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QUASI-STATIC EVOLUTION FOR FATIGUE DEBONDING

ALESSANDRO FERRIERO!

Abstract. The propagation of fractures in a solid undergoing cyclic loadings is known as the fatigue
phenomenon. In this paper, we present a time continuous model for fatigue, in the special situation of
the debonding of thin layers, coming from a time discretized version recently proposed by A. Jaubert
and J.-J. Marigo [11]. Under very general assumptions on the surface energy density and on the
applied displacement, we discuss the well-posedness of our problem and we give the main properties of
the evolution process.
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INTRODUCTION

In 1998 [7], G. Francfort and J.-J. Marigo proposed a variational theory of brittle fracture which does away
with some important defects of the classical Griffith theory [10], such as the impossibility of crack initiation,
the a priori knowledge of the crack path and the the high regularity of the crack zone.

The main idea, borrowed from Mumford-Shah model for image segmentation [12], is that the crack wants
to quasi-statically minimize its total energy among all competitors. In other words, at any time the crack
must minimize the elastic energy of the uncracked part of the material plus the surface energy of the crack
among all possible cracks greater than the previous one (cracks cannot disappear). Furthermore, to recover
the propagation criteria of Griffith theory in the current setting, the evolution is also constrained to satisfy an
energy balance between the work of the external forces and the mechanical energy of the system.

Following Griffith’s hypothesis, the surface energy of the crack is proportional to the surface area of the
crack, independently of the value of the displacement jump. Because of that, the model proposed in [7] cannot
provide crack propagation for fatigue.

We recall briefly that the fatigue phenomenon is the growth of cracks in a structure submitted to cyclic
loadings. It can be observed that fractures propagate with each cycle even if the maximal intensity of the
applied loads remain constant.

In a recent work [11], A. Jaubert and J.-J. Marigo have extended the variational model of fracture evolution
to also provide for fatigue. As a first approach, they consider the problem of the debonding of a thin layer
initially glued to a fixed substrate and submitted to a cyclic deflection at one tip (that can be seen as a simplified
two-dimensional crack evolution model).

The new ingredients introduced in [11] are a memory field of the displacement history and a surface energy
density depending on the displacement jump, instead of the Griffith energy. The model is therefore written in
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terms of a family of time discrete evolutions. At each time step, a static variational problem is solved, and time
evolution is considered through an irreversibility condition on the memory field.

In this paper, we formulate a time continuous evolution model for the process presented in [11], in the spirit
of [3-8], and we prove an existence result for such an evolution. In [8] and references therein, the physical
meaning of those formulations is discussed.

The continuous model is based on two equations: the energy balance, that is the mechanical version of the
second law of thermodynamics, and the stability condition, that is the minimality property postulated for the
evolution at any fixed time.

Two difficult tasks are faced in order to obtain the continuous formulation. The surface energy density is
concave and bounded. That complicates the analysis since we look for a priori estimates. In [8], a very general
existence result for rate-independent processes is proved (with coercive surface energy density). Then, one
should carry the information coming from the displacement history over to the continuous formulation.

The paper is organized as follows. In section 1, we introduce the problem and in section 2 give the main
properties of the time discrete evolution. We show that our formulation is well-posed, i.e. it admits a solution
and the solution is unique. In section 3, we derive the a priori estimate used in performing the limit as the time
step goes to zero. In section 4, we present the time continuous formulation of the problem that is our main
result.

1. THE VARIATIONAL FORMULATION

In [11], the debonding of an inextensible and perfectly flexible thin layer due to a cyclic deflection is considered.
Let us briefly recall the problem.

At the initial time ¢ = 0 the layer is perfectly glued to a rigid substrate. One end is submitted to a constant
horizontal tension N and to a vertical cyclic deflection V' (t), while the other end is fixed.

Let u(t, ) be the displacement of the layer at time ¢ and let L be the length of the layer. Following the idea
introduced by G. Francfort and J.-J. Marigo [7], the quasi-static evolution of the debonding is the result of a
limit process of a time discretized sequence of minimization problems. At each time ¢, the total energy to be
minimized is the result of the competition between potential and surface energy.

Since the layer is inextensible and perfectly flexible, the potential energy can be written as

N L
2

Meanwhile, the surface energy density is a generic increase concave function ¢ (in [11], the case of Dugdale

2

ou
%(t, x)| dx.

energy density is presented). In order to account for the fatigue, a memory field §(z,t) := fot [a(T, )| Tdr is
introduced in [11].
The surface energy can be written as

L
| ottt
0

Specifically, the problem can be stated as follows.

Let N be a positive constant, let ¢ : [0,00) — [0,00) be a non-decreasing concave function!, with ¢(0) = 0,
¢ is differentiable at 0 and ¢'(0) < 400, and let V : [0,T] — [0,00), V(0) = 0, be an absolutely continuous
function with piecewise continuous derivative. We assume that V' has a finite number of cycles, meaning that
the open set {t € (0,T) : V is continuous at t, V(t) > 0} has finitely many connected components.

By the concavity assumption, the left and the right derivative of ¢ exist finite everywhere in (0,00). We
denote by ¢’ the left derivative of ¢ at any point in (0,00). At the point 0, the derivative of ¢ is nothing but its
right derivative, since ¢ is not defined in a left neighbourhood of 0. With an abuse of notation, we still denote
the derivative of ¢ in 0 by ¢’ (0) := ¢'(0).

1¢ is in particular sub-additive.
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The starting point of the formulation is the discretization in time.
= T be any given partition P" of the interval [0, T]. For any ¢ in {0,1,--- ,p(n)},

Let 0 =ty <tf <--- <t],)=
the problem of the debonding of a thin layer is defined by iteration as follows

(P?) minimize
TL

/ o071 + [u— uj )

0, u(L) = V(&) = V",

on the set of functions v in W12(0, L) satisfying u(0) =

where
I solution to (P? ;) ,i>1
il 0 ,i=0 "
- )
- p—olup —up_y]t i>1
! i=0

2. THE TIME-DISCRETE EVOLUTION

First of all, observe that any (P?) does admit a solution. In fact, its related Lagrangian

n N n n
Li(z,u,§) = 5\52 +o(071 (@) + [u— u_y (2)]7)
is coercive and continuous. From standard arguments of the Direct Method of the Calculus of Variations [2], it

follows that it admits at least a solution u?* in W12(0, L), for any given boundary conditions
Any solution u? satisfies the Euler-Lagrange equation in a weak form. This is proved in the following lemma

)}, ul satisfies the Euler-Lagrange condition:

Lemma 1. For any i in {0,1,--- ,p(n
dul d
0< N/ L 210 / ¢ (67" )vo +/ ¢y (871 [wol ™,
dz dr - Jugsur ) fup=up,}

for any vy in W(l)’2 (0,L).
(0,L), € > 0 and consider the function u} + evg. By the minimality of u

N L qum dvg
< TP (™ In n 2 i 70
0 Z¥ (i + evo) = / /0 dx dx+

L
/ G671 + [ui + evo — uj 4]") —/0 GOy + [uf —ui ")

The Euler-Lagrange condition is obtained taking the limit in the previous inequality as € goes to 0

L
OSN/ du;’ dvo {/ (05 4 [ui" + evo — ui 4] )—/ (15(5?—14'[“?_“?—1?)}-
0 0

PRrROOF. Fix vy in Wé’Q . we have

d'UO

dr dx e—0+
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The concavity of ¢ implies that ¢’ is bounded by ¢'(0); we can therefore apply the Lebesgue Dominated
Convergence Theorem and it follows that

L
lim inf - {/ (871 + [uf + evo — u )—/O B0, + [ug —u?1]+)}
L
= / lim {(b( o [uf evo — o ]T) = o(01y + [uf —uiy]h)}

64)0+
_ ] &, (7)o + / o (87)vo + / & (01 o]
{u;qu;L_1>O,v020} {u;‘fu?_1>0,vo<0} {uffu;‘_1:0}
< / & (7)o + / &, (67 )[wo]*,
{un>“? 1} {“?:"?71}

where we used the fact that ¢/, < ¢’ to estimate the integral on the set {u} —uj* ; > 0,v9 > 0}. That concludes
the proof. O

Two weaker forms of the Euler-Lagrange condition will be used in the paper. We recall that the concavity
of ¢ implies that ¢’ is non-negative and ¢, < ¢’ . First

L L
dul’ dvg ,
0< N L o 1
- /0 dz dx+/0 9= (87")vo, (1)

for any vy > 0, vo € W2(0, L).
Then, considering variations vy that vanish on the set {u} = u? ;}, we obtain the equation

du} dvo
=N ! (5™ 2
0= / dr dz /{u;‘>u?1} ¢=(8F)vo, @)

for any vy € W(l]’g(O, L), v {ur=ur_} = 0, by writing the Euler-Lagrange condition for vy and for —vp. In what
follows, we refer to the this equation has the Euler-Lagrange equation.

Lemma 2. The u}' enjoy the following properties:

I. u} are convez;
I u? belong to W2°°(0, L);
IIL. 4f x in [0, L] is such that ul(x) =0, then ul =0 on [0, ]
(= ul' are non-negative);
IV. ul are strictly increasing in {x € [0, L] : v} > 0} = («}, L].

ProOF OF I. Suppose that u] is not convex.
Recall that u? is continuous in [0, L] since it belongs to W12(0, L). Hence, there exists an interval [a,b] C
[0, L] such that u? is above the line segment that joint u?(a) to ul*(b), i.e.

u () > wia) + (o — ) T O D .

for any z in (a,b).
Consider the admissible competitor @ to u]' given by

U= TapX[ap] + U {1 = Xjap) }-
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We have that

) - =3 [ [ o - YOO o),

By the monotonicity of ¢ and Jensen’s inequality, Z!* (ul’) —Z" (@) > 0, and, hence, v would not be a minimizer.

dul

PRrROOF OF II. Let x1, z2 be two points in (0, L), x; < x5 (notice that they might be the same point). Fix € > 0,
e <min{xy, L — 22}, and set

0 € 0,21 —¢€) 0 €[0,21 —¢€)
don 1/e € [z1 —€,m1) © g (x—xz1+¢€)/e € [z —e€,21)
Yo n Yo
T (£):=<¢ 0 , @ € [x1,22) . vi(z) ::/ — =<1 € [z1,22)
x o dx
—1/e € [x2, 22 +¢€) (xo+e—x)/e € [z2, 22 +¢€)
0 S [Iz +€,L] 0 [332 + €, L]

By definition, v{’ belongs to Wé’Z(O, L).
By Lemma 1, u} satisfies the Euler-Lagrange inequality (1) in direction v{:

z1 n T2+€ n x1 Tote o
0 <N 1dﬁ*N/ %%Jr ¢ (o) TE T / ¢ (67) / (;5’_(5;1)"“76‘”

zy—c € dz , o1 —e €
< NU’Z (Il) I:’Z (:El — E) _ N 1, (IQ + 62 u’i (:C2) —|—¢/(O)(1‘2 — 4 26).

As € goes to 0, using the convexity of u? (point I), we obtain

du} du} B
N{d T )dx—(xl)}
dui  du

By letting x1 = x vary in (0, L), it follows that the right and the left derivative of u}* coincide, i.e. — .

det  dx—’
Hence,
dul dul ¢'(0)
_ < _ 3
dl' ('TQ) dCC (Z'l) —_ N (3}'2 ‘Tl), ( )
N . . . du}
that implies, since x1 and x5 are arbitrary in (0, L), — (0,L).

Proor oF III. Consider the admissible competitor u to u given by 4 := uf'x[,,1).- We proceed by induction
on 4.
In case ¢ = 0, by the minimality of ug, we have that

dun 2

dx

n(, n n(— N zdu
OZIO(UO)_IO(U):§A

n

(68)
/ o)z [
dug
Hence, T 0 and, by the fact uf(0) =0, uf = 0 on [0, z].
x

In case ¢ > 1, assume that the statement is true for u}' ;. Then, v} ; > 0 and

N [*|dur|? R * o(sn T
N T dut

s [ o2 X [|%

0> T3 (uf') - Zi"(w)

7L

2
)
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n

by the monotonicity of ¢ (by definition, 67 > 67 ,, for any i). Hence, % = 0 and, by the fact u?'(0) = 0,
ul =0 on [0, z].

PRrROOF OF IV. By point III, there exists 7 in [0, L) such that {z € [0, L] : u > 0} = (zF, L]. Since u}'(z}) =
and ul > 0 in (27, L], by the convexity of ul* (point I), it follows that ddx >0 in (2 ,L]. O

Any problem (P7) is well-posed. In fact, it admits a solution (see the first observation at the beginning of
this section) and the solution is unique. That is proved in Theorem 1 below.

Theorem 1. For any i in {0,1,--- ,p(n)}, (P}) admits unique solution.

PROOF. We prove the result by iteration on i.

Consider the problem (Pf).

In case V' = 0, by point III of Lemma 2, ug = 0 is the unique solution.

In case V* > 0, suppose that there exist two solutions wg # ug. From the continuity of wy and ug
(point II, Lemma 2), we can construct other two solutions w{ # u such that w{ > uj. They are defined by
wy = max{wy,ay} and uf := min{wy, af}. The fact that they are solutions comes from the global character
of minima. More precisely, if @ and b are two points in [0, L], a < b, such that 4} (a) = @0 (a) and a§ (b) = 0§ (b),
then, by comparing Zg (u) to Zg (g (1 — X[a,5)) + WG X[a,5) and Zg (wf) to Zg (0 (1 = X(a,p)) + UG X[a,5]), We get
I a,p) (@g) = ¢ lja,p) (05), where Zi| (4,5 denotes the functional Zg' in which the integrals are taken on [a, b].

Let yg and x be the points defined as

yo ==sup{z € [0,L
o = sup{e € [0, ) : w(x) = 0},

Point III of Lemma 2 implies that {z € [0,L] : w{(x) = 0} = [0, 93], {= € [0, L] : uf(x) = 0} = [0,zf], and,
from the assumption wg > ug, it follows that y§ < zg. Furthermore, by the continuity of the derivative of ug
and of w{ (Lemma 2, point II), it follows that

0=w;'(yy) = uj' (vg) = da:z (yo) = de (z5)-

From the definition of z and y{, we obtain from Euler-Lagrange equation (2)

d’Uo

0=N
d:v dr

n
To

1,1
/ ¢ (ug)vo , for any vg € Wy (), L),

and,

L L

dw? d

0= N/ Wi 4% —|—/ ¢ (w§)vy ,for any vy € Wé’l(yg,[/)
yg dr dx p

’L

belong to W1(0, L) (Lemma 2, point II), using integration by part formula

x
and the Fundamental Lemma of the Calculus of Variations [2], we can write both equations in a classical form:

d*ul
Cé )

dx?

() = ¢ (ug(z)) forae x€laf, L],

O(2) = ¢ (wi(z)) ,forae. xcyy, L)

Since, from point IV of Lemma 2, w{ and ug are strictly increasing respectively in [yy, L] and [z, L], their
inverse functions wy "~ and ug’_l are well defined in [0, V{']. As we plug the inverse functions in the equations,
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we obtain

d?ul _ d>wl .
NEE0 ™ (2) = 6'() = NI (w7 (2),
for any z in [0, V*]. That gives rise to a contradiction

Indeed, fix z in (zf, L]. By integrating over [0, uj(x)] the chain of equalities above and applying the changes
of variable z = u{}(y) and z = w{ (y), we obtain

dPu duf ug (%) d2u
N 0 =N O n,—l

() dz W g (@) g2
=N / gyt epaz = [ v
0 x

dwO
o dax? dx (y)dy
0
1 |dup]? e A2l du? N
Since 5 ’d:z: is a primitive of 72 dn (and analogously for w(}), it follows
2 2 2
duo() _ duo() _7du0( ny
dz dz dz
CONdwy aa, WP N dwy PN dwy ]
=9 | dx (wo™™ " (ug (x))) 5Y %(yo) =9 | dr (w (ug (x)))
d n d n
(we recall that o (zf) = 0

dr \F0 da (y9) = 0).
Observe that uf(z) < wi(z)

"(uf(z)) < . Then, by the convexity of w{,
dug dwy , n_1 dwg
70 —_ 70 ) n < 220 .

3 n n
Since uf # w

there exists at least a point =™ in (zf}, L] with u(

") < wf(x"
L L
Ve = [ [ v e,

). But from the above inequality,

and, hence, w{(z™) < ugy(z™), a contradiction. Therefore, we conclude that there cannot exist two distinct
solutions to (Pf).
Assume that (P?_;) admits unique solution ! ; and consider the problem (P?).
We claim that, if u?(x) = u ;(x) at a point x € [0, L), then u = u!" ; in the entire interval [0,z]. This is
a consequence of the uniqueness of u}' ;.
yi —
no

' . Indeed, consider the competitors given by u
and 4 | = ui'X[0,2] + U;'_1X(z,z]- Lhen,

= Ui 1X[0,2] + W' X(,L]
OSIf(ﬂ?)—I?(U?)ZIZLhM]( 1) = I3 0,2 (u )

0< Iin—l(azl—l) *Iin—l(uy—l) I 1‘[0:5 ( ) I

It follows directly from the sub-additivity of ¢ and of [-]* that

_N 2o
T i) = 5 [ ||+ [ o0+ -

N d 7L 2 n n n n n mn n
< / /o D67 o + [uf —uf (] + [ufy —uf o) < I j0.07 (uf)

]( ?—1)~

dul
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and, from the definition of 4}, that

N duz 1

1 1|0z] i— 1

/

Therefore, Z1* | (a?_;) = I ; (ul_,), that implies, by the uniqueness of u? ;, a4 ; = u}_; and, by the definition
of a? ;, ul =ul ; in [0,z]. As a consequence, we obtain that u* > ! ; on [0, L].
In case V;» < V", problem (P}) is equivalent to minimize

JQV/OL2+/OL¢<6?1>—

on the set of functions u of W12(0, L) satisfying u(0) = 0, uw(L) = V;* and v < u? ;. That is an obstacle
problem with convex obstruction ] ; (Lemma 2, point IIT). The unique solution is

4 / Con)

g / (071 + [y — uP 4 ]7) = TPy ().

duz 1

-+ const

n(x) — { u?—l(x) T € [va?]
(@ — 2PV —uiy ()} (D —af) +ui (af) s w e (2, L]

where z is the unique point in [0, L] such that the derivative of ul" ; evaluated in z? is equal to {V;" —
L@}/ = a2) ([9)).
In case V" > V" 1, we proceed analogously to the initial case ¢ = 0.
Suppose that there exist two solutions w}' # u}'. As shown in the case ¢ = 0, we can assume w] > u. Let
yi* <z} be the points defined by

yP :=sup{z € [0, L] : wl(x) = u]

z? = max{sup{z € [0, L] : u:‘(:c;

()},
=0}y )

From the continuity of the derivative of «? and of w! (Lemma 2, point II) and the fact that u} > ul ,, it
follows wi (y7") = wi (yi') = ui («7),

dr (yi") = dr (yi") = dr (xi')
and, using the convexity of w[,
du? dw?
3 n < 1 n .
d./L' ('1:1 ) — diC (x’t )

For v}, we write the Euler-Lagrange condition in the inequality form, i.e.

L L
du;n dug n n n
0< N/In dr dr + /zn ¢ (671 + [uf — ui 1] )vo,

for any vy € W1 2(x ,L), vo > 0, meanwhile, for w]', we write the Euler-Lagrange condition in the equation

form, i.e.
dw? d
O—N/ o o /¢> (67, + [ — ] ),
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for any vy € Wé’2 (y, L). Furthermore, using the regularity of u}* and w}", we obtain

G ) SO @)+ W) @) orae e ol 1)
T (1) = 6L (071 () + [0 () — iy @)]) for e, @ € [, L]

Recalling that w} and u}" are strictly increasing respectively in [y, L] and [z}, L] (point IV, Lemma 2), their
inverse functions w} "' and u""" are well defined in [u}(z}), V;"].

In order to proceed with the same method as the one we used in the proof of uniqueness in the initial case
i = 0, we need that, for any fixed z, the function 6" ; + [z — u?_;]* is non-decreasing in [0, L].

To prove that, fix z in [ul'(z]), VZ”] and let x, in [0, L] be such that z < ! ; in [z, L] (such a point exists
since u}' ; is a non-decreasing function in [0, L]). Observe that

doi > dui

> 0.2
dr — dxr —

Hence, 6 { + z — u}* ; and 6}* ; are non- decreasing respectively in [0,z.] and [z,,L]. By the continuity of
0"+ [z —ul {]T, we conclude that 6" | + [z — u?4]" is non-decreasing in [0, L].

Using the fact above, that w."” < u; ~! and that ¢’ is non-increasing, we have

2un 1
T e) < G )+ [z — i T )

<@ (] TN E) 2 — i (] T ) = N @),

for any z in [ul'(z}), V{*]. That gives rise to a contradiction.
Indeed, fix x in (2}, L]. By integrating over [u}'(z}), u?(x)] the inequality above and the changes of variable
z =ul(y) and z = wl'(y), we obtain

2 T 32 ul(z) 32
duy , | du} d“u _1
— =N L =N u d
{ } /x“ dz? ) d /”(ac") dIZ R

ul'(x) d2w w; _1(ui (x)) d2wm dw
<N wh N(2))dz = N i
/ ) dmz w;" " (2))dz » 72 Y) I ~(y)dy

o

2

du} du}

)

= ()

dwy' n,—1

(7 ' (2))

_ . .dul dw?
Observe that u?(z) < w?(z), w" " (u?(z)) < z. Then, by the inequality 7 L) < d—z( x') and the
T T
convexity of w},
du} dw?, W1, . dw}
T w ul(x))) < L (x
@) < T @) < )
dsr dun dsm . dum
°In fact, for j = 0, 7 = ug; hence, %o _ Mo . For j > 1, assuming that —J=t > ]71, we obtain
dx8 dx dz dx
dsn = dojy | duf  duj > duj um > yn
b v Jo,  dg T odw i1
de =z B S et S u? =y 7
dr — dx dx 7 J-t

where we used the the fact that u? > u?_, and that {u} =u}_,} is an interval (those are consequences of point I, Corollary 1).
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Since ul # w}, there exists at least a point =™ in (27, L] whit ul(2™) < wl(2™). But from the above

inequality,
L L
V;*Ui(x):/ Txﬁ/ da; = V" —wi(z"),

that implies, wl(z™) < ul(z™), a contradiction. Therefore, we conclude that there cannot exists two different
solutions to (P7). O

We sum up below some important properties of the solutions u]' that follow directly from uniqueness. Even
if their proofs are partially contained in the proof of Theorem 1, we rewrite them for reader convenience.

Corollary 1. The u} enjoy the following properties:
L if ul(z) = uf 1(z) inz €[0,L], then ul = ul 4 in [0,z];
IL. if V> V™, then ul > ul' ;
IIL. 4f V* < V”l, then u” <wul g
V. if vV > V" > Vz—27 then x <zl |, where z}' := sup{z € [0, L] : u}(z) = u}'_,} and =} | :==sup{z €
[0, L] Ui 1(37) = ui 5}
V. if V<V < VR, then oz <z

Proor oF I. Consider the competitors given by u}' := u’ 1 X[0,2] + ©j X (z,z) a0d @' 1 = uj'X[0,2] + Ui—1 X (a,L]-
Then, observing that @} =« and @} ; =« ; on (z, L],

0 < Z;'(uy) — I7(u ") I 10,01 (1) = Zi'|j0,21 (ui'),

7

0<1" ( ) — 7;n 1(% 1)_Izn 1|[0,:1:(U )_Zn1|0w( Ui 1)

(Z}']j0,2) denotes the functional Z}* where the integrals in there are taken on [0,x]). It follows directly from the
sub-additivity of ¢ and of [-]T that

_N dur >t Yo
Zi" 1 lj0,a] / / D67 o + [uf! —uf 5]T)
< 5 / @(0; P ]+ ug g —uf o)) <TG lj0,2] (1),
and, from the definition of 47, that
N dul T
T 1lj0,2) (ui—q) - JF/O B(6;-1)
duz 1

/

|[o W) = L]0, (ui1) < TMj0,0) (ui') — Zi'jo,0) (uiy) <O,

g / SOy + [l g — w1 ]7) = T 0.0y (ul ).
Therefore,

n

and, hence, Z!* | (- " (ul ). It follows, by the uniqueness of u? ;, @ ; = u ; and, by the definition

of |, ul! =u} in

)
[0,z
Proor oF II. Since V;” > V;*,, then u} > u} ; in a left neighbourhood of L. By point I, if there exists = in
[0, L) such that u}'(z) = ul" 1( )in z € [0, L], then uf = «} ; in [0,z]. Hence, u} > u}" 4 in [0, L].

Proor or III. Since V;* < V", then u} < w ;| in a left neighbourhood of L. By point I, if there exists x in
[0, L) such that ul(x) = ul {(x) in z € [0, L], then v} = u? ; in [0, z]. Hence, u? <! 4 in [0, L].

Proor oF IV. Suppose z}' > z}' ;. By point II, u} > u}" ;
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Integrating the Euler-Lagrange equation (in the classical form) on the interval [z}, ], we obtain

du?? dul v z dum™ du™
N 7 - N i ny _ / §n < / s - N i—1 - N i—1 ny.
a0 NG = [ @) s [ L6 = NI - NS )
” du du™  du®
Since, by the continuity of the derivative of the minimizers, —(z}') = hi (x), we infer that Yo b
dx dx dx dx
in [x7', L] and, hence,
W) -l = [ < / Tt =)~ )

From the definition of «?, it follows that u* < w! ; in [z}, L]. That contradicts the assumption V;* > V" ;.

PROOF OF V. Recall that, in case V;* < V*,, problem (P7) is equivalent to minimize

Yl oo =X [

on the set of functions u of W12(0, L) satisfying u(0) = 0, u(L) = V;* and v < u? ;. That is an obstacle

problem with convex obstruction ! ; (Lemma 2, point IIT). The unique solution is

i—

2

du + t
— cons
dx

du
dx

W) = { up () ,x € [0,z7]

(# = 2P){Vi" —ui g (@)} (L —af) +uiy (af) w e (2, L]

where zI" is the unique point in [0, L] such that the derivative of u} ; evaluated in z}" is equal to {V;" —
uiy (27) 3/ (L = x7) ([9])-

Suppose zI' > a2 ;. Since the problem (P ;) is an obstacle problem to, we have that ! ; is a straight line
in [z ,, L]. From the continuity of the derivative of the minimizers, it follows

Vit = (2f) _ Vi —ul o2} y) _ Vit —up(x})

L—.’L’ZL L—.’E;Ll L—;I;ZL ’
which implies V;* = V;» ;. That contradicts the assumption V;* < V] ,. O

We conclude this section with two important properties of our formulation. The time discrete evolution is
independent on the discretization and the debonded zone grows for each cycle.
This is proved in the lemma below.

Lemma 3. Let P™ be a partition of [0,T] that contains {0,T} and the points of the boundary of the open set
{t € (0,T):V is continuous at t,V(t) > 0} = U"_, (ar,b,). Then:
LIfPmr={0=¢t < - <th <. < taim) = T} is a refinement of P™, i.e. P™ C P™, then, for any
ti € P, ui = ujt,) whenever U7, = ti';
II. The debonded zone grows for cycle, i.e. if V(byy1) > V(b)) >0 for anyr =1,---  h, then xp_,, <y,
where xp, :=sup{z € [0, L] : up.(x) = 0} and wp, denotes the solution with boundary value V (b,.).

PRrROOF OF I. This is a straightforward consequence of the uniqueness of solutions (Theorem 1).

We prove the result for a refinement P with the property that any two consecutive points ¢} ; <t} of P"
are separated by at most one point ¢7* of P™. The case of a general refinement can be obtained by writing it
as a finite union of partial refinements with the property above, and applying recursively the lemma at each
partial union.



12 TITLE WILL BE SET BY THE PUBLISHER

We argue by induction on 7. Assume that u{ = ;" and ¢ = ¢;" whenever 1 <14 and ¢ = ;". Assume also
that 7 | =70, <t" < .tgnﬂ = t?. We want to prove that w7, = uj and 67, = d7". Since P" contains the
boundary of {t € [0,7]: V is continuous at t,V (t) > 0}, either V;* > V™ > V", or V;* < V" <V,

Consider the first case. Since uj® ; = uj’; and 4;" ; = 67" ; by the inductive assumption, we have 77" = T}
By Corollary 1 this implies u; > ui" ; and u]* > uj"; = ui" ;. Let us prove that we have also that u; > u}".
Indeed, if this is false, since ui® > uj" in a left neighbourhood of L, there is a point z in [0, L] such that
u(r) = ui*(z) and u # uj* in [0,2]. As the functionals I}'|g ) and I]"[jp, coincide by the inductive
hypothesis, there would be two minimizers to the functional Z}|(y ;] in the class of functions u with boundary
values u(0) = 0 and u(x) = u?(x); that contradicts Theorem 1 in the interval [0, z].

m m

Now, consider the problem ( j+1)' By the fact that u]’ > u}” > up = ujy
account the expressions of ¢;" ; and 47", we obtain

and u;'j_l > u;”, taking into

]W-Li-l(u?) =TI (ui") < Zzn(U;nJrl) = Iﬁ1(uzﬁr1)~

Hence, by Theorem 1, u’; = uj'. As ujl, = i > u]" > uiy = uf'y, from §;"; = 67", we obtain also
}11 =0;".

In the second case, we consider two subcases. In case one of the two inequalities is an equality the result
follows directly from Theorem 1 because uj* would be equal to i or to ui ;. The proof of the remaining

subcase V" < V™ < V™, proceeds as the proof of the first case.

Proor OF II. By point I, we can assume P" = {0 =t <--- <t < --- < o) = T} ={0,a1,b1,--- ,an,bp,T}.
To simplify the notation, we set uq, = u;' for ' = a, and up, = uf for t7 = b,.

Suppose V(a,41) > 0. By point III of Corollary 1, up, > u,,,,. Hence, as we have already observed in the
proof of Theorem 1, there exists a point = € [0, L] such that u,, ., = up, in [0, 2] and u,,,, is a straight line in
[z, L]. Since up, (x) > 0 and up, ., > Uq,,,, we conclude that zp,_, < xy, .

Suppose V(ar+1) = 0. Let ro be the greatest element in {1,--- ,r} such that V(a,,) = 0, and set 7 := min{j :
ro < Jj < r,xp, = min{wy, 1rg < i <}l

We claim that uy,. satisfy the Euler-Lagrange equation in [zp,, L]. In fact, if 7 = ro, then up, > 0 = u,,,
on [y, , L], since V(by,) > 0 = V(ay,). Otherwise, p, < xp, , (by the minimal property of z;. and 7)
and .. = Tp,._, (since V(az) > 0 by definition of r¢). That implies up, > w4, on [xp,,L]. Therefore, the
Euler-Lagrange equation (2) for wy,. is

dQU,bF
dxz?

(x) = ¢"_(0p.(x)) ,for any z € [z, L].

Since g, , is identically 0, the Euler-Lagrange equation for uy, ., is

duy, . N
d;;+ (l') = ¢L (5047‘1»1 (l') + U,y (:C)) , for any = € [xbr“ ’ L]'

Suppose that zy, ., > .. Then, since dq,,, +up, ., > 6 > 0p. and ¢’ is non-increasing, we have, for

41 Ar41
any « € (xp,,, L],
dUb +1 1 r ’ 1 r dub,
ZOrdl [ Sa < P8 ) < =22 .
de (l‘) N o N ¢—( r4+1 + ubr+1) - N Tp +1 ¢_( bT) — d.’,C (Z‘)

If follows that V(bz) < V(by41) < V(br) — up,.(xp
contradiction.
By definition of 7, z;,. < x3, and we conclude that z;,  , < xy, . O

r

+1), and, hence, up_(zp,,,) < 0. That implies z,,, <z, a
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3. A PRIORI ESTIMATES

To perform the limit as the time step of the discretization P™ goes to 0, as n goes to co, we use compactness
properties. In order to do that, we need v}’ to be a priori bounded in some appropriate norm. This is the object
of this section.

We extend any u? to a piecewise constant map u™ defined in [0, 7]: for any n in N, u™ from [0, 7] to W12(0, L)
is given by

p(n)
Zuk X[, ) (8) + Uy X1y (1),

where {0 =t <t <--- <t} =T} =P"

0
(Notation: au will denote as usual the partial derivative of u = u(t,x) with respect to the space variable
x

x, meanwhile © will denote the partial derivative of u with respect to the time variable . Besides, for any
function f from [0,7] to L'(0, L), we denotes by Var (f;[0,77]) the total variation on [0,T] of the function f in
the L'(0, L) norm.)

Theorem 2. The sequence {u™}, satisfies the following estimates:
< cy, for any n;

H Lo (0,1); W= (0,L))

II. Var ( 5 ; 0, T]) < cqg, for any n.

PROOF OF I. Recalling inequality (3) in point II of Lemma 2, we get immediately

Lip (ﬁf) < ¢'](VO),

du? n
for any n in N and ¢ in {0,1,--- ,p(n)}. Using the convexity of u}, ;z (O)‘ < Vi
x
n V o /
‘ Ou < 1V lLe<0,7) n ¢'(0) —cL
0z [z (01w (0,L)) L N

PrOOF OF II. Fix n in N and ¢ in {0,1,--- ,p(n)}.
Consider the case V;* <V, (for i =1, we set V_; :=0).
By Corollary 1, u? < ul" ;. We have already noted in Theorem 1 that the problem (P) is equivalent to

minimizing
N (L 2 L . N L
5/ - +/ (67 4) = 5/ d
0 0 0 €L

on the set of functions u of W12(0, L) satisfying u(0) = 0, w(L) = V;* and v < u? ;. That is an obstacle
problem with convex obstruction u} ; (Lemma 2, point IIT). We recall that the unique solution is

-+ const

n(l‘) — { u?—l(x) T € [va?]
(= ap {V" —wiy (af)} /(L = 2) + iy (o) @€ (2, L] 7

where zI" is the unique point in [0, L] such that the derivative of u} , evaluated in z}" is equal to {V;" —

i (@)} (L =) ([9))-
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Hence, we have that

_ /L ity VP WD) g
Li0L) Jop L dT L—af

Now, consider the case V;* > V™, (necessarily ¢ > 1, because V" = 0). We separate the proof in three
subcases: V" < V", V" >V, and Vi, =Vnr,.
Denote as usual by 27 and z}' ; the points

dui  duj
dzx dx

= sup{e €0, L] : u(z) = ui', (z)},
= sup{e € [0, L] s uily (2) = uil ()}

n

€Ty
n

:Z:’L

Suppose V", <V,
Notice that, by point I of Corollary 1, u}* coincide with u? ; in the interval [0, 2] and, hence,

dug dug’_
;ﬂ; (x) = ﬁ(m) ,for any z € [0, z}'].
In case ' > « 4, by point IIT of Corollary 1, u* ; is a straight line in (27, L] (recall the reduction to an
) . dul dul 4 .
obstacle problem that we have in this case). pi L (x}) = pi (z7) (point II, Lemma
x x
2) and the convexity of «}, for any « in (27, L], we have
dul dul 4 dul dul du? dul

(@] < @) - @),

dx (@) dz (ac)‘ " | dx () dz

Taking the integral over (z}, L], we obtain

L
/wn

by the definition of z7'.

dul  dui_,
dx dx

L
du?? dui y n_ n niom o L
S/ﬂ d (x)— dxl(xi)zvi _Vi—l_ui(xz‘)"‘ui_l(wi):vi -V,

In case z' < z]_, fix x in (z}, 2] ,]. By the estimate in point I, we have
du® dul 4 du? du? dul 4 dul* 4 @'(0)
i(g) — - i () — i i1 (ny _ 2 <2 no_gn
@) - Tt < |G @) - G|+ | St e - T < 28t - el
that implies
T dupy  duf g ¢'(0) 2
— <2 T—al).
/wr_z, dx dr — N (1'171 €Z; )
]

Meanwhile, for any z in (zI"_,, L], by point III of Corollary 1, u? ; is a straight line in (z?_;, L] (recall the
reduction to an obstacle problem that we have in this case). Therefore, we have

dul du} 4 dul dui dul du? du} 4 dui 4
L — = d — Tl L — (P ) — T
du’ dul ¢'(0)
< 7 _ 7 n
<@~ R Dy f< -2 27)
U; Ui—1
< i _ n no__
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Taking the integral over (z}" ,, L], we obtain

L
/a;n

dul  dui 4
dx dx

-1

Lo dup dul 4
< 7 _ 11— n / I
</ { () = S 4 29/(0)(a

=V =V = (zfy) +uig (2f) +2——

T3
|
8
3
~—
—

1

/
0
<vr v 22 W ey,

using the fact that u}* ; <ul
As we combine the obtained estimates, we have

Suppose V", > V*,.

duf  duiy
dx dx

<vr v 22 e 22 e

— K3

L1(0,L) N

n n
dui dui’

dx dx

By point IV of Corollary 1, o < z ;. We have already seen that in [0,27] and (in case

<z ), for any z in (2,2} ],
du? dui

i S — <2 moo—x™).
dx (Z‘) dr (x)' — N (‘rz—l xl)

For any « in (2 ,, L], by the Euler-Lagrange equation, the monotonicity of ¢’ and §* ; < ¢P*, we have that

2un 1 2un / n / n
N { ) - @ = @) - o )

hence,

d?u? d?ul?
N{ e (x) — T2 (x)} > 0.

Considering the integral on (z7"_,, L],
dul  dul

L L . 2 2, n n
i _ d UTL'L d U; 1 duf n duifl n
/x de dw | /x /x” &~ der e ) T g ()
L . 2, N 2, n /
d“u; dug &' 0), , . .
S/n / {de - dx21}‘+2 N (@i"y — 2 ) (L — x7')
i l__l d2u;z_ d2u? QZS/(O) N . .
/ { dx21_dx2}+2 N (i —2)(L — =)
iy

]1L
T dul du?  du? du? &) ) )
:/m { dml dxdxl(xi—l)er(xi—l)}JrQ]E;)(xi—lzi)(LIEi)

—1
n .T

i—1

<V =V =g (wfg) g ($1—1)+4T(%—1 L =)
Since
‘Uz‘ (xi—l)_ui—l(zi—l)| = /ﬂ dr Wl < /mn dr  du (%) dx (5% ) — Wl < 27(%‘—1—% )27
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LL

n
i—1

we get
dx dx

We have obtained the estimate

/
<viy v 220

n n
dui  dui,

dx dzr

¢'(0)
N

oty — a2 — ) + 25l — a2

7

SV =V 44

L1(0,L)

The last subcase V™ ; = V;™, can be reconducted to one of the other two.

In fact, if ¢ = 1, then V{* > V* =V =0, and ug is the solution identically 0 and the proof is the same as
the one in the first subcase.

For i > 2, either there exists a j in {0,---,i — 3} such that V" # V"5, or V", = V"3 = ... = 0. In this
last case, u;"; is the solution identically 0 and the proof proceeds as in the first subcase. In case V' # V[,
we take the greatest j such that V" # V™. Since, as far as V" = V{1, u;’ coincides with u;"; on the entire
interval [0, L], we can apply one of the previous subcases to the pair V" and Vi, where V" takes the role of
Vi,

In any case, we can estimate the L!(0, L) norm by

Notice that, by IV and V of Corollary 1, -2 [z | — 2]+ < 2hL, where h is the number of cycles of the
displacement V, i.e. h is such that U"_,(a,,b.) = {t € (0,T) : V is continuous at t, V(t) > 0}. The sought

r=1
bound for the piecewise constant map ' is obtained summing over i the inequality above:

dup _ du
dzx dxr

¢'(0)
<|vr-vr 6
— | K3 7,—1| + N

[z, — 2P| L.

?

L(0,L)

(n)
8un 4 6un 3u”
Var | —;[0,T] | = — (") — =—(t"
(893 [ ]) ; 3$( ) 6:0( 1) L1(0.L)
p(n) & (0) N
< vr-vr 6 no et
—ZX_;{| % 1—1‘+ N [1'1_1 sz] }
/
: 0
< |VllLio,r) + 12¢ ( )hL2 =: Cg,
N
That concludes the proof. 0

The estimates in Theorem 2 imply, by Helly’s selection principle ( [1]), that for any sequence of partitions
{P"}, with step converging to 0, there exists a subsequence {P™* }; and a map

u' in L°°((0,7); H*(0,L)) n BV ([0, T]; L}(0, L))

such that, for any ¢ in [0, T,
oumr

Ox
In particular, u(t, z) := / v (t) belongs to H2(0, L), for any ¢,
0

(t) — u/(t), weakly in H'(0, L).

du

o
o (t,x) = u'(t, ), and

u™ (t,z) — u(t, z) uniformly in x € [0, L],

ni,
aau—x(t) — %(t) strongly in L%(0, L),
ou't* Oou
W(taL) - %(KL)-
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4. THE TiME CONTINUOUS EVOLUTION

In this section we present our main result. We perform the limit of the time discrete evolutions as the time
step goes to zero in order to construct the continuous formulation of the problem.

Before stating the result, we briefly introduce notation.

Let v be a map from [0, 7] to L*(0, L). We define the dissipation of v in the interval of time [s,t] C [0,7] by

L
Diss:; (v;[s,t]) == /0 ¢(Var™ (v; [s,1])),

where Var™ (v(z); [s,t]) is the positive variation of v(x) in [s,#], i.e. for any f from [0,7] to R, the positive
variation of f in [s,t] is defined by

I(n)
Var™(f;[s,t]) := ess sup Z[f(T;?) —f Dt ineNs=7 < < < Tf(bn) =t,,
k=1

where the essential supremum of an arbitrary family {f,}aeca of measurable functions f, : (0,L) — R is the
measurable function f characterized by the following properties ( [13]):
e for every «, f, < f a.e. in (0, L);
e if g is a measurable function such that f, < g a.e. in (0, L), then f < g a.e. in (0, L).
The dissipation of v is certainly finite whenever v is a map of BV ([0, T]; L'(0, L)). In fact, arguing as in
the proof of Proposition II-4-1 of [13], there exists a sequence of partitions {s = 70 < 7" < -+ <7, = t},
increasing with respect to the inclusion, such that

l(n)
Var® (f;[s,4]) = lim > [f(rf) = f(ri_y)]"

n—o0
k=1

By the monotone convergence theorem, using the concavity of ¢,

L U(n) I(n)

L
Diss (vs[s.1]) = lim [ 6 | Solu(rt) ~ ()]t | <0 Jim S / () —o(rf_)* < & (0)Var(v; [s, ])-

k=1 k=1

Our main result is the following.

Theorem 3. Let V : [0,T] — [0,00) be a continuous displacement with piecewise continuous derivative on
[0,T] and V(0) = 0. Assume that V has a finite number of cycles, meaning that the open set {t € (0,T) :
V is continuous at t,V(t) > 0} has finitely many connected components.

Then, there exists an evolution map u in BV ([0, T]); WH1(0, L)) N L>([0,T]; H2(0, L)), with u(t,0) = 0,
u(t,L) = V(t), such that w(0) = 0 and, for any t in [0,T],

L. u(t) satisfies the inequality

N L
7

for any v in WH2(0, L), v(0) = 0, v(L) = V(t);

2 L 2 L
Geo) + s 0. < 5 [+ [ otvart 0. + o= u(o)])
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—(t)

_N /O V(ﬂ%(m)m.

PROOF. Let U"_,{a,,b,.} C [0,T] be the open set {t € (0,T) : V is continuous at t, V() > 0}.

Let {P" = {0 =t <ty <--- <ty =T}}n be a sequence of partitions of the interval [0,7] with step
converging to 0 such that U"_, {a,.,b.} C P", for any n.

By passing to a subsequence, we can assume that {u"},, enjoys the properties listed at the end of the previous
section denoting u € BV([0,7]; W11(0, L)) the limit function.

Since V(0) = 0, it follows that v (0) = 0 for any n and, since u™ converges uniformly to u, u(0) = 0.

We claim that, for any ¢ € [0, 7],

II. the total energy E(t / —|— Diss;f (u;[0,t]) is an absolutely continuous function and is

given by

lim || Var™(u;[0,¢]) — Var™ (u™;[0,1])]lc = O.

n—00

This is due to the regularity of V. Indeed, by Corollary 1, u"(x) is non-decreasing in (a,., b,), for any z € [0, L]
and for any r. Let r; be such that ¢ € (a,,,b,,). By the fact that P,, contains U"_,{a,,b,}, we have

ry—1

Var™ (u™(x);[0,t]) = Z {u"(by,x) —u"(ar,z)} + " (t,2) — u"(ar,, x).

Since u™ converges uniformly to u, it follows that u(x) is non-decreasing in (a,,b,), for any « € [0, L], and

re—1

nh_)rrgo Var™ (u™(x);[0,t]) = Z {u(b,, x) — u(a,,z)} +u(t,z) — u(a,,,x) = Vart (u(z); [0,1]),

uniformly in « € [0, L].

PRrOOF OF 1. Fix t in [0,7] and v in W(0, L), v(0) = 0, v(L) = V (¢).
For any n € N, there exists ¢ = i(n) in P", such that ¢ € [t},t},,). Set L, := L — |V (t) — V| and consider

o () = { v() ,x €10,L,]
(J) - Ln)(vn - U(Ln))/(L - Ln) + U(Ln) T E (an L] '

o7 belongs to WH1(0, L), v7*(0) = 0, v}(L) = V" and [[v]" — v[|m2(0,) — 0, as n goes to oo.
By the minimality of u', we have that
> /

N/ 2 Awa>
N

du}

\ /\

/'¢ P =l +ul — ]

2£/¢6" o — "),

and, by the fact that P, contains U'_,{a,,b,}, 67 = Var (u";[0,]).

n

dv"

| /\

d
Since di(t) converges strongly in L?(0,L) to a—u(t), u™ converges uniformly to u and Var™ (u";[0,t]) con-
x x
verges uniformly to Var™ (u;[0,#]) (see the observations at the end of the previous section), it follows that

L 2 L
g/o 9 )|+ Disst (u; [0,4]) < E/O

= + /0 ¢(Var+(u; [0,¢]) + [v — U(t)]+)‘
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ProoF OF II. Fix t in [0,77]. For any n € N, there exists = i(n) in P", such that t € [t}, 1}, ).

Set €, 1= maX;eq1.... p(n)} 1/|1Vi" — Vi% 1| and consider

n

@) =l @) + (7 - v Bl

€n

One verifies that v belongs to W1(0, L), v7(0) = 0, v?*(L) = V/*. By the minimality of u?, we have that

N du? |
/ 7 / o)
bl duyy V= v, N bodup, V- Viril_’_
d:C 2 L—ep 6721 L—e, d:E €n
L +
— L+ - +
+/ : (6{11 E [u 7 - mw | )
0 n
S v ul 1 / (b | 171| + N [ i—1 uzbfl(L) _ szl(L . en)}+
2 0 €n €n
+' (O)[V" = VL

There exists a point Ly in (L — €,, L), such that

up (L) —up_ (L —en) dupy

€n dx

dup_, _
— <
dzx (L) dzx (L)] < en

0|

where the bound is independent on k (point I of Theorem 2)
decreases to 0, we obtain

2 L
L o
ym (L) —ul_ (L —€)
35 i / d(08) + €n— Z|Vk v 1|+NZ v — = 6: ! +
¢/ ! n n
+e€p ;)kzl[vk *Vk—l]Jr

NL:
e

g Pl
- N 8&(7, L)dV (r) + enM{N +3¢/(0)}).
0 8I’ 2

. Using this estimate, by iteration over i as ¢

du}

<

L n : n n 8 " n ||V|| ! ) /
00+ N V)~V )Y D e SN 860}

ou™
The last equality above follows by the fact —— is a step function and the integral in the last member is in the

sense of Riemann-Stieltjes ( [14]).

Since 67 = Var™ (u™;[0,]), Var™ (u™; [0,t]) converges uniformly in [0, L] to Var™ (u;[0,t]), Ou

ox
ou™ ou . . .
s (t, L) converges to 5’—(757 L) and is bounded uniformly with respect to ¢
x x

——(t) converges

Ou (t) and

trongly in L?(0, L) t
strongly in L*(0, L) ° 5
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(see Theorem 2 and the observations at the end of the previous section), it follows that
Ll oun

. N 2 n N S
E(t)—nlin;0{2/0 E(t) +Dlss$(u,[0,t])}—nlirrgo{2/() +/0 ¢(5z)}

< lim {N/O 85; (r,L)dV (r) }—N/OtZ(T,L)dV(T).

L du

dzx

n—oo

By the absolute continuity of V, we have that dV (r) = V(7)dr ( [14]). Hence,
t
Et)< N ; %(T,L)V(T)dr.

In order to prove the equality, we show also that the opposite inequality holds. The proof is similar to the
previous case. The only difference is that we use the minimality of ] , instead of v}, an we slightly modify
u;" in order to compare them.

Consider v ;(z) := ul(z) + (V"1 — V/)[x — L + €,]" /€n. One verifies that v ; belongs to W2(0, L),

n

v 1(0) =0, v (L) = V" ;. By the minimality of u}" ;, we have that

77

N d
/ uiy / o8 1)
| PO WP [P g Ve -
dx 2 L—e, €2 L—e, dx €n
L +
_L+ n+ n
+/ ¢<5§l2+ |:u?+(v;"1_‘/in)[x€6]_ui2:| )
0 n
L 2 L 2
du™ Nlvr., —ynr | VAL v
<> [ |5 +/ sty + XVE VT Y W )~z — eyt
2 0 dx n €n
n 671
FPOV - VI

By iteration over i, as ¢ decreases to 0, we obtain

L
/ +/ o(65) <
2
" u (L) —up_1 (L =€)
<50 /¢5 +enm Zm 174 1|+NZVk1 V) = bl +

(0 i
+€n¢é ) Z[an—l -Vt
1

du"

€n

k=
N dun ? n n ou" n ||V||L1 0,7
<= ; / o(57") NZ{V (tr) — tkfl)}%( k-1,L) +€n%{N+ 3¢'(0)}

+ ot / B e, 1) () + e IO v g0,
0 0o oT

2
N du” 2

2

It follows that

n— 00 n— 00 0

th{N/au(TLdV } N/ (r, L)dV (r),
n—oo 0 ox

2

n L n
8u du;

t
dzx

o ¢(5?)}
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hence,

t
E(t) > N/O %(T, L)V (r)dr.
That concludes the proof. O
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