ, t_{1} and t_{2} of the previous step and $\varepsilon>0$, let

$$
A=\xi+\left(t_{1}+\varepsilon\right) \Lambda, \quad B=\xi+\left(t_{2}-\varepsilon\right) \Lambda
$$

We may write

$$
\xi=\frac{t_{2}-\varepsilon}{t_{2}-t_{1}-2 \varepsilon} A+\frac{-\left(t_{1}+\varepsilon\right)}{t_{2}-t_{1}-2 \varepsilon} B
$$

If we could apply the approximation lemma to these matrixes we would have proved that the relaxation property holds, and therefore the problem would admit a solution, see Corollary 3.4 and Remark 3.5.

5. Acknowledgments

This research started during a visit at the EPFL (École Polytechnique Fédérale de Lausanne) working with Professor Bernard Dacorogna, supported by INDAM (Istituto Nazionale di Alta Matematica "Francesco Severi"). I thank Prof. Dacorogna for his help both in mathematics and in my staying at EPFL. I also thank Prof. Paolo Marcellini for his continuous encouragement.

References

[1] B. Dacorogna and P. Marcellini, Implicit partial differential equations, Birkhäuser, 1999.
[2] B. Dacorogna and C. Tanteri, Implicit partial differential equations and the constraints of non linear elasticity, to appear.
[3] G. H. Golub and C. F. V. Loan, Matrix Computations, The Johns Hopkins University Press, 1983.
[4] S. Müller and V. Svërak, Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc, 1 (1999), pp. 393-422.

[^0]: *Dipartimento di Matematica Applicata "G. Sansone", via S. Marta, 3, I-50139, Firenze, Italy (poggiolini@dma.unifi.it).

