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Abstract. We show that the Heisenberg group Hn contains a measure zero
set N such that every Lipschitz function f : Hn → R is Pansu differentiable at

a point of N . The proof adapts the construction of small ‘universal differen-

tiability sets’ in the Euclidean setting: we find a point of N and a horizontal
direction where the directional derivative in horizontal directions is almost

locally maximal, then deduce Pansu differentiability at such a point.

1. Introduction

Rademacher’s theorem states that every Lipschitz function f : Rn → Rm is dif-
ferentiable almost everywhere with respect to Lebesgue measure. This result is
classical but has many applications and has inspired much research. One direction
of this research is the extension of Rademacher’s theorem to more general spaces,
while another involves finding points of differentiability in extremely small sets. In
this article we investigate both directions, by constructing a measure zero ‘univer-
sal differentiability set’ in the Heisenberg group (Theorem 2.12), the most studied
non-Euclidean Carnot group.

A Carnot group is a Lie group (smooth manifold which is also a group with
smooth operations) whose Lie algebra (tangent space at the identity) admits a
stratification. This stratification decomposes the Lie algebra as a direct sum of
finitely many vector spaces; one of these consists of privileged ‘horizontal directions’
which generate the other directions using Lie brackets. The stratification allows one
to define dilations on the group. Carnot groups have a natural metric, defined using
lengths of horizontal curves, and Haar measure invariant under group operations.

Using the group translations and dilations, one can define Pansu differentia-
bility of functions between Carnot groups. Pansu’s theorem states that Lipschitz
functions between Carnot groups are Pansu differentiable almost everywhere with
respect to the Haar measure [23]. This can be applied to show that every Carnot
group (other than Euclidean space itself) contains no subset of positive measure
which bi-Lipschitz embeds into a Euclidean space. Carnot groups are a source of
many questions in analysis and geometry [8, 17, 18, 22, 26, 28].

The Heisenberg group Hn (Definition 2.1) is the simplest non-Euclidean Carnot
group, but is still not completely understood. For example, a geometric notion
of intrinsic Lipschitz function between subgroups of Hn was introduced in [16] to
study rectifiable sets [14, 15, 20] and minimal surfaces [5, 6, 21, 27]. Intrinsic
Lipschitz functions need not be metric Lipschitz but for certain subgroups they are
intrinsically differentiable almost everywhere [16]. The most general statement for
subgroups is not yet known.

Differentiability and Rademacher’s theorem are also studied for functions be-
tween Banach spaces. There are versions of Rademacher’s theorem for Gâteaux
differentiability of Lipschitz functions, but the case of the stronger Fréchet differ-
entiability is not fully understood [19]. One of the main ideas in the present article
is that (almost local) maximality of directional derivatives implies differentiability.
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This was first used by Preiss [24] to find points of Fréchet differentiability of Lips-
chitz functions on Banach spaces with separable dual. However, [24] does not give
an ‘almost everywhere’ type result. Indeed, it is not known if three real-valued
Lipschitz functions on a separable Hilbert space have a common point of Fréchet
differentiability.

Cheeger [7] gave a generalization of Rademacher’s theorem for Lipschitz func-
tions defined on metric spaces equipped with a doubling measure and satisfying a
Poincaré inequality. This has inspired much research in the area of analysis on met-
ric measure spaces. Bate [3] showed that Cheeger differentiability is strongly related
to existence of many directional derivatives. However, in this context, the emphasis
is on differentiability almost everywhere, rather than pointwise differentiability.

A rather different direction of research asks whether one can find points of dif-
ferentiability in extremely small sets. In particular, we can ask if Rademacher’s
theorem is sharp: given a set N ⊂ Rn of Lebesgue measure zero, does there exist a
Lipschitz function f : Rn → Rm which is differentiable at no point of N?

If n ≤ m the answer is yes: for n = 1 this is rather easy [29], while the general
case is very difficult and combines ongoing work of multiple authors [2, 9]. This
implies that in Rademacher’s theorem, the Lebesgue measure cannot be replaced
by a singular measure. The recent paper [1] proves a Rademacher type theorem
for an arbitrary finite measure, but in this case the directions of differentiability at
almost every point depend on the measure.

If n > m the answer to our question is no: there are Lebesgue measure zero sets
N ⊂ Rn such that every Lipschitz function f : Rn → Rm is differentiable at a point
of N . The case m = 1 was a surprising corollary of the previously mentioned result
in Banach spaces by Preiss [24]. The case m > 1 were resolved by combining tools
from the Banach space theory with a technique for avoiding porous sets [25]. In all
cases, maximizing directional derivatives had a crucial role.

Sets N ⊂ Rn containing a point of differentiability for every real-valued Lipschitz
function are now called universal differentiability sets. The argument in [24] was
greatly refined to show that Rn, n > 1, contains universal differentiability sets
which are compact and of Hausdorff dimension one [10, 11]. This was improved to
obtain a set which even has Minkowski dimension one [12].

In the present article we show that one can adapt the ideas of [24] to the Heisen-
berg group. Our main result is Theorem 2.12 which asserts the following: there is a
Lebesgue measure zero set N ⊂ Hn such that every Lipschitz function f : Hn → R
is Pansu differentiable at a point of N . This illustrates both the flexibility of Preiss’
argument and the geometry of Hn, which is rather far from being a Banach space.
We now give an overview of the paper and information about the proof of Theorem
2.12. See Section 2 for the relevant definitions.

In Section 3 we first introduce directional derivatives in horizontal directions for
Lipschitz functions f : Hn → R, and compare the supremum of directional deriva-
tives with the Lipschitz constant. We then construct simple horizontal curves join-
ing the origin to other points, and use these curves to study Pansu differentiability
of the Carnot-Carathéodory distance. Finally we show that existence of a maximal
horizontal directional derivative implies Pansu differentiability (Theorem 3.6). This
is an adaptation of a similar statement in Banach spaces [13, Theorem 2.4]. We
do not claim that such a maximal horizontal directional derivative exists; ‘almost
maximal’ horizontal directional derivatives have a role in the rest of the article.

In Section 4 we define our ‘universal differentiability set’ N , which may be chosen
as any Lebesgue null Gδ set containing all horizontal lines joining points of Q2n+1.
We construct useful horizontal curves inside this set, which allow us to modify a
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piece of a horizontal line to pass through a nearby point, without distorting the
length or Lipschitz constant too much.

In Section 5 we first estimate how horizontal lines diverge in Hn and study
some simple H-linear maps. We then state Theorem 5.6, which is one of two
theorems that taken together will prove Theorem 2.12. Theorem 5.6 states that if
x ∈ N and E is a horizontal direction at which the directional derivative Ef(x)
is ‘almost maximal’, then f is Pansu differentiable at x. This is an adaptation of
[24, Theorem 4.1]. Intuitively, almost maximality means that competing directional
derivatives must satisfy an estimate which bounds changes in difference quotients
by changes in directional derivatives. Such a bound is useful later when one wants
to construct an almost maximal directional derivative. To prove Theorem 5.6 one
uses a contradiction argument. If f is not differentiable at x then there is some
nearby point where the change in f is too large. One modifies the line along which
the directional derivative is large to form an auxillary curve inside N which passes
through the nearby point. On this curve we find a point and direction giving a larger
directional derivative and satisfying the required bound on difference quotients.
This gives a contradiction to almost maximality. New ideas in our adaptation
to Hn include a restriction to horizontal directional derivatives and choosing an
auxillary curve which is horizontal, with carefully estimated length and direction.

In Section 6 we adapt [10, Theorem 3.1] to show that one can actually construct
an almost maximal directional derivative in the sense of Theorem 5.6. Proposition
6.1 states that if f0 : Hn → R is Lipschitz then one can find f : Hn → R such that
f−f0 is H-linear and f has an almost maximal directional derivative at a point of N .
This is done by constructing sequences xn ∈ N , En and fn such that fn − f0 is H-
linear and the directional derivatives Enfn(xn) are closer and closer to being almost
maximal compared to the allowed competitors. Then xn → x∗ and fn → f for some
x∗ and f since at every stage the changes were small, while En → E for some E
since H-linear perturbations are added to make directional derivatives in directions
close to En larger. We ensure x∗ ∈ N by using the fact that N is Gδ. Finally
one must show that the directional derivative Ef(x) exists and is almost maximal;
to prove this it is crucial that at each stage we maximize over a constrainted set
of points and directions. Our argument follows very closely that of [10], modified
to use horizontal directions, H-linear maps and Hölder equivalence of the Carnot-
Carathéodory and Euclidean distance. Finally we observe that combining Theorem
5.6 and Proposition 6.1 gives Theorem 2.12.

One might ask if Theorem 2.12 can be extended to general Carnot groups, or
to construct compact sets of small dimension as in the Euclidean theory. Since
this would require further new ideas and the proof of Theorem 2.12 is already
complicated, we do not address this here.

Acknowledgement. This work was carried out with the support of the grant
ERC ADG GeMeThNES. The authors thank Luigi Ambrosio for his support and
David Preiss for suggesting that one first finds the analogue in Hn of the observation,
previously applied in Banach spaces, that existence of a (truly, not almost) maximal
directional derivative implies differentiability.

The authors thank kind referees for suggesting numerous improvements to this
article.

2. Preliminaries

In this section we recall the Heisenberg group, horizontal curves, the Carnot-
Carathéodory distance and Pansu differentiability [4, 8, 17, 18, 22, 28].

Denote the Euclidean norm and inner product by | · | and 〈·, ·〉 respectively. We
represent points of R2n+1 as triples (a, b, c), where a, b ∈ Rn and c ∈ R.
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Definition 2.1. The Heisenberg group Hn is R2n+1 equipped with the non com-
mutative group law:

(a, b, c)(a′, b′, c′) = (a+ a′, b+ b′, c+ c′ − 2(〈a, b′〉 − 〈b, a′〉)).

The identity element in Hn is 0 and inverses are given by x−1 = −x.

Definition 2.2. For r > 0 define dilations δr : Hn → Hn by:

δr(a, b, c) = (ra, rb, r2c),

where a, b ∈ Rn and c ∈ R.

Dilations δr : Hn → Hn and the projection p : Hn → R2n onto the first 2n
coordinates are group homomorphisms, where R2n is considered as a group with
the operation of addition.

As sets there is no difference between Hn and R2n+1. Nevertheless, we sometimes
think of elements of Hn as points and elements of R2n+1 as vectors. Let ei denote
the standard basis vectors of R2n+1 for 1 ≤ i ≤ 2n+1. That is, ei has all coordinates
equal to 0 except for a 1 in the i’th coordinate. Note that, in much of the literature
on Carnot groups, the notation ∂/∂xi is used instead of ei. We next define a
distinguished family of ‘horizontal’ directions.

Definition 2.3. For 1 ≤ i ≤ n define vector fields on Hn by:

Xi(a, b, c) = ei + 2bie2n+1, Yi(a, b, c) = ei+n − 2aie2n+1.

Let V = Span{Xi, Yi : 1 ≤ i ≤ n} and ω be the inner product norm on V making
{Xi, Yi : 1 ≤ i ≤ n} an orthonormal basis. We say that the elements of V are
horizontal vector fields or horizontal directions.

An easy calculation shows that if E ∈ V then

x(tE(0)) = x+ tE(x) (2.1)

for any x ∈ Hn and t ∈ R. That is, ‘horizontal lines’ are preserved by group
translations. If E ∈ V then E(0) is a vector v ∈ R2n+1 with v2n+1 = 0. Conversely,
for any such v there exists E ∈ V such that E(0) = v. If E ∈ V then p(E(x)) is
independent of x, so we can unambiguously define p(E) ∈ R2n. The norm ω is then
equivalently given by ω(E) = |p(E)|.

We now use the horizontal directions to define horizontal curves and horizontal
length in Hn. Let I denote a subinterval of R. Recall that a map γ : I → R2n+1 is

absolutely continuous if it is differentiable almost everywhere and γ(t)−γ(s) =
∫ t
s
γ′

whenever s, t ∈ I.

Definition 2.4. An absolutely continuous curve γ : I → Hn is a horizontal curve
if there is h : I → R2n such that for almost every t ∈ I:

γ′(t) =

n∑
i=1

(hi(t)Xi(γ(t)) + hn+i(t)Yi(γ(t))).

Define the horizontal length of such a curve by:

LH(γ) =

∫
I

|h|.

Notice that in Definition 2.4 we have |(p ◦ γ)′(t)| = |h(t)| for almost every t, so
LH(γ) is computed by integrating |(p ◦ γ)′(t)|. That is, LH(γ) = LE(p ◦ γ), where
LE is the Euclidean length of a curve in Euclidean space. It can be shown that left
group translations preserve horizontal lengths of horizontal curves.

In the next lemma we recall that horizontal curves are lifts of curves in R2n.
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Lemma 2.5. An absolutely continuous curve γ : I → Hn is a horizontal curve if
and only if for almost every t ∈ I:

γ′2n+1(t) = 2

n∑
i=1

(γ′i(t)γn+i(t)− γ′n+i(t)γi(t)).

Proof. By definition, γ is horizontal if and only if there exists h : I → R2n such
that for almost every t ∈ I:

γ′(t) =

n∑
i=1

(hi(t)Xi(γ(t)) + hn+i(t)Yi(γ(t))).

Using Definition 2.3, the right hand side of this expression is exactly

(h1(t), . . . , h2n(t), 2

n∑
i=1

(hi(t)γn+i(t)− 2hn+i(t)γi(t))).

By examining the initial coordinates we see γ′i(t) = hi(t) for 1 ≤ i ≤ 2n. Hence:

γ′2n+1(t) = 2

n∑
i=1

(γ′i(t)γn+i(t)− γ′n+i(t)γi(t))

for almost every t ∈ I. �

Any two points of Hn can be joined by a horizontal curve of finite horizontal
length. This is a particular instance of Chow’s Theorem in subriemannian geometry.
We use this fact to define the Carnot-Carathéodory distance.

Definition 2.6. Define the Carnot-Carathéodory distance d on Hn by:

d(x, y) = inf{LH(γ) : γ is a horizontal curve joining x to y}.
Denote d(x) = d(x, 0) and BH(x, r) := {y ∈ Hn : d(x, y) < r}.

It is known that geodesics exist in the Heisenberg group. That is, the infimum in
Definition 2.6 is actually a minimum. The Carnot-Carathéodory distance respects
the group law and dilations [4, (5.10) and (5.11)] - for every g, x, y ∈ Hn and r > 0:

• d(gx, gy) = d(x, y),
• d(δr(x), δr(y)) = rd(x, y).

Notice d(x, y) ≥ |p(y)− p(x)|, since the projection of a horizontal curve joining
x to y is a curve in R2n joining p(x) to p(y). Using the known fact that projections
of geodesics in Hn are arcs of circles, it is also possible to show [8, page 32]:

d(x) ≥
√
|x2n+1|. (2.2)

The Carnot-Carathéodory distance and the Euclidean distance are topologically
equivalent but not Lipschitz equivalent. However, they are Hölder equivalent on
compact sets [4, Corollary 5.2.10 and Proposition 5.15.1].

Proposition 2.7. Let K ⊂ Hn be a compact set. Then there exists a constant
CH = CHölder(K) ≥ 1 such that for any x, y ∈ K:

|x− y|/CH ≤ d(x, y) ≤ CH|x− y|
1
2 .

The Koranyi distance is Lipschitz equivalent to the Carnot-Carathéodory dis-
tance and given by the formula:

dK(x, y) = ‖x−1y‖K , where ‖(a, b, c)‖K = (|(a, b)|4 + c2)
1
4 . (2.3)

We use the Koranyi distance occasionally to simplify some calculations.
We now make some simple observations about the distances introduced. They

behave very simply if we follow a fixed horizontal direction.
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Lemma 2.8. If E ∈ V then:

• |E(0)| = ω(E) = d(E(0)),
• d(x, x+ tE(x)) = tω(E) for any x ∈ Hn and t ∈ R.

Proof. The first equality is true because ω(E) = |p(E)|, as noted earlier, and
|p(E)| = |E(0)|, since E(0) ∈ R2n+1 has final coordinate equal to 0.

The inequality d(E(0)) ≤ ω(E) is trivial since t 7→ tE(0), t ∈ [0, 1], is a horizontal
curve joining 0 to E(0) of horizontal length exactly ω(E).

Suppose γ is a horizontal curve joining 0 and E(0). Then LH(γ) = LE(p ◦ γ)
as noted in the discussion after Definition 2.4. Since p ◦ γ is a curve joining 0 and
p(E) we deduce:

LE(p ◦ γ) ≥ |p(E)| = ω(E).

This holds for any horizontal curve γ joining 0 to E(0), so d(E(0)) ≥ ω(E).
For the final statement we calculate as follows:

d(x, x+ tE(x)) = d(x, x(tE(0)))

= d(tE(0))

= tω(E).

�

If f : Hn → R or γ : R → Hn we denote the Lipschitz constant (not necessarily
finite) of f or γ with respect to d (in the domain or target respectively) by LipH(f)
and LipH(γ). If we use the Euclidean distance then we use the notation LipE(f)
and LipE(γ). Throughout this article ‘Lipschitz’ means with respect to the Carnot-
Carathéodory distance if the domain or target is Hn, unless otherwise stated. For
horizontal curves we have the following relation between Lipschitz constants.

Lemma 2.9. Suppose γ : I → Hn is a horizontal curve. Then:

LipH(γ) = LipE(p ◦ γ).

Proof. Suppose s, t ∈ I with s < t. Then:

|p(γ(t))− p(γ(s))| ≤ d(γ(t), γ(s)) ≤ LipH(γ)|t− s|.

Hence LipE(p◦γ) ≤ LipH(γ). For the opposite inequality, notice γ|[s,t] is a horizontal
curve joining γ(s) to γ(t). Since |(p ◦ γ)′| ≤ LipE(p ◦ γ), we can estimate as follows:

d(γ(s), γ(t)) ≤ LH(γ|[s,t])

=

∫ t

s

|(p ◦ γ)′|

≤ LipE(p ◦ γ)(t− s).

Hence LipH(γ) ≤ LipE(p ◦ γ), which proves the lemma. �

Lebesgue measure L2n+1 is the natural Haar measure on Hn. It is compatible
with group translations and dilations [4, page 44] - for every g ∈ Hn, r > 0 and
A ⊂ Hn:

• L2n+1({gx : x ∈ A}) = L2n+1(A),
• L2n+1(δr(A)) = r2n+2L2n+1(A).

We have defined group translations, dilations, distance and measure on Hn. We
can now introduce Pansu differentiability and state Pansu’s theorem [23]. Intu-
itively, one replaces Euclidean objects by the corresponding ones in Hn.
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Definition 2.10. A function L : Hn → R is H-linear if L(xy) = L(x) + L(y) and
L(δr(x)) = rL(x) for all x, y ∈ Hn and r > 0.

Let f : Hn → R and x ∈ Hn. We say that f is Pansu differentiable at x if there
is a H-linear map L : Hn → R such that:

lim
y→x

|f(y)− f(x)− L(x−1y)|
d(x, y)

= 0.

In this case we say that L is the Pansu derivative of f .

Clearly a H-linear map is Pansu differentiable at every point. Pansu’s theorem
is the natural version of Rademacher’s theorem in Hn.

Theorem 2.11 (Pansu). A Lipschitz function f : Hn → R is Pansu differentiable
Lebesgue almost everywhere.

We can now state formally our main result.

Theorem 2.12. There is a Lebesgue measure zero set N ⊂ Hn such that every
Lipschitz function f : Hn → R is Pansu differentiable at a point of N .

3. Maximality of directional derivatives implies Pansu
differentiability

We begin this section by defining directional derivatives in horizontal directions
and comparing them to the Lipschitz constant (Lemma 3.3). We then construct
simple horizontal curves connecting the origin to other points and estimate their
horizontal length and direction (Lemma 3.4). We use these curves to investigate
Pansu differentiability of the Carnot-Carathéodory distance (Lemma 3.5). Finally
we prove that existence of a maximal horizontal directional derivative implies Pansu
differentiability (Theorem 3.6).

Proposition 2.7 implies that curves in Hn which are Lipschitz with respect to the
Carnot-Carathéodory distance are locally Lipschitz with respect to the Euclidean
distance. Hence they are differentiable (in the usual sense) almost everywhere.
We now show that derivatives of Lipschitz functions in horizontal directions can be
defined by composing with any Lipschitz curve with tangent of the correct direction.
Throughout this article C will denote a constant that may change from line to line
but remains bounded.

Lemma 3.1. Let g, h : I → Hn be Lipschitz horizontal curves which are differen-
tiable at c ∈ I with g(c) = h(c) and g′(c) = h′(c). Let f : Hn → R be Lipschitz. If
(f ◦ g)′(c) exists then (f ◦ h)′(c) exists and (f ◦ g)′(c) = (f ◦ h)′(c).

Proof. For convenience assume that c = 0 and I is a neighbourhood of 0. Using left
group translations we may also assume that g(0) = h(0) = 0. Since f is Lipschitz,
to prove the lemma it suffices to check that d(g(t), h(t))/t → 0 as t → 0. For this
we use the Koranyi distance (2.3). An easy calculation gives:

dK(g(t), h(t)) ≤ C|h(t)− g(t)|

+ C
∣∣∣h2n+1(t)− g2n+1(t) + 2

n∑
i=1

(gi(t)hn+i(t)− gn+i(t)hi(t))
∣∣∣ 12 .

Since g(0) = h(0) = 0 and g′(0) = h′(0) we see:

|h(t)− g(t)|/t→ |h′(0)− g′(0)| = 0 as t→ 0. (3.1)

Similarly for each 1 ≤ i ≤ n:

(gi(t)hn+i(t)− gn+i(t)hi(t))/t2 → g′i(0)h′n+i(0)− g′n+i(0)h′i(0) = 0.
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Hence it suffices to show that (h2n+1(t)− g2n+1(t))/t2 → 0 as t → 0. Since h and
g are Lipschitz we use Lemma 2.9 to see that for 1 ≤ i ≤ 2n and some constant C:

|h′i(s)− g′i(s)| ≤ LipE(p ◦ h− p ◦ g) = LipH(h− g) ≤ C.

Suppose without loss of generality that t > 0. We use Lemma 2.5 to estimate as
follows:

|h2n+1(t)− g2n+1(t)|
t2

≤ 2

t2

n∑
i=1

∫ t

0

|(h′i − g′i)(hn+i − gn+i)− (h′n+i − g′n+i)(hi − gi)|

≤ C

t2

n∑
i=1

∫ t

0

(|hn+i − gn+i|+ |hi − gi|).

Let ε > 0. By (3.1) we know |h(s)− g(s)| ≤ εs for sufficiently small s > 0. Hence
for sufficiently small t > 0:

|h2n+1(t)− g2n+1(t)|
t2

≤ C

t2

n∑
i=1

∫ t

0

2εs ds ≤ Cε,

for a new constant C depending on n. This shows (h2n+1(t)− g2n+1(t))/t2 → 0 as
t→ 0, so concludes the proof. �

Definition 3.2. Let f : Hn → R be a Lipschitz function and E ∈ V . Define
Ef(x) := (f ◦ γ)′(t) whenever it exists, where γ is any Lipschitz horizontal curve
with γ(t) = x and γ′(t) = E(x).

Notice that Lemma 3.1 implies Definition 3.2 makes sense. Suppose f is a
Lipschitz function and γ is a Lipschitz horizontal curve. Then f ◦ γ : R → R
is Lipschitz, so differentiable almost everywhere. Hence Lipschitz functions have
many directional derivatives in horizontal directions. We often use horizontal lines
γ(t) = x+ tE(x) to calculate directional derivatives when they exist:

Ef(x) = lim
t→0

f(x+ tE(x))− f(x)

t
.

Lipschitz constants with respect to the Euclidean distance are given by the supre-
mum of directional derivatives over directions of Euclidean length 1. We now prove
an analogue of this for the Carnot-Carathéodory distance.

Lemma 3.3. Suppose f : Hn → R is Lipschitz. Then:

LipH(f) = sup{|Ef(x)| : x ∈ Hn, E ∈ V, ω(E) = 1, Ef(x) exists}.

Proof. Temporarily denote the right side of the above equality by LipD(f). Fix
x, y ∈ Hn and a Lipschitz horizontal curve γ : [0, d(x, y)]→ Hn joining x to y such
that |(p◦γ)′(t)| = 1 for almost every t. Let G be the set of t ∈ [0, d(x, y)] for which:

• (f ◦ γ)′(t) exists,
• γ′(t) exists,
• γ′(t) ∈ Span{Xi(γ(t)), Yi(γ(t)) : 1 ≤ i ≤ n},
• |(p ◦ γ)′(t)| = 1.

Since γ is a horizontal curve and f ◦γ is Lipschitz, we know that G has full measure.
We estimate as follows:

|f(x)− f(y)| =
∣∣∣ ∫ d(x,y)

0

(f ◦ γ)′
∣∣∣

≤ d(x, y) sup{|(f ◦ γ)′(t)| : t ∈ G}
≤ d(x, y)LipD(f).
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Here we used Definition 3.2: γ′(t) ∈ Span{Xi(γ(t)), Yi(γ(t)) : 1 ≤ i ≤ n} implies
that there exists E ∈ V with E(γ(t)) = γ′(t), and |(p ◦ γ)′(t)| = 1 then implies
ω(E) = 1. Hence LipH(f) ≤ LipD(f).

For the opposite inequality fix x ∈ Hn and E ∈ V such that ω(E) = 1 and Ef(x)
exists. Use Lemma 2.8 to estimate as follows:

|Ef(x)| =
∣∣∣ lim
t→0

f(x+ tE(x))− f(x)

t

∣∣∣
≤ lim sup

t→0

LipH(f)d(x, x+ tE(x))

t

= LipH(f).

Hence LipD(f) ≤ LipH(f) which concludes the proof. �

The Carnot-Carathéodory distance d is invariant under left group translations.
Hence to understand d it suffices to understand d(x) = d(x, 0) for x ∈ Hn. For
this purpose we construct explicit Lipschitz horizontal curves joining 0 to points
x ∈ Hn. Our curves are simple concatenations of straight lines, but their Lipschitz
constants and directions are sufficiently controlled for our applications.

Lemma 3.4. Suppose y ∈ Hn with p(y) 6= 0. Write y = (a, b, c) with a, b ∈ Rn and
c ∈ R. Denote L = |p(y)| and define γ : [0, 1]→ Hn by:

γ(t) =

t
(
a− bc

L2 , b+ ac
L2 , 0

)
if 0 ≤ t ≤ 1/2,

1
2

(
a− bc

L2 , b+ ac
L2 , 0

)
+
(
t− 1

2

)(
a+ bc

L2 , b− ac
L2 , 2c

)
if 1/2 < t ≤ 1.

Then:

(1) γ is a Lipschitz horizontal curve joining (0, 0, 0) ∈ Hn to y = (a, b, c) ∈ Hn,

(2) LipH(γ) ≤ L
(

1 + c2

L4 + 4c2

L2

) 1
2

,

(3) γ′(t) exists and |γ′(t)− (a, b, 0)| ≤ c
L (1 + 4L2)

1
2 for t ∈ [0, 1] \ {1/2} .

We denote such a curve γ by γy.

Proof. Notice γ(0) = 0 and γ(1) = (a, b, c). Recall that for 1 ≤ i ≤ n:

Xi(a
′, b′, c′) = ei + 2b′ie2n+1, Yi(a

′, b′, c′) = ei+n − 2a′ie2n+1.

For t ∈ (0, 1/2) clearly

γ′(t) =
(
a− bc

L2
, b+

ac

L2
, 0
)

and an easy calculation shows that

γ′(t) =

n∑
i=1

(
ai −

bic

L2

)
Xi(γ(t)) +

(
bi +

aic

L2

)
Yi(γ(t)).

For t ∈ (1/2, 1) we have:

γ′(t) =
(
a+

bc

L2
, b− ac

L2
, 2c
)
.

We verify that for t ∈ (1/2, 1):

γ′(t) =

n∑
i=1

(
ai +

bic

L2

)
Xi(γ(t)) +

(
bi −

aic

L2

)
Yi(γ(t)).



10 ANDREA PINAMONTI AND GARETH SPEIGHT

Validity of this equality for the first 2n coordinates is clear. The final coordinate
of the right side is given by:

n∑
i=1

(
ai +

bic

L2

)
(2γn+i(t)) +

(
bi −

aic

L2

)
(−2γi(t))

=

n∑
i=1

(
ai +

bic

L2

)((
bi +

aic

L2

)
+ (2t− 1)

(
bi −

aic

L2

))
+
(
bi −

aic

L2

)(
−
(
ai −

bic

L2

)
− (2t− 1)

(
ai +

bic

L2

))
= 2

n∑
i=1

(
ai +

bic

L2

)aic
L2

+
(
bi −

aic

L2

)bic
L2

= 2

n∑
i=1

(a2i c
L2

+
b2i c

L2

)
= 2c.

Hence γ is a horizontal curve. Since γ is Lipschitz with respect to the Euclidean
distance, Lemma 2.9 implies that γ is a Lipschitz horizontal curve. This proves (1).

A straightforward computation shows that:

|γ′(t)| =

L
(

1 + c2

L4

) 1
2

if 0 ≤ t < 1/2,

L
(

1 + c2

L4 + 4c2

L2

) 1
2

if 1/2 < t ≤ 1.

Using Lemma 2.9 this gives the desired estimate of the Lipschitz constant:

LipH(γ) ≤ LipE(γ) ≤ L
(

1 +
c2

L4
+

4c2

L2

) 1
2

.

This proves (2). The estimate in (3) is also straightforward. �

Next we will study the Carnot-Carathéodory distance near points of the form
u = E(0) for some E ∈ V .

Lemma 3.5. Fix u1, u2 ∈ Rn not both zero and let u = (u1, u2, 0) ∈ Hn. Then:

(1) d(uz) ≥ d(u) + 〈z, u/d(u)〉 for any z ∈ Hn,
(2) d(uz) = d(u)+〈z, u/d(u)〉+o(d(z)) as z → 0. That is, the Pansu derivative

of d at u is L(x) := 〈x, u/d(u)〉.

Proof. We may assume that d(u) = 1 throughout the proof, since the general
statement can be deduced using dilations. To prove (1) first recall d(x) ≥ |p(x)|
for all x ∈ Hn, while Lemma 2.8 shows d(u) = |p(u)| for our particular choice of
u. Clearly also 〈p(z), p(u)〉 = 〈z, u〉 for such u. We use Pythagoras’ theorem and
d(u) = |p(u)| = 1 to estimate as follows:

d(uz) ≥ |p(uz)|
= |p(u) + p(z)|
= |p(u)(1 + 〈p(z), p(u)〉) + (p(z)− 〈p(z), p(u)〉p(u))|
≥ |p(u)|(1 + 〈p(z), p(u)〉)
= |p(u)|+ 〈p(z), p(u)〉
= d(u) + 〈z, u〉.

To prove (2) it suffices to show that d(uz) ≤ d(u) + 〈z, u/d(u)〉 + o(d(z)) as
z → 0. Let (a, b, c) = uz and L = |p(uz)| = |p(u) + p(z)|. Assume d(z) ≤ 1/2.
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Using |p(u)| = 1 and |p(z)| ≤ d(z) ≤ 1/2, we see 1/2 ≤ L ≤ 2. Using the formula
for the group law and |z2n+1| ≤ d(z)2 from (2.2), we can estimate c as follows:

|c| ≤ |z2n+1|+ 4|p(u)||p(z)|
≤ d(z)2 + 4d(z)

≤ 5d(z).

Lemma 3.4 and the definition of the Carnot-Carathéodory distance gives:

d(zw) ≤ L
(

1 +
c2

L4
+

4c2

L2

) 1
2

≤ L(1 + 800d(z)2)
1
2

≤ L+ o(d(z)).

To conclude the proof of (2) we claim that L ≤ 1 + 〈z, u〉 + o(d(z)). Estimate as
follows:

L = |p(u) + p(z)|
= |p(u)(1 + 〈p(z), p(u)〉) + (p(z)− 〈p(z), p(u)〉p(u))|

= ((1 + 〈p(z), p(u)〉)2 + |p(z)− 〈p(z), p(u)〉p(u)|2)
1
2

≤ ((1 + 〈p(z), p(u)〉)2 + 4d(z)2)
1
2

= (1 + 〈p(z), p(u)〉)
(

1 +
4d(z)2

(1 + 〈p(z), p(u)〉)2
) 1

2

≤ (1 + 〈z, u〉)
(

1 +
2d(z)2

(1 + 〈z, u〉)2
)
.

The claim then follows since d(z)/(1 + 〈z, u〉) ≤ 2d(z)→ 0 as d(z)→ 0. �

We now use Lemma 3.5 to show that existence of a maximal horizontal directional
derivative implies Pansu differentiability. This is an adaptation of [13, Theorem
2.4]. By Lemma 3.3, existence of a maximal horizontal directional derivative is
equivalent to the agreement of a directional derivative with the Lipschitz constant.

Theorem 3.6. Let f : Hn → R be Lipschitz, x ∈ Hn and E ∈ V with ω(E) = 1.
Suppose Ef(x) exists and Ef(x) = LipH(f). Then f is Pansu differentiable at x
with derivative L(x) := LipH(f)〈x,E(0)〉 = LipH(f)〈p(x), p(E)〉.

Proof. Let 0 < ε ≤ 1/2. Using Lemma 3.5, we can choose 0 < α ≤ ε such that
whenever d(z) ≤ α:

d(E(0)z)− d(E(0)) ≤ 〈z, E(0)〉+ εd(z).

Use existence of Ef(x) to fix δ > 0 such that whenever |t| ≤ δ:

|f(x+ tE(x))− f(x)− tEf(x)| ≤ α2|t|.

Suppose that 0 < d(w) ≤ αδ and t = α−1d(w). Then 0 < t ≤ δ, d(δt−1(w)) = α
and 2d(w) = 2αt ≤ t. Recall that ω(E) = 1 implies d(E(0)) = 1. We use also left
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invariance of the Carnot-Carathéodory distance to estimate as follows:

f(xw)− f(x) = (f(xw)− f(x− tE(x))) + (f(x− tE(x))− f(x))

≤ LipH(f)d(xw, x− tE(x))− tEf(x) + α2t

= LipH(f)d(xw, x(−tE(0)))− tEf(x) + α2t

= LipH(f)d((tE(0))w)− tLipH(f) + α2t

= tLipH(f)(d(E(0)δt−1(w))− d(E(0))) + α2t

≤ tLipH(f)(〈δt−1(w), E(0)〉+ εd(δt−1(w))) + α2t

≤ LipH(f)〈w,E(0)〉+ εLipH(f)d(w) + αd(w)

≤ LipH(f)〈w,E(0)〉+ ε(LipH(f) + 1)d(w).

For the opposite inequality we have:

f(xw)− f(x) = (f(xw)− f(x+ tE(x))) + (f(x+ tE(x))− f(x))

≥ −LipH(f)d(xw, x+ tE(x)) + tEf(x)− α2t

= −LipH(f)d(xw, x(tE(0))) + tEf(x)− α2t

= −LipH(f)d((−tE(0))w) + tLipH(f)− α2t

= −tLipH(f)(d((−E(0))δt−1(w))− d(E(0)))− α2t

≥ −tLipH(f)(〈δt−1(w),−E(0)〉+ εd(δt−1(w)))− α2t

≥ −LipH(f)〈w,−E(0)〉 − εLipH(f)d(w)− α2t

≥ LipH(f)〈w,E(0)〉 − εLipH(f)d(w)− αd(w)

= LipH(f)〈w,E(0)〉 − ε(LipH(f) + 1)d(w).

This shows that d(w) ≤ αδ implies:

|f(xw)− f(x)− LipH(f)〈w,E(0)〉| ≤ (LipH(f) + 1)εd(w).

Hence f is Pansu differentiable at x with derivative LipH(f)〈·, E(0)〉. �

An arbitrary Lipschitz function may not have a maximal horizontal directional
derivative as in Theorem 3.6. Construction of almost locally maximal horizontal di-
rectional derivatives inside a measure zero set, and deducing Pansu differentiability
at such points, is the content of the rest of the paper.

4. The universal differentiability set and horizontal curves

In this section we identify our measure zero universal differentiability set (Lemma
4.1) and construct useful horizontal curves inside this set (Lemma 4.2). Recall that
a set in a topological space is Gδ if it is a countable intersection of open sets.

Lemma 4.1. There is a Lebesgue measure zero Gδ set N ⊂ Hn containing all
straight lines which are also horizontal curves and join pairs of points of Q2n+1.
Any such set contains the image of:

(1) the line x+ tE(x) whenever x ∈ Q2n+1 and E ∈ V is a linear combination
of {Xi, Yi : 1 ≤ i ≤ n} with rational coefficients,

(2) all curves of the form xγy for x, y ∈ Q2n+1 with p(y) 6= 0, where γy is the
curve constructed in Lemma 3.4.

Proof. There exist open sets of of arbitrarily small measure containing a fixed line.
By taking a union of countably many such open sets with decreasing measure, we
find an open set of arbitrarily small measure containing all horizontal lines joining
points of Q2n+1. By taking a countable intersection of such sets with measures
converging to 0, we obtain the required measure zero Gδ set N .
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The horizontal line x + tE(x) joins x to x + E(x) so its image is a subset of N
whenever x ∈ Q2n+1 and E ∈ V is a linear combination of {Xi, Yi : 1 ≤ i ≤ n}
with rational coefficients. By examining the formula for γy in Lemma 3.4, we see
each curve xγy, for x, y ∈ Qn with p(y) 6= 0, is a union of two such horizontal lines.
This proves the lemma. �

To prove Theorem 5.6 (an almost maximal directional derivative implies Pansu
differentiability) we will modify horizontal line segments (along which a Lipschitz
function will have a large directional derivative) to pass through nearby points
(which intuitively show non-Pansu differentiability at some point). In the next
lemma we see how to do this without changing the length or direction of the line
too much.

Lemma 4.2. Given η > 0, there is 0 < ∆(η) < 1/2 and Cm = Cmodify ≥ 1 such
that the following holds whenever 0 < ∆ < ∆(η). Suppose:

• x, u ∈ Hn with d(u) ≤ 1,
• E ∈ V with ω(E) = 1,
• 0 < r < ∆ and s := r/∆.

Then there is a Lipschitz horizontal curve g : R→ Hn such that:

(1) g(t) = x+ tE(x) for |t| ≥ s,
(2) g(ζ) = xδr(u), where ζ := r〈u,E(0)〉,
(3) LipH(g) ≤ 1 + η∆,
(4) g′(t) exists and |(p ◦ g)′(t)− p(E)| ≤ Cm∆ for t ∈ R outside a finite set.

Suppose additionally x, u ∈ Q2n+1, E is a linear combination of {Xi, Yi : 1 ≤ i ≤ n}
with rational coefficients and r, s ∈ Q. Then g is a concatenation of curves from
Lemma 4.1(1,2).

Proof. The distance d is invariant under left group translations and the group law
is linear in the first 2n coordinates. Hence to prove (1)–(4) we can assume x = 0.
From the proof it will be clear that this also suffices for the final statement.

For |t| ≥ s the curve g(t) is explicitly defined by (1) and satisfies (3) and (4).
To define g(t) for |t| < s we consider the two cases −s < t ≤ ζ and ζ ≤ t < s.
These are similar so we show how to define the curve for −s < t ≤ ζ. By using left
group translations by ±sE(0) and reparameterizing the curve, it suffices to show
the following claim.

Claim. Suppose 0 < ∆ < η/1632. Then there exists a Lipschitz horizontal curve
ϕ : [0, s+ ζ]→ Hn such that ϕ(0) = 0, ϕ(s+ ζ) = (sE(0))δr(u) and:

(A) LipH(ϕ) ≤ 1 + η∆,
(B) ϕ′(t) exists and |(p ◦ϕ)′(t)− p(E)| ≤ 184∆ for t ∈ [0, s+ ζ] outside a finite

set.

Proof of Claim. Let (a, b, c) := (sE(0))δr(u) and L := |(a, b)|. Observe:

L = |sp(E) + rp(u)| = s|p(E) + ∆p(u)|.
Our assumptions imply |p(E)| = ω(E) = 1 and |p(u)| ≤ d(u) ≤ 1. Using also (2.2)
gives |u2n+1| ≤ 1. Since 0 < ∆ < 1/2 we deduce s/2 ≤ L ≤ 2s. Definition 2.1 and
Definition 2.2 give:

|c| ≤ r2|u2n+1|+ 4rs ≤ r2 + 4rs ≤ 5rs.

Lemma 3.4 provides a Lipschitz horizontal curve γ : [0, 1]→ Hn joining 0 to (a, b, c)
such that:

(A’) LipH(γ) ≤ L
(

1 + c2

L4 + 4c2

L2

) 1
2

,

(B’) γ′(t) exists and |γ′(t)− (a, b, 0)| ≤ c
L (1 + 4L2)

1
2 for t ∈ [0, 1] \ {1/2}.
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We verify the claim with ϕ : [0, s+ ζ]→ Hn defined by ϕ(t) = γ(t/(s+ ζ)). Notice
that ϕ is a Lipschitz horizontal curve with ϕ(0) = 0 and ϕ(s+ ζ) = (sE(0))δr(u).

Proof of (A). We first develop the estimate (A’). For this we use our estimates
of c and L, the inequality s < 1, and the equality r = ∆s:

LipH(γ) ≤ L
(

1 +
c2

L4
+

4c2

L2

) 1
2

≤ L
(

1 + 400(r2/s2) + 400r2
) 1

2

≤ L
(

1 + 800∆2
) 1

2

≤ L+ 800s∆2.

To estimate L = |p((sE)(δr(u)))| more carefully, first recall:

ζ = r〈u,E(0)〉 = r〈p(u), p(E)〉.

We use the orthogonal decomposition:

p((sE)δr(u)) = (s+ ζ)p(E) + (rp(u)− ζp(E)). (4.1)

Using d(u) ≤ 1 and ω(E) ≤ 1 gives |ζ| ≤ r ≤ s/2 and |rp(u) − ζp(E)| ≤ 2r. We
estimate as follows:

L = ((s+ ζ)2 + |rp(u)− ζp(E)|2)
1
2

≤ ((s+ ζ)2 + 4r2)
1
2

= ((s+ ζ)2 + 4∆2s2)
1
2

= (s+ ζ)(1 + 4∆2s2/(s+ ζ)2)
1
2

≤ (s+ ζ)(1 + 16∆2)
1
2

≤ (s+ ζ)(1 + 8∆2)

≤ s+ ζ + 16s∆2.

Putting together these estimates gives:

LipH(ϕ) ≤ LipH(γ)/(s+ ζ)

≤ (s+ ζ + 816s∆2)/(s+ ζ)

≤ 1 + 1632∆2.

Hence LipH(ϕ) ≤ 1 + η∆ since 0 < ∆ < η/1632. This proves (A).

Proof of (B). The decomposition (4.1) implies:

|p((sE(0))δr(u))− (s+ ζ)p(E)| ≤ 2r = 2∆s.

Since E ∈ V and (a, b, c) = (sE(0))δr(u) we deduce:

|(a, b, 0)− (s+ ζ)E(0)| ≤ 2∆s.

Using (B’) shows that for t ∈ [0, 1] \ {1/2}:

|γ′(t)− (s+ ζ)E(0)| ≤ 2∆s+
c

L
(1 + 4L2)

1
2

≤ 2∆s+ 10∆s(1 + 16s2)
1
2

≤ 92∆s.
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Hence for t ∈ [0, s+ ζ] \ {(s+ ζ)/2}:
|(p ◦ ϕ)′(t)− p(E)| ≤ |ϕ′(t)− E(0)|

≤ 92∆s/(s+ ζ)

≤ 184∆.

This verifies (B). The final statement of the lemma is clear from the construction.
�

5. Almost maximality of directional derivatives implies Pansu
differentiability

In this section we first estimate how Lipschitz horizontal curves with the same
starting point and moving in similar directions stay close together (Lemma 5.1).
We then give simple properties of the maps x 7→ 〈x,E(0)〉 (Lemma 5.2) and quote
a mean value estimate (Lemma 5.3) by Preiss [24, Lemma 3.4]. Finally we show
that existence of an almost locally maximal horizontal directional derivative implies
Pansu differentiability (Theorem 5.6).

Lemma 5.1. Given S > 0, there is a constant Ca = Cangle(S) ≥ 1 for which the
following is true. Suppose:

• g, h : I → Hn are Lipschitz horizontal curves with LipH(g),LipH(h) ≤ S,
• g(c) = h(c) for some c ∈ I,
• there exists 0 ≤ A ≤ 1 such that |(p ◦ g)′(t) − (p ◦ h)′(t)| ≤ A for almost

every t ∈ I.

Then d(g(t), h(t)) ≤ Ca

√
A|t− c| for every t ∈ I.

Proof. Assume c = 0 ∈ I and, using left group translations, g(0) = h(0) = 0. We
estimate using the equivalent Koranyi distance (2.3):

d(g(t), h(t)) ≤ CdK(g(t), h(t)) (5.1)

≤ C
2n∑
i=1

|hi(t)− gi(t)|

+ C
∣∣∣h2n+1(t)− g2n+1(t) + 2

n∑
i=1

(gi(t)hn+i(t)− gn+i(t)hi(t))
∣∣∣ 12 .

Let 1 ≤ j ≤ 2n. Using |(p ◦ g)′(t) − (p ◦ h)′(t)| ≤ A almost everywhere implies
|hj(t) − gj(t)| ≤ A|t| for every t ∈ I. Lemma 2.9 and LipH(g) ≤ S give the
inequality LipE(gj) ≤ S. Using also g(0) = 0 then gives |gj(t)| ≤ S|t| for t ∈ I. For
1 ≤ i ≤ n and t ∈ I:

|gi(t)hn+i(t)− gn+i(t)hi(t)| = |gi(t)(hn+i(t)− gn+i(t)) + gn+i(t)(gi(t)− hi(t))|
≤ S|t||hn+i(t)− gn+i(t)|+ S|t||gi(t)− hi(t)|
≤ SAt2.

We estimate the final term using Lemma 2.5:

|h2n+1(t)− g2n+1(t)| ≤ 2

n∑
i=1

∫ t

0

|(h′i − g′i)(hn+i − gn+i)− (h′n+i − g′n+i)(hi − gi)|

≤ 4A2
n∑
i=1

∫ t

0

s ds

= 2nA2t2.

Combining our estimates of each term in (5.1) gives d(g(t), h(t)) ≤ C
√
A|t| for

t ∈ I, where C is a constant depending on S. �
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We will use the maps x 7→ 〈x,E(0)〉 for E ∈ V both as Pansu derivatives and as
perturbations to construct an almost maximal directional derivative in the proof of
Proposition 6.1. We now give simple properties of these maps.

Lemma 5.2. Suppose E ∈ V with ω(E) = 1 and let L : Hn → R be the function
L(x) = 〈x,E(0)〉. Then:

(1) L is H-linear and LipH(L) = 1,

(2) for x ∈ Hn and Ẽ ∈ V :

ẼL(x) = L(Ẽ(0)) = 〈p(Ẽ), p(E)〉.

Proof. Since E ∈ V we know that the final coordinate of E(0) is 0. Suppose
x, y ∈ Hn and r > 0. In the first 2n coordinates the group product and dilations
are Euclidean, hence:

L(x) + L(y) = 〈x+ y,E(0)〉 = 〈xy,E(0)〉 = L(xy)

and
L(δr(x)) = 〈δr(x), E(0)〉 = r〈x,E(0)〉 = rL(x).

This shows that L is H-linear.
It follows from H-linearity that L(x)−L(y) = L(xy−1). To bound the Lipschitz

constant from above it is enough to use ω(E) = 1 to observe:

|〈x,E(0)〉| ≤ |p(x)| ≤ d(x).

Conversely, L(E(0)) − L(0) = 〈E(0), E(0)〉 = 1, so equals d(E(0)) by Lemma 2.8.
This proves (1).

To prove (2) we observe:

ẼL(x) = lim
t→0

L(x+ tẼ(x))− L(x)

t

= lim
t→0

〈x+ tẼ(x)− x
t

, E(0)
〉

= 〈Ẽ(x), E(0)〉

= 〈Ẽ(0), E(0)〉.
�

A key feature of the special pairs used to define almost maximal directional
derivatives will be that changes in difference quotients are bounded by changes in
directional derivatives. We use the following lemma [24, Lemma 3.4].

Lemma 5.3. Suppose |ζ| < s < ρ, 0 < v < 1/32, σ > 0 and L > 0 are real
numbers. Let ϕ,ψ : R → R satisfy LipE(ϕ) + LipE(ψ) ≤ L, ϕ(t) = ψ(t) for |t| ≥ s
and ϕ(ζ) 6= ψ(ζ). Suppose, moreover, that ψ′(0) exists and that

|ψ(t)− ψ(0)− tψ′(0)| ≤ σL|t|
whenever |t| ≤ ρ,

ρ ≥ s
√

(sL)/(v|ϕ(ζ)− ψ(ζ)|),
and

σ ≤ v3
(ϕ(ζ)− ψ(ζ)

sL

)2
.

Then there is τ ∈ (−s, s) \ {ζ} such that ϕ′(τ) exists,

ϕ′(τ) ≥ ψ′(0) + v|ϕ(ζ)− ψ(ζ)|/s,
and

|(ϕ(τ + t)− ϕ(τ))− (ψ(t)− ψ(0))| ≤ 4(1 + 20v)
√

(ϕ′(τ)− ψ′(0))L|t|
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for every t ∈ R.

Remark 5.4. By examining the proof of Lemma 5.3 in [24] it is easy to see that
τ can additionally be chosen outside a given Lebesgue measure zero subset of R.
A stronger observation, that τ can be chosen outside a set of sufficiently small yet
positive measure, is used in [24] to prove [24, Theorem 6.3].

We can now prove that existence of an almost locally maximal horizontal direc-
tional derivative implies Pansu differentiability. The argument is based on that of
[24, Theorem 4.1], but we use our analysis of the Carnot-Carathéodory distance and
use exclusively horizontal curves and directional derivatives in horizontal directions.

Notation 5.5. Fix a Lebesgue null Gδ set N ⊂ Hn as in Lemma 4.1 for the
remainder of the article. For any Lipschitz function f : Hn → R define:

Df := {(x,E) ∈ N × V : ω(E) = 1, Ef(x) exists}.

Theorem 5.6. Let f : Hn → R be a Lipschitz function with LipH(f) ≤ 1/2.
Suppose (x∗, E∗) ∈ Df . Let M denote the set of pairs (x,E) ∈ Df such that
Ef(x) ≥ E∗f(x∗) and

|(f(x+ tE∗(x))− f(x))− (f(x∗ + tE∗(x∗))− f(x∗))|

≤ 6|t|((Ef(x)− E∗f(x∗))LipH(f))
1
4

for every t ∈ (−1, 1). If

lim
δ↓0

sup{Ef(x) : (x,E) ∈M and d(x, x∗) ≤ δ} ≤ E∗f(x∗)

then f is Pansu differentiable at x∗ with Pansu derivative

L(x) = E∗f(x∗)〈x,E∗(0)〉 = E∗f(x∗)〈p(x), p(E∗)〉.

Remark 5.7. Since we will apply Lemma 5.3, it may seem more intuitive to instead
bound |(f(x + tE(x)) − f(x)) − (f(x∗ + tE∗(x∗)) − f(x∗))| in the statement of
Theorem 5.6. The precise form in Theorem 5.6 will be useful when we construct
an almost locally maximal horizontal directional derivative in Proposition 6.1.

We will prove Theorem 5.6 by contradiction. We first use Lemma 4.2 to modify
the line x∗ + tE∗(x∗) to form a Lipschitz horizontal curve g in N which passes
through a nearby point showing non-Pansu differentiability at x∗. We then apply
Lemma 5.3 with ϕ = f ◦ g to obtain a large directional derivative along g and
estimates for difference quotients in the new direction. We then develop these
estimates to show that the new point and direction form a pair in M . This shows
that there is a nearby pair in M giving a larger directional derivative than (x∗, E∗),
a contradiction.

Proof of Theorem 5.6. We can assume LipH(f) > 0 since otherwise the statement
is trivial. Let ε > 0 and fix various parameters as follows.

Parameters. Choose:

(1) 0 < v < 1/32 such that 4(1 + 20v)
√

(2 + v)/(1− v) + v < 6,
(2) η = εv3/3200,
(3) ∆(η/2), Cm and Ca = Cangle(2) using Lemma 4.2 and Lemma 5.1,
(4) rational 0 < ∆ < min{ηv2, ∆(η/2), εv5/(8C2

mC
4
aLipH(f)3)},

(5) σ = 9ε2v5∆2/256,
(6) 0 < ρ < 1 such that

|f(x∗ + tE∗(x∗))− f(x∗)− tE∗f(x∗)| ≤ σLipH(f)|t| (5.2)

for every |t| ≤ ρ,
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(7) 0 < δ < ρ
√

3εv∆3/4 such that

Ef(x) < E∗f(x∗) + εv∆/2

whenever (x,E) ∈M and d(x, x∗) ≤ 4δ(1 + 1/∆).

To prove Pansu differentiability of f at x∗ we will show:

|f(x∗δt(h))− f(x∗)− tE∗f(x∗)〈h,E∗(0)〉| ≤ εt

whenever d(h) ≤ 1 and 0 < t < δ. Suppose this is not true. Then there exists
u ∈ Q2n+1 with d(u) ≤ 1 and rational 0 < r < δ such that:

|f(x∗δr(u))− f(x∗)− rE∗f(x∗)〈u,E∗(0)〉| > εr. (5.3)

Let s = r/∆ ∈ Q. We next construct Lipschitz horizontal curves g and h for which
we can apply Lemma 5.3 with ϕ := f ◦ g and ψ := f ◦ h.

Construction of g. To ensure that the image of g is a subset of the set N , we
first introduce rational approximations to x∗ and E∗.

Since the Carnot-Carathéodory and Euclidean distances are topologically equiv-
alent, Q2n+1 is dense in R2n+1 with respect to the distance d. The set

{E ∈ V : ω(E) = 1, E a rational linear combination of Xi, Yi, 1 ≤ i ≤ n}

is dense in {E ∈ V : ω(E) = 1} with respect to the norm ω. To see this, suppose
E ∈ V satisfies ω(E) = 1. The Euclidean sphere S2n−1 ⊂ R2n contains a dense
set S of points with rational coordinates. This fact is well known, e.g. one can use
stereographic projection. Let q = (q1, . . . , q2n) ∈ S2n−1 be the coefficients of E in
the basis {Xi, Yi : 1 ≤ i ≤ n}. Take q̃ ∈ S such that |q − q̃| is small and define the
rational approximation of E as the linear combination of {Xi, Yi : 1 ≤ i ≤ n} with
coefficients q̃i.

Define

A1 = (η∆/Ca)2 (5.4)

and

A2 =
(

6−
(

4(1 + 20v)
(2 + v

1− v

) 1
2

+ v
))2 (εv∆/2)LipH(f))

1
2

C2
aLipH(f)2

. (5.5)

Notice A1, A2 > 0 using, in particular, our choice of v. Choose x̃∗ ∈ Q2n+1 and

Ẽ∗ ∈ V with ω(Ẽ∗) = 1, a rational linear combination of {Xi, Yi : 1 ≤ i ≤ n},
sufficiently close to x∗ and E∗ to ensure:

d(x̃∗δr(u), x∗) ≤ 2r, (5.6)

d(x̃∗δr(u), x∗δr(u)) ≤ σr, (5.7)

ω(Ẽ∗ − E∗) ≤ min{σ, Cm∆, A1, A2}, (5.8)

which is possible since all terms on the right side of the above inequalities are

strictly positive. Additionally, we choose x̃∗ and Ẽ∗ sufficiently close to x∗ and E∗
so that if a, b ∈ Rn and c ∈ R are defined by

(a, b, c) = (x∗ + (s/2)E∗(x∗))
−1(x̃∗ + sẼ∗(x̃∗)),

then:

(a2 + b2)
1
2

(
1 +

c2

(a2 + b2)2
+

4c2

(a2 + b2)

) 1
2

≤ s

2

(
1 +

η∆

2

)
(5.9)

and
c

(a2 + b2)
1
2

(1 + 4(a2 + b2))
1
2 ≤ s

2
min{A1, A2}. (5.10)
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To show these requirements can be satisfied, we remark that

(x∗ + (s/2)E∗(x∗))
−1(x∗ + sE∗(x∗)) = (x∗ exp((s/2)E∗))

−1(x∗ exp(sE∗))

= exp(−(s/2)E∗)x
−1
∗ x∗ exp(sE∗)

= exp((s/2)E∗)

= (s/2)E∗(0),

which has final coordinate zero and satisfies |p((s/2)E∗(0))| = s/2. We also choose

x̃∗ and Ẽ∗ so that (5.9) and (5.10) hold if instead:

(a, b, c) = (x̃∗ − sẼ∗(x̃∗))−1(x∗ − (s/2)E∗(x∗)),

with a similar justification.
Note 0 < r < ∆ and recall s = r/∆ is rational. To construct g we apply Lemma

4.2 with the following parameters:

• η, r,∆ and u as defined above in (5.3),

• x = x̃∗ and E = Ẽ∗.

This gives a Lipschitz horizontal curve g : R→ Hn with the following properties:

(1) g(t) = x̃∗ + tẼ∗(x∗) for |t| ≥ s,
(2) g(ζ) = x̃∗δr(u), where ζ := r〈u, Ẽ∗(0)〉,
(3) LipH(g) ≤ 1 + η∆/2,

(4) g′(t) exists and |(p ◦ g)′(t)− p(Ẽ∗)| ≤ Cm∆ for t ∈ R outside a finite set.

Since the relevant quantities were rational and the set N was chosen using Lemma
4.1, we also know that the image of g is contained in N .

Construction of h. Denote q1 = x∗ + (s/2)E∗(x∗) and q2 = x̃∗ + sẼ∗(x̃∗).
Applying Lemma 3.4 with (a, b, c) = q−11 q2 and using inequalities (5.9) and (5.10)

gives h̃1 : [0, 1]→ Hn such that:

(1) h̃1 is a Lipschitz horizontal curve joining 0 to q−11 q2,

(2) LipH(h̃1) ≤ (s/2)(1 + η∆/2),

(3) h̃′1(t) exists and satisfies

|(p ◦ h̃1)′(t)− (s/2)p(E∗)| ≤ (s/2) min{A1, A2}

for t ∈ [0, 1] \ {1/2}.
Define h1 : [s/2, s]→ Hn by:

h1(t) = q1h̃1((2/s)(t− s/2)).

Then h1 is a Lipschitz horizontal curve joining q1 to q2 with

LipH(h1) ≤ 1 + η∆/2.

The derivative h′1(t) exists and satisfies

|(p ◦ h1)′(t)− p(E∗)| ≤ min{A1, A2}

for t ∈ [s/2, s]\{3s/4}, since left translations act linearly in the first 2n coordinates.
Similarly, there is a Lipschitz horizontal curve h2 : [−s,−s/2] → Hn joining

x̃∗ − sẼ∗(x̃∗) to x∗ − (s/2)E∗(x∗) satisfying

LipH(h2) ≤ 1 + η∆/2

and

|(p ◦ h2)′(t)− p(E∗)| ≤ min{A1, A2}
for t ∈ [−s,−s/2] \ {−3s/4}.
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Define a Lipschitz horizontal curve h : R→ Hn by:

h(t) =


x̃∗ + tẼ∗(x̃∗) if |t| ≥ s,
x∗ + tE∗(x∗) if |t| ≤ s/2,
h1(t) if s/2 < t < s,

h2(t) if − s < t < −s/2.

Using the inequalities LipH(h1),LipH(h2) ≤ 1 + η∆/2 and ω(E∗), ω(Ẽ∗) ≤ 1 gives:

LipH(h) ≤ 1 + η∆/2.

Also h′(t) exists for t ∈ R \ {±3s/4,±s/2,±s} and

|(p ◦ h)′(t)− p(E∗)| ≤ min{A1, A2},

using the corresponding bounds for h1, h2 and ω(E∗ − Ẽ∗) ≤ min{A1, A2} from
(5.8).

Application of Lemma 5.3. We now prove that the assumptions of Lemma 5.3
hold with L := (2 + η∆)LipH(f), ϕ := f ◦ g and ψ := f ◦ h. The inequalities
|ζ| < s < ρ, 0 < v < 1/32 and the equality ϕ(t) = ψ(t) for |t| ≥ s are clear. Using
LipH(g),LipH(h) ≤ 1 + η∆/2 gives LipE(ϕ) + LipE(ψ) ≤ L.

Notice that (5.7) implies:

|f(x̃∗δr(u))− f(x∗δr(u))| ≤ σrLipH(f).

Since |ζ| ≤ r ≤ ρ, we may substitute t = ζ in (5.2) to obtain

|f(x∗ + ζE∗(x∗))− f(x∗)− ζE∗f(x∗)| ≤ σLipH(f)|ζ|
≤ σrLipH(f).

Next note that (5.8) implies |Ẽ∗(0) − E∗(0)| ≤ σ. We use also ζ = r〈u, Ẽ∗(0)〉 to
estimate as follows:

|ζE∗f(x∗)− r〈u,E∗(0)〉E∗f(x∗)| = r|E∗f(x∗)||〈u, Ẽ∗(0)− E∗(0)〉|

≤ rLipH(f)|Ẽ∗(0)− E∗(0)|
≤ σrLipH(f).

Hence we obtain,

|f(x∗ + ζE∗(x∗))− f(x∗)− r〈u,E∗(0)〉E∗f(x∗)| ≤ 2σrLipH(f). (5.11)

Notice |ζ| ≤ r = ∆s ≤ s/2, so the definition of the h gives h(ζ) = x∗ + ζE∗(x∗).
The definition of g gives g(ζ) = x̃∗δr(u). Using also (5.3) and (5.11), we can
estimate as follows:

|ϕ(ζ)− ψ(ζ)| = |f(g(ζ))− f(h(ζ))|
= |f(x̃∗δr(u))− f(x∗ + ζE∗(x∗))|
≥ |f(x∗δr(u))− f(x∗ + ζE∗(x∗))| − |f(x̃∗δr(u))− f(x∗δr(u))|
≥ |f(x∗δr(u))− f(x∗)− rE∗f(x∗)〈u,E∗(0)〉|
− |f(x∗ + ζE∗(x∗))− f(x∗)− rE∗f(x∗)〈u,E∗(0)〉|
− σrLipH(f)

≥ εr − 2σrLipH(f)− σrLipH(f)

= εr − 3σrLipH(f)

≥ 3εr/4. (5.12)

In particular, ϕ(ζ) 6= ψ(ζ).
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We next check that ψ′(0) exists and

|ψ(t)− ψ(0)− tψ′(0)| ≤ σL|t| (5.13)

whenever |t| ≤ ρ. Notice ψ′(0) exists and equals E∗f(x∗), since E∗f(x∗) exists and
ψ(t) = f(x∗ + tE∗(x∗)) for |t| ≤ s/2. Recall |(p ◦ h)′ − p(E∗)| ≤ A1 and also the
definition A1 = (η∆/Ca)2 from (5.4). Since h(0) = x∗, Lemma 5.1 implies that

d(x∗ + tE∗(x∗), h(t)) ≤ Ca

√
A1|t| ≤ η∆|t|.

Hence, using also (5.2) and L = (2 + η∆)LipH(f),

|ψ(t)− ψ(0)− tψ′(0)| ≤ |f(x∗ + tE∗(x∗))− f(x∗)− tE∗f(x∗)|
+ |f(x∗ + tE∗(x∗))− f(h(t))|

≤ σLipH(f)|t|+ LipH(f)η∆|t|
≤ σL|t|.

Recall that LipH(f) ≤ 1/2, which implies L ≤ 4. Using also r < δ, s = r/∆,
(5.12) and the definition of δ in Parameters (7) we deduce:

s
√
sL/(v|ϕ(ζ)− ψ(ζ)|) ≤ 4s

√
s/(3εrv)

= 4r/
√

3εv∆3

≤ 4δ/
√

3εv∆3

≤ ρ.

Finally we use (5.12), L ≤ 4 and the definition of σ in Parameters (5) to observe:

v3(|ϕ(ζ)− ψ(ζ)|/(sL))2 ≥ v3(3εr/16s)2

= 9ε2v3∆2/256

≥ σ.

We may now apply Lemma 5.3. We obtain τ ∈ (−s, s) \ {ζ} such that ϕ′(τ)
exists,

ϕ′(τ) ≥ ψ′(0) + v|ϕ(ζ)− ψ(ζ)|/s, (5.14)

and

|(ϕ(τ + t)− ϕ(τ))− (ψ(t)− ψ(0))| ≤ 4(1 + 20v)
√

(ϕ′(τ)− ψ′(0))L|t| (5.15)

for every t ∈ R. Since g is a horizontal curve, we may use Remark 5.4 to additionally
choose τ such that g′(τ) exists and is in Span{Xi(g(τ)), Yi(g(τ)) : 1 ≤ i ≤ n}.

Conclusion. Let x = g(τ) ∈ N and choose E ∈ V with E(g(τ)) = g′(τ)/|p(g′(τ))|,
which implies that ω(E) = 1. We will transform (5.14) and (5.15) into

Ef(x) ≥ E∗f(x∗) + εv∆/2 (5.16)

and

(x,E) ∈M. (5.17)

We first observe that this suffices to conclude the proof. Recall d(x̃∗δr(u), x∗) ≤ 2r
from (5.6). Using g(τ) = x and g(ζ) = x̃∗δr(u) gives:

d(x, x∗) ≤ d(g(τ), g(ζ)) + d(x̃∗δr(u), x∗)

≤ LipH(g)|τ − ζ|+ 2r

≤ 4(s+ r)

= 4r(1 + 1/∆)

≤ 4δ(1 + 1/∆).
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Since x ∈ N , combining this with (5.16) and (5.17) contradicts the choice of δ in
Parameters (7). This contradiction forces us to conclude that (5.3) is false, finishing
the proof.

Proof of (5.16). Using (5.12) and (5.14) we see:

ϕ′(τ)− ψ′(0) ≥ 3εvr/4s = 3εv∆/4. (5.18)

Notice that ϕ′(τ) = Ef(x)|p(g′(τ))| using Definition 3.2 and our choice of E. Since
ω(E) = 1 implies |Ef(x)| ≤ LipH(f), we deduce |ϕ′(τ)|/|p(g′(τ))| ≤ LipH(f). Also
|p(g′(τ))| ≤ LipH(g) ≤ 1 + η∆. Using ψ′(0) = E∗f(x∗) and (5.18) gives:

Ef(x)− E∗f(x∗)− (1− v)(ϕ′(τ)− ψ′(0))

= v(ϕ′(τ)− ψ′(0)) + (1− |p(g′(τ))|)ϕ′(τ)/|p(g′(τ))|
≥ 3εv2∆/4− η∆LipH(f)

≥ 0,

where in the last inequality we used LipH(f) ≤ 1/2 and η ≤ 3εv2/2 from Parameters
(2). From this we use 0 < v < 1/32 and (5.18) again to deduce:

Ef(x)− E∗f(x∗) ≥ (1− v)(ϕ′(τ)− ψ′(0)) ≥ εv∆/2 (5.19)

which proves (5.16).

Proof of (5.17). Recall that |(p ◦ g)′(t)− p(Ẽ∗)| ≤ Cm∆ for all but finitely many
t, from our construction of g. Using (5.8), this implies |(p ◦ g)′(t)− p(E∗)| ≤ 2Cm∆
for all but finitely many t. Since x = g(τ), we can apply Lemma 5.1 to obtain

d(g(τ + t), x+ tE∗(x)) ≤ Ca

√
2Cm∆|t|

for t ∈ R. By (5.19) we have ∆ ≤ 2(Ef(x) − E∗f(x∗))/(εv). Using also the
definition of ∆ from Parameters (4), we deduce that for t ∈ R:

|(f(x+ tE∗(x))− f(x))− (f(g(τ + t))− f(g(τ)))|
= |f(x+ tE∗(x))− f(g(τ + t))|
≤ LipH(f)d(g(τ + t), x+ tE∗(x))

≤ Ca

√
2Cm∆LipH(f)|t|

≤ Ca

√
2CmLipH(f)|t|∆ 1

4

(2(Ef(x)− E∗f(x∗))

εv

) 1
4

≤ v|t|
(
(Ef(x)− E∗f(x∗))LipH(f)

) 1
4

(8C2
mC

4
a∆LipH(f)3

εv5

) 1
4

≤ v|t|
(
(Ef(x)− E∗f(x∗))LipH(f)

) 1
4 . (5.20)

Combining (5.15), (5.19) and L = (2 + η∆)LipH(f) ≤ (2 + v)LipH(f) gives:

|(ϕ(τ + t)− ϕ(τ))− (ψ(t)− ψ(0))|

≤ 4(1 + 20v)|t|
( (2 + v)LipH(f)(Ef(x)− E∗f(x∗))

1− v

) 1
2

(5.21)

for t ∈ R. Using LipH(f) ≤ 1/2 gives the simple bound:

((Ef(x)− E∗f(x∗))LipH(f))
1
2 ≤ ((Ef(x)− E∗f(x∗))LipH(f))

1
4

since both sides are less than 1. Hence adding (5.20) and (5.21) and using the
definition ϕ = f ◦ g gives:

|f(x+ tE∗(x)− f(x))− (ψ(t)− ψ(0))|

≤
(

4(1 + 20v)
(2 + v

1− v

) 1
2

+ v
)
|t|((Ef(x)− E∗f(x∗))LipH(f))

1
4 (5.22)
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for t ∈ R.
Recall ψ = f ◦ h and h(0) = x∗. Using the inequality |(p ◦ h)′ − p(E∗)| ≤ A2,

Lemma 5.1, our definition of A2 in (5.5) and (5.16), we can estimate as follows:

|(ψ(t)− ψ(0))− (f(x∗ + tE∗(x∗))− f(x∗))|
= |f(h(t))− f(x∗ + tE∗(x∗))|
≤ LipH(f)d(h(t), x∗ + tE∗(x∗))

≤ LipH(f)Ca

√
A2|t|

=
(

6−
(

4(1 + 20v)
(2 + v

1− v

) 1
2

+ v
))
|t|(εv∆/2)LipH(f))

1
4 (5.23)

≤
(

6−
(

4(1 + 20v)
(2 + v

1− v

) 1
2

+ v
))
|t|((Ef(x)− E∗f(x∗))LipH(f))

1
4 (5.24)

for all t ∈ R. Adding (5.22) and (5.23) gives:

|(f(x+ tE∗(x))− f(x))− (f(x∗ + tE∗(x∗))− f(x∗))|

≤ 6|t|
(
(Ef(x)− E∗f(x∗))LipH(f)

) 1
4

for t ∈ R. This implies (5.17), hence proving the theorem. �

6. Construction of an almost maximal directional derivative

The main result of this section is Proposition 6.1, which is an adaptation of
[10, Theorem 3.1] to Hn. It shows that given a Lipschitz function f0 : Hn → R,
there is a Lipschitz function f : Hn → R such that f − f0 is H-linear and f has an
almost locally maximal horizontal directional derivative in the sense of Theorem
5.6. We will conclude that any Lipschitz function f0 is Pansu differentiable at a
point of N , proving Theorem 2.12. Our argument follows very closely that of [10],
modified to use horizontal directions, H-linear maps and Hölder equivalence of the
Carnot-Carathéodory and Euclidean distance.

Recall the measure zero Gδ set N and the notation Df fixed in Notation 5.5. In
particular, the statement (x,E) ∈ Df implies that x ∈ N . Note that if f − f0 is
H-linear then Df = Df0 and also the functions f and f0 have the same points of
Pansu differentiability.

Proposition 6.1. Suppose f0 : Hn → R is a Lipschitz function, (x0, E0) ∈ Df0

and δ0, µ,K > 0. Then there is a Lipschitz function f : Hn → R such that f − f0
is H-linear with LipH(f − f0) ≤ µ, and a pair (x∗, E∗) ∈ Df with d(x∗, x0) ≤ δ0
such that E∗f(x∗) > 0 is almost locally maximal in the following sense.

For any ε > 0 there is δε > 0 such that whenever (x,E) ∈ Df satisfies both:

(1) d(x, x∗) ≤ δε, Ef(x) ≥ E∗f(x∗),
(2) for any t ∈ (−1, 1):

|(f(x+ tE∗(x))− f(x))− (f(x∗ + tE∗(x∗))− f(x∗))|

≤ K|t|(Ef(x)− E∗f(x∗))
1
4 ,

then:
Ef(x) < E∗f(x∗) + ε.

We use the remainder of this section to prove Proposition 6.1. Fix parameters
f0, x0, E0, δ0, µ,K as given in the statement of the theorem.

Assumptions 6.2. Without loss of generality, we make the following assumptions:

• K ≥ 8, since increasing K makes the statement of Proposition 6.1 stronger,
• LipH(f0) ≤ 1/2, after multiplying f0 by a positive constant and possibly

increasing K,
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• E0f(x0) ≥ 0, by replacing E0 by −E0 if necessary.

We prove Proposition 6.1 by using Algorithm 6.4 below to construct pairs (xn, En)
and Lipschitz functions fn, satisfying various constraints, such that Enf(xn) is
closer and closer to maximal. We then show that the limits (x∗, E∗) and f have
the properties stated in Proposition 6.1. Algorithm 6.4 is an adaptation of [10,
Algorithm 3.2]. We use the following notation to repeatedly find better pairs.

Notation 6.3. Suppose h : Hn → R is Lipschitz, the pairs (x,E) and (x′, E′)
belong to Dh, and σ ≥ 0. We write:

(x,E) ≤(h,σ) (x′, E′)

if Eh(x) ≤ E′h(x′) and for all t ∈ (−1, 1):

|(h(x′ + tE(x′))− h(x′))− (h(x+ tE(x))− h(x))|

≤ K(σ + (E′f(x′)− Ef(x))
1
4 )|t|.

In the language of Notation 6.3, Proposition 6.1(2) means (x∗, E∗) ≤(f,0) (x,E).
In Algorithm 6.4 we introduce parameters satisfying various estimates, but the

most important factor is the order in which the parameters are chosen. We use the
following constants:

• Ca = Cangle(1) ≥ 1 chosen by applying Lemma 5.1 with S = 1,
• CH = CHölder ≥ 1 denotes the constant in Proposition 2.7 for the compact

set BH(x0, 2 + δ0) ⊂ Hn,
• CV ≥ 1 such that LipE(E) ≤ CV whenever E ∈ V and ω(E) = 1. This is

possible since V = Span{Xi, Yi : 1 ≤ i ≤ n} and {Xi, Yi : 1 ≤ i ≤ n} are
Lipschitz functions R2n+1 → R2n+1 with respect to the Euclidean distance.

Since N is Gδ we can fix open sets Uk ⊂ Hn such that N = ∩∞k=0Uk. We may
assume that U0 = Hn.

Algorithm 6.4. Recall f0, x0, E0 and δ0 from the hypotheses of Proposition 6.1.
Let σ0 := 2 and t0 := min{1/4, µ/2}.

Suppose that m ≥ 1 and the parameters fm−1, xm−1, Em−1, σm−1, tm−1, δm−1
have already been defined. Then we can choose:

(1) fm(x) := fm−1(x) + tm−1〈x,Em−1(0)〉,
(2) σm ∈ (0, σm−1/4),
(3) tm ∈ (0,min{tm−1/2, σm−1/(4m)}),
(4) λm ∈ (0, tmσ

4
m/(2C

4
a )),

(5) Dm to be the set of pairs (x,E) ∈ Dfm = Df0 such that d(x, xm−1) < δm−1
and

(xm−1, Em−1) ≤(fm,σm−1−ε) (x,E)

for some ε ∈ (0, σm−1),
(6) (xm, Em) ∈ Dm such that Efm(x) ≤ Emfm(xm) + λm for every pair

(x,E) ∈ Dm,
(7) εm ∈ (0, σm−1) such that (xm−1, Em−1) ≤(fm,σm−1−εm) (xm, Em),

(8) δm ∈ (0, (δm−1 − d(xm, xm−1))/2) such that BH(xm, δm) ⊂ Um and for all

|t| < C2
H(1 + CV )

1
2 δ

1
2
m/εm:

|(fm(xm + tEm(xm))− fm(xm))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|
≤ (Emfm(xm)− Em−1fm(xm−1) + σm−1)|t|.

Proof. Clearly one can make choices satisfying (1)–(5).
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For (6) first notice that (xm−1, Em−1) ∈ Dm and hence Dm 6= ∅. By Lemma
5.2, the functions fm : Hn → R are Lipschitz and

fm(x) = f0(x) +
〈
x,

m−1∑
k=0

tkEk(0)
〉
. (6.1)

Using LipH(f0) ≤ 1/2, tk+1 ≤ tk/2, t0 ≤ 1/4 and Lemma 5.2 gives LipH(fm) ≤ 1.
Lemma 3.3 implies |Efm(x)| ≤ ω(E)LipH(fm). Hence sup(x,E)∈Dm

Efm(x) ≤ 1, so

we can choose (xm, Em) ∈ Dm as in (6).
The definition of Dm in (5) implies that one can choose εm as in (7).
Notice that (6) and the definition of Dm in (5) imply that xm ∈ N ⊂ Um,

d(xm, xm−1) < δm−1 and Emfm(xm) ≥ Em−1fm(xm−1). Therefore we can use
existence of the directional derivatives of fm to choose δm as in (8). �

We record for later use that LipH(fm) ≤ 1 for all m ≥ 1. We next show that
several parameters in Algorithm 6.4 converge to 0 and the balls BH(xm, δm) form
a decreasing sequence.

Lemma 6.5. The sequences σm, tm, λm, δm, εm converge to 0. For every m ≥ 1
the following inclusion holds:

BH(xm, δm) ⊂ BH(xm−1, δm−1).

Proof. Algorithm 6.4(2) and σ0 = 2 gives 0 < σm ≤ 2/4m so σm → 0. Combining
this with Algorithm 6.4(3,4,7,8) shows the other sequences converge to 0. Let

x ∈ BH(xm, δm). Then Algorithm 6.4(6,8) gives:

d(x, xm−1) ≤ δm + d(xm, xm−1)

< δm−1/2 + d(xm, xm−1)/2

< δm−1.

This shows the desired inclusion. �

Define ε′m > 0 by:

ε′m := min{εm/2, σm−1/2}. (6.2)

We next show that the sets Dm of special pairs form a decreasing sequence. This
is an adaptation of [10, Lemma 3.3].

Lemma 6.6. The following statements hold:

(1) If m ≥ 1 and (x,E) ∈ Dm+1 then:

(xm−1, Em−1) ≤(fm,σm−ε′m) (x,E),

(2) If m ≥ 1 then Dm+1 ⊂ Dm,
(3) If m ≥ 0 and (x,E) ∈ Dm+1 then d(E(0), Em(0)) ≤ σm.

Proof. If m = 0 then (3) holds since:

d(E(0), E0(0)) ≤ d(E(0), 0) + d(0, E0(0)) ≤ 2 = σ0.

It is enough to check that whenever m ≥ 1 and (3) holds for m − 1, then (1), (2)
and (3) hold for m. Fix m ≥ 1 and assume that (3) holds for m− 1:

d(E(0), Em−1(0)) ≤ σm−1 for all (x,E) ∈ Dm.

Proof of (1). Algorithm 6.4(6) states that (xm, Em) ∈ Dm. Hence:

d(Em(0), Em−1(0)) ≤ σm−1. (6.3)

Let (x,E) ∈ Dm+1. In particular, we have Efm+1(x) ≥ Emfm+1(xm) by Algorithm
6.4(5). Notice that, since ω(Em) = ω(E) = 1, we have 〈Em(0), Em(0)〉 = 1 and
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〈E(0), Em(0)〉 ≤ 1. Let A := Efm(x) − Emfm(xm). Using Lemma 5.2 and the
inequality Efm+1(x) ≥ Emfm+1(xm) gives:

A = Efm+1(x)− Emfm+1(xm)− tm〈E(0), Em(0)〉+ tm ≥ 0.

Using Algorithm 6.4(5) again, together with the above inequality, gives:

Efm(x) ≥ Emfm(xm) ≥ Em−1fm(xm−1).

In particular, Efm(x) ≥ Em−1fm(xm−1) proves the first part of the statement
(xm−1, Em−1) ≤(fm,σm−ε′m) (x,E).

Let B := Efm(x) − Em−1fm(xm−1) ≥ 0. Lemma 3.3 and LipH(fm) ≤ 1 imply
that 0 ≤ A, B ≤ 2. Using these inequalities and K ≥ 8 gives:

K(B
1
4 −A 1

4 ) ≥ (B
3
4 +B

1
2A

1
4 +B

1
4A

1
2 +A

3
4 )(B

1
4 −A 1

4 )

= B −A
= Emfm(xm)− Em−1fm(xm−1). (6.4)

Since A ≥ Efm+1(x)− Emfm+1(xm), (6.4) implies:

Emfm(xm)− Em−1fm(xm−1) +K(Efm+1(x)− Emfm+1(xm))
1
4

≤ KB 1
4 . (6.5)

To prove the second part of (xm−1, Em−1) ≤(fm,σm−ε′m) (x,E) we need to estimate:

|(fm(x+ tEm−1(x))− fm(x))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|. (6.6)

We consider two cases, depending on whether t is small or large.

Suppose |t| < C2
H(1 + CV )

1
2 δ

1
2
m/εm. Estimate (6.6) as follows:

|(fm(x+ tEm−1(x))− fm(x))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|
≤ |(fm(x+ tEm(x))− fm(x))− (fm(xm + tEm(xm))− fm(xm))|

+ |(fm(xm + tEm(xm))− fm(xm))

− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|
+ |fm(x+ tEm−1(x))− fm(x+ tEm(x))|. (6.7)

We consider the three terms on the right side of (6.7) separately.
Firstly, Algorithm 6.4(1) and Lemma 5.2 give:

(fm(x+ tEm(x))− fm(x))− (fm(xm + tEm(xm))− fm(xm)) (6.8)

= (fm+1(x+ tEm(x))− fm+1(x))− (fm+1(xm + tEm(xm))− fm+1(xm))

− tm〈x+ tEm(x), Em(0)〉+ tm〈x,Em(0)〉
+ tm〈xm + tEm(xm), Em(0)〉 − tm〈xm, Em(0)〉

= (fm+1(x+ tEm(x))− fm+1(x))− (fm+1(xm + tEm(xm))− fm+1(xm)).

Using (6.8) and (x,E) ∈ Dm+1 then gives:

|(fm(x+ tEm(x))− fm(x))− (fm(xm + tEm(xm))− fm(xm))|

≤ K(σm + (Efm+1(x)− Emfm+1(xm))
1
4 )|t|. (6.9)

For the second term in (6.7) we recall that, for the values of t we are considering,
Algorithm 6.4(8) states:

|(fm(xm + tEm(xm))− fm(xm))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|
≤ (Emfm(xm)− Em−1fm(xm−1) + σm−1)|t|.
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The final term in (6.7) is estimated using LipH(fm) ≤ 1, (2.1) and (6.3):

|fm(x+ tEm−1(x))− fm(x+ tEm(x))| ≤ d(x+ tEm−1(x), x+ tEm(x))

= d(tEm−1(0), tEm(0))

≤ σm−1|t|.

Adding the three estimates and using (6.5) then (6.2) and Algorithm 6.4(2)
allows us to develop (6.7):

|(fm(x+ tEm−1(x))− fm(x))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|

≤ K(σm + (Efm+1(x)− Emfm+1(xm))
1
4 )|t|

+ (Emfm(xm)− Em−1fm(xm−1) + σm−1)|t|
+ σm−1|t|

≤ K(σm−1 − ε′m + (Efm(x)− Em−1fm(xm−1))
1
4 )|t|.

This gives the required estimate of (6.6) for small t.

Suppose C2
H(1 + CV )

1
2 δ

1
2
m/εm ≤ |t| < 1. In particular, this implies:

δm ≤ ε2mt2/C4
H(1 + CV ) ≤ εm|t|. (6.10)

The last inequality above used that

εm|t|/C4
H(1 + CV ) ≤ εm/C4

H(1 + CV ) ≤ 1,

using εm ≤ 2 and CH , CV ≥ 1.
Estimate (6.6) as follows:

|(fm(x+ tEm−1(x))− fm(x))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|
≤ |(fm(xm + tEm−1(xm))− fm(xm))

− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|
+ |fm(x)− fm(xm)|
+ |fm(x+ tEm−1(x))− fm(xm + tEm−1(xm))|.

The estimate of the first term is given by Algorithm 6.4(7). This states:

(xm−1, Em−1) ≤(fm,σm−1−εm) (xm, Em),

which gives the inequality:

|(fm(xm + tEm−1(xm))− fm(xm))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|

≤ K(σm−1 − εm + (Emfm(xm)− Em−1fm(xm−1))
1
4 )|t|.

The estimate of the second term uses LipH(fm) ≤ 1 and (6.10):

|fm(x)− fm(xm)| ≤ d(x, xm) ≤ δm ≤ εm|t| ≤ Kεm|t|/8.

We estimate the final term using Proposition 2.7 to compare the Carnot-Carathéodory
and the Euclidean distance. Notice that x+ tEm−1(x) and xm+ tEm−1(xm) belong

to BH(x0, 2 + δ0). Hence we can use the constants CH and CV defined immediately
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before Algorithm 6.4. For our current values of t we can estimate as follows:

|fm(x+ tEm−1(x))− fm(xm + tEm−1(xm))|
≤ d(x+ tEm−1(x), xm + tEm−1(xm))

≤ CH|x+ tEm−1(x)− xm − tEm−1(xm)| 12

≤ CH(1 + CV )
1
2 |x− xm|

1
2

≤ C2
H(1 + CV )

1
2 d(x, xm)

1
2

≤ C2
H(1 + CV )

1
2 δ

1
2
m

≤ εm|t|
≤ Kεm|t|/8.

Combine the estimates of the three terms and use A ≥ 0 to obtain:

|(fm(x+ tEm−1(x))− fm(x))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|

≤ K(σm−1 − εm/2 + (Emfm(xm)− Em−1fm(xm−1))
1
4 )

≤ K(σm−1 − ε′m + (Efm(x)− Em−1fm(xm−1))
1
4 ).

This gives the correct estimate of (6.6) for large t. Combining the two cases proves
(1) for m.

Proof of (2). Suppose (x,E) ∈ Dm+1. Then (x,E) ∈ Dfm+1 = Dfm and Lemma
6.5 implies d(x, xm−1) < δm−1. Combining this with (1) gives (x,E) ∈ Dm. This
proves (2) for m.

Proof of (3). Suppose (x,E) ∈ Dm+1. Then Emfm+1(xm) ≤ Efm+1(x) using
Algorithm 6.4(5). Equivalently, by Algorithm 6.4(1):

Emfm(xm) + tm〈Em(0), Em(0)〉 ≤ Efm(x) + tm〈E(0), Em(0)〉.
Also (x,E) ∈ Dm by (2) above, so Algorithm 6.4(6) implies:

Efm(x) ≤ Emfm(xm) + λm.

Combining the two inequalities above gives tm ≤ tm〈E(0), Em(0)〉+λm. Rearrang-
ing, this implies:

〈E(0), Em(0)〉 ≥ 1− λm/tm.
Lemma 5.1 applied to g(t) := tE(0) and h(t) := tEm(0) gives:

d(E(0), Em(0)) ≤ Ca|E(0)− Em(0)| 12

= Ca(2− 2〈E(0), Em(0)〉) 1
4

≤ Ca(2λm/tm)
1
4

≤ σm
by Algorithm 6.4(4). This proves (3) for m. �

We next study the convergence of (xm, Em) and fm. We show that the directional
derivatives converge to a directional derivative of the limiting function, and the limit
of (xm, Em) belongs to Dm for every m. This is our adaptation of [10, Lemma 3.4].

Lemma 6.7. The following statements hold:

(1) fm → f pointwise, where f : Hn → R is Lipschitz and LipH(f) ≤ 1,
(2) f − fm is H-linear and LipH(f − fm) ≤ 2tm for m ≥ 0,
(3) xm → x∗ ∈ N and Em(0) → E∗(0) for some E∗ ∈ V with ω(E∗) = 1. For

m ≥ 0:

d(x∗, xm) < δm and d(E∗(0), Em(0)) ≤ σm,
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(4) E∗f(x∗) exists, is strictly positive and Emfm(xm) ↑ E∗f(x∗),
(5) (xm−1, Em−1) ≤(fm,σm−1−ε′m) (x∗, E∗) for m ≥ 1,
(6) (x∗, E∗) ∈ Dm for m ≥ 1.

Proof. We prove each statement individually.

Proof of (1). Algorithm 6.4(1) gives fm(x) = f0(x) + 〈x,
∑m−1
k=0 tkEk(0)〉. Define

f : Hn → R by

f(x) := f0(x) +
〈
x,

∞∑
k=0

tkEk(0)
〉
. (6.11)

Notice |f(x) − fm(x)| ≤ |x|
∑∞
k=m tk|Ek(0)|. Hence fm → f pointwise and, since

LipH(fm) ≤ 1, we deduce LipH(f) ≤ 1.

Proof of (2). Lemma 5.2 shows that f − fm is H-linear. Using also Algorithm
6.4(3) shows that for every m ≥ 0:

LipH(f − fm) ≤
∞∑
k=m

tk ≤ tm
∞∑
k=m

1

2k−m
≤ 2tm.

Proof of (3). Let q ≥ m ≥ 0. The definition of Dq+1 in Algorithm 6.4(5) shows
that (xq, Eq) ∈ Dq+1. Hence Lemma 6.6(2,3) imply that (xq, Eq) ∈ Dm+1, and
consequently:

d(Eq(0), Em(0)) ≤ σm. (6.12)

Since (xq, Eq) ∈ Dm+1, Algorithm 6.4(5) implies:

d(xq, xm) < δm. (6.13)

Since σm, δm → 0 we see that (xm)∞m=1 and (Em(0))∞m=1 are Cauchy sequences,
so converge to some x∗ ∈ Hn and v ∈ Hn. Since Em ∈ V and ω(Em) = 1, we
know |p(v)| = 1 and v2n+1 = 0. Using group translations, we can extend v to a
vector field E∗ ∈ V with ω(E∗) = 1 and E∗(0) = v. Letting q → ∞ in (6.12) and
(6.13) implies d(E∗(0), Em(0)) ≤ σm and d(x∗, xm) ≤ δm. Lemma 6.5 then gives
the strict inequality d(x∗, xm) < δm.

We now know that x∗ ∈ BH(xm, δm) for every m ≥ 1. Recall that N = ∩∞m=0Um
for open sets Um ⊂ Hn, and Algorithm 6.4(8) states BH(xm, δm) ⊂ Um. Hence
x∗ ∈ N .

Proof of (4). As in the proof of (3) we have (xq, Eq) ∈ Dm+1 for every q ≥ m ≥ 0.
Therefore, using Lemma 6.6(1), q ≥ m ≥ 1 implies:

(xm−1, Em−1) ≤(fm,σm−1−ε′m) (xq, Eq). (6.14)

Applying Algorithm 6.4(1) and (6.14) (with m and q replaced by q + 1) gives:

Eqfq(xq) < Eqfq+1(xq) ≤ Eq+1fq+1(xq+1) for q ≥ 0. (6.15)

Hence (Eqfq(xq))
∞
q=0 is strictly increasing and positive as E0f0(x0) ≥ 0.

Recall LipH(fq) ≤ 1 for q ≥ 1. Hence, by Lemma 3.3, the sequence (Eqfq(xq))
∞
q=1

is bounded above by 1. Consequently Eqfq(xq)→ L for some 0 < L ≤ 1. Inequality
(6.15) implies that also Eqfq+1(xq)→ L. Further:

Eqf(xq) = Eqfq(xq) + Eq(f − fq)(xq)

and |Eq(f − fq)(xq)| ≤ LipH(f − fq) ≤ 2tq → 0. Hence also Eqf(xq)→ L.
Let q ≥ m ≥ 0 and consider:

sm,q := Eqfm(xq)− Em−1fm(xm−1).
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By (6.14) we have sm,q ≥ 0. Letting q →∞, writing fm = f + (fm− f), and using
H-linearity of fm − f and Eqf(xq)→ L implies:

sm,q → sm := (fm − f)(E∗(0)) + L− Em−1fm(xm−1) ≥ 0. (6.16)

Also sm → 0 as m → ∞ since LipH(fm − f) ≤ 2tm and Em−1fm(xm−1) → L.
Using (6.14) shows that for t ∈ (−1, 1):

|(fm(xq + tEm−1(xq))− fm(xq))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|

≤ K(σm−1 − ε′m + (sm,q)
1
4 )|t|. (6.17)

Letting q →∞ in (6.17) shows that for t ∈ (−1, 1):

|(fm(x∗ + tEm−1(x∗))− fm(x∗))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|

≤ K(σm−1 − ε′m + (sm)
1
4 )|t|. (6.18)

Using LipH(f) ≤ 1 and d(E∗(0), Em−1(0)) ≤ σm−1 from (3) of the present Lemma
gives:

|f(x∗ + tE∗(x∗))− f(x∗ + tEm−1(x∗))| ≤ d(x∗(tE∗(0)), x∗(tEm−1(0)))

≤ σm−1|t|.

Since f − fm is H-linear we can use LipH(f − fm) ≤ 2tm to estimate:

|(f − fm)(x∗ + tEm−1(x∗))− (f − fm)(x∗)| = |(f − fm)(tEm−1(0))|
≤ tLipH(f − fm)

≤ 2tm|t|.

Combining the previous three inequalities shows that for t ∈ (−1, 1):

|(f(x∗ + tE∗(x∗))− f(x∗))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|
≤ |(fm(x∗ + tEm−1(x∗))− fm(x∗))

− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|
+ |f(x∗ + tE∗(x∗))− f(x∗ + tEm−1(x∗))|
+ |(f − fm)(x∗ + tEm−1(x∗))− (f − fm)(x∗)|

≤ (K(σm−1 − ε′m + (sm)
1
4 ) + σm−1 + 2tm)|t|.

Fix ε > 0 and choose m ≥ 1 such that:

K(σm−1 − ε′m + (sm)
1
4 ) + σm−1 + 2tm ≤ ε/3

and

|Em−1fm(xm−1)− L| ≤ ε/3.
Using the definition of Em−1fm(xm−1), fix 0 < δ < 1 such that for |t| < δ:

|fm(xm−1 + tEm−1(xm−1))− fm(xm−1)− tEm−1fm(xm−1)| ≤ ε|t|/3.

Hence for |t| < δ:

|f(x∗ + tE∗(x∗))− f(x∗)− tL|
≤ |(f(x∗ + tE∗(x∗))− f(x∗))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|

+ |fm(xm−1 + tEm−1(xm−1))− fm(xm−1)− tEm−1fm(xm−1)|
+ |Em−1fm(xm−1)− L||t|
≤ ε|t|.

This proves that E∗f(x∗) exists and is equal to L. We already saw that (Eqfq(xq))
∞
q=1

is a strictly increasing sequence of positive numbers. This proves (4).
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Proof of (5). The definition of L and Lemma 5.2 implies:

E∗fm(x∗) = L+ E∗(fm − f)(x∗) = L+ (fm − f)(E∗(0)).

Using (6.16) shows sm = E∗fm(x∗) − Em−1fm(xm−1) ≥ 0. Substituting this in
(6.18) gives (5).

Proof of (6). Property (6) is a consequence of (3), (4) and (5). �

We now prove that the limit directional derivative E∗f(x∗) is almost locally
maximal in horizontal directions. This is our adaptation of [10, Lemma 3.5].

Lemma 6.8. For all ε > 0 there is δε > 0 such that if (x,E) ∈ Df satisfies
d(x∗, x) ≤ δε and (x∗, E∗) ≤(f,0) (x,E) then:

Ef(x) < E∗f(x∗) + ε.

Proof. Fix ε > 0. Use Lemma 6.5 to choose m ≥ 1 such that:

m ≥ 4/ε
3
4 and λm, tm ≤ ε/4. (6.19)

Recall ε′m = min{εm/2, σm−1/2}. Using Lemma 6.7(3), fix δε > 0 such that

δε < δm−1 − d(x∗, xm−1) such that for every |t| < C2
H(1 + CV )

1
2 δ

1
2
ε /ε′m:

|(fm(x∗ + tE∗(x∗))− fm(x∗))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|
≤ (E∗fm(x∗)− Em−1fm(xm−1) + σm−1)|t|. (6.20)

Such δε exists since Lemma 6.7(5) implies E∗fm(x∗) ≥ Em−1fm(xm−1).
We argue by contradiction. Suppose that (x,E) ∈ Df satisfies d(x∗, x) ≤ δε,

(x∗, E∗) ≤(f,0) (x,E) and Ef(x) ≥ E∗f(x∗)+ε. We plan to show that (x,E) ∈ Dm.
We first observe that this gives a contradiction. Indeed, Algorithm 6.4(6) and the
monotone convergence Emfm(xm) ↑ E∗f(x∗) would then imply:

Efm(x) ≤ Emfm(xm) + λm ≤ E∗f(x∗) + λm.

From Lemma 6.7(2) and (6.19) we deduce:

Ef(x)− E∗f(x∗) = (Efm(x)− E∗f(x∗)) + E(f − fm)(x)

≤ λm + 2tm

≤ 3ε/4.

This contradicts the assumption that Ef(x) ≥ E∗f(x∗) + ε.

Proof that (x,E) ∈ Dm. Notice that (x,E) ∈ Dfm since (x,E) ∈ Df and
Df = Dfm because f − fm is H-linear. Next observe:

d(x, xm−1) ≤ d(x, x∗) + d(x∗, xm−1) < δm−1.

Hence it suffices to show that (xm−1, Em−1) ≤(fm,σm−1−ε′m/2) (x,E). Lemma 3.3
implies:

|E(f − fm)(x)|, |E∗(f − fm)(x∗)| ≤ LipH(f − fm).

Hence using (6.19) and our definition of (x,E), we deduce:

Efm(x)− E∗fm(x∗) ≥ Ef(x)− E∗f(x∗)− 2LipH(fm − f)

≥ ε− 4tm ≥ 0.

Lemma 6.7(6) states that (x∗, E∗) ∈ Dm, which implies Em−1fm(xm−1) ≤ E∗fm(x∗).
Hence:

Efm(x) ≥ E∗fm(x∗) ≥ Em−1fm(xm−1).

In particular, the inequality Efm(x) ≥ Em−1fm(xm−1) proves the first half of the
statement (xm−1, Em−1) ≤(fm,σm−1−ε′m/2) (x,E).

We next deduce several inequalities from our hypotheses. Denote:

• A := Ef(x)− E∗f(x∗),
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• B := Efm(x)− E∗fm(x∗),
• C := Efm(x)− Em−1fm(xm−1).

Our definition of (x,E) states A ≥ ε, while the inequalities above give 0 ≤ B ≤ C.
Also A, B, C ≤ 2 by Lemma 3.3. Recall the factorization:

(A
1
4 −B 1

4 )(B
3
4 +B

1
2A

1
4 +B

1
4A

1
2 +A

3
4 ) = A−B. (6.21)

Using Lemma 6.7(2), (6.19) and Algorithm 6.4(3), we obtain:

A
1
4 −B 1

4 ≤ (A−B)/ε
3
4

= (E(f − fm)(x)− E∗(f − fm)(x∗))/ε
3
4

≤ 4tm/ε
3
4

≤ mtm
≤ σm−1/4.

Since B, C ≤ 2 and K ≥ 8 we have:

B
3
4 +B

1
2A

1
4 +B

1
4A

1
2 +A

3
4 ≤ 8 ≤ K.

Hence using (6.21) with A replaced by C gives:

KC
1
4 −KB 1

4 ≥ C −B = E∗fm(x∗)− Em−1fm(xm−1).

Combining our estimates gives:

E∗fm(x∗)− Em−1fm(xm−1) +K(Ef(x)− E∗f(x∗))
1
4

= E∗fm(x∗)− Em−1fm(xm−1) +KA
1
4

≤ KC 1
4 −KB 1

4 +K(B
1
4 + σm−1/4)

= K((Efm(x)− Em−1fm(xm−1))
1
4 + σm−1/4). (6.22)

We can now prove the second half of (xm−1, Em−1) ≤(fm,σm−1−ε′m/2) (x,E). We
need to estimate:

|(fm(x+ tEm−1(x))− fm(x))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|. (6.23)

We consider two cases, depending on whether t is small or large.

Suppose |t| ≤ C2
H(1 + CV )

1
2 δ

1
2
ε /ε′m. To estimate (6.23) we use the inequality:

|(fm(x+ tEm−1(x))− fm(x))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1)|
≤ |(fm(x+ tE∗(x))− fm(x))− (fm(x∗ + tE∗(x∗))− fm(x∗))|

+ |(fm(x∗ + tE∗(x∗))− fm(x∗))

− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|
+ |fm(x+ tEm−1(x))− fm(x+ tE∗(x))|. (6.24)

Using Lemma 5.2, the hypothesis (x∗, E∗) ≤(f,0) (x,E) and H-linearity of fm − f ,
we can estimate the first term in (6.24):

|(fm(x+ tE∗(x∗))− fm(x))− (fm(x∗ + tE∗(x∗))− fm(x∗))|
= |f(x+ tE∗(x))− f(x))− (f(x∗ + tE∗(x∗))− f(x∗))|

≤ K(Ef(x)− E∗f(x∗))
1
4 |t|. (6.25)

Using (6.20) and the assumption that t is small bounds the second term in (6.24)
by:

(E∗fm(x∗)− Em−1fm(xm−1) + σm−1)|t|.
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Lemma 6.7 implies that the third term of (6.24) is bounded above by σm−1|t|. By
combining the estimates of each term and using (6.22) we develop (6.24):

|(fm(x+ tEm−1(x))− fm(x))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|

≤ (K(Ef(x)− E∗f(x∗))
1
4 + E∗fm(x∗)− Em−1fm(xm−1) + 2σm−1)|t|

≤ (K((Efm(x)− Em−1fm(xm−1))
1
4 + σm−1/4) + 2σm−1)|t|

≤ K(σm−1 − ε′m/2 + (Efm(x)− Em−1fm(xm−1))
1
4 )|t|, (6.26)

using ε′m ≤ σm−1/2 and K ≥ 8 in the final line. This gives the correct estimate of
(6.23) for small t.

Suppose C2
H(1 +CV )

1
2 δ

1
2
ε /ε′m ≤ |t| ≤ 1. To estimate (6.23) we use the inequality:

|(fm(x+ tEm−1(x))− fm(x))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|
≤ |(fm(x∗ + tEm−1(x∗))− fm(x∗))

− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|
+ |fm(x∗)− fm(x)|+ |fm(x+ tEm−1(x))− fm(x∗ + tEm−1(x∗))|.

Lemma 6.7(5) shows that the first term is bounded above by:

K(σm−1 − ε′m + (E∗fm(x∗)− Em−1fm(xm−1))
1
4 )|t|.

The second term is bounded by d(x∗, x) ≤ δε ≤ ε′m|t| ≤ Kε′m|t|/4. For the third
term we use Proposition 2.7 to relate the Carnot-Carathéodory distance and the
Euclidean distance. Notice x+ tEm−1(x), x∗+ tEm−1(x∗) ∈ BH(x0, 2 + δ0). Hence
we can use the constants CH and CV fixed before Algorithm 6.4:

|fm(x+ tEm−1(x))− fm(x∗ + tEm−1(x∗))|

≤ CH|x+ tEm−1(x)− x∗ − tEm−1(x∗)|
1
2

≤ CH(1 + CV )
1
2 |x∗ − x|

1
2

≤ C2
H(1 + CV )

1
2 d(x∗, x)

1
2

≤ C2
H(1 + CV )

1
2 δ

1
2
ε

≤ ε′m|t|
≤ Kε′m|t|/4.

Putting together the three estimates and using E∗fm(x∗) ≤ Efm(x) gives:

|(fm(x+ tEm−1(x))− fm(x))− (fm(xm−1 + tEm−1(xm−1))− fm(xm−1))|

≤ K(σm−1 − ε′m/2 + (Efm(x)− Em−1fm(xm−1))
1
4 )|t|.

This gives the correct estimate of (6.23) for large t.
Combining the two cases estimates (6.23) for any t ∈ (−1, 1). Hence:

(xm−1, Em−1) ≤(fm,σm−1−ε′m/2) (x,E).

This concludes the proof. �

We can now conclude by proving Proposition 6.1 and hence, using also Theorem
5.6, prove Theorem 2.12.

Proof of Proposition 6.1. Lemma 6.7 and Lemma 6.8 prove Proposition 6.1. In-
deed, Lemma 6.7 states that there is f : Hn → R Lipschitz such that f−f0 is linear
and LipH(f − f0) ≤ 2t0 ≤ µ. It also states that there is (x∗, E∗) ∈ Df satisfying,
among other properties, d(x∗, x0) < δ0 and E∗f(x∗) > 0. Lemma 6.8 then shows
that E∗f(x∗) is almost locally maximal in the sense of Proposition 6.1. �
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Proof of Theorem 2.12. Let f0 : Hn → R be a Lipschitz function. Multiplying f0 by
a non-zero constant does not change the set of points where it is Pansu differentiable.
Hence we can assume LipH(f0) ≤ 1/4. Fix an arbitrary pair (x0, E0) ∈ Df0 .

Apply Proposition 6.1 with δ0 = 1, µ = 1/4 and K = 8. This gives a Lipschitz
function f : Hn → R such that f − f0 is H-linear with LipH(f − f0) ≤ 1/4 and a
pair (x∗, E∗) ∈ Df , in particular x∗ ∈ N , such that E∗f(x∗) > 0 is almost locally
maximal in the following sense.

For any ε > 0 there is δε > 0 such that whenever (x,E) ∈ Df satisfies both:

(1) d(x, x∗) ≤ δε, Ef(x) ≥ E∗f(x∗),
(2) for any t ∈ (−1, 1):

|(f(x+ tE∗(x))− f(x))− (f(x∗ + tE∗(x∗))− f(x∗))|

≤ 8|t|(Ef(x)− E∗f(x∗))
1
4 ,

then:
Ef(x) < E∗f(x∗) + ε.

Combining LipH(f0) ≤ 1/4 and LipH(f − f0) ≤ 1/4 gives LipH(f) ≤ 1/2. Notice
that (x∗, E∗) is also almost locally maximal in the sense of Theorem 5.6, since the
restriction on pairs above is weaker than that in Theorem 5.6. Hence Theorem
5.6 implies that f is Pansu differentiable at x∗ ∈ N . A H-linear function is Pansu
differentiable everywhere. Consequently f0 is Pansu differentiable at x∗, proving
Theorem 2.12. �
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