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Abstract

In this paper, we study the homogenization of a set of Smoluchowski’s

discrete diffusion-coagulation equations modeling the aggregation and diffu-

sion of β-amyloid peptide (Aβ), a process associated with the development of

Alzheimer’s disease. In particular, we define a periodically perforated domain

Ωε, obtained by removing from the fixed domain Ω (the cerebral tissue) infinitely

many small holes of size ε (the neurons), which support a non-homogeneous

Neumann boundary condition describing the production of Aβ by the neuron

membranes. Then, we prove that, when ε→ 0, the solution of this micro-model

two-scale converges to the solution of a macro-model asymptotically consis-

tent with the original one. Indeed, the information given on the microscale

by the non-homogeneous Neumann boundary condition is transferred into a

source term appearing in the limiting (homogenized) equations. Furthermore,

on the macroscale, the geometric structure of the perforated domain induces a

correction in that the scalar diffusion coefficients defined at the microscale are

replaced by tensorial quantities.
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1 Introduction

The Smoluchowski equation [47] is a system of partial differential equations which

describes the evolving densities of diffusing particles that are prone to coagulate in

pairs [6], [7], [8], [10], [22], [23], [25], [26], [34], [36], [49], [50], [51]. In spite of the

large literature concerning the use of the Smoluchowski equation in many branches of

science (e.g. in aerosol science, polymer science, astrophysics, chemistry), this equa-

tion does not seem to have been considered extensively in the field of biomedical

research. Applications of Smoluchowski equation to the description of the agglom-

eration of β-amyloid peptide (Aβ), a process associated with the development of

Alzheimer’s disease (AD), seem to appear for the first time in Murphy and Pallitto

[37].

Nowadays, Alzheimer’s disease is the most common form of senile dementia with

enormous socio-economic implications. In recent years, besides in vivo and in vitro

experimental models, there has been an increasing interest in mathematical modeling

and computer simulations (the so-called in silico approach) [1], [9], [20], [24], [28],

[45], in order to better understand the mechanisms for the onset and the evolution

of AD. It is largely accepted that Aβ peptide (especially in soluble form) has a

substantial role in the process of synaptic degeneration leading to neuronal death

and eventually to dementia (the so-called amyloid cascade hypothesis [32]). Aβ, in

monomeric form, is a normal product of cleavage of the amyloid precursor protein

(APP), an integral membrane protein involved in signal transduction pathways. By

unknown reasons (partially genetic), some neurons start to present an imbalance

between production and clearance of Aβ amyloid during aging. Soluble Aβ (in the

form of monomers) diffuses freely through neuronal tissue. At elevated levels, it

produces pathological aggregates (that cannot be readily cleared): long insoluble

amyloid fibrils, which accumulate in spherical deposits known as senile plaques. In

addition, it has been recognised that Aβ is able to initiate an inflammatory response,

which implicates the activation of microglia (the resident immune cells in the central

nervous system) and therefore the release of neurotoxic produtcs that are involved

in neuronal and synaptic damage.

In [37], the authors compare experimental data with numerical simulations based
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on the Smoluchowski equation without diffusion, in order to clarify the kinetics of

conversion of monomeric β-amyloid peptide into macroscopic fibril aggregates. Very

recently, the important role of Smoluchowski equation in modeling the evolution

of AD at different scales has been investigated in [1], [27], [9]. In [1], the authors

present a mathematical model for the aggregation and diffusion of β-amyloid in the

brain affected by AD at a microscopic scale (the size of a single neuron) and at the

early stage of the disease when small amyloid fibrils are free to move and to coalesce.

In the model proposed in [1], a very small portion of the cerebral tissue is described

by a bounded smooth region Ω ⊂ R3, whereas the neurons are represented by a

family of regular disjoint regions Ωj (for 1 ≤ j ≤ M). Moreover, the production

of Aβ in monomeric form at the level of neuron membranes is modeled by a non-

homogeneous Neumann condition on the boundary of Ωj , for j = 1, . . . ,M . On

the other hand, in [9] the authors present a model for the evolution of AD at a

macroscopic scale and over the entire lifetime of the patient. In this case, the whole

brain is represented by a region of the three-dimensional space, and the process of

diffusion and aggregation of Aβ is modeled by a Smoluchowski system with a source

term, coupled with a kinetic-type transport equation that keeps into account the

spreading of the disease. Clearly, at this scale, neurons are no more visible so that

they can be described mathematically as points.

Passing from a microscopic model to a macroscopic one has always been a com-

mon issue in mathematical modeling. As a matter of fact, while being closer to the

actual physical nature, a mathematical model for a physical system that resolves

smaller scales is usually more complicated and sometimes even virtually impossible

to solve. Moreover, experimental data are often available for macroscale quantities

only, but not for the microscale. Therefore, for quite a long time, the key issue has

been how to formulate laws on a scale that is larger than the microscale and to

justify these laws on the basis of a microscopic approach. In practice, one wants to

start from differential equations that are assumed to hold on the micro-scale and to

transform them into equations on the macro-scale, by performing a sort of ’averaging

process’. To do that, in the seventies, mathematicians have developed a new method

called homogenization [16], [17], [21]. This method allows to perform certain limits
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of the solutions of partial differential equations describing media with microstruc-

tures and to determine equations which the limits are solution of. Roughly speaking,

what one does is to consider media with microstructures, to average out the physical

and chemical processes arising at the microscale and to calculate effective properties

of the media on the macroscale.

This is precisely what has been done in the present work, where the homogeniza-

tion method has been applied to the model presented in [1], in order to describe the

effects of the production of Aβ by the neuron membranes at the macroscopic level

and to derive rigorously the equations in [9]. In particular, a periodically perforated

domain Ωε, obtained by removing from the fixed domain Ω (the cerebral tissue) in-

finitely many small holes of size ε (the neurons), which support a non-homogeneous

Neumann boundary condition, has been defined. Then, the limiting behavior as

ε→ 0 of the Smoluchowski-type equations in Ωε has been studied in the framework

of two-scale convergence [3], [4], [5], [11], [18], [19], [29], [30], [31], [38], [40]. The

peculiarity of the two-scale convergence method, introduced by Gabriel Nguetseng

and Gregoire Allaire, is that, in a single process one can find the homogenized equa-

tions and prove the convergence of a sequence of solutions to the problem at hand.

Moreover, while previous approaches were originally defined only for certain prob-

lem classes, two-scale convergence allows to pass to the limit in all sorts of problems

featuring periodic microstructures.

The paper is organized as follows. Section 2 summarizes the main features of

the discrete diffusive Smoluchowski equation, while in Section 3, a mathematical

model describing the self-association and diffusion of β-amyloid peptide (which is

the main trigger of Alzheimer’s disease) is presented. Then, in Section 4 we define

the perforated geometry and prove all the a priori estimates needed for two-scale

homogenization. Finally, Section 5 is devoted to derive our main results on the

homogenization of the Smoluchowski equation in perforated domains.

2 The Smoluchowski equation

The Smoluchowski coagulation equation models various kind of phenomena as for

example: the evolution of a system of solid or liquid particles suspended in a gas (in
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aerosol science), polymerisation (in chemistry), aggregation of colloidal particles (in

physics), formation of stars and planets (in astrophysics), red blood cell aggregation

(in hematology), behaviour of fuel mixtures in engines (in engineering), etc. The

original model proposed by Smoluchowski [47] was introduced to describe the binary

coagulation of colloidal particles moving according to Brownian motions and several

additional physical processes have been subsequently incorporated into the model

(fragmentation, condensation, influence of external fields, see, e.g. [22], [34], [49],

[50], [51]). In view of our subsequent applications, we present the appearance of the

Smoluchowski equation in polymerisation [22], [34], [50]. For k ∈ N, let Pk denote a

polymer of size k, that is a set of k identical particles (monomers). As time advances,

the polymers evolve and, if they approach each other sufficiently close, there is some

chance that they merge into a single polymer whose size equals the sum of the sizes

of the two polymers which take part in this reaction. By convention, we admit only

binary reactions. This phenomenon is called coalescence and we write formally

Pk + Pj −→ Pk+j ,

for the coalescence of a polymer of size k with a polymer of size j.

In the model studied further on, we restrict ourselves to the following physical

situation: the approach of two clusters leading to aggregation is assumed to result

only from Brownian movement or diffusion (thermal coagulation). Other effects

such as multiple coagulation or condensation, together with the influence of other

external force fields are neglected. Under these assumptions, the discrete diffusive

coagulation equations read [34], [50]

∂ui
∂t

(t, x)− di4xui(t, x) = Qi(u) in [0, T ]× Ω, (1)

with appropriate initial and boundary conditions.

The variable ui(t, x) ≥ 0 (for i ≥ 1) represents the concentration of i-clusters,

that is, clusters consisting of i identical elementary particles, and

Qi(u) = Qg,i(u)−Ql,i(u) i ≥ 1 (2)

with the gain (Qg,i) and loss (Ql,i) terms given by
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Qg,i =
1

2

i−1∑
j=1

ai−j,j ui−j uj (3)

Ql,i = ui

∞∑
j=1

ai,j uj . (4)

where u = (ui)i≥1. The coagulation rates ai,j are non negative constants such that

ai,j = aj,i and di denotes the diffusion coefficient of an i-cluster, di > 0 ∀i ≥ 1.

The kinetic coefficient ai,j represents reaction in which an (i + j)-cluster is formed

from an i-cluster and a j-cluster. Possible breakup of clusters is not taken into ac-

count. The term Qg,i, given by (3), describes the creation of polymers of size i by

coagulation of polymers of size j and i− j. The term Ql,i, given by (4), corresponds

to the depletion of polymers of size i after coalescence with other polymers. Since

the size of clusters is not limited a priori, Eq. (1) describes a non-linear evolution

equation of infinite dimension, for which even the existence of a local solution is

not guaranteed by the general theory of reaction-diffusion equations. According to

the form of the coalescence kernel ai,j we obtain or not solutions for the system of

equations (1). In general, the coagulation rates are determined by the statistical

probabilities of bond formation and depend upon the details of the physical pro-

cess being considered. If there are no sources nor sinks of clusters in the reactions

described by the initial-boundary value problem (1), the total mass of clusters is

expected to be constant throughout the time evolution of the system, provided it is

initially finite. It turns out however that this property may fail to be true in general

for some physically relevant kinetic coefficients. The break-down of the mass con-

servation is then related to the so-called gelation phenomenon which corresponds to

the appearance of an infinite cluster called gel, caused by the cascading growth of

larger and larger clusters. We will however not consider this issue in the following.

3 A mathematical model for the aggregation and diffu-

sion of β-amyloid peptide

In the present paper, we consider a mathematical model based on the discrete

Smoluchowski equation in order to describe the aggregation and diffusion of β-
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amyloid peptide (Aβ) in the brain affected by Alzheimer’s disease (AD) [1]. Aβ

is naturally present in the brain and cerebrospinal fluid of humans throughout life,

even if its role is currently unknown. By now, it is recognized that the mere presence

of Aβ in the brain is not sufficient to support the diagnosis of AD. Neuronal injury

is rather the result of ordered Aβ self-association [13], [24], [35], [39], [43], [52]. The

amyloid plaques, which serve as a hallmark for AD, have been found to contain large

amounts of Aβ organized into amyloid fibrils. There is no clear correlation, however,

between the presence of the Aβ containing plaques in the brain and the severity of

AD neurodegeneration. Therefore, in recent years, the research in this area has

shifted its focus from senile plaques toward oligomeric conformations of Aβ. This

oligomeric form of Aβ is highly toxic to the brain and is the trigger for loss of synapses

and neuronal damage. However, the transient nature of small oligomeric aggregates

makes it difficult to shed light on their formation process or structure. Most proposed

pathways for the initial stages of Aβ amyloid fibril formation amount to a sequence

of events that can be summarized as follows: unordered monomeric Aβ in solution

converts into an ’activated’ monomer that then recruits other Aβ molecules to form

oligomers. The length-wise association of individual protofibrils produces the mature

amyloid fibrils, whose structure has been studied in most detail due to their high

stability under a wide range of physicochemical conditions. The mature fibrillar

form and monomeric Aβ have both been confirmed on many occasions as the only

non-toxic species.

In the present work, we are interested in considering the early stage of Alzheimer’s

disease (AD) when small amyloid fibrils are free to move and to coalesce in the brain.

In addition, we discard fibril fragmentation, which can be considered as a secondary

process in the mechanism of amyloid self-assembly, especially when oligomers of

small size are involved (for a model with fragmentation, we refer to [27]). Since the

fibrils at this stage are relatively small, diffusion plays a key role in the description of

the behavior of oligomeric β-amyloid peptide (Aβ). In the mathematical model pro-

posed in [1] and reported below, the authors consider a portion of the hippocampus

or of the cerebral cortex (the regions of the brain mainly affected by AD) whose size

is comparable to a multiple of the size of a neuron, thus avoiding the description of
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intracellular phenomena. With this choice of scale, it is coherent to consider that the

diffusion is uniform. Moreover, it is assumed that ’large’ assemblies do not aggregate

with each other. This assumption prevents blow-up phenomena for solutions at a

finite time, but it is also consistent with experimental data [24], [37]. The portion

of cerebral tissue considered in the following is represented by a bounded smooth

region Ω0 ⊂ R3, whereas the neurons are represented by a family of regular regions

Ωj such that

(i) Ωj ⊂ Ω0 if j = 1, 2, . . . ,M ;

(ii) Ωi ∩ Ωj = ∅ if i 6= j.

Let us set

Ω := Ω0 \
M⋃
j=1

Ωj

and consider a vector-valued function u = (u1, . . . , uM ), where M ∈ N and uj =

uj(t, x), t ∈ R, t ≥ 0 (the time), and x ∈ Ω. If 1 ≤ j < M − 1, then uj(t, x) is

the (molar) concentration at the point x and at the time t of an Aβ assembly of j

monomers, while uM takes into account aggregations of more than M−1 monomers.

The production of Aβ in the monomeric form at the level of neuron membranes is

modeled by a non-homogeneous Neumann condition on ∂Ωj , the boundary of Ωj ,

for j = 1, . . . ,M . Finally, an homogeneous Neumann condition on ∂Ω0 is meant to

artificially isolate the portion of tissue considered from its environment. Thus, the

following Cauchy-Neumann problem can be defined [1]:



∂u1
∂t

(t, x)− d14xu1(t, x) + u1(t, x)
∑M

j=1 a1,juj(t, x) = 0

∂u1
∂ν
≡ ∇xu1 · n = 0 on ∂Ω0

∂u1
∂ν
≡ ∇xu1 · n = ψj on ∂Ωj , j = 1, . . . ,M

u1(0, x) = U1 ≥ 0

(5)
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where 0 ≤ ψj ≤ 1 is a smooth function for j = 1, . . . ,M describing the production

of the amyloid near the membrane of the neuron. Indeed, the experimental evidence

shows that the production of Aβ is not uniformly distributed over the neuronal

cells. This localization of the production is expressed by means of the choice of

the functions ψj . Moreover, only the neurons affected by the disease are taken into

account, i.e. it is assumed ψj 6= 0 for j = 1, . . . ,M .

In addition, if 1 < m < M ,



∂um
∂t

(t, x)− dm4xum(t, x) + um(t, x)
∑M

j=1 am,juj(t, x) =

1
2
∑m−1

j=1 aj,m−jujum−j

∂um
∂ν
≡ ∇xum · n = 0 on ∂Ω0

∂um
∂ν
≡ ∇xum · n = 0 on ∂Ωj , j = 1, . . . ,M

um(0, x) = 0

(6)

and



∂uM
∂t

(t, x)− dM 4xuM (t, x) = 1
2
∑

j+k≥M
k<M
j<M

aj,k uj uk

∂uM
∂ν
≡ ∇xuM · n = 0 on ∂Ω0

∂uM
∂ν
≡ ∇xuM · n = 0 on ∂Ωj , j = 1, . . . ,M

uM (0, x) = 0

(7)

For reasons related to the model, we can assume that the diffusion coefficients dj > 0,

j = 1, . . . ,M , are small when j is large, since big assemblies do not move. The

coagulation rates aij are symmetric aij = aji > 0, i, j = 1, . . . ,M , but aMM = 0.
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Let us remark that the meaning of uM differs from that of um, m < M , since it

describes the sum of the densities of all the ’large’ assemblies. It is assumed that

large assemblies exhibit all the same coagulation properties and do not coagulate

with each other. Indeed, the present model only takes into account the evolution

of the Aβ and ignores the role played by the microglia and astrocytes in neuronal

death and in the formation of senile plaques.

4 Setting of the problem and preliminary results

Let Ω be a bounded open set in R3 with a smooth boundary ∂Ω. Let Y be the

unit periodicity cell [0, 1[3 having the paving property. We perforate Ω by removing

from it a set Tε of periodically distributed holes defined as follows. Let us denote

by T an open subset of Y with a smooth boundary Γ, such that T ⊂ IntY . Set

Y ∗ = Y \T which is called in the literature the solid or material part. According to

the model presented in Section 3, the set T represents a generic neuron, and Y ∗ the

supporting cerebral tissue. We define τ(εT ) to be the set of all translated images of

εT of the form ε(k + T ), k ∈ Z3. Then,

Tε := Ω ∩ τ(εT ).

Introduce now the periodically perforated domain Ωε defined by

Ωε = Ω \ T ε.

For the sake of simplicity, we make the following standard assumption on the

holes [17], [21]:

there exists a ’security’ zone around ∂Ω without holes, i.e.

∃ δ > 0 such that dist (∂Ω, Tε) ≥ δ. (8)

Therefore, Ωε is a connected set ([17]). The boundary ∂Ωε of Ωε is then composed of

two parts. The first one is the union of the boundaries of the holes strictly contained

in Ω. It is denoted by Γε and is defined by

Γε := ∪
{
∂(ε(k + T )) | ε(k + T ) ⊂ Ω

}
.
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The second part of ∂Ωε is its fixed exterior boundary denoted by ∂Ω. It is easily

seen that (see [4], Eq. (3))

lim
ε→0

ε | Γε|N−1 =| Γ|N−1

| Ω |N
| Y |N

(9)

where | · |N is the N -dimensional Hausdorff measure.

Throughout this paper, ε will denote the general term of a sequence of positive

reals which converges to zero.

Let us rewrite the model problem presented in Section 3 as a family of equations

in Ωε:



∂uε1
∂t
− div(d1∇xuε1) + uε1

∑M
j=1 a1,ju

ε
j = 0 in [0, T ]× Ωε

∂uε1
∂ν
≡ ∇xuε1 · n = 0 on [0, T ]× ∂Ω

∂uε1
∂ν
≡ ∇xuε1 · n = ε ψ(t, x, xε ) on [0, T ]× Γε

uε1(0, x) = U1 in Ωε

(10)

where ψ is a given bounded function satisfying the following conditions:

(i) ψ(t, x, xε ) ∈ C1(0, T ;B) with B = C1[Ω;C1
#(Y )], where C1

#(Y ) is the subset of

C1(RN ) of Y -periodic functions;

(ii) ψ(t = 0, x, xε ) = 0

and U1 is a positive constant such that

U1 ≤ ‖ψ‖L∞(0,T ;B). (11)

Typically, ψ has the form ψ(t, x, xε ) = ψ0(xε )ψ1(t−g(x)), where the function ψ1(s) ≡

0 for s near 0 and ψ1(s) ≡ 1 for large s > 0. The function g takes into account that

different cerebral regions are affected at different times. However, we stress that

this system corresponds to an evolution model based only on genetic causes, since

it ignores any spreading (like, e.g., a possible prion-type diffusion ([28]).

In addition, if 1 < m < M ,
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∂uεm
∂t
− div(dm∇xuεm) + uεm

∑M
j=1 am,ju

ε
j = f ε in [0, T ]× Ωε

∂uεm
∂ν
≡ ∇xuεm · n = 0 on [0, T ]× ∂Ω

∂uεm
∂ν
≡ ∇xuεm · n = 0 on [0, T ]× Γε

uεm(0, x) = 0 in Ωε

(12)

and



∂uεM
∂t
− div(dM ∇xuεM ) = gε in [0, T ]× Ωε

∂uεM
∂ν
≡ ∇xuεM · n = 0 on [0, T ]× ∂Ω

∂uεM
∂ν
≡ ∇xuεM · n = 0 on [0, T ]× Γε

uεM (0, x) = 0 in Ωε

(13)

where the gain terms f ε and gε in (12) and (13) are given by

f ε =
1

2

m−1∑
j=1

aj,m−j u
ε
j u

ε
m−j (14)

gε =
1

2

∑
j+k≥M
k<M
j<M

aj,k u
ε
j u

ε
k. (15)

Theorem 4.1. If ε > 0 the system (10) - (13) has a unique solution

(uε1, . . . , u
ε
M ) ∈ C1+α/2,2+α([0, T ]× Ωε) (α ∈ (0, 1))

such that

uεj(t, x) > 0 for (t, x) ∈ (0, T )× Ωε, j = 1, . . . ,M .
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Proof. The proof can be carried out as in [1], using Theorem 1, p.111 of [46] for the

function (uε1 − gε, . . . , uεM ), where gε ∈ C1+α/2,2+α([0, T ] × Ωε) solves the Cauchy-

Neumann problem:

∂gε

∂t
− div(d1∇xgε) = 0 in [0, T ]× Ωε

∂gε

∂ν
≡ ∇xgε · n = 0 on [0, T ]× ∂Ω

∂gε

∂ν
≡ ∇xgε · n = ε ψ(t, x, xε ) on [0, T ]× Γε

gε(0, x) = 0 in Ωε.

Notice that the function gε is bounded in [0, T ] × Ωε, uniformly with respect to

ε > 0. This can be proven, for instance, following the arguments used in the proof

of Lemmas 4.1 and 4.2 below.

Our aim is to study the homogenization of the set of equations (10)-(13) as ε→ 0,

i.e., to study the behaviour of uεj(1 ≤ j ≤ M) as ε→ 0 and obtain the equations

satisfied by the limit. There is no clear notion of convergence for the sequence

uεj(1 ≤ j ≤M) which is defined on a varying set Ωε. This difficulty is specific to the

case of perforated domains. A natural way to get rid of this difficulty is given by

Nguetseng-Allaire two-scale convergence [3], [40].

We first obtain the a priori estimates for the sequences uεj , ∇uεj , ∂tuεj in [0, T ]×Ωε,

that are independent of ε.

Since

div(d1∇xuε1)− ∂uε1
∂t
≥ 0,

by the classical maximum principle [44] the following estimate holds.

Lemma 4.1. Let T > 0 be arbitrary and uε1 be a classical solution of (10). Then,

‖uε1‖L∞(0,T ;L∞(Ωε))
≤ |U1|+ ‖uε1‖L∞(0,T ;L∞(Γε)). (16)
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Thus, the boundedness of uε1(t, x) in L∞([0, T ] × Γε), uniformly in ε, can be

immediately deduced from Lemma 4.2 below.

Lemma 4.2. Let T > 0 be arbitrary and uε1 be a classical solution of (10). Then,

‖uε1‖L∞(0,T ;L∞(Γε))
≤ c ‖ψ‖L∞(0,T ;B) (17)

where c is independent of ε.

In order to establish Lemma 4.2, we will first need the following preliminary

results [33], [41].

Lemma 4.3 ([33], Lemma 5.6). Let (z̃n)n∈N0 be a sequence of non-negative real

numbers such that

z̃n+1 ≤ c bn z̃r/2n (18)

for all n ∈ N0, with fixed positive constants c, b, r, where b > 1 and

r =
2(N + 1)

N
> 2.

If

z̃0 ≤ θ := c−N b−N
2

(19)

then,

z̃n ≤ θ b−nN (20)

for all n ∈ N0.

Theorem 4.2. Assume that there exist positive constants T , k̂ = ‖ψ‖L∞(0,T ;B), γ,

such that for all k ≥ k̂ we have

‖u(k)
ε ‖2Qε(T ) := sup

0≤t≤T

∫
Ωε

|u(k)
ε |2 dx+

∫ T

0
dt

∫
Ωε

|∇u(k)
ε |2 dx ≤ ε γ k2

∫ T

0
dt |Bε

k(t)|

(21)

where u
(k)
ε (t) := (uε1(t)−k)+ and Bε

k(t) is the set of points on Γε at which uε1(t, x) > k.

Then
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ess sup(t,x)∈[0,T ]×Γεu
ε
1(t, x) ≤ 2mk̂ (22)

where the positive constant m is independent of ε.

Proof. Let us choose

r =
2(N + 1)

N
> 2

Then, it holds

1

r
+

(N − 1)

2r
=
N

4
(23)

Let M≥ k̂ be arbitrary and define

kn := (2− 2−n)M≥ k̂,

zn := ε2/r
[ ∫ T

0
dt |Bε

kn(t)|
]2/r

(24)

for all n ∈ N0. We prove that the sequence (zn) satisfies the assumptions of Lemma

4.3. To this end, let n ∈ N0 be fixed. From the trivial estimate

|u(kn)
ε (t)|2 ≥ (kn+1 − kn)2 1Bεkn+1

(t) (25)

we get

zn+1 ≤ ε2/r
[ ∫ T

0
dt (kn+1 − kn)−r

∫
Γε

|u(kn)
ε (t)|r dσε(x)

]2/r

= (kn+1 − kn)−2 ε2/r
[ ∫ T

0
dt

∫
Γε

|u(kn)
ε (t)|r dσε(x)

]2/r
(26)

Hence, since the condition (23) holds, by using (146) we obtain

2−2(n+1)M2 zn+1 = (kn+1 − kn)2 zn+1

≤ c ε2/r ε−N−[
2(1−N)

r
] ‖u(kn)

ε ‖2Qε(T )

(27)

where c is a positive constant independent of ε. Therefore,
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2−2(n+1)M2 zn+1 ≤ c ε−
N

(1+N) ‖u(kn)
ε ‖2Qε(T ) (28)

Moreover, from (21) and (24) we get

‖u(kn)
ε ‖2Qε(T ) ≤ γ k

2
n z

r/2
n ≤ γ (2− 2−n)2M2 zr/2n

≤ 4 γM2 zr/2n

(29)

Combining (28) and (29), we obtain

zn+1 ≤ c0 ε
− N

(1+N) 22n zr/2n (30)

where c0 is a positive constant independent of ε.

Let us define

d :=
(r − 2)

r

λ := (c0)
− r

(r−2) 2
− 4

(r−2)d

and choose

M := k̂ + λ−1/r
√
c′ k̂ ≡ mk̂ (31)

where c′ is defined in (32) and m > 1. Now we want to estimate z0 for the fixed

value of M given by (31). From the definition (24) and (9), by following the same

strategy which leads to (28) and (29), where we substitute k̂ for kn andM for kn+1,

we have

(M− k̂)2 z0 ≤ c ε−
N

(1+N) ‖u(k̂)
ε ‖2Qε(T ) ≤ c ε

− N
(1+N)

[
γ k̂2 T

|Γ|N−1 |Ω|N
|Y |N

]
:= c′ ε

− N
(1+N) k̂2

(32)

so that

z0 ≤
c′ ε
− N

(1+N) k̂2

(M− k̂)2
(33)

for all M≥ k̂. Therefore, from (33) and (31) we obtain that
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z0 ≤ ε−
N

(1+N) λ2/r. (34)

For a fixed ε, we set

z̃n = ε
N

(1+N) zn (35)

for all n ∈ N0. Then, the recursion inequality (30) and the estimate (34) can be

rewritten as follows:


z̃n+1 ≤ c0 22n ε−1 z̃

r/2
n

z̃0 ≤ λ2/r = (c0)−N 2−2N2

(36)

Keeping in mind (36), it is easy to see that the sequence (z̃n) satisfies the assumptions

of Lemma 4.3 with

c := max
{
c0,

c0

ε

}
and b := 4.

Therefore, in view of Lemma 4.3, one can conclude that zn → 0 as n → ∞, which

implies

uε1 ≤ lim
n→∞

kn = 2M

almost everywhere on Γε for almost every t ∈ [0, T ] if we define M as in (31). This

gives (22).

Proof of Lemma 4.2. Let T > 0 and k ≥ 0 be fixed. Define: u
(k)
ε (t) := (uε1(t)− k)+

for t ≥ 0, with derivatives:

∂u(k)
ε

∂t
=
∂uε1
∂t

1{uε1>k} (37)

∇xu(k)
ε = ∇xuε1 1{uε1>k}. (38)

Moreover,

u(k)
ε |∂Ω= (uε1 |∂Ω −k)+ (39)
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u(k)
ε |Γε= (uε1 |Γε −k)+ (40)

Let us assume k ≥ k̂, where k̂ := ‖ψ‖L∞(0,T ;B). Then, by (11),

uε1(0, x) = U1 ≤ k̂ ≤ k. (41)

For t ∈ [0, T1] with T1 ≤ T , we get

1

2

∫
Ωε

|u(k)
ε (t)|2 dx =

∫ t

0

d

ds

[
1

2

∫
Ωε

|u(k)
ε (s)|2 dx

]
ds

=

∫ t

0
ds

∫
Ωε

∂u(k)
ε (s)

∂s
u(k)
ε (s) dx.

(42)

Taking into account (37), (10) and Lemma A.1, we obtain that for all s ∈ [0, T1]

∫
Ωε

∂u(k)
ε (s)

∂s
u(k)
ε (s) dx =

∫
Ωε

∂uε1(s)

∂s
u(k)
ε (s) dx

=

∫
Ωε

[
d1 ∆xu

ε
1 − uε1

M∑
j=1

a1,ju
ε
j

]
u(k)
ε (s) dx

= −
∫

Ωε

uε1(s)
M∑
j=1

a1,ju
ε
j(s)u

(k)
ε (s) dx+ ε d1

∫
Γε

ψ

(
s, x,

x

ε

)
u(k)
ε (s) dσε(x)

− d1

∫
Ωε

∇xuε1(s) · ∇xu(k)
ε (s) dx

≤ ε d1

∫
Γε

ψ

(
s, x,

x

ε

)
u(k)
ε (s) dσε(x)− d1

∫
Ωε

∇xuε1(s) · ∇xu(k)
ε (s) dx

≤ ε d1

2

∫
Bεk(s)

∣∣∣∣ψ(s, x, xε
)∣∣∣∣2 dσε(x) +

ε d1

2

∫
Γε

|u(k)
ε (s)|2 dσε(x)

− d1

∫
Ωε

∇xuε1(s) · ∇xu(k)
ε (s) dx

≤ ε d1

2

∫
Bεk(s)

∣∣∣∣ψ(s, x, xε
)∣∣∣∣2 dσε(x) +

C1 d1

2

∫
Aεk(s)

|u(k)
ε (s)|2 dx

− d1

(
1− C1ε

2

2

)∫
Ωε

|∇xu(k)
ε (s)|2 dx

(43)

where we denote by Aεk(t) and Bε
k(t) the set of points in Ωε and on Γε, respectively,

at which uε1(t, x) > k. It holds:

|Aεk(t)| ≤ |Ωε|

|Bε
k(t)| ≤ |Γε|
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with | · | being the Hausdorff measure.

Plugging (43) into (42) and varying over t, we arrive at the estimate:

sup
0≤t≤T1

[
1

2

∫
Ωε

|u(k)
ε (t)|2 dx

]
+ d1

(
1− C1 ε

2

2

)∫ T1

0
dt

∫
Ωε

|∇u(k)
ε (t)|2 dx

≤ C1 d1

2

∫ T1

0
dt

∫
Aεk(t)

|u(k)
ε (t)|2 dx+

ε d1

2

∫ T1

0
dt

∫
Bεk(t)

∣∣∣∣ψ(t, x, xε
)∣∣∣∣2 dσε(x)

(44)

Introducing the following norm

‖u‖2Qε(T ) := sup
0≤t≤T

∫
Ωε

|u(t)|2 dx+

∫ T

0
dt

∫
Ωε

|∇u(t)|2 dx (45)

the inequality (44) can be rewritten as follows

min

{
1
2, d1

(
1− C1 ε

2

2

)}
‖u(k)

ε ‖2Qε(T1) ≤
C1 d1

2

∫ T1

0
dt

∫
Aεk(t)

|u(k)
ε (t)|2 dx

+
ε d1

2

∫ T1

0
dt

∫
Bεk(t)

∣∣∣∣ψ(t, x, xε
)∣∣∣∣2 dσε(x)

(46)

We estimate the right-hand side of (46). From Hölder’s inequality we obtain

∫ T1

0
dt

∫
Aεk(t)

|u(k)
ε (t)|2 dx ≤ ‖u(k)

ε ‖2Lr1 (0,T1;Lq1 (Ωε))
‖1Aεk‖Lr′1 (0,T1;Lq

′
1 (Ωε))

(47)

with r′1 = r1
r1 − 1, q′1 =

q1
q1 − 1, r1 = 2 r1, q1 = 2 q1, where, for N > 2, r1 ∈ (2,∞)

and q1 ∈ (2, 2N
(N−2)) have been chosen such that

1

r1
+

N

2 q1

=
N

4

In particular, r′1, q
′
1 <∞, so that (47) yields∫ T1

0
dt

∫
Aεk(t)

|u(k)
ε (t)|2 dx ≤ ‖u(k)

ε ‖2Lr1 (0,T1;Lq1 (Ωε))
|Ω|1/q′1 T 1/r′1

1 . (48)

If we choose

T
1/r′1
1 <

min{1, d1}
2C1d1

|Ω|−1/q′1 ≤
min

{
1
2, d1

(
1− C1 ε

2

2

)}
C1d1

|Ω|−1/q′1 ,

then from (143) it follows that

C1 d1

2

∫ T1

0
dt

∫
Aεk(t)

|u(k)
ε (t)|2 dx ≤ 1

2
min

{
1
2, d1

(
1− C1 ε

2

2

)}
‖u(k)

ε ‖2Qε(T1). (49)
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Analogously, from Hölder’s inequality we have, for k ≥ k̂

ε d1

2

∫ T1

0
dt

∫
Bεk(t)

∣∣∣∣ψ(t, x, xε
)∣∣∣∣2 dσε(x) ≤ ε d1 k

2

2

(
k̂2

k2

)
‖1Bεk‖L1(0,T1;L1(Γε))

≤ ε d1 k
2

2

∫ T1

0
dt |Bε

k(t)|.
(50)

Thus (46) yields

‖u(k)
ε ‖2Qε(T1) ≤ ε γ k

2

∫ T1

0
dt |Bε

k(t)|. (51)

Hence, by Theorem 4.2 we obtain

‖uε1‖L∞(0,T1;L∞(Γε)) ≤ 2mk̂

where the positive constant m is independent of ε. Analogous arguments are valid

for the cylinder [Ts, Ts+1]× Ωε, s = 1, 2, . . . , p− 1 with[
Ts+1 − Ts

]1/r′1
<

min{1, d1}
2C1d1

|Ω|−1/q′1

and Tp ≡ T . Thus, after a finite number of steps, we obtain the estimate (17).

Lemma 4.4. The sequence ∇xuε1 is bounded in L2([0, T ]× Ωε), uniformly in ε.

Proof. Let us multiply the first equation in (10) by the function uε1(t, x). Integrating,

the divergence theorem yields

1

2

∫
Ωε

∂

∂t
|uε1|2 dx+ d1

∫
Ωε

|∇xuε1|2 dx+

∫
Ωε

|uε1|2
M∑
j=1

a1,j u
ε
j dx

= ε d1

∫
Γε

ψ

(
t, x,

x

ε

)
uε1(t, x) dσε(x)

(52)

By Hölder’s and Young’s inequalities, the right-hand side of Eq. (52) can be rewrit-

ten as

∫
Γε

ψ

(
t, x,

x

ε

)
uε1(t, x) dσε(x) ≤ 1

2
‖ψ(t, ·, ·

ε
)‖

2

L2(Γε)
+

1

2
‖uε1(t, ·)‖2L2(Γε)

(53)

The following estimate holds [see Lemma 5.1]

20



ε

∫
Γε

|ψ(t, x,
x

ε
)|2 dσε(x) ≤ C2 ‖ψ(t)‖2B (54)

where C2 is a positive constant independent of ε and B = C1[Ω;C1
#(Y )]. Therefore,

by combining Eqs. (52)-(54) and by using Lemma A.1, we deduce

∫
Ωε

∂

∂t
|uε1|2 dx+ d1 (2− ε2C1)

∫
Ωε

|∇xuε1|2 dx

≤ d1C2 ‖ψ(t)‖2B + d1C1

∫
Ωε

|uε1|2 dx
(55)

since the third term on the left-hand side of (52) is non-negative. Integrating over

[0, t] with t ∈ [0, T ], we get

‖uε1(t)‖2L2(Ωε)
+ d1 (2− ε2C1)

∫ t

0
ds

∫
Ωε

|∇xuε1|2 dx ≤ C3 + d1C1 ‖uε1‖2L2(0,T ;L2(Ωε))

(56)

where C1 and C3 are positive constants independent of ε since, by (11),

uε1(0, x) = U1 ≤ ‖ψ‖L∞(0,T ;B).

Taking into account that the first term on the left-hand side of (56) is non-negative

and the sequence uε1 is bounded in L∞(0, T ;L∞(Ωε)), one has

d1 (2− ε2C1) ‖∇xuε1‖2L2(0,T ;L2(Ωε))
≤ C4 (57)

Thus the boundedness of ∇xuε1(t, x) follows, provided that ε is close to zero.

Lemma 4.5. Let uεm(t, x) (1 < m < M) be a classical solution of (12). Then

‖uεm‖L∞(0,T ;L∞(Ωε)) ≤ Km (58)

uniformly with respect to ε, where

Km = 1 +

[m−1∑
j=1

aj,m−jKjKm−j

]
am,m

(59)
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Proof. We prove the Lemma directly by induction. By using Lemmas 4.1 and 4.2,

it can be deduced that

‖uε1‖L∞(0,T ;L∞(Ωε)) ≤ K1

where K1 is a positive constant independent of ε. Let us suppose that

‖uεj‖L∞(0,T ;L∞(Ωε)) ≤ Kj

for 1 ≤ j ≤ m− 1. We shall show that

‖uεm‖L∞(0,T ;L∞(Ωε)) ≤ Km (60)

where Km is given by (59). To this end, let us test the mth equation of (12) with

the function

φm ≡ p (uεm)(p−1) p ≥ 2.

We stress that the functions φm are strictly positive and continuously differentiable

in [0, t]× Ω, for all t > 0. Integrating, the divergence theorem yields

∫ t

0
ds

∫
Ωε

∂

∂s
(uεm)p(s) dx =− dm p

∫ t

0
ds

∫
Ωε

∇xuεm · ∇
[
(uεm)(p−1)

]
dx

− p
∫ t

0
ds

∫
Ωε

uεm

M∑
j=1

am,j u
ε
j (uεm)(p−1) dx

+
p

2

∫ t

0
ds

∫
Ωε

m−1∑
j=1

aj,m−j u
ε
ju
ε
m−j (uεm)(p−1) dx

(61)

Hence

‖uεm‖
p
Lp(Ωε)

+ dm p (p− 1)

∫ t

0
ds

∫
Ωε

|∇uεm|2 (uεm)(p−2) dx

= −p
∫ t

0
ds

∫
Ωε

uεm

M∑
j=1

am,j u
ε
j (uεm)(p−1) dx

+
p

2

∫ t

0
ds

∫
Ωε

m−1∑
j=1

aj,m−j u
ε
ju
ε
m−j (uεm)(p−1) dx

(62)

Rearranging the terms of the summations, we obtain
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‖uεm‖
p
Lp(Ωε)

+ dm p (p− 1)

∫ t

0
ds

∫
Ωε

|∇uεm|2 (uεm)(p−2) dx

=

∫ t

0
ds

∫
Ωε

[
1

2

m−1∑
j=1

aj,m−j u
ε
ju
ε
m−j − am,m |uεm|2

]
p (uεm)(p−1)dx

−
∫ t

0
ds

∫
Ωε

[m−1∑
j=1

am,j u
ε
m u

ε
j +

M∑
j=m+1

am,j u
ε
m u

ε
j

]
p (uεm)(p−1) dx

(63)

By using the induction hypothesis, Eq. (63) becomes

‖uεm‖
p
Lp(Ωε)

+ dm p (p− 1)

∫ t

0
ds

∫
Ωε

|∇uεm|2 (uεm)(p−2) dx

≤
∫ t

0
ds

∫
Ωε

[m−1∑
j=1

aj,m−jKjKm−j − am,m (uεm)2

]
p (uεm)(p−1) dx

−
∫ t

0
ds

∫
Ωε

[m−1∑
j=1

am,j u
ε
m u

ε
j +

M∑
j=m+1

am,j u
ε
m u

ε
j

]
p (uεm)(p−1) dx =: I1 − I2

(64)

From the nonnegativity of solutions, I2 ≥ 0. In order to estimate I1, it is now

convenient to use Young’s inequality in the following form [12]:

a b ≤ η ap′ + η1−p bp ∀a ≥ 0, b ≥ 0 (65)

with p′ = p
p−1 . We find

I =:

∫ t

0
ds

∫
Ωε

[m−1∑
j=1

aj,m−jKjKm−j

]
p (uεm)(p−1) dx

≤
∫ t

0
ds

∫
Ωε

pp
[m−1∑
j=1

aj,m−jKjKm−j

]p
η1−p dx+

∫ t

0
ds

∫
Ωε

η

[
(uεm)(p−1)

] p
p−1

dx

≤ pp−1

(
p

p− 1

)1−p[m−1∑
j=1

aj,m−jKjKm−j

]p
η1−p |Ωε| t

+ η

∫ t

0
ds

∫
Ωε

(uεm)p dx

(66)

By using the estimate (66), I1 reads:
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I1 ≤ pp−1

(
p

p− 1

)1−p[m−1∑
j=1

aj,m−jKjKm−j

]p
η1−p |Ωε| t

+ η

∫ t

0
ds

∫
Ωε

(uεm)p dx− p am,m
∫ t

0
ds

∫
Ωε

(uεm)(p+1) dx

≤ pp−1

(
p

p− 1

)1−p[m−1∑
j=1

aj,m−jKjKm−j

]p
η1−p |Ωε| t

+ η

∫ t

0
ds

∫
Ωε

(uεm)p dx+ p am,m

∫ t

0
ds

∫
Ωε

[
1− (uεm)p

]
dx

(67)

Taking η = p am,m yields

I1 ≤
[(m−1∑

j=1

aj,m−jKjKm−j

)p
a1−p
m,m

]
|Ωε|T + p am,m |Ωε|T (68)

Finally from (64) and (68) it follows that

‖uεm‖
p
Lp(Ωε)

+ dm p (p− 1)

∫ t

0
ds

∫
Ωε

|∇uεm|2 (uεm)(p−2) dx

≤
[(m−1∑

j=1

aj,m−jKjKm−j

)p
a1−p
m,m + p am,m

]
|Ωε|T

(69)

Since the second term on the left-hand side of (69) is non-negative, we conclude that

sup
t∈[0,T ]

lim
p→∞

[ ∫
Ωε

(uεm(t, x))p dx

]1/p

≤
[m−1∑
j=1

aj,m−jKjKm−j

]
a−1
m,m + 1

(70)

which yields (60).

Lemma 4.6. The sequence ∇xuεm (1 < m < M) is bounded in L2([0, T ] × Ωε),

uniformly in ε.

Proof. Let us multiply the first equation in (12) by the function uεm(t, x). Integrat-

ing, the divergence theorem yields

1

2

∫
Ωε

∂

∂t
|uεm|2 dx+ dm

∫
Ωε

|∇xuεm|2 dx+

∫
Ωε

|uεm|2
M∑
j=1

am,j u
ε
j dx

=

∫
Ωε

f ε uεm dx

(71)
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By Hölder’s inequality, the right-hand side of Eq. (71) can be rewritten as follows

∫
Ωε

f ε(t, x)uεm(t, x) dx ≤ ‖f ε(t, ·)‖L2(Ωε) · ‖u
ε
m(t, ·)‖L2(Ωε) (72)

Thus

‖f ε(t, ·)‖L2(Ωε) =:

[ ∫
Ωε

|1
2

m−1∑
j=1

aj,m−j u
ε
j u

ε
m−j |2 dx

]1/2

≤ 1

2

m−1∑
j=1

[ ∫
Ωε

a2
j,m−j |uεj |2 |uεm−j |2 dx

]1/2

≤ 1

2

m−1∑
j=1

aj,m−j

∫
Ωε

K2
j K

2
m−j dx ≤ C3

(73)

due to the boundedness of uεj(t, x) (1 ≤ j ≤ m− 1) in L∞(0, T ;L∞(Ωε)), where C3

is a constant which does not depend on ε. Therefore, by combining (72) and (73),

Eq. (71) reads

1

2

∫
Ωε

∂

∂t
|uεm|2 dx+ dm

∫
Ωε

|∇xuεm|2 dx ≤ C3 ‖uεm(t, ·)‖L2(Ωε) (74)

since the third term on the left-hand side of (71) is non-negative. Dividing by

‖uεm(t, ·)‖L2(Ωε) and integrating over [0, t] with t ∈ [0, T ], we deduce

∫ t

0
ds

d

ds
‖uεm(s, ·)‖L2(Ωε) + dmC4

∫ t

0
ds

∫
Ωε

|∇xuεm|2 dx ≤ C3 T (75)

exploiting the boundedness of uεm(t, x) in L∞(0, T ;L∞(Ωε)). Hence

‖uεm(t, ·)‖L2(Ωε) + dmC4

∫ t

0
ds

∫
Ωε

|∇xuεm|2 dx ≤ C5 (76)

where C4 and C5 are positive constants independent of ε. Then, the boundedness of

∇xuεm(t, x) in L2([0, T ]× Ωε), uniformly in ε, follows immediately from (76).

Lemma 4.7. Let uεM (t, x) be a classical solution of (13). Then

‖uεM‖L∞(0,T ;L∞(Ωε)) ≤ KM (77)

uniformly with respect to ε, where
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KM = eT
∑

j+k≥M
k<M
j<M

aj,kKjKk (78)

with the constants Kj (1 < j < M) given by (59).

Proof. Let us test the first equation of (13) with the function

φM ≡ p (uεM )(p−1) p ≥ 2.

The function φM is strictly positive and continuously differentiable in [0, t]×Ω, for

all t > 0. Integrating, the divergence theorem yields

∫ t

0
ds

∫
Ωε

∂

∂s
(uεM )p(s) dx =− dM p

∫ t

0
ds

∫
Ωε

∇xuεM · ∇
[
(uεM )(p−1)

]
dx

+
p

2

∫ t

0
ds

∫
Ωε

∑
j+k≥M
k<M
j<M

aj,k u
ε
ju
ε
k (uεM )(p−1) dx

(79)

Hence

∫
Ωε

(uεM )p(t) dx+ dM p (p− 1)

∫ t

0
ds

∫
Ωε

|∇xuεM |2 (uεM )(p−2) dx

=
p

2

∫ t

0
ds

∫
Ωε

∑
j+k≥M
k<M
j<M

aj,k u
ε
ju
ε
k (uεM )(p−1) dx

(80)

Taking into account the boundedness of uεj (1 ≤ j < M) in L∞(0, T ;L∞(Ωε)) we

get

∫
Ωε

(uεM )p(t) dx+ dM p (p− 1)

∫ t

0
ds

∫
Ωε

|∇xuεM |2 (uεM )(p−2) dx

≤ p
∫ t

0
ds

∫
Ωε

[ ∑
j+k≥M
k<M
j<M

aj,kKjKk

]
(uεM )(p−1) dx =: I3

(81)

In order to estimate I3, we use the Young inequality in the form (65):
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I3 ≤
∫ t

0
ds

∫
Ωε

pp
[ ∑
j+k≥M
k<M
j<M

aj,kKjKk

]p
η1−p dx+

∫ t

0
ds

∫
Ωε

η (uεM )p dx

≤ pp−1

(
p

p− 1

)1−p[ ∑
j+k≥M
k<M
j<M

aj,kKjKk

]p
η1−p |Ωε| t+ η

∫ t

0
ds

∫
Ωε

(uεM )p dx

(82)

Taking η = p yields

I3 ≤
[ ∑
j+k≥M
k<M
j<M

aj,kKjKk

]p
|Ωε| t+ p

∫ t

0
ds

∫
Ωε

(uεM )p dx (83)

Finally from (81) and (83) it follows that

‖uεM (t)‖pLp(Ωε)
≤
[ ∑
j+k≥M
k<M
j<M

aj,kKjKk

]p
|Ωε|T +

∫ t

0
ds p ‖uεM (s)‖pLp(Ωε)

(84)

The Gronwall Lemma applied to (84) leads to the estimate

‖uεM (t)‖pLp(Ωε)
≤
[ ∑
j+k≥M
k<M
j<M

aj,kKjKk

]p
|Ωε|T ep t (85)

Hence

sup
t∈[0,T ]

lim
p→∞

[ ∫
Ωε

(uεM (t, x))p dx

]1/p

≤
∑

j+k≥M
k<M
j<M

aj,kKjKk e
T (86)

Lemma 4.8. The sequence ∇xuεM is bounded in L2([0, T ]× Ωε), uniformly in ε.

The proof of Lemma 4.8 is achieved by applying exactly the same arguments

considered in the proof of Lemma 4.6.

Lemma 4.9. The sequence ∂tu
ε
j (1 ≤ j ≤ M) is bounded in L2([0, T ] × Ωε), uni-

formly in ε.
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Proof. Case j = 1: let us multiply the first equation in (10) by the function ∂tu
ε
1(t, x).

Integrating, the divergence theorem yields

∫
Ωε

∣∣∣∣∂uε1(t, x)

∂t

∣∣∣∣2 dx+
d1

2

∫
Ωε

∂

∂t
(|∇xuε1(t, x)|2) dx+

∫
Ωε

( M∑
j=1

a1,j u
ε
1 u

ε
j

)
∂uε1
∂t

dx

= ε d1

∫
Γε

ψ

(
t, x,

x

ε

)
∂uε1
∂t

dσε(x)

(87)

Define: wε1(t, x) :=
∑M

j=1 a1,j u
ε
1 u

ε
j . Then, by using Hölder’s and Young’s inequali-

ties, Eq. (87) can be rewritten as follows

∫
Ωε

∣∣∣∣∂uε1∂t
∣∣∣∣2 dx+ d1

∫
Ωε

∂

∂t
(|∇xuε1|2) dx ≤ ‖wε1(t, ·)‖2L2(Ωε)

+ 2 ε d1

∫
Γε

ψ

(
t, x,

x

ε

)
∂uε1
∂t

dσε(x)

(88)

Exploiting the boundedness of uεj(t, x) (1 ≤ j ≤ M) in L∞(0, T ;L∞(Ωε)), one get

the estimate

‖wε1(t, ·)‖2L2(Ωε)
:=

∫
Ωε

∣∣∣∣ M∑
j=1

a1,j u
ε
1 u

ε
j

∣∣∣∣2 dx ≤ M∑
j=1

a2
1,j

∫
Ωε

K2
1 K

2
j dx ≤ C1 (89)

where C1 is a positive constant independent of ε. Hence, (88) becomes

∫
Ωε

∣∣∣∣∂uε1∂t
∣∣∣∣2 dx+ d1

∂

∂t

∫
Ωε

|∇xuε1|2 dx ≤ C1 + 2 ε d1

∫
Γε

ψ

(
t, x,

x

ε

)
∂uε1
∂t

dσε(x) (90)

Integrating over [0, t] with t ∈ [0, T ], we obtain

∫ t

0
ds

∫
Ωε

∣∣∣∣∂uε1∂s

∣∣∣∣2 dx+ d1

∫
Ωε

|∇xuε1(t, x)|2 dx ≤ C1 T

+ 2 ε d1

∫
Γε

ψ

(
t, x,

x

ε

)
uε1(t, x) dσε(x)

− 2 ε d1

∫ t

0
ds

∫
Γε

∂

∂s
ψ

(
s, x,

x

ε

)
uε1(s, x) dσε(x)

(91)

since ψ

(
t = 0, x, xε

)
≡ 0. Now we estimate the last two terms on the right-hand

side of (91). Taking into account the inequalities (53)-(54) and Lemma A.1, we find
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2 ε d1

∫
Γε

ψ

(
t, x,

x

ε

)
uε1(t, x) dσε(x) ≤ ε d1 ‖ψ(t, ·, ·

ε
)‖

2

L2(Γε)
+ ε d1 ‖uε1(t, ·)‖2L2(Γε)

≤ d1C2‖ψ(t)‖2B + C3 d1

∫
Ωε

|uε1|2 dx+ C3 d1 ε
2

∫
Ωε

|∇xuε1|2 dx

≤ C4 + ε2 d1C3

∫
Ωε

|∇xuε1|2 dx

(92)

where C4 ≥ 0 is a constant independent of ε since ψ ∈ L∞(0, T ;B) and uε1 is bounded

in L∞(0, T ;L∞(Ωε)). Analogously, we get the following inequality

2 ε d1

∫ t

0
ds

∫
Γε

∂

∂s
ψ

(
s, x,

x

ε

)
uε1(s, x) dσε(x)

≤ ε d1

∫ t

0
ds

∥∥∥∥∂ψ(s)

∂s

∥∥∥∥2

L2(Γε)

+ ε d1

∫ t

0
ds‖uε1(s)‖2L2(Γε)

≤ C5 d1 T + C6 d1

∫ t

0
ds‖uε1(s)‖2L2(Ωε)

+ ε2C6 d1

∫ t

0
ds‖∇xuε1(s)‖2L2(Ωε)

≤ C7

(93)

where C7 ≥ 0 is a constant independent of ε, since uε1 is bounded in L∞(0, T ;L∞(Ωε)),

∇xuε1 is bounded in L2(0, T ;L2(Ωε)) and

ε

∫
Γε

∣∣∣∣∂tψ(t, x, xε
)∣∣∣∣2 dσε(x) ≤ C̃ ‖∂tψ(t)‖2B ≤ C5

with C̃ and C5 independent of ε. Combining the estimates (92) and (93) with (91)

we obtain that

∫ t

0
ds

∫
Ωε

∣∣∣∣∂uε1∂s

∣∣∣∣2 dx+ d1(1− ε2C3)

∫
Ωε

|∇xuε1|2 dx ≤ C1 T + C4 + C7 (94)

For a sequence ε of positive numbers going to zero: (1−ε2C3) ≥ 0. Then, the second

term on the left-hand side of (94) is non-negative, and one has

‖∂tuε1‖2L2(0,T ;L2(Ωε))
≤ C (95)

where C ≥ 0 is a constant independent of ε.

Case 1 < j < M : let us multiply the first equation in (12) by the function

∂tu
ε
m(t, x). Integrating, the divergence theorem yields
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∫
Ωε

∣∣∣∣∂uεm(t, x)

∂t

∣∣∣∣2 dx+
dm
2

∫
Ωε

∂

∂t
(|∇xuεm(t, x)|2) dx+

∫
Ωε

( M∑
j=1

am,j u
ε
m u

ε
j

)
∂uεm
∂t

dx

=
1

2

∫
Ωε

(m−1∑
j=1

aj,m−j u
ε
j u

ε
m−j

)
∂uεm
∂t

dx

(96)

Define

wεm(t, x) :=
M∑
j=1

am,j u
ε
m u

ε
j

and

sεm(t, x) :=
m−1∑
j=1

aj,m−j u
ε
j u

ε
m−j .

Then, by using Hölder’s and Young’s inequalities, Eq. (96) can be rewritten as

follows

∫
Ωε

∣∣∣∣∂uεm∂t
∣∣∣∣2 dx+ 2 dm

∫
Ωε

∂

∂t
(|∇xuεm|2) dx ≤ 2 ‖wεm(t, ·)‖2L2(Ωε)

+ ‖sεm(t, ·)‖2L2(Ωε)

(97)

Exploiting the boundedness of uεj(t, x) (1 ≤ j ≤ M) in L∞(0, T ;L∞(Ωε)), one get

the estimate

‖wεm(t, ·)‖2L2(Ωε)
:=

∫
Ωε

∣∣∣∣ M∑
j=1

am,j u
ε
m u

ε
j

∣∣∣∣2 dx ≤ M∑
j=1

a2
m,j

∫
Ωε

K2
mK

2
j dx ≤ C1 (98)

where C1 is a positive constant independent of ε. Similarly, we have

‖sεm(t, ·)‖2L2(Ωε)
=:

∫
Ωε

∣∣∣∣m−1∑
j=1

aj,m−j u
ε
j u

ε
m−j

∣∣∣∣2 dx ≤ m−1∑
j=1

a2
j,m−j

∫
Ωε

K2
j K

2
m−j dx ≤ C2

(99)

where C2 is a positive constant independent of ε. Hence, (97) becomes

∫
Ωε

∣∣∣∣∂uεm∂t
∣∣∣∣2 dx+ 2 dm

∂

∂t

∫
Ωε

|∇xuεm|2 dx ≤ 2C1 + C2 (100)
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Integrating over [0, t] with t ∈ [0, T ], we obtain

∫ t

0
ds

∫
Ωε

∣∣∣∣∂uεm∂s
∣∣∣∣2 dx+ 2 dm

∫
Ωε

|∇xuεm(t, x)|2 dx ≤ C3 T (101)

Since the second term on the left-hand side of (101) is non-negative, we conclude

that

‖∂tuεm‖2L2(0,T ;L2(Ωε))
≤ C (102)

where C ≥ 0 is a constant independent of ε.

By applying exactly the same arguments considered in proving the boundedness

of ∂tu
ε
j(t, x) (1 < j < M) in L2(0, T ;L2(Ωε)), one can derive also the following

estimate

‖∂tuεM‖2L2(0,T ;L2(Ωε))
≤ C (103)

where C ≥ 0 is a constant independent of ε.

5 Homogenization of the Smoluchowski equation

5.1 Two-scale convergence method

Let us introduce some definitions and results on two-scale convergence from [3],

[4], [40], slightly modified to allow for homogenization with a parameter (the time

t) [18], [31], [38].

Definition 5.1. A sequence of functions vε in L2([0, T ]×Ω) two-scale converges to

v0 ∈ L2([0, T ]× Ω× Y ) if

lim
ε→0

∫ T

0

∫
Ω
vε(t, x)φ

(
t, x,

x

ε

)
dt dx =

∫ T

0

∫
Ω

∫
Y
v0(t, x, y)φ(t, x, y) dt dx dy (104)

for all φ ∈ C1([0, T ]× Ω;C∞# (Y )).

The notion of ’two-scale convergence’ makes sense because of the next compact-

ness theorem.

31



Theorem 5.1. If vε is a bounded sequence in L2([0, T ] × Ω), then there exists a

function v0(t, x, y) in L2([0, T ]×Ω×Y ) such that, up to a subsequence, vε two-scale

converges to v0.

The following theorem is useful in obtaining the limit of the product of two two-

scale convergent sequences.

Theorem 5.2. Let vε be a sequence of functions in L2([0, T ] × Ω) which two-scale

converges to a limit v0 ∈ L2([0, T ]× Ω× Y ). Suppose furthermore that

lim
ε→0

∫ T

0

∫
Ω
|vε(t, x)|2 dt dx =

∫ T

0

∫
Ω

∫
Y
|v0(t, x, y)|2 dt dx dy (105)

Then, for any sequence wε in L2([0, T ] × Ω) that two-scale converges to a limit

w0 ∈ L2([0, T ]× Ω× Y ), we have

lim
ε→0

∫ T

0

∫
Ω
vε(t, x)wε(t, x)φ

(
t, x,

x

ε

)
dt dx

=

∫ T

0

∫
Ω

∫
Y
v0(t, x, y)w0(t, x, y)φ(t, x, y) dt dx dy

(106)

for all φ ∈ C1([0, T ]× Ω;C∞# (Y )).

The next theorems yield a characterization of the two-scale limit of the gradients

of bounded sequences vε. This result is crucial for applications to homogenization

problems.

We identify H1(Ω) = W 1,2(Ω), where the Sobolev space W 1,p(Ω) is defined by

W 1,p(Ω) =

{
u|u ∈ Lp(Ω),

∂u

∂xi
∈ Lp(Ω), i = 1, . . . , N

}
and we denote by H1

#(Y ) the closure of C∞# (Y ) for the H1-norm.

Theorem 5.3. Let vε be a bounded sequence in L2(0, T ;H1(Ω)) that converges

weakly to a limit v(t, x) in L2(0, T ;H1(Ω)). Then, vε two-scale converges to v(t, x),

and there exists a function v1(t, x, y) in L2([0, T ]×Ω;H1
#(Y )/R) such that, up to a

subsequence, ∇vε two-scale converges to ∇xv(t, x) +∇yv1(t, x, y).

Theorem 5.4. Let vε and ε∇vε be two bounded sequences in L2([0, T ]×Ω). Then,

there exists a function v1(t, x, y) in L2([0, T ]×Ω;H1
#(Y )/R) such that, up to a subse-

quence, vε and ε∇vε two-scale converge to v1(t, x, y) and ∇yv1(t, x, y), respectively.

32



The main result of two-scale convergence can be generalized to the case of se-

quences defined in L2([0, T ]× Γε).

Theorem 5.5. Let vε be a sequence in L2([0, T ]× Γε) such that

ε

∫ T

0

∫
Γε

|vε(t, x)|2 dt dσε(x) ≤ C (107)

where C is a positive constant, independent of ε. There exist a subsequence (still

denoted by ε) and a two-scale limit v0(t, x, y) ∈ L2([0, T ]×Ω;L2(Γ)) such that vε(t, x)

two-scale converges to v0(t, x, y) in the sense that

lim
ε→0

ε

∫ T

0

∫
Γε

vε(t, x)φ

(
t, x,

x

ε

)
dt dσε(x) =

∫ T

0

∫
Ω

∫
Γ
v0(t, x, y)φ(t, x, y) dt dx dσ(y)

(108)

for any function φ ∈ C1([0, T ]× Ω;C∞# (Y )).

The proof of Theorem 5.5 is very similar to the usual two-scale convergence

theorem [3]. It relies on the following lemma [4]:

Lemma 5.1. Let B = C[Ω;C#(Y )] be the space of continuous functions φ(x, y) on

Ω × Y which are Y -periodic in y. Then, B is a separable Banach space which is

dense in L2(Ω;L2(Γ)), and such that any function φ(x, y) ∈ B satisfies

ε

∫
Γε

∣∣∣∣φ(x,
x

ε
)

∣∣∣∣2 dσε(x) ≤ C ‖φ‖2B, (109)

and

lim
ε→0

ε

∫
Γε

∣∣∣∣φ(x, xε
)∣∣∣∣2 dσε(x) =

∫
Ω

∫
Γ
|φ(x, y)|2 dx dσ(y). (110)

5.2 Presentation of the main results

Theorem 5.6. Let uεm(t, x) (1 ≤ m ≤M) be a family of classical solutions to prob-

lems (10)-(13). The sequences ũεm and ∇̃xuεm (1 ≤ m ≤ M) two-scale converge to:

[χ(y)um(t, x)] and [χ(y)(∇xum(t, x) + ∇yu1
m(t, x, y))] (1 ≤ m ≤ M), respectively,

where tilde denotes the extension by zero outside Ωε and χ(y) represents the charac-

teristic function of Y ∗. The limiting functions (um(t, x), u1
m(t, x, y)) (1 ≤ m ≤ M)
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are the unique solutions in L2(0, T ;H1(Ω))×L2([0, T ]×Ω;H1
#(Y )/R) of the following

two-scale homogenized systems:

If m = 1 we have:



θ ∂u1
∂t

(t, x)− divx
[
d1A∇xu1(t, x)

]
+ θ u1(t, x)

∑M
j=1 a1,j uj(t, x)

= d1

∫
Γ
ψ(t, x, y) dσ(y) in [0, T ]× Ω

[A∇xu1(t, x)] · n = 0 on [0, T ]× ∂Ω

u1(0, x) = U1 in Ω

(111)

if 1 < m < M we have



θ ∂um
∂t

(t, x)− divx
[
dmA∇xum(t, x)

]
+ θ um(t, x)

∑M
j=1 am,j uj(t, x)

= θ
2
∑m−1

j=1 aj,m−juj(t, x)um−j(t, x) in [0, T ]× Ω

[A∇xum(t, x)] · n = 0 on [0, T ]× ∂Ω

um(0, x) = 0 in Ω

(112)

if m = M we have:



θ ∂uM
∂t

(t, x)− divx
[
dM A∇xuM (t, x)

]
= θ

2
∑

j+k≥M
k<M
j<M

aj,k uj(t, x)uk(t, x) in [0, T ]× Ω

[A∇xuM (t, x)] · n = 0 on [0, T ]× ∂Ω

uM (0, x) = 0 in Ω

(113)
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where

u1
m(t, x, y) =

N∑
i=1

wi(y)
∂um
∂xi

(t, x) (1 ≤ m ≤M),

θ =

∫
Y
χ(y)dy = |Y ∗|

is the volume fraction of material, and A is a matrix with constant coefficients

defined by

Aij =

∫
Y ∗

(∇ywi + êi) · (∇ywj + êj) dy

with êi being the i-th unit vector in RN , and (wi)1≤i≤N the family of solutions of the

cell problem


−divy[∇ywi + êi] = 0 in Y ∗

(∇ywi + êi) · n = 0 on Γ

y → wi(y) Y − periodic

(114)

Proof. In view of Lemmas 4.1-4.2 and 4.4-4.8 the sequences ũεm and ∇̃xuεm (1 ≤

m ≤ M) are bounded in L2([0, T ] × Ω), and by application of Theorem 5.1 and

Theorem 5.3 they two-scale converge, up to a subsequence, to: [χ(y)um(t, x)] and

[χ(y)(∇xum(t, x) +∇yu1
m(t, x, y))] (1 ≤ m ≤ M). Similarly, in view of Lemma 4.9,

it is possible to prove that the sequence

(
∂̃uεm
∂t

)
(1 ≤ m ≤M) two-scale converges

to:

[
χ(y) ∂um

∂t
(t, x)

]
(1 ≤ m ≤M).

We can now find the homogenized equations satisfied by um(t, x) and u1
m(t, x, y)

(1 ≤ m ≤M).

In the case m = 1, let us multiply the first equation of (10) by the test function

φε ≡ φ(t, x) + ε φ1

(
t, x,

x

ε

)
where φ ∈ C1([0, T ]×Ω) and φ1 ∈ C1([0, T ]×Ω;C∞# (Y )). Integrating, the divergence

theorem yields
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∫ T

0

∫
Ωε

∂uε1
∂t

φε(t, x,
x

ε
) dt dx+ d1

∫ T

0

∫
Ωε

∇xuε1 · ∇φε dt dx

+

∫ T

0

∫
Ωε

uε1

M∑
j=1

a1,j u
ε
j φε dt dx = ε d1

∫ T

0

∫
Γε

ψ

(
t, x,

x

ε

)
φε dt dσε(x)

(115)

Passing to the two-scale limit we get

∫ T

0

∫
Ω

∫
Y ∗

∂u1

∂t
(t, x)φ(t, x) dt dx dy

+ d1

∫ T

0

∫
Ω

∫
Y ∗

[∇xu1(t, x) +∇yu1
1(t, x, y)] · [∇xφ(t, x) +∇yφ1(t, x, y)] dt dx dy

+

∫ T

0

∫
Ω

∫
Y ∗
u1(t, x)

M∑
j=1

a1,j uj(t, x)φ(t, x) dt dx dy

= d1

∫ T

0

∫
Ω

∫
Γ
ψ(t, x, y)φ(t, x) dt dx dσ(y).

(116)

The last term on the left-hand side of (116) has been obtained by using Theorem 5.2,

while the term on the right-hand side has been attained by application of Theorem

5.5. An integration by parts shows that (116) is a variational formulation associated

to the following homogenized system:

−divy[d1(∇xu1(t, x) +∇yu1
1(t, x, y))] = 0 in [0, T ]× Ω× Y ∗ (117)

[∇xu1(t, x) +∇yu1
1(t, x, y)] · n = 0 on [0, T ]× Ω× Γ (118)

θ
∂u1

∂t
(t, x)− divx

[
d1

∫
Y ∗

(∇xu1(t, x) +∇yu1
1(t, x, y))dy

]
+ θ u1(t, x)

M∑
j=1

a1,j uj(t, x)− d1

∫
Γ
ψ(t, x, y) dσ(y) = 0 in [0, T ]× Ω

(119)

[ ∫
Y ∗

(∇xu1(t, x) +∇yu1
1(t, x, y)) dy

]
· n = 0 on [0, T ]× ∂Ω (120)

where
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θ =

∫
Y
χ(y)dy = |Y ∗|

is the volume fraction of material. To conclude, by continuity, we have that

u1(0, x) = U1 in Ω.

Taking advantage of the constancy of the diffusion coefficient d1, Eqs. (117) and

(118) can be reexpressed as follows

4yu
1
1(t, x, y) = 0 in [0, T ]× Ω× Y ∗ (121)

∇yu1
1(t, x, y) · n = −∇xu1(t, x) · n on [0, T ]× Ω× Γ (122)

Then, u1
1(t, x, y) satisfying (121)-(122) can be written as

u1
1(t, x, y) =

N∑
i=1

wi(y)
∂u1

∂xi
(t, x) (123)

where (wi)1≤i≤N is the family of solutions of the cell problem


−divy[∇ywi + êi] = 0 in Y ∗

(∇ywi + êi) · n = 0 on Γ

y → wi(y) Y − periodic

(124)

By using the relation (123) in Eqs. (119) and (120) we get

θ
∂u1

∂t
(t, x)− divx

[
d1A∇xu1(t, x)

]
+ θ u1(t, x)

M∑
j=1

a1,j uj(t, x)

− d1

∫
Γ
ψ(t, x, y) dσ(y) = 0 in [0, T ]× Ω

(125)

[A∇xu1(t, x)] · n = 0 on [0, T ]× ∂Ω (126)

where A is a matrix with constant coefficients defined by

Aij =

∫
Y ∗

(∇ywi + êi) · (∇ywj + êj) dy.
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In the case 1 < m < M , let us multiply the first equation of (12) by the test

function

φε ≡ φ(t, x) + ε φ1

(
t, x,

x

ε

)
where φ ∈ C1([0, T ]×Ω) and φ1 ∈ C1([0, T ]×Ω;C∞# (Y )). Integrating, the divergence

theorem yields

∫ T

0

∫
Ωε

∂uεm
∂t

φε(t, x,
x

ε
) dt dx+ dm

∫ T

0

∫
Ωε

∇xuεm · ∇φε dt dx

+

∫ T

0

∫
Ωε

uεm

M∑
j=1

am,j u
ε
j φε dt dx =

1

2

∫ T

0

∫
Ωε

m−1∑
j=1

aj,m−j u
ε
j u

ε
m−j φε dt dx

(127)

Passing to the two-scale limit we get

∫ T

0

∫
Ω

∫
Y ∗

∂um
∂t

(t, x)φ(t, x) dt dx dy

+ dm

∫ T

0

∫
Ω

∫
Y ∗

[∇xum(t, x) +∇yu1
m(t, x, y)] · [∇xφ(t, x) +∇yφ1(t, x, y)] dt dx dy

+

∫ T

0

∫
Ω

∫
Y ∗
um(t, x)

M∑
j=1

am,j uj(t, x)φ(t, x) dt dx dy

=
1

2

∫ T

0

∫
Ω

∫
Y ∗

m−1∑
j=1

aj,m−j uj(t, x)um−j(t, x)φ(t, x) dt dx dy.

(128)

The last term on the left-hand side of (128) and the term on the right-hand side

have been obtained by using Theorem 5.2. An integration by parts shows that (128)

is a variational formulation associated to the following homogenized system:

−divy[dm(∇xum(t, x) +∇yu1
m(t, x, y))] = 0 in [0, T ]× Ω× Y ∗ (129)

[∇xum(t, x) +∇yu1
m(t, x, y)] · n = 0 on [0, T ]× Ω× Γ (130)
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θ
∂um
∂t

(t, x)− divx
[
dm

∫
Y ∗

(∇xum(t, x) +∇yu1
m(t, x, y))dy

]
+ θ um(t, x)

M∑
j=1

am,j uj(t, x)− θ

2

m−1∑
j=1

aj,m−juj(t, x)um−j(t, x) = 0 in [0, T ]× Ω

(131)

[ ∫
Y ∗

(∇xum(t, x) +∇yu1
m(t, x, y)) dy

]
· n = 0 on [0, T ]× ∂Ω (132)

where

θ =

∫
Y
χ(y)dy = |Y ∗|

is the volume fraction of material. Moreover, by continuity

um(0, x) = 0 in Ω.

Taking advantage of the constancy of the diffusion coefficient dm, Eqs. (129) and

(130) can be reexpressed as follows

4yu
1
m(t, x, y) = 0 in [0, T ]× Ω× Y ∗ (133)

∇yu1
m(t, x, y) · n = −∇xum(t, x) · n on [0, T ]× Ω× Γ (134)

Then, u1
m(t, x, y) satisfying (133)-(134) can be written as

u1
m(t, x, y) =

N∑
i=1

wi(y)
∂um
∂xi

(t, x) (135)

where (wi)1≤i≤N is the family of solutions of the cell problem


−divy[∇ywi + êi] = 0 in Y ∗

(∇ywi + êi) · n = 0 on Γ

y → wi(y) Y − periodic

(136)

By using the relation (135) in Eqs. (131) and (132) we get
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θ
∂um
∂t

(t, x)− divx
[
dmA∇xum(t, x)

]
+ θ um(t, x)

M∑
j=1

am,j uj(t, x)

− θ

2

m−1∑
j=1

aj,m−j uj(t, x)um−j(t, x) = 0 in [0, T ]× Ω

(137)

[A∇xum(t, x)] · n = 0 on [0, T ]× ∂Ω (138)

where A is a matrix with constant coefficients defined by

Aij =

∫
Y ∗

(∇ywi + êi) · (∇ywj + êj) dy.

The proof for the case m = M is achieved by applying exactly the same arguments

considered when 1 < m < M .

Theorem 5.6 shows that the macroscale (homogenized) model, obtained from Eqs.

(10)-(13) as ε→ 0, is asymptotically consistent with the original model and resolves

both the coarse and the small scale. The information given on the micro-scale, by

the non-homogeneous Neumann boundary condition in (10), is transferred into the

source term in the first equation of (111), describing the limit model. Furthermore,

on the macro-scale, the geometric structure of the perforated domain induces a

correction in that the scalar diffusion coefficients di (1 ≤ i ≤ M), defined at the

microscale, are replaced by a tensorial quantity with constant coefficients.

A Appendix A

Lemma A.1. The following estimate holds: if v ∈ Lip(Ωε), then

‖v‖2L2(Γε)
≤ C1

[
ε−1

∫
Ωε

|v|2 dx+ ε

∫
Ωε

|∇xv|2 dx
]

(139)

where C1 is a constant which does not depend on ε.

The inequality (139) can be easily obtained from the standard trace theorem by

means of a scaling argument [4], [14], [15].
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Lemma A.2. Suppose that the domain Ωε is such that assumption (8) is satisfied.

Then there exists a family of linear continuous extension operators

Pε : W 1,p(Ωε)→W 1,p(Ω)

and a constant C > 0 independent of ε such that

Pεu = u in Ωε

and

∫
Ω
|Pεu|pdx ≤ C

∫
Ωε

|u|pdx , (140)

∫
Ω
|∇(Pεu)|pdx ≤ C

∫
Ωε

|∇u|pdx (141)

for each u ∈W 1,p(Ωε) and for any p ∈ (1,+∞).

For the proof of this Lemma see for instance [14].

As a consequence of the existence of extension operators one can derive the

Sobolev inequalities in W 1,p(Ωε) with a constant independent of ε.

Lemma A.3 (Anisotropic Sobolev inequalities in perforated domains).

(i) For arbitrary u ∈ H1(0, T ;L2(Ωε)) ∩ L2(0, T ;H1(Ωε)) and q1 and r1 satisfying

the conditions


1
r1

+ N
2q1

= N
4

r1 ∈ [2,∞], q1 ∈ [2, 2N
N−2 ] for N > 2

(142)

the following estimate holds

‖u‖Lr1 (0,T ;Lq1 (Ωε)) ≤ c ‖u‖Qε(T ) (143)

where c is a positive constant independent of ε and

‖u‖2Qε(T ) := sup
0≤t≤T

∫
Ωε

|u(t)|2 dx+

∫ T

0
dt

∫
Ωε

|∇u(t)|2 dx (144)
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(ii) For arbitrary u ∈ H1(0, T ;L2(Ωε)) ∩ L2(0, T ;H1(Ωε)) and q2 and r2 satisfying

the conditions


1
r2

+
(N − 1)

2q2
= N

4

r2 ∈ [2,∞], q2 ∈ [2, 2(N−1)
(N−2) ] for N ≥ 3

(145)

the following estimate holds

‖u‖Lr2 (0,T ;Lq2 (Γε)) ≤ c ε
−N

2
− (1−N)

q2 ‖u‖Qε(T ) (146)

where c is a positive constant independent of ε and the norm ‖u‖Qε(T ) is defined as

in (144).

Proof.

(i) The extension Lemma A.2 ensures the well-definiteness of a linear continuous

extension operator Pε which satisfies (140) and (141). By the classical multiplicative

Sobolev inequalities valid in Ω (see [33] and [41]), we have that

‖Pεu‖Lr1 (0,T ;Lq1 (Ω)) ≤ c1 ‖Pεu‖Q(T ) (147)

where c1 ≥ 0 depends only on Ω, r1, q1, with r1 and q1 satisfying the conditions

(142) and

‖Pεu‖2Q(T ) := sup
0≤t≤T

∫
Ω
|Pεu(t)|2 dx+

∫ T

0
dt

∫
Ω
|∇(Pεu(t))|2 dx (148)

By using (140), (141) and (147), we conclude that

‖u‖Lr1 (0,T ;Lq1 (Ωε)) ≤ C
′ ‖Pεu‖Lr1 (0,T ;Lq1 (Ω))

≤ C ′ c1 ‖Pεu‖Q(T ) ≤ C ′ c1C ‖u‖Qε(T )

(149)

where c := C ′ c1C is independent of ε.

(ii) Let us rewrite the anisotropic Sobolev inequality valid on ∂Ω (see [33] and [41]):

[ ∫ T

0
dt

[ ∫
∂Ω
|u(t)|q2 dHN−1

] r2
q2

] 1
r2

≤ c1

[
sup

0≤t≤T

∫
Ω
|u(t)|2 dy +

∫ T

0
dt

∫
Ω
|∇u(t)|2 dy

]1/2
(150)
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where c1 ≥ 0 depends only on r2, q2 and on local properties of the surface ∂Ω (which

is assumed to be piecewise smooth) with r2 and q2 satisfying the conditions (145).

By performing the change of variable y = x
ε , it is easy to obtain the corresponding

re-scaled estimates:

ε
(1−N)
q2

[ ∫ T

0
dt

[ ∫
Γε

|u(t)|q2 dHN−1

] r2
q2

] 1
r2

≤ c1 ε
−N

2

[
sup

0≤t≤T

∫
Ωε

|u(t)|2 dx+ ε2
∫ T

0
dt

∫
Ωε

|∇u(t)|2 dx
]1/2

(151)

[ ∫ T

0
dt

[ ∫
Γε

|u(t)|q2 dHN−1

] r2
q2

] 1
r2

≤ c ε−
N
2
− (1−N)

q2

[
sup

0≤t≤T

∫
Ωε

|u(t)|2 dx+

∫ T

0
dt

∫
Ωε

|∇u(t)|2 dx
]1/2

(152)

where c is a positive constant independent of ε.
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