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Abstract. We study implicit differential systems with a linear constraint on the gradient
variable and we prove the existence of infinitely many Lipschitz continuous solutions. The result
is obtained by a density argument in a suitable complete metric space.
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1. Introduction

We deal with the existence of Lipschitz continuous solutions to a first order
differential system of the following kind:

F (x, u(x), Du(x)) = 0 a.e. x ∈ Ω
L(x, u(x), Du(x)) = 0 a.e. x ∈ Ω
u ∈ φ+W 1,∞

0 (Ω,Rn)
(1.1)

where the function F satisfies a certain coercivity condition with respect to the
gradient variable, while the function L is quasi-affine on the same variable. The
boundary datum φ is affine on Ω.

Differential systems of this type, without the quasi-linear constraint L = 0,
have been recently introduced and investigated by Dacorogna and Marcellini in the
context of implicit partial differential equations and systems [1]. The book (and the
related wide bibliography) gives conditions (in particular a compatibility condition
on the boundary datum) in order to obtain a Lipschitz solution to the system.
Several extensions are also considered. However, the constrained problem (1.1) did
not enter in the results in [1], and in fact in Section 1.5.7 the authors posed the
constrained problem as an open one.

Problems with quasi-affine constraints were first studied by Müller and Sverak
[4] and by Dacorogna and Tanteri [2], with two different approaches. In such papers
L = L(Du) = det(Du).

Here we assume that L is any linear function of Du, i.e. L(Du) =
∑n
i,j=1 αiju

i
xj

for some matrix (αij) and, by some algebraic manipulations of the involved matrices,
in particular by some product decomposition (see the book [3] by G. H. Golub and
C. F. Van Loan), we obtain existence of W 1,∞

0 (Ω,Rn) solutions to (1.1).
As a particular case of our general results, we will prove for example that the

differential problem 
F (Du(x)) = 0 a.e. x ∈ Ω
L(Du(x)) = ` a.e. x ∈ Ω
u = φ on ∂Ω

(1.2)

has a W 1,∞(Ω,Rn) solution under the assumption that F is a continuous coercive

quasi-convex function and L = L(ξ) =
n∑

i,j=1

αijξij is any linear function. Moreover
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we emphasize that the method of proof in the two cases, respectively L linear
function of Du and L the determinant of the matrix Du, is different and doesn’t
allow us to treat at the same time any quasi-affine function L of Du.

A wide bibliography on implicit partial differential equations can be found in
[1].

2. The approximation lemma

In this section we give a technical lemma which is the main tool to prove the
existence Theorem 3.2.

Lemma 2.1. Let Ω ⊂ R
n be an open bounded set. Let φ : Ω → R

n be an
affine function such that Dφ(x) = tA+ (1− t)B, where A, B ∈ Rn×n are such that
rank(A − B) = 1 i.e. there exist µ, v ∈ Rn, ‖v‖ = 1 such that A − B = µ ⊗ v

and t ∈ (0, 1). Let L : Rn×n → R, L : ξ = (ξij)i,j=1,...,n →
n∑

i,j=1

αijξij be a linear

operator, L = (αij)i,j=1,...,n a given matrix. Let us assume L(A) = L(B) and
Lv 6= 0. Let ε > 0. Then there exists u ∈ φ+W 1,∞

0 (Ω,Rn) and an open set Ωε b Ω
with the following properties:

|Ω \ Ωε| < ε

Du(x) ∈ {A,B} a.e. x ∈ Ωε
L(Du(x)) = L(Dφ(x)) = L(A) = L(B) a.e. x ∈ Ω
dist(Du(x),Rco{A,B}) < ε a.e. x ∈ Ω
‖u− φ‖∞ < ε

Remark 2.2. Since L is a linear operator, L(A) = L(B) is equivalent to
L(A− B) = 0 and to L(Dφ) = L(A). In Section 4 we will discuss the assumption
Lv 6= 0 in Lemma 2.1.

Proof. Step 1 Let us assume A − B = µ ⊗ e1, where e1 = (1, 0, . . . , 0) is the first
element of the canonical basis of Rn and L is an upper triangular matrix of the
following kind i.e.

L = (αij) =



α11 α12 · · · α1r · · · α1n

0 α22 0 · · · 0

0 0
. . .

αrr
. . .

...
...

. . . 0
. . . 0

0 0 · · · 0 0


(2.1)

with r = rankL (i.e.
∏r
i=1 αii 6= 0). Le1 6= 0 is equivalent to α11 6= 0, since

L(A−B) = α11µ1 this implies µ1 = 0.
Without loss of generality we can assume Ω = (0, 1)n. If this is not the case

we know that Ω can be covered with a finite family {Ωk} of subsets homotetics to
(0, 1)n and a set of small measure. We solve the problem in each set Ωk and we are
done.
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We are given a linear operator

L(X) =
n∑
j=1

j∑
i=1

αijXij , X ∈ Rn×n

We want to find a linear differential functional Φ: C1(Rn,Rn) → C0(Rn,Rn) such
that

L(DΦ(v)) ≡ 0 ∀v ∈ C2(Ω,Rn) . (2.2)

We will not define the differential operator Φ explicitly, but only prove that an
operator Φ and a function w = w(x1) with the required properties exist. Let us call
Φs, s = 1, . . . , n its components. Φs will be of the following kind

Φs(v) =
n∑
l=1

n∑
m=1

aslmv
l
xm

Condition (2.2) gives us for any s = 1, . . . , n the following linear algebraic system
in the unknowns aisk where k, i = 1, . . . , n.

α11a
1
s1 = 0 (2.3)

α1ka
1
sk + αkka

k
sk = 0 ∀k = 2, . . . , r (2.4)

α11a
1
sk = −α1ka

1
s1 − αkkaksm ∀k = 2, . . . , r (2.5)

α1ma
1
sk + αmma

m
sk = −α1ka

1
sm − αkkaksm ∀k = 3, . . . , r, ∀m = 2, . . . , k − 1 (2.6)

α1ka
1
sk = 0 ∀k = r + 1, . . . , n (2.7)

α11a
1
sk = −α1ka

1
s1 ∀k = r + 1, . . . , n (2.8)

α1ma
1
sk + αmma

m
sk = −α1ka

1
sm ∀k = r + 1, . . . , n, ∀m = 2, . . . , r (2.9)

α1ma
1
sk = −α1ka

1
sm ∀k = r + 2, . . . , n, ∀m = r + 1, . . . , k − 1

(2.10)

Of course all these systems admit the trivial solution aisk = 0 , ∀s, k, i = 1, . . . , n,
but this is not what we want. For some reason we will see later on we want the
matrix (ais1)s,i=2,...,n to be non singular. Let us consider the equations where only
the unknowns ais1 appear. We have only equation (2.3). Since we assume α11 6= 0
we have a1

s1 = 0 ∀s = 1, . . . , n but this is not important since we are interested only
in (ais1)s,i=2,...,n.

From now on we shall fix s and solve the system by induction on the index
k = 2, . . . , n. Let us assume α22 6= 0 and let us consider the equations where ais2
appear and the other aisk appear only if k = 1. They are

(2.4)k=2 α12a
1
s2 + α22a

2
s2 = 0

(2.5)k=2 α11a
1
s2 = −α22a

1
s2

It is a diagonal system in the unknown a1
s2, a2

s2 and the determinant of the incom-
plete matrix associated to the system is α11α22 6= 0 so we can solve it for any value
of the right hand side. Let us assume we solved the subsystem of equations where
ais,k appears only if k ≤ K − 1 < r.
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Let us consider the equations where aisK appear and the other aisk appear only
if k ≤ K − 1. They are

(2.4)k=K α1Ka
1
sK + αKKa

K
sK = 0

(2.6)k=K,m=K−1 α1,K−1a
1
sK + αK−1,K−1a

K
sK − 1 = −α1Ka

1
s,K−1 − αKKaKs,K−1

. . . . . . . . .

(2.5)k=K α11a
1
sK = −α1Ka

1
s1 − αKKaKs1

It is a triangular system in the unknown aisK , i = 1, . . . ,K and the determinant of
the incomplete matrix associated to the system is

∏K
i=1 αii 6= 0 so we can solve it

for any value of the right hand side.
Note that at each step k the unknown aisk, i > k remain undetermined.
Now we want to show that we can solve the sub-system of equations where the

unknown ais,r+1 appear and the other aisk appear only if k ≤ r. It is given by the
following equations

(2.7)k=r+1 α1,r+1a
1
s,r+1 = 0

(2.9)k=r+1 α1ma
1
s,r+1 + αr+1,r+1a

m
s,r+1 = −α1,r+1a

1
s,m ∀m = 2, . . . , r

(2.8)k=r+1 α11a
1
s,r+1 = 0

which gives a
1
s,r+1 = 0

ams,r+1 =
−α1,r+1a

1
sm

αmm
∀m = 2, . . . , r

while ar+1
s,r+1 remains undetermined.

Now let us assume we solved the system up to step k = K−1 with K−1 > r−1
and that in doing so we determined the following coefficients:

a1
s1 = 0
a1
s2
...
a1
sr a1

sr · · · arsr
a1
s,r+1 = 0 a2

s,r+1 · · · ars,r+1
...

...
...

...
a1
s,K−1 = 0 a2

s,K−1 · · · ars,K−1

Using this induction hypothesis the system at step K becomes:

(2.7)k=K α1Ka
1
sK = 0

(2.8)k=K α11a
1
sK = 0

(2.9)k=K α1ma
1
s,K + αKKa

m
s,K = −α1Ka

1
s,m ∀m = 2, . . . , r

(2.10)k=K α1ma
1
s,K = 0 ∀m = r + 1, . . . ,K − 1

which gives a
1
sK = 0

amsK =
−α1Ka

1
sm

αmm
∀m = 2, . . . , r
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while ar+1
s,K , . . . , a

K
s,K remain undetermined.

In this way we solve the systems for any prescribed ais1, s, i = 2, . . . , n and we
choose these in such a way that (ais1)s,i=2,...,n is a non singular matrix.

Now, let w = w(x1), we want DΦ(w)(x) ∈ {−tµ⊗ e1, (1− t)µ⊗ e1} a.e. x1 ∈
(0, 1).

But w = w(x1) implies Φs(w) =
n∑
l=1

asl1w
′
l(x1) We choose w1(x1) ≡ 0. Since

a1
s1 = 0 ∀s = 1, . . . , n,

∂Φ(w)
∂x1

= 0 is satisfied (we have µ1 = 0). So we need

n∑
l=2

asl1w
′′
l (x1) = −tµs ∀s = 2, . . . , n

or
n∑
l=2

asl1w
′′
l (x1) = (1− t)µs ∀s = 2, . . . , n

This can be done since by construction det(asl1)l,s=2,...,n 6= 0 .
Moreover, for any δ > 0 we can choose w such that ‖w‖∞ < ε, ‖w′‖∞ < ε. So

just call

I =

{
x1 ∈ (0, 1) :

n∑
l=2

asl1w
′′
l (x1) = −tµs ∀s = 2, . . . , n

}

J =

{
x1 ∈ (0, 1) :

n∑
l=2

asl1w
′′
l (x1) = (1− t)µs ∀s = 2, . . . , n

}
We can assume I and J to be the union of pairwise disjoint intervals of (0, 1) such
that I ∩ J = ∅, I ∪ J = [0, 1].

Let Ωε b Ω such that |Ω \ Ωε| < ε and let η ∈ C∞0 (Ω,R) such that

η|Ωε ≡ 1 |Dη| < L

ε

Define
u(x) = φ(x) + Φ(η(x)w(x1))

We want to show that u is the function we are looking for. Near ∂Ω η ≡ 0 hence
u = φ. In Ωε η ≡ 1 so u = φ + Φ(w) and Du = Dφ + DΦ(w). We now want to
evaluate DΦ(w). Define

ΩA = {x ∈ Ωε : x1 ∈ J} ΩB = {x ∈ Ωε : x1 ∈ I}

We have

Du = B + tµ⊗ e1 − tµ⊗ e1 = B ∀x ∈ ΩB
Du = B + tµ⊗ e1 + (1− t)µ⊗ e1 = A ∀x ∈ ΩA

Moreover for any x ∈ Ω we have L(Du) = L(Dφ) + L(DΦ(ηw)) = L(Dφ) = L(A)
by definition of Φ.

We only have to evaluate dist(Du,RcoA,B) and ‖u − φ‖∞. Let us consider
Φ(ηw) = ηΦ(w) +G(Dηw) where G is a linear function. So

‖u− φ‖∞ ≤ ‖Φ(w)‖∞ + ‖G(Dηw)‖∞ ≤ C max{δ, δε−1} < ε
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if we choose a small enough δ.
With further computation we get

Du = Dφ+ ηDΦ(w) +H(Dηw′, D2η w)

where H is a linear function. Since Dφ+ ηDΦ(w) ∈ Rco{A,B} we have

dist(Du,Rco{A,B}) ≤ C max{δε−1, δε−2} < ε

if we choose δ small enough.
Step 2 Now let us assume we are in a slightly more general situation; we assume

A − B = µ ⊗ e1 and αi1 = 0 ∀i = 2, . . . , n. Hence Le1 6= 0 if and only if α11 6= 0.
Let L̂ = (αij)i,j=2,...,n. We know (SVD decomposition, see [3], pages 16-20) that

there exist V̂ , Û , both in SO(n− 1) such that

Û tL̂V̂ =



σ2 0 . . . 0

0
. . .

σr
. . .

...
...

. . . 0
. . . 0

0 · · · 0 0


Define

V =


1 0 · · · 0
0
... V̂
0

U =


1 0 · · · 0
0
... Û
0


Then U tLV is as in (2.1). Let ψ : V tΩ→ R

n, ψ : y → U tφ(V y), then

φ(x) = Uψ(V tx), φixj =
n∑

i,j=1

uikψ
k
yl
vjl

and

L(Dφ) =
n∑

i,j=1

n∑
k,l=1

αijuikψ
k
yl
vjl =

n∑
k,l=1

 n∑
i,j=1

uikαijvjl

ψkyl

=
n∑

k,l=1

(
U tLV

)
kl
ψkyl

while

Dψ =U tDφV = U t(B + tµ⊗ e1)V = U tBV + t(U tµ)⊗ (V te1)

=U tBV + t(U tµ)⊗ e1

From step 1 we can solve the problem for ψ in V tΩ with respect to U tLV . Let
uψ : V tΩ → R

n be a function with the required properties, with its associated
sets ΩAV and ΩBV , then u : Ω → R

n, u : x → U tuψ(V x) and ΩA ≡ V tΩAV and
ΩB ≡ V tΩBV are a solution to our problem.
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Step 3 Now let us assume we are in the general situation A − B = µ ⊗ v,
µ ∈ Rn, v ∈ Sn−1 and L = (αij)ij is such that Lv 6= 0. Since v ∈ Sn−1, there
exists R ∈ SO(n) such that Rtv = e1. Moreover there exists a symmetric matrix
P ∈ SO(n) (actually P is an Householder matrix, see [3], page. 38) such that the
first column of PLR is parallel to e1. Let θ : RtΩ→ R

n, θ : y → Pφ(Ry).

φ(x) = Pθ(Rtx), φixj =
n∑

i,j=1

pikθ
k
yl
rjl

and

L(Dφ) =
n∑

i,j=1

n∑
k,l=1

αijpikθ
k
yl
rjl =

n∑
k,l=1

 n∑
i,j=1

pkiαijrjl

 θkyl

=
n∑

k,l=1

(PLR)kl θ
k
yl

while

Dθ =PDφRV = P (B + tµ⊗ v)R = PBV + t(Pµ)⊗ (Rtv)
=PBV + t(Pµ)⊗ e1

Thanks to step 2 we can solve the problem for θ in RtΩ with respect to the matrix
PLR. Let uθ : RtΩ → R

n be a solution with the required properties and let ΩAR
and ΩBR its associated sets, then u : Ω → R

n, u : x → Puθ(Rtx) and ΩA ≡ RΩAR
and ΩB ≡ RΩBR are a solution to our problem.

3. Existence

In this section we define the relaxation property and trough the approximation
Lemma 2.1 we prove the existence theorem.

Definition 3.1 (Relaxation property). Let L : Rn×n → R be a linear operator,
and for any ` ∈ R let L` = {η : L(η) = `}. We say that a set K ⊂ L` has the
relaxation property with respect to a set E ⊂ L` if ∀Ω ⊂ Rn open bounded subset,
∀uξ affine in Ω such that ξ ≡ Duξ ∈ intK (the interior is relative to the affine
manifold L`) there exists a sequence uν ∈Wθ, θ > 0 such that

uν = uξ on ∂Ω

uν
∗
⇀ uξ in W 1,∞(Ω,Rn)

Duν ∈ E ∪ intK a.e. in Ω∫
Ω

dist(Duν(x), E) dx→ 0 when ν → +∞

where

Wθ =
{

u ∈ C1
piec(Ω,R

n) : ∃Ωθ ⊂ Ω open
|Ω \ Ωθ| < θ and u is piecewise affine in Ωθ

}
Theorem 3.2. Let Ω ⊂ Rn open. Let Fi : Rn×n → R i = 1, . . . , I be continuous,

quasi-convex functions, L : Rn×n → R, L : ξ = (ξij)→
n∑

i,j=1

αijξij a linear operator

and ` ∈ R a given number. Let

E =
{
ξ ∈ Rn×n : Fi(ξ) = 0 ∀i = 1, . . . , I , L(ξ) = `

}
7



Let us assume that RcoE has the relaxation property with respect to E and is com-
pact. Let φ be a piecewise affine function such that Dφ(x) ∈ E ∪ int RcoE. Then
there exists u ∈W 1,∞(Ω,Rn) such that

Fi(Du) = 0 ∀i = 1, . . . , I a.e. x ∈ Ω
L(Du) = ` a.e. x ∈ Ω
u = φ on ∂Ω

Proof. Without any loss of generality we can assume that Ω is bounded. Define

V0 = {u ∈Wθ : u = φ on ∂Ω , Du(x) ∈ E ∪ int RcoE}

and let V be its closure in the W 1,∞(Ω,Rn) weak* topology.
The functions Fi are quasi-convex hence

V ⊂

 u ∈ φ+W 1,∞
0 (Ω,Rn)

Fi(Du(x)) ≤ 0 ∀i = 1, . . . , I a.e. x ∈ Ω
L(Du(x)) = `


Define F(u) =

I∑
i=1

∫
Ω

Fi(Du(x)) dx. The functions Fi are quasi-convex therefore

∀u ∈ V lim inf
us
∗
⇀u

us∈V

F(us) ≥ F(u). If u ∈ V then F(u) = 0 if and only if Du(x) ∈

E a.e. x ∈ Ω.

Define V k =
{
u ∈ V : F(u) >

−1
k

}
. V k is open since the functions Fi are

quasi-convex. It suffices to show that it is also dense in V .
Let u ∈ V , ε > 0, we have to show that there exists uε ∈ V k such that ‖u −

uε‖∞ < ε. It suffices to show that this property holds for any u ∈ V0. Since u ∈ V0

we also have u ∈ Wθ. Define uε = u in Ω \ Ωθ. Ωθ = ∪Ωiθ and Du(x) = ξi ∈
E ∪ int RcoE in Ωiθ. If ξi ∈ E we are done, if ξi ∈ int RcoE we use the relaxation
property.

Theorem 3.3. Let F be a continuous, coercive rank one convex function.
Define

E =
{
ξ ∈ Rn×n : F (ξ) = 0 , L(ξ) = `

}
Then

RcoE =
{
ξ ∈ Rn×n : F (ξ) ≤ 0 , L(ξ) = `

}
and the relaxation property holds.

Proof. Define X ≡ {ξ ∈ Rn×n : F (ξ) ≤ 0 , L(ξ) = `}. Since E ⊂ X, and X is rank
one convex RcoE ⊂ X.

We have to prove that X ⊂ RcoE. Let ξ ∈ X: if F (ξ) = 0 there is nothing left
to prove: ξ ∈ E ⊂ RcoE.

If F (ξ) < 0: let η = a⊗ b with Lb 6= 0 and L(η) = 0 (as previously remarked it
suffices to choose a ⊥ Lb). F is coercive therefore there exist t1 < 0 < t2 such that

F (ξ + tη) < 0 ∀t ∈ (t1, t2)
F (ξ + tiη) = 0 ∀i = 1, 2
L(ξ + tiη) = L(ξ) = ` ∀i = 1, 2
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Since ξ =
t2

t2 − t1
(ξ + t1η) +

−t1
t2 − t1

(ξ + t2η) and ξ + tiη ∈ E ∀i = 1, 2 we have

shown that ξ ∈ RcoE.
Let us show that the relaxation property holds. Let Ω ⊂ Rn be an open bounded

set, and let uξ be affine in Ω such that Duξ = ξ ∈ RcoE.
We have to find a sequence uν ∈Wθ, θ > 0 such that

uν = uξ on ∂Ω
uν

∗
⇀ uξ in W 1,∞(Ω,Rn)

Duν ∈ int RcoE a.e. in Ω∫
Ω

F (Duν(x)) dx→ 0 as ν → +∞

If F (ξ) = 0 we let uν = uξ; if F (ξ) < 0, L(ξ) = `, consider a rank one matrix
η = a⊗ b such that Lb 6= 0 and L(η) = 0: there exist t1 < 0 < t2 such that

F (ξ + tη) < 0 ∀t ∈ (t1, t2)
F (ξ + tiη) = 0 ∀i = 1, 2
L(ξ + tiη) = L(ξ) = ` ∀i = 1, 2

Now it suffices to apply the approximation lemma to A = ξ + (t1 + ε)η, B =

ξ + (t2 − ε)η and ξ =
t2 − ε

t2 − t1 − 2ε
A+

−(t1 + ε)
t2 − t1 − 2ε

B.

We now prove that if we have only one equation F (Du) = 0, with suitable
compatibility conditions then a Lipschitz solution to (1.2) exists (actually infinitely
many solutions exist).

Corollary 3.4 (Existence theorem for one equation). Let Ω ⊂ Rn be an
open set. Let F : Rn×n → R be a continuous, coercive, quasi-convex function, let

L : Rn×n → R, L : ξ = (ξij) →
n∑

i,j=1

αijξij be a linear operator and ` ∈ R a given

real number. Let φ be a piecewise affine function such that F (Dφ(x)) ≤ 0 and
L(Dφ(x)) = `. Then there exists u ∈W 1,∞(Ω,Rn) such that

F (Du(x)) = 0 a.e. x ∈ Ω
L(Du(x)) = ` a.e. x ∈ Ω
u = φ on ∂Ω

Remark 3.5. The coercivity hypothesis on F can be weakened. Let us give the
following definition:

Definition 3.6. We say that a function F : Rn×n → R is coercive in a rank
one direction η = a⊗ b if for any bounded subset B of Rn×n there exist m, q ∈ R,
with m > 0 such that

F (ξ + tη) ≥ m |t| − q ∀t ∈ R, ∀ξ ∈ B .

It suffices F to be coercive in a rank one direction η = a⊗b such that Lb 6= 0 and
L(η) = 0. Our chances of finding such an η increase when the rank of L = (αij)
increases.
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4. A note on the approximation lemma

Here we want to prove that in Lemma 2.1 the hypothesis Lv 6= 0 cannot be
removed. In fact we show that a certain Dirichlet problem does not admit a solution,
and that, if the lemma held even if Lv = 0 we could show the existence of solutions.

Let Ω = (0, 1)×(0, 1). The Dirichlet problem we consider is as follows. We want
to find u = (u1, u2) ∈W 1,∞(Ω,R2) such that

∂u1

∂x2
= 0 a.e. in Ω∣∣∣∣∂u1

∂x1

∣∣∣∣− 1 = 0 a.e. in Ω

u = 0 on ∂Ω

Let (u1, u2), be a solution to this problem, then u1 = u1(x1) and u1
′(x1) =

±1 a.e. x1 ∈ (0, 1). Hence the boundary condition u1 = 0 cannot be fulfilled and
the problem doesn’t admit any Lipschitz solution.

Let us consider F (ξ) = |ξ11| − 1. It is coercive in the rank-1 direction Λ =

(a1, a2) ⊗ (b1, b2) if and only if a1b1 6= 0. In this problem L =
(

0 1
0 0

)
therefore

L
(
b1
b2

)
=
(
b2
0

)
and L(Λ) = a1b2. So the only rank-1 directions Λ such that F

is coercive in the direction Λ and L(Λ) = 0 are those which satisfy

{
a1b1 6= 0
a1b2 = 0

i.e. those Λ = (a1, a2) ⊗ (b1, b2) such that

{
b2 = 0
a1b1 6= 0

. For all such directions

L
(
b1
b2

)
=
(

0
0

)
. So we can always assume Λ = (a1, a2) ⊗ (1, 0) with a1 6= 0. Now

let us assume Lemma 2.1 holds even if Lv = 0. We want to show that in such case
we could prove this Dirichlet problem admits a solution.

Let

E = {ξ ∈ R2×2 : L(ξ) = 0 , F (ξ) = 0} = {ξ ∈ R2×2 : ξ12 = 0 , |ξ11| = 1},
X = {ξ ∈ R2×2 : L(ξ) = 0 , F (ξ) ≤ 0} = {ξ ∈ R2×2 : ξ12 = 0 , |ξ11| ≤ 1}.

Step 1 (RcoE = X): X is rank-1 convex, E ⊂ X hence RcoE ⊂ X. The reverse
inequality holds: let ξ ∈ X: if |ξ11| = 1, ξ ∈ E ∈ RcoE and there is nothing
left to prove. If |ξ11| < 1, let Λ = (a1, a2) ⊗ (b1, b2) be a rank-1 matrix such that
L(Λ) = 0 and F is coercive in the direction Λ. We have shown that we must have
Λ = (a1, a2)⊗ (1, 0) with a1 6= 0.

Since F is coercive in the direction Λ, there exist t1 < 0 < t2 such that
F (ξ + tΛ) = 0 ∀t ∈ (t1, t2)
F (ξ + t1Λ) = F (ξ + t2Λ) = 0
L(ξ + tΛ) = L(ξ) + tL(Λ) = 0 ∀t ∈ R

We may write ξ =
t2

t2 − t1
(ξ + t1Λ) +

−t1
t2 − t1

(ξ + t2Λ) hence ξ ∈ RcoE.

Step 2 (the relaxation property holds): Let Ω ⊂ R2 be an open bounded set, let uξ
be an affine function on Ω such that Duξ = ξ ∈ RcoE. We must find a sequence
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of positive real numbers, {θn}, decreasing to 0 and a sequence of functions {un},
un ∈ C1

piec(Ω,R2) such that for any n ∈ N

∃Ωn ⊂ Ω, open subset such that |Ω \ Ωn| < θn

un is piecewise affine in Ωn
un = uξ on ∂Ω
un

∗
⇀ uξ in W 1,∞(Ω,R2)

Dun ∈
∫

RcoE a.e. in Ω∫
Ω

F (Dun(x)) dx→ 0 as n→∞

If F (ξ) = 0 there is nothing to be done, if F (ξ) < 0, with the same Λ, t1 and t2
of the previous step and ε > 0, let

A = ξ + (t1 + ε)Λ , B = ξ + (t2 − ε)Λ .

We may write

ξ =
t2 − ε

t2 − t1 − 2ε
A+

−(t1 + ε)
t2 − t1 − 2ε

B .

If we could apply the approximation lemma to these matrixes we would have proved
that the relaxation property holds, and therefore the problem would admit a solu-
tion, see Corollary 3.4 and Remark 3.5.
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