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Abstract
Given an anisotropy φ on R3, we discuss the relations between the φ-calibrability of a

facet F ⊂ ∂E of a solid crystal E, and the capillary problem on a capillary tube with base
F . When F is parallel to a facet B̃Fφ of the unit ball of φ, φ-calibrability is equivalent to
show the existence of a φ-subunitary vector field in F , with suitable normal trace on ∂F ,
and with constant divergence equal to the φ-mean curvature of F . Assuming E convex
at F , B̃Fφ a disk, and F (strictly) φ-calibrable, such a vector field is obtained by solving
the capillary problem on F in absence of gravity and with zero contact angle. We show
some examples of facets for which it is possible, even without the strict φ-calibrability
assumption, to build one of these vector fields. The construction provides, at least for
convex facets of class C1,1, the solution of the total variation flow starting at 1F .

1 Introduction

The aim of this paper is to point out some connections between crystalline mean curvature of
facets of a solid set E ⊂ R3, and the capillary problem in absence of gravity. In particular, we
are interested in examples of facets F ⊂ ∂E which admit a subunitary vector field allowing to
define an anisotropic mean curvature not easily expressible in terms of a scalar function. The
study of anisotropic mean curvature of facets is related to crystalline mean curvature flow
[68], [70], [71], [2], [48], [49]: for instance, the constancy of the crystalline mean curvature
makes a facet to translate parallely to itself in normal direction, at least for a short time,
thus preventing the facet-breaking and bending phenomena [21].
Let us start with a brief overview of the action principle for a capillary, referring the reader
for instance to [44], [59], [33] and references therein, for a more complete discussion on this
topic.
In the absence of gravity, the capillary problem on a bounded connected Lipschitz open set
Ω ⊂ Rm (m = 2 being the physical case) can be stated as follows: given b, µ ∈ R, solve

inf
{

Gµ(u) : u ∈ BV (Ω),
∫

Ω
u dx = b

}
, (1.1)
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where BV (Ω) is the space of functions with bounded variation in Ω, and Gµ is the strictly
convex functional

Gµ(u) :=
∫

Ω

√
1 + |Du|2 −

∫
∂Ω
µu dHm−1. (1.2)

Here,
∫

Ω

√
1 + |Du|2 is the area of the (generalized) graph of u [59], [53], Hm−1 is the (m−1)-

dimensional Hausdorff measure in Rm [43], u can be thought of as the height of the liquid,
and the last term in (1.2) involves the trace of u on ∂Ω. Let µ ≥ 0.(1) Then, one can show
[59] that, when µ > 1, the functional Gµ is unbounded from below. In what follows, we shall
confine ourselves to the case(2)

µ ∈ (0, 1].

We then set µ = cos γ, where γ represents, form = 2, the (assigned) contact angle between the
liquid and the bounding walls of the capillary tube Ω×R. From the first variation computation
of Gµ, supposing for simplicity that ∂Ω is of class C1, it turns out that if µ ∈ (0, 1), then
solving (1.1) is equivalent to find

u ∈ C2(Ω) ∩ C1(Ω) (1.3)

such that

div

(
∇u√

1 + |∇u|2

)
= h in Ω (1.4)

for a suitable constant h ∈ R independent of b. The prescribed mean curvature equation (1.4)
is coupled with the Neumann-type boundary condition

∇u√
1 + |∇u|2

· νΩ = µ on ∂Ω, (1.5)

where νΩ is the unit normal vector field to ∂Ω pointing outside of Ω. The constant h is
identified integrating by parts, since

h =
1
|Ω|

∫
Ω

div

(
∇u√

1 + |∇u|2

)
dx =

1
|Ω|

∫
∂Ω

∇u√
1 + |∇u|2

· νΩ dHm−1 =
µP (Ω)
|Ω|

, (1.6)

where P (Ω) denotes the perimeter of Ω in Rm and |Ω| is the Lebesgue measure of Ω. From
(1.5), it follows that solutions of (1.1) can be expected only when µ < 1. Once µ has been
chosen, the problem becomes to find necessary and sufficient conditions on the set Ω ensuring
existence of solutions of (1.3), (1.4) and (1.5). In this respect, it is convenient to introduce
the prescribed mean curvature functionals defined, for λ ∈ R, and µ ∈ [−1, 1], as

Fλ,µ(B) := P (B,Ω) + µHm−1(∂∗B ∩ ∂Ω)− λ|B|, B ⊆ Ω,

where ∂∗B denotes the reduced boundary [6] of the finite perimeter set B, and P (·,Ω) is the
perimeter in Ω (if µ = 1 we have Fλ,1(B) = P (B)− λ|B| for any B ⊆ Ω). The problem

inf {Fλ,µ(B) : B of finite perimeter, B ⊆ Ω} (1.7)

(1)Up to a change of sign of b, this is not restrictive, since Gµ(u) = G−µ(−u).
(2)If µ = 0, then problem (1.1) is trivially solved by a suitable constant.
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has been studied by several authors, see for instance [67], [44], [25], [40], (see also [12], [27],
[28], [29], [30], [31], [32]) and references therein. By direct methods, it turns out that there
exists a solution of (1.7) and, again, if such a solution is sufficiently regular, its boundary
inside Ω has mean curvature(3) equal to λ, and contact angle with ∂Ω equal to arccosµ.

Now, let µ ∈ (0, 1) and h be as in (1.6).(4) Then [44, Chapter 7] there exists a solution of
(1.3), (1.4) and (1.5) if and only if

0 = Fh,µ(∅) = Fh,µ(Ω) < Fh,µ(B), B ⊂ Ω, B 6= ∅; (1.8)

moreover, the solution is unique up to an additive constant, and it is bounded from below in Ω.
On the other hand [45], if (1.8) is violated, still (1.4) admits a solution in some nonempty set
B∗ ⊂ Ω, and such a solution becomes unbounded on Ω∩∂B∗. In this situation, the expected
physical phenomenon is that the height of the fluid increases unboundedly on Ω \ B∗, until
part of the base in B∗ remains uncovered.
In connection with the case µ = 1, and for taking into account unbounded functions u, we
mention that problem (1.1) can be generalized into a minimization over subsets which are
not necessarily subgraphs of a function. This formulation is originally due to M. Miranda
[60], [61], and has led to the notion of generalized solution.
In [52], Giusti proved that (1.8) is a necessary and sufficient condition also in the case µ = 1,
thus identifying a “maximal” set Ω where the elliptic equation (1.4) has a solution.(5)

Theorem 1.1 ([52]). Let Ω ⊂ Rm be a bounded connected open set with Lipschitz boundary,
and let h := P (Ω)

|Ω| . Then there exists a solution u ∈ C2(Ω) of (1.4) if and only if

h <
P (B)
|B|

, B ⊂ Ω, B 6= ∅. (1.9)

Moreover, if Ω is of class C2, the solution is unique up to an additive constant, bounded from
below in Ω, and its graph is vertical at the boundary of Ω, in the sense that

∇u√
1 + |∇u|2

→ νΩ uniformly on ∂Ω. (1.10)

Finally, if m = 2 and Ω is convex, (1.9) is in turn equivalent to assume that the curvature of
∂Ω, at all points of ∂Ω where it is defined, is less than or equal to h.

Similarly to the case µ ∈ (0, 1), if Ω does not satisfy (1.9), the fluid height is expected
to become unbounded in correspondence of the complement of some nonempty regular set
B? ⊂ Ω (see Remark 3.6), such that Ω∩ ∂B? has mean curvature equal to h. Moreover, it is
proven in [52, Theorem 3.2] that u is unbounded from above around a relatively open region
(if any) of ∂Ω where the maximum of the mean curvature of ∂Ω equals P (Ω)/|Ω|.

(3)Here and throughout the paper, if B ⊂ Rn is of class C2, we shall call mean curvature of ∂B the sum of
the (n− 1)-principal curvatures of ∂B.

(4)Note that, for anyB ⊆ Ω, there holds Fh,µ(Ω\B) = F̃ (B), where we set F̃ (B) := P (B,Ω)−µHm−1(∂∗B∩
∂Ω) + h|B|.

(5)The result in [52] is given, more generally, for a right hand side of (1.4) belonging to Lip(Ω) ∩ L∞(Ω).
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Theorem 1.1 provides a subunitary vector field with constant divergence on Ω and satisfying
(1.10). Interestingly enough [64], an equation of the form

divÑ = const in Ω, (1.11)

hence very similar to (1.4), appears, supposing for simplicity m = 2, in connection with the
motion of a solid set E ⊂ R3 = R2 × R by its anisotropic mean curvature. Equation (1.11)
is coupled with (1.10) (where the subunitary vector field Ñ replaces ∇u√

1+|∇u|2
), and it gives

the φc-mean curvature of a facet F ⊂ ∂E which is parallel to the horizontal plane R2; here,
φc is the norm of R3 induced by the (portion of) “Euclidean” cylinder

Bφc :=
{

(ξ1, ξ2, ξ3) ∈ R3 : max
(√

ξ2
1 + ξ2

2 , |ξ3|
)
≤ 1
}
. (1.12)

If E is evolving under φc-mean curvature flow, and ∂E has constant φc-mean curvature at F ,
then F is called φc-calibrable, and it is expected to move parallely to itself for short times.

The notion of calibrability can be given for any convex anisotropy φ [20], [21], and in any
dimension m ≥ 1 [5], [37].(6) Noncalibrable facets allow to construct explicit examples of
facet breaking-bending phenomena, see again [20], [21]: indeed, it seems reasonable that, at
least at time t = 0, the facet breaks in correspondance of the jump set of its curvature and
bends if the curvature is continuous and not constant.
For simplicity, let us state the problem when m = 2, and for a facet F ⊂ ∂E of a solid
set E which is convex at F (Definition 4.3). Let φ : R3 → [0,+∞) be a convex nonregular
anisotropy, and let Bφ be the unit ball of φ (the Wulff shape). Assume that F is parallel to
a facet B̃F

φ of the Wulff shape, and let ΠF
∼= R2 be the affine plane spanned by F . Then, F

is said to be φ-calibrable if there exists a vector field Ñ ∈ L∞(F ; R2) satisfying

Ñ(x) ∈ B̃F
φ a.e. x ∈ F,

divÑ = h a.e. in F,

〈ν̃F , Ñ〉 = 1 H1 − a.e. on ∂F,

(1.13)

where ν̃F ∈ ΠF is the unit normal vector field to ∂F pointing outside of F , 〈·, ·〉 is a suitable
notion of normal trace, and the constant h > 0 is again determined by an integration by
parts (Section 5). What is more informative, is that (1.13) is obtained as a by-product
of a minimization of a functional defined on divergences of vector fields (Section 4), which
remains interesting also for facets which are not φ-calibrable. This corresponds to the case
when the right hand side of the second line in (1.13) is not constant anymore. We shall call
any vector field solution of the above mentioned minimization problem an optimal selection
in the (possibly non φ-calibrable) facet F . Remarkably, it is possible to prove [21] that a facet
is φ-calibrable if and only if its “mean velocity” is less than or equal to the mean velocity of

(6)Actually, the case m = 1 is trivial, since all edges contained in the boundary of a planar domain have
constant anisotropic mean curvature. See for instance [71], and references therein.
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any subset of the facet.(7) We say that F is strictly φ-calibrable if it is φ-calibrable and there
is no B ⊂ F , B 6= ∅, having mean velocity equal to that of F .

The analogy with (1.4), (1.10) is now apparent: a strictly φc-calibrable facet F such that E
is convex at F is nothing but a set Ω where the problem addressed in Theorem 1.1 has a
solution. As a consequence (Proposition 6.2), in such a facet there exists an optimal selection
which is induced by any scalar function u solving the capillary problem in the relative interior
of F with zero contact angle; moreover, this optimal selection is (disregarding the sign) the
horizontal component of the outer unit normal vector to the graph of u. Incidentally, we
recall [50] that it is not possible for an optimal selection in F to coincide with the gradient of
a scalar function, unless the facet is the unit disk. Actually, constructing an optimal selection
in non φc-calibrable facets is the main scope of the present paper (Section 6). Indeed, even if
the facet is φc-calibrable but not strictly φc-calibrable, it is possible in some case to extend
the selection out of the maximal subset of F where the capillary problem is solvable. This
extension, in general, may not be induced by a scalar function, nevertheless it still provides
information on the regularity of the anisotropic mean curvature at F . Our construction is
based on the characterization of sublevel sets of the anisotropic mean curvature (Section 4).

It is worth to notice that, by virtue of [5, Theorem 17], and for a convex facet F of class
C1,1, our construction provides also the solution of the total variation flow in R2 with initial
datum the characteristic function of F (see (7.1)). Heuristically, if u is a solution of (7.1), and
p(t) = (x, u(t, x)) is a point of graph(u(t)) ⊂ R3 around which u(t) is sufficiently smooth with
nonzero gradient, then the vertical velocity of p(t) equals the mean curvature of the level set
of u(t) passing through x; strictly φc-calibrable flat regions F of graph(u(t)) evolve in vertical
direction(8) with velocity equal to P (F )/|F |; vertical walls (provided u(t) is discontinuous) of
graph(u(t)) do not move; finally, isolated points where the gradient of u(t) vanishes, such as
local minima or local maxima, may develop instantaneously flat horizontal regions. See also
[15], [16], [5], [37], and Section 7. Therefore, there are analogies between the total variation
flow in R2 and the anisotropic mean curvature flow of φc-calibrable facets; however the two
motions differ immediately after the initial time. Indeed, even for φc-calibrable facets, the
graph of v = 1F decreases its height without distortion of the boundary, while the shape of
F is expected in general to change for t > 0.

The plan of this paper is the following. In Section 2, we recall the definitions of anisotropic
perimeter, duality maps, and anisotropic mean curvature, and we fix the family of regular
sets we shall deal with. In Section 3, we briefly collect some results on the anisotropic and
Euclidean Cheeger problem. In Section 4, we focus on the three dimensional case: we recall
the definition of normal trace at a facet, needed to localize the anisotropic mean curvature
at a facet. Theorems 4.12-4.16 enlight the relation between sublevel sets of the restriction of
κφ on facets and Cheeger-like problems. In this respect, Theorem 4.15 plays a role also for
its application to the construction of optimal selections. This is done in Section 6, which,
together with Section 5, contains the main results of this paper. In Section 5, we consider the
problem of φ-calibrable facets. Let φ̃ be the bidimensional metric induced by B̃F

φ , let Peφ(F )

(7) See Theorem 5.2. See also [37] for an extension to convex facets in dimension n ≥ 2.
(8)Upwards or downwards depending on whether F consists of points of local minimum or local maximum

of u(t).
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be the φ̃-perimeter of F , and denote by κFeφ the φ̃-mean curvature of ∂F . Then, we show in
Theorem 5.8 that

κFeφ ≤
Peφ(F )

|F |
(1.14)

is a necessary condition for calibrability when F is φ̃-convex. This result was already known
for convex facets [21], and in that context the two conditions are actually equivalent. For
general φ̃-convex facets (Definition 5.6), condition (1.14) is not sufficient for φ-calibrability
(Example 5.7). In Section 5.1, we prove some facts on the calibrability of “annular” facets.
Theorems 5.9-5.11 could be considered as a first step towards an extension to the crystalline
setting of the study of “oscillating towers” given in [16]. Finally, in Section 7, we provide a
very brief overview on the relations between the total variation flow in R2 and the arguments
considered in the paper.

2 Anisotropic mean curvature

General references for this section are for instance [26], [24], [22], [23].
Let n := m+ 1 ≥ 2. A convex anisotropy (an anisotropy, for short) on Rn is any even convex
function φ : Rn → [0,+∞) such that φ(ξ) ≥ Λ|ξ|, for some Λ > 0, and φ(tξ) = |t|φ(ξ), for
ξ ∈ Rn and t ∈ R.
The dual of an anisotropy φ on Rn is the function φo : Rn? → [0,+∞) defined as φo(ξ?) :=
sup{ξ? · ξ : φ(ξ) ≤ 1}, which is an anisotropy on the dual Rn? of Rn. We will usually denote
by Bφ ⊂ Rn and Bφo ⊂ Rn? the closed unit φ-ball and φo-ball respectively,(9) i.e.

Bφ := {ξ ∈ Rn : φ(ξ) ≤ 1} Bφo := {ξ? ∈ Rn? : φo(ξ?) ≤ 1}.

ByM(Rn) we denote the class of all anisotropies on Rn. We say that φ ∈M(Rn) is regular,
and we write φ ∈ Mreg(Rn), if Bφ and Bφo have uniformly convex boundary of class C2.
However, the relevant cases for this paper are when φ ∈M(Rn) \Mreg(Rn), namely when φ
is nonregular, and more precisely:

- when Bφ (and Bφo) is an n-dimensional polyhedron. In this case we say that φ is a
crystalline anisotropy.

- when Bφ = C × [−1, 1], C being an (n − 1)-dimensional centrally symmetric convex
body. In this case, we say that φ a cylindrical anisotropy. We say that φ is the Euclidean
cylindrical norm if n = 3 and C is the Euclidean unit disk (see (1.12)).

Definition 2.1 (Duality maps). Let φ ∈ M(Rn). We define the (maximal monotone
possibly multivalued) one-homogeneous maps Tφ : Rn → 2Rn, Tφo : Rn? → 2Rn?, as

Tφ(ξ) :=
1
2
∂(φ2)(ξ), Tφo(ξ?) :=

1
2
∂((φo)2)(ξ?), ξ ∈ Rn, ξ? ∈ Rn?,

where ∂ denotes the subdifferential.
(9) In the literature, Bφo is sometimes called Frank diagram.
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The φ-anisotropic perimeter of a finite perimeter set E ⊂ Rn in the open set Ω ⊆ Rn is
defined as

Pφ(E,Ω) := cn

∫
Ω∩∂∗E

φo(νE) dHn−1, (2.1)

where νE is the generalized unit normal to ∂∗E [6], cn := ωn
|Bφ| and ωn is the Lebesgue measure

of the Euclidean unit ball of Rn.(10) It turns out that Bφ satisfies the following isoperimetric
property:(11) for every set E ⊂ Rn of finite perimeter and finite Lebesgue measure, we have

Pφ(E) ≥
(
|E|
|Bφ|

)n−1
n

Pφ(Bφ), (2.2)

with equality if and only if E coincides (up to a translation) with Bφ.
For simplicity, we shall always assume φ to be such that the constant cn in (2.1) is 1.

Let E ⊆ Rn be a Lipschitz set, and νφo := νE

φo(νE)
. For x, y ∈ Rn, we set distφ(x, y) := φ(y−x),

distφ(x,E) := infy∈E distφ(x, y), and we define the φ-signed distance function dEφ from ∂E as
dEφ (x) := distφ(x,E)− distφ(x,Rn \E). It turns out that dEφ is Lipschitz in a neighbourhood
U of ∂E, and it satisfies the eikonal-type equation

φo(∇dEφ ) = 1 a.e. in U. (2.3)

2.1 Regular case

Suppose that φ ∈ Mreg(Rn), and let E ⊂ Rn be Lipschitz. The Cahn-Hoffman vector field
nφ on ∂E is defined as nφ := Tφo(νφo), Hn−1 almost everywhere on ∂E. When ∂E is compact
and of class C2, there exists a tubular neighbourhood U of ∂E where dEφ is of class C2; hence,
by (2.3), ∇dEφ = νφo on ∂E. We extend the Cahn-Hoffman vector field nφ on the whole of
U as Nφ := Tφo(∇dEφ ) in U , and we define the φ – anisotropic mean curvature κEφ of ∂E as
κEφ := divNφ on ∂E.
Anisotropic mean curvature appears in the first variation of the anisotropic perimeter func-
tional. More precisely, let (Ψλ)λ∈R ⊂ C1,1(Rn; Rn) be a family of diffeomorphisms of the form
Ψλ(x) := x + λψ(x)Nφ(x) + o(λ) for any x ∈ Rn, where the scalar function ψ is Lipschitz
with compact support in Rn. Then(12)

inf
ψ∈Lip(∂E),R

∂E ψ
2 φo(νE) dHn−1≤1

d

dλ
Pφ(Ψλ(E))|λ=0

= −
(∫

∂E
(κEφ )2 φo(νE) dHn−1

) 1
2

, (2.4)

and the infimum is realized by a suitable scalar multiple of κEφ .

(10) The constant cn plays a role in the definition of the φ-anisotropic volume | · |φ, see for instance [26], [24].
We recall that | · |φ = cn| · |, so that |Bφ|φ = ωn for any φ ∈M(Rn).
(11) See [68], [69], [70], [46], [47], and [42] for a quantitative version.
(12)See [25], [17], and [13] for an extension to nonconvex smooth anisotropies.
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2.2 Nonregular case

When φ ∈ M(Rn) \ Mreg(Rn), there can be (for instance for φ crystalline or cylindrical)
several possible choices of vector fields N : ∂E → Rn satisfying N(x) ∈ Tφo(νφo(x)) for
Hn−1-almost every x ∈ ∂E.

Definition 2.2 (Selection). A selection on ∂E is an element of

Norφ(∂E) := {N : ∂E → Rn : N(x) ∈ Tφo(νφo(x)) for Hn−1−a.e. x ∈ ∂E}.

Definition 2.3 (Neighbourhood φ-regular sets). We say that E is neighbourhood-Lip
φ-regular if there exists a tubular neighbourhood U of ∂E and a bounded vector field η ∈
Lip(U ; Rn) such that η(z) ∈ Tφo(∇dEφ (z)) for almost every z ∈ U .

Remark 2.4. In the Euclidean case, E is neighbourhood-Lip φ-regular if and only if ∂E is
of class C1,1. Neighbourhood regularity of boundaries has some connection with the notion
of inner-outer tangent ball: given r > 0, we say that E satisfies the rBφ-condition if, for any
x ∈ ∂E, there exists y ∈ Rn such that rBφ + y ⊆ E, and x ∈ ∂(rBφ + y). It turns out [14]
that, if E is neighbourhood-Lip φ-regular, then there exists r > 0 such that E and Rn \ E
satisfy the rBφ-condition. Moreover, if E is convex, then E is neighbourhood-L∞ φ-regular
if and only if E and Rn \ E satisfy the rBφ-condition for some r > 0.

Neighbourhood Lipschitz regularity has been used in [37] to give a characterization of convex
subsets of Rn−1 which are φ-calibrable, see Section 5. In this paper, we shall adopt a second
notion of regular sets.

Definition 2.5 (Lip φ-regular sets). We say that E is Lip φ-regular if there exists a vector
field N ∈ Norφ(∂E) ∩ Lip(∂E; Rn).

It turns out that a Lip φ-regular set is also neighbourhood Lip φ-regular, in the sense of
Definition 2.3. Indeed, for any N ∈ Norφ(∂E) it is possible to exhibit a Lipschitz extension
of N inside a tubular neighbourhood U of ∂E, see [22].(13)

Definitions 2.3 and 2.5 make sense also when φ ∈Mreg(Rn); in this case, if U is the tubular
neighbourhood of ∂E where (2.3) holds, then the unique vector field η ∈ Lip(U ; Rn) satisfying
Definition 2.3 is η := Nφ.
Anisotropic mean curvature is defined, as in formula (2.4), by computing the first variation
of the perimeter functional. For λ ∈ R and z ∈ U , define Ψλ(z) := z + λψe(z)N e(z), where
ψ ∈ Lip(U) and N e ∈ Lip(U ; Rn) is a Lipschitz extension of N on U . It is convenient to
introduce the family

H 2
div(∂E) :=

{
N ∈ Norφ(∂E) : divτN ∈ L2(∂E)

}
, (2.5)

(13) When φ is crystalline, a polyhedron E is Lip φ-regular if and only if, at every vertex v ∈ ∂E,\
F facet of ∂E,

v∈F

Tφo(νF ) 6= ∅,

where the definition of facet is given in Section 4 below.
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where the tangential divergence of a vector field N ∈ Norφ(∂E) is defined as in [22]. Set

K(N) :=
∫
∂E

(divτN)2 φo(νE) dHn−1, N ∈H 2
div(∂E). (2.6)

The following result is proven in [22].

Theorem 2.6 (First variation in the nonregular case). Suppose that E is Lip φ-regular.
Then

inf
ψ∈Lip(∂E),R

∂E ψ
2 φo(νE) dHn−1≤1

lim inf
λ→0+

Pφ(Ψλ(E))− Pφ(E)
λ

= − inf
N∈H 2

div(∂E)
(K(N))

1
2 . (2.7)

The minimization problem in (2.7) may admit, in general, more than one solution. Neverthe-
less, by the strict convexity of K in the divergence, two minimizers have the same divergence.
In the following, we denote by

Nmin ∈H 2
div(∂E)

any minimizer of (2.6).

Definition 2.7 (Anisotropic mean curvature). The φ-mean curvature κEφ of ∂E is de-
fined as

κEφ := divτNmin.

Actually, Lip φ-regular sets have anisotropic mean curvature which is more than just square
integrable on ∂E: indeed, the following result holds [23].

Theorem 2.8 (Boundedness of κEφ ). We have κEφ ∈ L∞(∂E).

Some further regularity properties of κEφ are expected for those (n− 1)-dimensional portions
of ∂E which correspond (via the map Tφo) to (n− 1)-dimensional portions of ∂Bφ. We shall
collect some of these results in Section 4.
When φ is the euclidean norm, we omit the dependence on φ of the various symbols, thus
letting ν in place of νφ, P in place of Pφ, κ in place of κφ, and so on.

3 Prescribed mean curvature problem

Let m ≥ 2, ψ ∈M(Rm), Ω ⊂ Rm be a bounded open set with Lipschitz boundary, and β > 0.
In the following, we shall consider solutions Cβ to the prescribed mean curvature problem,
namely solutions to

inf {Pψ(B)− β|B| : B ⊆ Ω, B 6= ∅} . (3.1)

Existence of solutions of (3.1) can be proved by direct methods. The following regularity
result holds.

Theorem 3.1. Let ψ be the Euclidean norm. Then Ω ∩ ∂∗Cβ is an analytic hypersurface
with constant mean curvature equal to β, and the set Ω ∩ (∂Cβ \ ∂∗Cβ) is a closed set with
Hausdorff dimension at most (m− 8). Moreover, ∂∗Cβ can meet ∂∗Ω only tangentially, that
is, νΩ = νCβ on ∂∗Cβ ∩ ∂∗Ω.
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Proof. The analyticity of Ω ∩ ∂∗Cβ, the closedness and the estimate on the dimension of
Ω∩ (∂Cβ \∂∗Cβ) follow from classical regularity results, see for instance [67] or [58]. We refer
the reader to the latter reference for a proof of the tangentiality condition on ∂∗Cβ∩∂∗Ω.

For ψ ∈Mreg(Rm) of class C3,α on Rm\{0}, and α ∈ (0, 1), solutions of (3.1) are hypersurfaces
of class C1,α, out of a closed singular set of zero Hm−1-measure, see [3].(14) For m = 2, in
[7] the authors study the problem for a more general notion of perimeter, and prove that the
inner boundary of a solution of (3.1) is a Lipschitz curve out of a closed singular set of zero
H1-measure. The result has been improved in [63, Theorem 4.5], with the following theorem.

Theorem 3.2. Let ψ ∈ M(R2), β > 0, and let Cβ be a solution of (3.1). Then, every
connected component of Ω ∩ ∂Cβ is contained in a translated of β−1∂Bψ.

Remark 3.3. In dimension m > 2, even with the Euclidean metric, we cannot deduce from
Theorem 3.1 that any connected component of Ω ∩ ∂Cβ is contained in the boundary of a
ball of radius β−1, see for instance [54] for an explicit example.

The ψ-Cheeger problem(15) for Ω consists in solving

inf
{
Pψ(B)
|B|

: B ⊆ Ω, B 6= ∅
}

=: hψ(Ω), (3.2)

see [37], [40]. A minimizer of (3.2) is sometimes called a ψ-Cheeger subset of Ω, while hψ(Ω)
is called the ψ-Cheeger constant of Ω. Notice that, when β := hψ(Ω), a nonempty set B ⊆ Ω
solves (3.1) if and only if B is a minimizer of (3.2).

Definition 3.4 (Cheeger and strict Cheeger sets). If Ω is a solution of (3.2), we say
that Ω is a ψ-Cheeger set. If

Pψ(Ω)
|Ω|

<
Pψ(B)
|B|

, B ⊂ Ω, B 6= ∅, (3.3)

we say that Ω is a strict ψ-Cheeger set.

If B ⊆ Ω is a ψ-Cheeger subset of Ω, then B is a ψ-Cheeger set (namely, hψ(B) = hψ(Ω) =
Pψ(B)
|B| ). We say that B is a strict ψ-Cheeger subset of Ω provided that B is a ψ-Cheeger

subset of Ω, and Pψ(B)
|B| <

Pψ(B′)
|B′| , for every B′ ⊂ B, B′ 6= ∅.

It can be proved [58] that the union of ψ-Cheeger subsets of Ω is still a ψ-Cheeger subset of
Ω.

Definition 3.5 (Maximal/minimal Cheeger subsets). We denote by

Chψ(Ω)

the maximal ψ-Cheeger subset of Ω, which is defined as the union of all ψ-Cheeger subsets
of Ω.
Moreover, we say that a ψ-Cheeger subset C of Ω is minimal if, for any ψ-Cheeger subset
C ′ ⊆ Ω, either C ⊆ C ′ or C ∩ C ′ = ∅.
(14)See also [1], [66] for the case ψ ∈Mreg(Rm) of class C2,1.
(15)Problem (3.2) has been introduced in [41], in the effort to give an estimate from below for the spectrum

of the Laplacian operator.
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We observe that any minimal ψ-Cheeger subset of Ω is connected. Existence of Chψ(Ω) and
of a finite number of minimal ψ-Cheeger subsets is proven for example in [40], [38].
When ψ is the euclidean norm, we omit the dependence on ψ of the various symbols, thus
letting h(Ω) in place of hψ(Ω), Ch(Ω) in place of Chψ(Ω), and so on.

Remark 3.6. Let B? ⊆ Ω be a minimal Cheeger subset of Ω. Then B? satisfies (1.9) (with
B? replacing Ω, and h := h(Ω) = h(B?)). Hence, by Theorem 1.1, the capillary problem in
B? admits a solution of class C2(int(B?)).

Concerning uniqueness, examples of planar sets Ω admitting more then one (Euclidean)
Cheeger subset, and also an uncountable family of Cheeger subsets, can be found in [55],
[58].(16) Further results hold for a convex Ω ⊂ Rm, see [4].

Theorem 3.7. Let Ω ⊂ Rm be convex. Then Ch(Ω) is the unique Cheeger subset of Ω, and
it is convex.

In the anisotropic case(17) ψ ∈ M(Rm) \Mreg(Rm), instead, the uniqueness of the Cheeger
subset of a convex set Ω ⊂ Rm is proven, at our best knowledge, only in dimension m = 2
(see Theorem 3.9); anyway, when Ω is convex, Chψ(Ω) is also convex [37, Theorem 6.3]. Both
in the Euclidean and in the anisotropic case, there is also a necessary and sufficient condition
for a smooth enough convex body to be a ψ-Cheeger set. It appeared at first in [51] for m = 2
and ψ Euclidean; in [21] for m = 2, ψ ∈M(R2); in [4] for m ≥ 2 and ψ the Euclidean norm;
finally in [37] in the whole generality. This latter result is recalled in Theorem 3.8 below.

Theorem 3.8. Let Ω ⊂ Rm be a convex body satisfying the rBφ-condition(18) for some r > 0.
Then Ω is a ψ-Cheeger set if and only if

ess sup
∂Ω

κΩ
ψ ≤

Pψ(Ω)
|Ω|

.

Finally we have a complete characterization of the (unique) Cheeger subset of a planar convex
domain, proven in [55] for the Euclidean norm and in [56] for a general anisotropy.(19)

Theorem 3.9 (Cheeger subset of a planar convex domain). If Ω ⊂ R2 is a bounded,
open and convex set, then Chψ(Ω) is the union of all ψ-balls of radius r = hψ(Ω)−1 that are
contained in Ω. Moreover, setting Ω−r := {x ∈ Ω : distψ(x, ∂Ω) > r}, we have

Chψ(Ω) = Ω−r + rBψ,

and |Ω−r | = r2|Bφ|.
(16) Anyway, even when uniqueness fails, it is possible to prove [38] that any connected open set Ω ⊂ Rm with

finite volume generically admits a unique Cheeger subset, namely it has a unique Cheeger subset up to small
perturbations in volume. More precisely, for any compact K ⊂ Ω, there exists an open set ΩK ⊆ Ω such that
K ⊂ ΩK , and Ωk admits a unique Cheeger subset.
(17) In [36, Remark 3.6] the authors extend the uniqueness result in Theorem 3.7 to the case of an anisotropy
ψ ∈Mreg(Rm) and a uniformly convex set Ω ⊂ Rm of class C2.
(18)Recall Remark 2.4.
(19) In [58] the authors prove that in the Euclidean case most of the peculiarities of the planar convex case

can be proven also for bi-dimensional (non necessarily convex) strips.
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4 Anisotropic mean curvature on facets

From now on, we shall focus on the case n = 3, and

φ ∈M(R3) \Mreg(R3).

Let E be a Lip φ-regular set. We say that F ⊂ ∂E is a (two-dimensional) facet of ∂E if F is
the closure of a connected component of the relative interior of ∂E ∩ Tx∂E, for some x ∈ ∂E
such that the tangent space Tx∂E of ∂E at x exists. Given a facet F ⊂ ∂E, by ΠF ⊂ R3 we
denote the affine plane spanned by F . Whenever necessary, we identify ΠF with the plane
parallel to ΠF and passing through the origin, and F with its orthogonal projection on this
latter plane.

Definition 4.1 (Facets of ∂E corresponding to facets of the Wulff shape). We write
F ∈ Facetsφ(∂E) if F is parallel to a facet B̃F

φ of ∂Bφ, and νφo(F ) = νφo(B̃F
φ ).

If F ∈ Facetsφ(∂E), then B̃F
φ = Tφo(νφo(F )). With a slight abuse of notation, we can see B̃F

φ

as a subset of ΠF . We shall assume, unless otherwise specified, that B̃F
φ is a convex body

which is symmetric with respect to the origin of ΠF . Let φ̃F : ΠF → [0,+∞) be the (convex)
anisotropy on ΠF such that {φ̃F ≤ 1} = B̃F

φ . We denote by φ̃oF the dual of φ̃F . we denote

by κBeφ the φ̃-curvature of the boundary of a Lip φ̃-regular set B ⊂ ΠF . If no confusion is

possible, we shall omit the dependence on F of φ̃F , thus writing φ̃ in place of φ̃F .

The following regularity result is proven in [23].

Theorem 4.2 (Bounded variation of anisotropic mean curvature). Let F ∈ Facetsφ(∂E).
Then κEφ ∈ BV (int(F )).

Another result related to Facetsφ(∂E) allows to detect the anisotropic mean curvature of ∂E
at a facet F from a minimization problem on F (Proposition 4.9). We need the following
definition.

Definition 4.3 (Convexity at a facet). We say that E is convex (resp. concave) at F if
E lies, locally around F , in the half-space obtained as that side of ΠF opposite to (resp. same
as) the exterior normal to E at F .

We recall from [23] a regularity result for the boundary of F , which will be used to give a
meaning to the normal trace of a selection (Definition 4.5).

Theorem 4.4. Let F ∈ Facetsφ(∂E). Then there exists a finite set ZF ⊂ ∂F such that, for
any x ∈ ∂F \ ZF , ∂F is a Lipschitz graph locally around x. Moreover, if E is convex (or
concave) at F , then F is Lipschitz.

Now, let N ∈ Norφ(∂E) ∩ Lip(∂E; R3). Notice that the orthogonal component of N with
respect to the plane ΠF is constant. Hence,

divτN = div(projF (N)), (4.1)

where projF (N) : F → ΠF is the projection of N on F , and its divergence is computed in
ΠF . Let ν̃F be the outer Euclidean unit normal to ∂F (when it exists).
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It turns out that

ν̃F · projF (N) =

{
φ̃o(ν̃F (x)) if ν̃F (x) points outside E,
−φ̃o(ν̃F (x)) if ν̃F (x) points inside E,

(4.2)

for any x ∈ ∂∗F (see [22], [23]).

Definition 4.5 (Maximal/minimal normal trace cφF ). Let E be a Lip φ-regular set, and
F ∈ Facetsφ(∂E). The φ-normal trace at ∂F ,

cφF ∈ L
∞(∂F ),

is defined as the right hand side of (4.2).

When E is convex (resp. concave) at F , we have cφF = φ̃o(ν̃F ) (resp. cφF = −φ̃o(ν̃F )).
We recall [10] that any N ∈H 2

div(∂E) admits a normal trace(20) 〈ν̃F , projF (N)〉 ∈ L∞(∂F ).
However, we cannot say in general that 〈ν̃F ,projF (N)〉 = cφF , for any N ∈ H 2

div(∂E). The
result is true under stronger regularity assumptions on the behaviour of ∂E around F . We
refer the reader to [21] for a related discussion. To our purposes, we can confine ourselves to
the case described by Proposition 4.6 below.

Proposition 4.6. Suppose

F Lipschitz, ∂E \ F intersects transversally F. (4.3)

Then 〈ν̃F , projF (N)〉 = cφF , for any N ∈H 2
div(∂E).

It is now natural to look at the family

H 2
div(F ) :=

{
Ñ ∈ Norφ(F ) : divÑ ∈ L2(F ), 〈ν̃F , Ñ〉 = cφF H

1-a.e. on ∂F
}
,

where Norφ(F ) :=
{
Ñ ∈ L∞(F ; ΠF ) : Ñ(x) ∈ B̃F

φ for H2-a.e. x ∈ F
}

.(21) Set also(22)

KF (Ñ) :=
∫
F

(divÑ)2 dx, Ñ ∈H 2
div(F ). (4.4)

The minimum problem
inf
{
KF (Ñ) : Ñ ∈H 2

div(F )
}

(4.5)

admits a solution, and two minimizers have the same divergence.(23)

Definition 4.7 (Optimal selection). Given F ∈ Facetsφ(∂E), we call optimal selection in
F , and we denote by Ñmin ∈H 2

div(F ) any solution of (4.5).

(20)See (5.3) below, with X := projF (N).
(21)Notice that H 2

div(F ) 6= ∅, by the Lip φ-regularity of E.
(22)For notational simplicity, hereafter we shall identify the H2-measure on F with the two-dimensional

Lebesgue measure on ΠF .
(23) Notice that the minimum problem (4.5) is nonlocal, in the sense that it depends on the shape of ∂E

around F .
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Remark 4.8 (Minimality criterion). Let Ñ0 ∈H 2
div(F ) be such that∫

F
div(Ñ0) div(Ñ0 − Ñ) dx ≤ 0, Ñ ∈H 2

div(F ). (4.6)

Then Ñ0 is an optimal selection in F . In particular, if there exists Ñ0 ∈ H 2
div(F ) such that

divÑ0 is constant on F , then Ñ0 is optimal ((4.6) is satisfied with equality instead of the
inequality), and necessarily

divÑ0 =
1
|F |

∫
F

divÑ0 dx =
1
|F |

∫
∂F
cφF dH

1.

Let Ñmin ∈H 2
div(F ) be an optimal selection in F , and set

κφ,F := div(Ñmin).

Proposition 4.9 (Restriction and localization on facets). Assume (4.3). Let Nmin ∈
H 2

div(∂E) be so that κEφ = divτNmin. Then projF (Nmin) is an optimal selection in F . In
particular,

κEφ = κφ,F H2-a.e. in F. (4.7)

Proof. We follow [21, Remark 4.4 and Proposition 4.6]. Let Nmin ∈H 2
div(∂E) (resp. Ñmin ∈

H 2
div(F )) be a minimizer of K (resp. of KF ). Let N ∈ L∞(∂E; R3) be such that N = Nmin

on ∂E \ F , and such that projF (N) = Ñmin. By Proposition 4.6, N ∈H 2
div(∂E). Thus

K(Nmin) ≤ K(N) =
∫
F

(divÑmin)2 dH2 +
∫
∂E\F

(divτNmin)2 dH2

≤
∫
F

(divτNmin)2 dH2 +
∫
∂E\F

(divτNmin)2 dH2

=
∫
∂E

(divτNmin)2 dH2 = K(Nmin),

which gives the statement.

Despite its obviousness, the following observation will be used repeatedly in Section 6.

Remark 4.10. If there exists Ñ0 ∈ H 2
div(F ) such that divÑ0 = κφ,F in int(F ), then Ñ0 is

an optimal selection in F , since∫
F

(
divÑ0

)2
dH2 =

∫
F

(κφ,F )2 dH2 =
∫
F

(
divÑmin

)2
dH2 ≤

∫
F

(
divÑ

)2
dH2,

for any Ñ ∈H 2
div(F ).

For notational simplicity, and when no confusion is possible, we set

κmin := ess inf κφ,F , κmax := ess supκφ,F . (4.8)

Now, we recall from [21] and [22] some results on regularity of facets and on the function
κφ,F .
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Theorem 4.11 (Regularity of facets). Let F ∈ Facetsφ(∂E), and let E be convex (or
concave) at F . Then F is Lip φ̃-regular.

For β ∈ [κmin, κmax], define

ΩF
β := {x ∈ int(F ) : κφ,F (x) < β} , ΘF

β := {x ∈ int(F ) : κφ,F (x) ≤ β} . (4.9)

Theorem 4.12 (Sublevels of the anisotropic mean curvature). Let F ∈ Facetsφ(∂E),
and suppose that E is convex at F . Then κmin > 0. Moreover, for any β ∈ [κmin, κmax],∫

ΩFβ

κφ,F dx = Peφ(ΩF
β ),

∫
ΘFβ

κφ,F dx = Peφ(ΘF
β ), (4.10)

and ΩF
β and ΘF

β are solutions of the variational problem

inf
{
Peφ(B)− β|B| : B ⊆ F

}
. (4.11)

Remark 4.13. In the setting of Theorem 4.11, assume further φ̃ ∈ Mreg(ΠF ). Let β ∈
[κmin, κmax]. Since ΘF

β solves (4.11), the φ̃-mean curvature of ∂ΘF
β is less than or equal to β,

and equality holds in int(F ) ∩ ∂ΘF
β . A similar result holds for ΩF

β .

Theorem 4.14 ([63]). Let F ∈ Facetsφ(∂E), and suppose that E is convex at F . Then, for
any β ∈ [κmin, κmax], int(F ) ∩ ∂ΩF

β and int(F ) ∩ ∂ΘF
β are contained in a translated copy of

β−1∂B̃F
φ .

Now, we want to show that the minimal level set of the curvature corresponds to the maximal
φ̃-Cheeger subset of F (recall Section 3).

Theorem 4.15. Let F ∈ Facetsφ(∂E), and assume that E is convex in F . Then

ΘF
κmin

= Cheφ(F ). (4.12)

Proof. We start with two preliminary steps.
Step 1. |ΘF

κmin
| > 0. Essentially, this fact has been observed in [21, Remark 5.3]. We repeat

the proof, for the sake of completeness. Let β > κmin, so that in particular |ΘF
β | > 0. From

Theorem 4.12, using (2.2) (with φ̃ replacing φ), we get

0 = Pφ̃(∅)− β|∅| ≥ Pφ̃(ΘF
β )− β|ΘF

β | ≥ γeφ
√
|ΘF

β | − β|Θ
F
β |,

where γeφ := Peφ(B̃F
φ )|B̃F

φ |1/2. Thus, we deduce the estimate

|ΘF
β | ≥ β−2 γ2eφ ≥ κ−2

max γ
2eφ, β > κmin. (4.13)

By (4.13), and since ΘF
κmin

=
⋂
β>κmin

ΘF
β , we get Step 1.

Step 2. The φ̃-Cheeger constant of F equals κmin. By definition of heφ(F ), using Step 1 and
(4.10), we get

heφ(F ) ≤
Peφ(ΘF

κmin
)

|ΘF
κmin
|

=

∫
ΘFκmin

κφ,F dx

|ΘF
κmin
|

= κmin. (4.14)

15



On the other hand, let C be a φ̃-Cheeger subset of F . Then, thanks to Theorem 4.12, we get

0 = Peφ(ΘF
κmin

)− κmin|ΘF
κmin
| ≤ Peφ(C)− κmin|C| = (heφ(F )− κmin)|C|. (4.15)

Coupling (4.14) with (4.15), we get heφ(F ) = κmin. In particular, ΘF
κmin

is a φ̃-Cheeger subset
of F and ΘF

κmin
⊆ Ch(F ).

Now, we prove (4.12).
Suppose, by contradiction, that there exists a φ̃-Cheeger subset C ⊆ F such that |C\ΘF

κmin
| >

0. We observe that κφ,F > κmin on C \ΘF
κmin

, hence

κmin|C| <
∫
C
κφ,F dx =

∫
C

divÑmin dx =
∫
∂∗C
〈ν̃F , Ñmin〉 dH1 ≤ Peφ(C), (4.16)

where Ñmin is any optimal selection on F . At the same time, since C is a φ̃-Cheeger subset of
F , using Step 2 we have Peφ(C) = κmin|C|, which, coupled with (4.16), leads to a contradiction.

In the same paper [21], the authors give a stronger regularity result for κφ,F in the case E is
convex at F , and F itself is convex in the Euclidean sense.

Theorem 4.16. Let F ∈ Facetsφ(∂E), and assume that E is convex at F . Assume further
that F is convex. Then κφ,F is convex. Moreover,

ΩF
β =

⋃{
B ⊆ int(F ) : B is a translated copy of β−1B̃F

φ

}
, β > κmin,

ΘF
β =

⋃{
B ⊆ F : B is a translated copy of β−1B̃F

φ

}
, β ≥ κmin.

Finally, we recall κφc,F ∈ Liploc(int(F )), see [39, Theorem 2].

5 Calibrability of facets

Let φ ∈ M(R3) \ Mreg(R3), and let E be a Lip φ-regular set. We shall focus on those
F ∈ Facetsφ(∂E) such that κφ,F is constant. From now on in this section, we shall assume
(4.3), and so κφ,F is the restriction of κEφ to F (see (4.7)).

Recalling also Remark 4.8, it follows that κφ,F is constant in F ∈ Facetsφ(∂E) if and only if
there exists Ñ ∈ L∞(F ; ΠF ) such that

Ñ(x) ∈ B̃F
φ H2-a.e. x ∈ F,

divÑ = 1
|F |
∫
∂F cF dH

1 in F,

〈ν̃F , Ñ〉 = cφF H1-a.e. on ∂F.

(5.1)

The following definition has been proposed in [21].
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Definition 5.1 (Calibrability). We say that F ∈ Facetsφ(∂E) is φ-calibrable if there exists
a solution of (5.1).

From the view point of crystalline mean curvature flow, the right hand side of the PDE in
(5.1), namely

vF :=
1
|F |

∫
∂F
cφF dH

1,

can be interpreted as the “mean velocity” of F (in direction normal to int(F )), at time zero.
We want to define a similar quantity also for subsets of the facet since, heuristically, subsets
of F are expected to move not slower than F , consistently with the comparison principle for
crystalline mean curvature flow [18], see Theorem 5.2 below.
Let B ⊆ F be a nonempty set of finite perimeter. We define cφB : ∂B → R as

cφB :=

{
φ̃(ν̃B) on ∂∗B \ ∂F,
cφF otherwise,

(5.2)

and we set
vB :=

1
|B|

∫
∂∗B

cφB dH
1.

Let us recall [11], [10] that, given a function u ∈ BV (int(F )) and a vector field X ∈
L∞(F ; ΠF ) with L2(F )-summable divergence, it is possible to define a Radon measure (X,Du)
on F by setting

(X,Du) : ϕ 7→ −
∫

int(F )
uϕdivX dx−

∫
int(F )

uX · ∇ϕdx, ϕ ∈ C∞c (int(F ));

moreover, there exists a function 〈ν̃F , X〉 ∈ L∞(∂F ) such that the following generalized
Gauss-Green formula holds:∫

int(F )
udivX dx+

∫
int(F )

θ(X,Du) d|Du| =
∫
∂F
〈ν̃F , X〉 u dH1; (5.3)

here, θ(X,Du) ∈ L∞|Du|(F ) denotes the density [6] of the measure (X,Du) with respect to
|Du|. We recall that in [23, Proposition 7.7] it has been shown that

− θ(Nmin, D1ΩFβ
) = φ̃o(ν̃ΩFβ ) = cφ

ΩFβ
, a.e. β ∈ R, (5.4)

where ΩF
β is the β-sublevel set of κφ,F (see (4.9)), and where 1A denotes the characteristic

function of a subset A ⊆ F .

Theorem 5.2 ([21], Characterization of φ-calibrable facets). Let F ∈ Facetsφ(∂E).
Then, F is φ-calibrable if and only if

vF ≤ vB, B ⊆ F, B 6= ∅. (5.5)
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Proof. Assume Ñ to be a solution of (5.1). In particular, divÑ = vF in F . Let B ⊆ F be a
nonempty set of finite perimeter. Integrating divÑ on B and using (5.3) we get

vF |B| =
∫
B

divÑ dx =
∫
∂∗B
〈ν̃B, Ñ〉 dH1 ≤

∫
∂∗B

cφB dH
1,

where we used (5.2) and (5.1). This gives (5.5).
The converse implication can be proved as follows. Assume that F is not φ-calibrable. Let
Ñmin ∈ H 2

div(F ) be an optimal selection on F . Recalling that almost every sublevel set of a
BV function has finite perimeter, there exists β < vF such that ΩF

β 6= ∅, and ΩF
β has finite

perimeter. Applying (5.3) with the choice u := 1ΩFβ
and X := Ñmin, we have∫

ΩFβ

divÑmin dx = −
∫

int(F )∩∂∗ΩFβ
θ(Ñmin, D1ΩFβ

) dH1 +
∫
∂F
〈ν̃F , Ñmin〉 1ΩFβ

dH1

= −
∫

int(F )∩∂∗ΩFβ
θ(Ñmin, D1ΩFβ

) dH1 +
∫
∂F∩∂∗ΩFβ

〈ν̃F , Ñmin〉 dH1.

Observe that, by definition, 〈ν̃F , Ñmin〉 = cφF = cφ
ΩFβ

on ∂F ∩ ∂∗ΩF
β . Therefore, recalling also

(5.4), we get ∫
ΩFβ

divÑmin dx =
∫
∂∗ΩFβ

cφ
ΩFβ

dH1.

Hence,

vF > β >
1
|ΩF
β |

∫
ΩFβ

divÑmin dx =
1
|ΩF
β |

∫
∂∗ΩFβ

cφ
ΩFβ

dH1 = vΩFβ
,

which contradicts (5.5).

In view of Theorem 5.2, we give the following definition.

Definition 5.3 (Strict φ-calibrability). We say that F is strictly φ-calibrable if

vF < vB for every nonempty B ⊂ F.

In the same paper [21], the authors characterize convex φ-calibrable facets F ∈ Facetsφ(∂E)
such that E is convex at F .

Theorem 5.4 (φ-calibrability for convex E at F and convex F ). Suppose that E is
convex at F ∈ Facetsφ(∂E), and that F is convex. Then, F is φ-calibrable if and only if

ess sup
∂F

κFeφ ≤
Peφ(F )

|F |
. (5.6)

Hence, under the assumptions of Theorem 5.4, problem (5.1) is solvable if and only if the
φ̃-curvature of ∂F is bounded above by the mean velocity of F ; this means, roughly speaking,
that the edges of ∂F cannot be too “short”. When φ̃ is the Euclidean norm of ΠF , (5.6) has
been given by Giusti in [52], compare Theorem 1.1.
The following observation clarifies in which sense calibrability extends Definition 3.4.
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Remark 5.5 (Calibrability versus Cheeger sets). Suppose that E is convex at F . In
this case, the mean velocity of any nonempty finite perimeter set B ⊆ F is

vB =
1
|B|

∫
∂∗B

cφB dH1 =
1
|B|

∫
∂∗B

φ̃o(ν̃B) dH1 =
Peφ(B)

|B|
. (5.7)

Then, using Theorem 5.2, and recalling also Section 3, φ-calibrability (resp. strict φ-calibrability)
of F is equivalent to the property that F is a φ̃-Cheeger (resp. strict φ̃-Cheeger) set.

Definition 5.6 (φ̃-convexity). We say that F ∈ Facetsφ(∂E) is φ̃-convex if κFeφ ≥ 0.

One can ask whether the convexity assumption in Theorem 5.4 can be relaxed to just φ̃-
convexity of F ; the next example shows that this can not be expected in general.

B1

Rε,M

B2

B̃F
φ

a

g

c

bh

d

e

f

Figure 1: An example of φ̃-convex facet F satisfying (5.6), and not φ-calibrable (ε > 0 is sufficiently
small and M sufficiently large). Here, B̃Fφ is the square of length ` represented on the top right. In
grey, a subset of the facet with mean velocity smaller than the mean velocity of F .

Example 5.7. Let φ̃ be the two-dimensional crystalline metric having as unit ball the square
with side ` > 0, centered at the origin. Let F be as in Figure 1, where B1 and B2 are two
copies of {φ̃ ≤ 1}, rescaled by a factor L/`, and Rε,M is a rectangle of height ε and base M .
We recall [71] that, for planar crystalline sets, κFeφ is the derivative of the vector field obtained

as the linear interpolation of the vectors at the vertices represented in the figure. Thus, κFeφ
equals `/L on the sides a, d, e and h, while κFeφ vanishes on the sides b, c, f , and g; hence, F

is φ̃-convex.
Now, let φ be the cylindrical norm defined as φ(ξ) := φ(ξ1, ξ2, ξ3) := max{φ̃(ξ1, ξ2), |ξ3|},
and let E ⊂ R3 be any prism with base F , for instance E = F × [0, 1]; in particular,
F ∈ Facetsφ(∂E), and E is convex at F .(24)

(24)Other choices of φ ∈M(R3)\Mreg(R3) are possible, for which there exists E ⊂ R3, E Lip φ-regular, such
that F ∈ Facetsφ(∂E).
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Recalling (5.7), we can compute explicitely the mean velocity of F :

vF =
Peφ(F )

|F |
=

2 (4L− ε+M)
2L2 + εM

.

Hence κFeφ ≤ vF when

ε ≤ 2L(−L`+ 4L+M)
`M + 2L

,

the right hand side being positive for M large enough. Now, the mean velocity of B1 is

vB1 =
Peφ(B1)

|B1|
=

4
L
.

Therefore
vB1 < vF ⇐⇒ ε <

ML

2M + L
.

Hence, for ε > 0 small enough and M large enough, F is not φ-calibrable (Theorem 5.4).

However, it is still possible, for φ̃-convex facets, to recover one implication from Theorem 5.4.

Theorem 5.8. Suppose that φ̃ is crystalline. Assume that E is convex at F ∈ Facetsφ(∂E),
that F is φ̃-convex and φ-calibrable. Then (5.6) holds.

Proof. We closely follow the argument in [21, Theorem 8.1]. By contradiction, let x ∈ ∂F be

a point where κFeφ (x) >
Peφ(F )

|F | . Then, x belongs to the relative interior of an edge L that is

parallel to an edge of B̃F
φ , and such that F is convex at L (indeed, κFeφ vanishes in all portions

of ∂F that do not satisfy the previous requirements, see [71]); with a small abuse of language,
we denote by L also the length of this edge, while ` is the length of the corresponding edge
of B̃F

φ . Since F is φ̃-regular, we can deduce that BL/` ∩U ⊂ F , where U is a neighbourhood
of the side L, while BL/` denote the rescaled copy of B̃F

φ having an edge in L, and lying on
the same half-plane of F around L. Applying [21, Lemma 8.3], we get

β < κFeφ (x) <
`

L
, (5.8)

where β ∈
(
Peφ(F )

|F | , κ
Feφ (x)

)
is such that ΩF

β solves (4.11).

Following [21, Theorem 8.1, Step 3], let us define, for ε > 0 sufficiently small, the set Fε of
all points of F having Euclidean distance from the line through L greater than or equal to ε.
Set F̂ε := Fε ∪BL/`, see Figure 2.
It is possible to prove that, for ε sufficiently small,(25)

|F | = |F̂ε|+ o(ε2), Peφ(F ) = Peφ(F̂ε). (5.9)

(25)Clearly, we just need to justify the second equality in (5.9). Let Γ be a connected component of ∂F \∂ bFε,
and let ε > 0 be so small that eνF|Γ lies between two consecutive vertices ν1, ν2 of the unit ball of eφo. Then,R

Γ
eφo(eνF ) dH1 = eφo“ R

Γ
eνF dH1

”
, where we used Jensen’s inequality (which holds with equality, since the

restriction of eφo on the segment between ν1, ν2 is a linear function). Now, a direct computation shows that
the right hand side in the previous equality only depends on the ending points of Γ.
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BL/`

Fε

F̂ε
ε

B̃F
φ

x

L

Figure 2: The construction used to prove Theorem 5.8: F̂ε is obtained by slightly modifying F near
the edge L (the original boundary is drawn with a dotted line); BL/` is the rescaled copy of B̃Fφ
(represented on the top right) having L as an edge; Fε is the competitor subset.

Moreover, we notice that
|F̂ε| − |Fε| = εL+ o(ε), (5.10)

and, using [21, Lemma 8.5],

Peφ(F̂ε)− Peφ(Fε) = εl + o(ε). (5.11)

Coupling (5.9), (5.10), and (5.11), also recalling (5.8), we get

Peφ(Fε)− β|Fε| =Peφ(F )− εl + β(εL− |F |) + o(ε)

=Peφ(F )− β|F |+ ε(βL− l) + o(ε) < Peφ(F )− β|F |,
(5.12)

for ε > 0 sufficiently small. But then, since F is φ-calibrable, F = ΩF
β , so that (5.12) violates

Theorem 4.12, a contradiction.

5.1 Annular facets

In this section we prove some facts about the φ-calibrability of “annular facets” F ∈ Facetsφ(∂E).
A more general case with Bφ the Euclidean cylinder is covered in Theorem 7.3.
For x ∈ ΠF , and ρ > 0, we denote by B(x; ρ) be the copy of ρB̃F

φ centered at x.

Theorem 5.9. Let F ∈ Facetsφ(∂E). Assume that there exist x1, x2 ∈ int(F ), and R > r > 0
such that

F = B(x1;R) \B(x2; r), B(x2; r) ⊂⊂ B(x1;R),

and that ν̃F points outside of E along ∂B(x1;R), and inside of E along ∂B(x2; r).(26) Then,
F is φ-calibrable.

Proof. We start by computing the mean normal velocity of F :

vF =
Peφ(B̃F

φ )

|B̃F
φ |

R− r
R2 − r2

=
Peφ(B̃F

φ )

|B̃F
φ |

1
R+ r

. (5.13)

(26)In particular, E is not convex at F .
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BR

Br

C

BR

B̃F
φBr

U

Figure 3: On the top right, as an example we take the square as the unit ball B̃Fφ . We shorthand
B(x1;R) with BR and B(x2; r) with Br. On the left, the facet F , which can be seen as an “annulus”.
We assume that ν̃F points outside (resp. inside) of E on ∂BR (resp. on ∂Br). In grey, the sets U and
C used in Theorem 5.9 to prove the φ-calibrability of F .

Let C be any subset of F containing B(x2; r) and obtained as the difference of two rescaled
φ̃-balls, namely C = B(x; t) \B(y; s) for suitable x, y ∈ int(F ), such that r ≤ s < t ≤ R and
B(x2; r) ⊂ B(y; s) ⊂⊂ B(x; t). Then, recalling (5.2),

vC =


Peφ( eBFφ )

| eBFφ | t+s
t2−s2 =

Peφ( eBFφ )

| eBFφ | 1
t−s , if s > r,

Peφ( eBFφ )

| eBFφ | t−s
t2−s2 =

Peφ( eBFφ )

| eBFφ | 1
t+s , if s = r;

(5.14)

in any case,
vF ≤ vC . (5.15)

Now, let U ⊂ F be a nonempty open finite perimeter set; we have to show that vU ≥ vF .
Write

∂−U := ∂U ∩ ∂B(x2; r), ∂+U := ∂U \ ∂−U, Û := U ∪B(x2; r).

Let t ∈ (r,R] be such that |Û | = |B(x; t)|, where x ∈ int(F ) is such that B(x2; r) ⊂⊂
B(x; t) ⊂ B(x1;R). By the anisotropic isoperimetric inequality (2.2) (with φ replaced by φ̃),
we get

Peφ(Û) ≥ Peφ(B(x; t)),

that is∫
∂+U

φ̃o(ν̃U ) dH1 +
∫
∂B(x2;r)

φ̃o(ν̃F ) dH1 −
∫
∂−U

φ̃o(ν̃F ) dH1 ≥
∫
∂B(x;t)̃

φo(ν̃B(x;t)) dH1. (5.16)

Let C := B(x; t) \B(x2; r). Notice that |C| = |U |. Then, using also (5.16) and (5.15), we get

vU =

∫
∂+U φ̃

o(ν̃U ) dH1 −
∫
∂−U φ̃

o(ν̃F ) dH1

|U |
≥ vC ≥ vF .
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Remark 5.10. We cannot expect in general to prove φ-calibrability of a facet F such that
E is convex at F , and which is obtained by removing from a ball a smaller ball. This is a
difference compared to what happens when E is not convex at F (Theorem 5.9). To show this
fact, let us consider the bidimensional anisotropy having a square of side ` as unit ball, and
let us consider the facet F in Figure 4, obtained by removing from a rescaled ball S

` B̃
F
φ (x1)

the ball s
` B̃

F
φ (x2), where S and s are the Euclidean lengths of the sides of the two squares.

We assume also that the center of the smaller ball lies on the diagonal of the bigger one, and
we denote by a the Euclidean distance between the boundaries of the two balls. The mean
velocity of the facet is vF = 4

S−s . If we consider the set B in Figure 4 we get

vB =
4S

S2 − (a+ s)2
,

and the inequality vB < vF is verified when a < −s+
√
Ss.

S

B̃F
φ

B

sa

a

Figure 4: If F is a nonconcentric annulus and E is convex at F , then F is non φ-calibrable if the
distance a between the two connected components of ∂F is small enough.

5.2 Closed strips

The case of strips has been investigated in [57] in the Euclidean setting. Our aim is to
generalize it to the anisotropic setting.
Assume the facet F to have the following shape. Let Γ := ∂Ω be a closed planar simple
curve, where Ω is a φ̃-regular and φ̃-convex set. For some positive integers 0 < l ≤ k, we
denote by Γi, i = 1, .., l, the relatively open edges of Γ parallel to some edges on the ball B̃F

φ ,

and by Γj , j = l + 1, ..., k, each relatively open connected component of Γ with zero φ̃-mean
curvature (if k = l, we mean that there is no such a connected component); κi denotes the
value of the φ̃-curvature of Γi. On Γ we take the optimal selection NΓ, defined as the linear
interpolation of the (uniquely determined) vectors on the vertices of Γ; while, on each Γj , NΓ

is a constant vector, which we denote by NΓj .
For a > 0 such that a ≤ infi=1,...,l κ

−1
i , set

F := {x ∈ R2 : x = q + tNΓ(q), q ∈ Γ, |t| ≤ a}.

Due to the φ̃-convexity of Γ and to the bound on a, for any x ∈ F the φ̃-projection q(x) is
uniquely determined, and it satisfies x = q(x) + t(x)NΓ(q(x)) with t(x) := dΩeφ (x).
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Theorem 5.11. Assume that E is convex at F . Then F is φ-calibrable, and κφ,F = 1
a .

Proof. In order to prove the statement, recalling also Remark 4.8, we want to construct a
selection with divergence constantly equal to 1

a . Following [57],(27) we define the vector field
Ñ on F as

Ñ(x) :=


(

1− (κ−1
i −a)(κ−1

i +a)

(eφ(x−xi))2

)
x−xi

2a , q(x) ∈ Γi, i = 1, ..., l

dΩeφ (x)

a NΓj , q(x) ∈ Γj , j = l + 1, ..., k,

where, for i = 1, . . . , l, xi is the center of the copy of κ−1
i Beφ having Γi as an edge, lying

in the side of Γi opposite to the direction of NΓ. An immediate computation shows that
φ̃(Ñ(x)) ≤ 1, and 〈ν̃F , Ñ〉 = 1 = cF , so that Ñ is a selection on F .
Moreover, we notice that

Ñ ∈H 2
div(F ). (5.17)

Indeed, for every x ∈ F , Ñ(x) is parallel to NΓ(q(x)),(28) which implies that divÑ ∈ L2(F ),
and hence (5.17).
Let us explicitely compute the divergence of Ñ . For any i = 1, ..., l and for any x ∈ F such
that q(x) ∈ Γi, there holds:

divÑ(x) =
1
a

(
(φ̃(x− xi))2 − (κ−1

i )2 + a2

(φ̃(x− xi))2

)
+

((κ−1
i )2 − a2)

(
Teφ(x− xi) · (x− xi)

)
a (φ̃(x− xi))4

=
1
a
,

where in the last equality we noticed that Teφ(x− xi) · (x− xi) = (φ̃(x− xi))2. When x ∈ F
is such that q(x) ∈ Γj , j = l + 1, .., k we get:

divÑ(x) =
∇dΩeφ (x) ·NΓj

a
=

1
a
.

Hence, Ñ has constant divergence in F , and the proof is completed.

Remembering Remark 5.10, we observe that in Theorem 5.11 we cannot easily drop the
symmetry with respect to the curve Γ.

6 Optimal selections in facets for the φc-norm

In this section we shall restrict our attention to the case in which φ = φc is the Euclidean
cylindrical norm in R3 = R2 × R, i.e. the norm of R3 whose unit ball Bφc is given by the
right hand side of (1.12). We shall assume that E is a Lip φ-regular set, F ∈ Facetsφ(∂E),
and E is convex at F . Hence, by Theorems 4.12 and 2.8, we have κmin > 0 and κmax < +∞.
Notice that φ̃F = φ̃ is the Euclidean norm in the plane ΠF (identified with the horizontal plane
R2), so that F is of class C1,1 (Theorem 4.11). To avoid possible ambiguity in the notation,

(27)See also [15] for a similar computation.
(28) In general, eN is not continuous in F , since it may jump on {x ∈ F : q(x) is a vertex of Γ}.
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in this section we shall restore symbol κFeφ in order to denote the (Euclidean) curvature of
∂F .
From now on, by h(F ) we mean h(int(F )), and by Ch(F ) we mean Ch(int(F )). It is useful
to remember that, by Theorem 4.15, we have h(F ) = κmin.

Remark 6.1. Let u be a solution of (1.4), with Ω := int(F ) and h := h(F ). Repeating the
proof in [52, Section 2], which is still valid assuming Ω of class C1,1, one proves that u is
bounded from below in int(F ) and satisfies (1.10).

We recall that, by Remark 5.5, F is strictly φc-calibrable if and only if F is a strict Cheeger
set, which in turn is equivalent, when F is convex, to require that ess supx∈∂FκFeφ (x) ≤ h(F ).

Proposition 6.2. Suppose that F is strictly φc-calibrable. Then there exists u solving (1.4)
in Ω := int(F ). Moreover, the vector field

Ñ :=


∇u√

1+|∇u|2
in int(F ),

ν̃F on ∂F,

(6.1)

is an optimal selection in F , continuous in F and analytic in int(F ).

Proof. The first assertion follows recalling Remark 5.5 and Theorem 1.1. By construction,
using also Remark 6.1, Ñ belongs to H 2

div(F ) and satisfies (5.1). Analytic regularity of Ñ
follows from elliptic regularity.

Clearly, the vector field Ñ in (6.1) is, up to the sign, the “horizontal” component of the
Euclidean outer normal to the subgraph of u.

Remark 6.3 (Lipschitz regularity). From [52, p. 125] it follows that if ess supx∈∂FκFeφ (x) <
P (F )
|F | = h(F ), then

Ñ ∈ Lip(F ; ΠF ).

6.1 Examples of optimal selections in non φc-calibrabile facets

In this section we give some examples of non φc-calibrable facets F for which we can exhibit
an optimal continuous selection.

Example 6.4 (Non φc-calibrable convex facets). Let F be convex and not φc-calibrable
(see Theorem 5.4). By virtue of Theorem 3.7, the maximal Cheeger subset Ch(F ) of F is
strictly Cheeger, and (Theorem 3.1) it is of class C1,1. Moreover (Theorem 4.15) Ch(F ) =
ΘF
κmin

. Applying Proposition 6.2 with Ch(F ) in place of F , we get a function u ∈ C2(int(Ch(F ))
solving (1.4) in int(Ch(F )) with h := h(F ). Set

Ñ :=
∇u√

1 + |∇u|2
in int(Ch(F )).

By Theorem 4.16, κφ,F is convex in F , so that there cannot be subsets of F with positive
Lebesgue measure where κφ,F is constant, except for ΘF

κmin
. Hence, for every β ∈ [κmin, κmax),
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int(F ) ∩ ∂ΘF
β = {x ∈ int(F ) : κφ,F (x) = β}. From Theorems 4.12 and 4.16, each connected

component of int(F ) ∩ ∂ΘF
β is contained in a circumference of radius β−1. Thus, we extend

Ñ in int(F ) \ΘF
κmin

as the outward normal unit vector to the level curves of κφ,F — namely,

Ñ := ν̃∂ΘFβ on {κφ,F = β}. By construction, recalling also Remark 6.1, divÑ = κφ,F in
int(F ), and Ñ verifies the third equation in (5.1). Hence, Ñ ∈H 2

div(F ), and Ñ is an optimal
selection in F (Remark 4.10). Moreover, Ñ is continuous in F , analytic in int(ΘF

κmin
), and

Ñ(x) ∈ ∂B̃F
φ for any x ∈ int(F ) \ΘF

κmin
.

The following examples have been inspired by [44], [58]. For r > 0 and (x̄1, x̄2) ∈ R2, we set
Br(x̄1, x̄2) := {x = (x1, x2) ∈ R2 : (x1 − x̄1)2 + (x2 − x̄2)2 ≤ r2}.

Pθ

Ch(Pθ)

θ

(a)

pε1
qε1

pε2

qε2
Bε

2

Bε
1

(b)

pε1 qε1

pε2 qε2

(c)

Figure 5: In (a), the set Pθ and its maximal Cheeger subset Ch(Pθ) (in grey). In (b), the construction
of the facet F = Fε in Example 6.5. In (c), some sublevel sets ΘF

β of κφc,F are represented. For every
β ∈ (κmin, κmax), int(F ) ∩ ∂ΘF

β is an arc of circumference with radius β−1, and tangent to ∂F . For
any β ∈ (1, 1

sin θ ), such an arc is unique, and its terminal points belong to the arcs bounded by pεj and
qεj , for j = 1, 2.

Example 6.5 (Rounded two circle facets). Let θ ∈ (0, π2 ), and

Pθ := B1(0, 0) ∪Bsin θ(cos θ, 0).

One can prove [58] the following facts: Pθ admits a unique (hence maximal) Cheeger subset
Ch(Pθ) (as in Figure 5(a)); moreover, there exists a unique θ0 ∈ (0, π2 ) such that Pθ0 is
Cheeger. Our idea is to construct an optimal selection, solving (1.4) in Ch(Pθ) (for θ 6= θ0),
and then foliate the remaining part of Pθ with arcs of circles, taking as vector field the
outward unit normal to the arcs. Fix θ 6= θ0, so that

h(Pθ) =
P (Ch(Pθ))
|Ch(Pθ)|

<
P (Pθ)
|Pθ|

. (6.2)

Notice that
h(Pθ) <

1
sin θ

, (6.3)

since h(Pθ) equals the curvature of int(Pθ)∩∂Ch(Pθ), which is strictly less than 1
sin θ by the

geometry of Pθ.
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Even if Pθ is regarded as a facet of a three-dimensional set E convex at Pθ, the set E cannot
be Lip φc-regular, since Pθ is not of class C1,1.(29) Thus we perform the following smoothing
construction near the non-differentiability points of ∂Pθ. For ε > 0, let Bε

1, Bε
2 be the two

closed disks satisfying the following properties: for j = 1, 2, Bε
j is externally tangent to Pθ,

and Pθ ∩ Bε
j = {pεj , qεj}, for some pεj ∈ ∂B1(0, 0), and qεj ∈ ∂Bsin θ(cos θ, 0). According to

Figure 5(b), we define F = Fε as the union of Pθ with the curved triangles having vertices
pεj , q

ε
j , and (cos θ, (−1)j sin θ), for j = 1, 2.

By construction F is of class C1,1 (and it is not convex). Recalling also (6.2), we choose ε > 0
so small that ∣∣∣∣P (Pθ)

|Pθ|
− P (F )
|F |

∣∣∣∣ = O(ε) <
P (Pθ)
|Pθ|

− P (Ch(Pθ))
|Ch(Pθ)|

. (6.4)

In particular,
P (Ch(Pθ))
|Ch(Pθ)|

<
P (F )
|F |

,

which implies that F is not Cheeger, or equivalently (Remark 5.5) that F is not φc-calibrable.(30)

We observe that, for any β ∈ (1, 1
sin θ ), there is a unique circumference Γ̂β ⊂ F , with curvature

β, and tangent to ∂F at two points, lying on the arcs of ∂F bounded by pεj , q
ε
j , for j = 1, 2: see

Figure 5(c). We denote by Γβ the shortest connected component of int(F )∩Γ̂β. Then Ch(F ) is
determined as the subset of F containing B1(0, 0),(31) and such that int(F )∩∂Ch(F ) = Γh(F ).
In particular, Ch(F ) is strictly Cheeger and of class C1,1. Furthermore, recalling Remark 4.13,
and taking into account the geometry of F , we have

int(F ) ∩ ∂ΘF
β = Γβ = int(F ) ∩ ∂ΩF

β , β ∈ (κmin, κmax). (6.5)

Now, we exclude the presence of regions in int(F )\Ch(F ) where κφc,F is constant. Suppose by
contradiction that there exists β̄ ∈ (κmin, κmax] such that {κφc,F = β̄} has positive Lebesgue
measure. If β̄ < κmax, then

int(F ) ∩ ∂ΘF
β̄ 6= int(F ) ∩ ∂ΩF

β̄ , (6.6)

which contradicts (6.5). If β̄ = κmax, then ∂ΘF
κmax

= ∂F , and so (Remark 4.13) ess supκFeφ =
1

sin θ ≤ κmax. On the other hand, since we are assuming int(F )∩∂ΩF
κmax

6= ∅, int(F )∩∂ΩF
κmax

should be an arc of circumference with curvature κmax, and tangent to ∂F . In particular, by
the geometry of F , κmax <

1
sin θ , a contradiction.

As a consequence, we have

κmax =
1

sin θ
,

otherwise κφc,F would be constantly equal to κmax in the full-measure subset of F bounded
by Γκmax , and not containing B1(0, 0) — again a contradiction.
We define Ñ in F as follows: Ñ := ∇u√

1+|∇u|2
in int(Ch(F )), where u is given by Theorem

1.1, with Ω = int(Ch(F )) and h = h(F ); while, for β ∈ (h(F ), 1
sin θ ) and x ∈ Γβ, Ñ(x) is the

(29)Therefore, strictly speaking, we cannot apply Theorem 2.6 in order to define κEφ on Pθ. In the present
paper we do not want to insist on the minimal regularity assumptions on ∂F needed the study problem (4.5).
(30) Our argument neither provides nor excludes the φc-calibrability of F := Pε

θ0 .
(31)Actually, we have B1(0, 0) ⊂ Ch(F ), since it can be proven that B1(0, 0) ⊂ Ch(Pθ).

27



outward unit normal to ΘF
β at x. Notice that Ñ ∈H 2

div(F ) (Remark 6.1), and it is an optimal
selection in F (Remark 4.10). Concerning the regularity of Ñ , we notice that Ñ is continuous
in F , and analytic in int(Ch(F )). Moreover, Ñ(x) ∈ ∂B̃F

φ for any x ∈ int(F ) \ Ch(F ).

By modifying Example 6.5, we now build an optimal selection for a facet F admitting an
open region outside of ΘF

κmin
where κφc,F is constant (and equal to κmax).

Example 6.6 (Rounded proboscis). Let M > 0, and let θ, θ0 and Pθ be as in Example
6.5. Set

Pθ,M := B1(0, 0) ∪ {x ∈ R2 : x = y + (c, 0), y ∈ Bsin θ(cos θ, 0), c ∈ [0,M ]},

see Figure 6(a).

Pθ,M

Ch(Pθ,M )

(a)

Pε
θ,M

Ch(Pε
θ,M )

(b)

Figure 6: In (a), the set Pθ,M and its Cheeger subset Ch(Pθ,M ). In (b), the facet F = Fε described
in Example 6.6. In this case, there are two full-measure subsets where κφc,F is constant.

We claim that, for any M > 0 and any θ < θ0,

P (Pθ)
|Pθ|

<
P (Pθ,M )
|Pθ,M |

. (6.7)

Indeed, since P (Pθ) = 2(π − θ) + π sin θ, |Pθ| = π + π
2 sin2 θ − (θ − sin θ cos θ), P (Pθ,M ) =

P (Pθ) + 2M , and |Pθ,M | = |Pθ|+ 2M sin θ, (6.7) is equivalent to P (Pθ) sin θ < |Pθ|, i.e.

(π − θ) (2 sin θ − 1)− sin θ cos θ +
π

2
sin2 θ < 0; (6.8)

direct computations(32) show that the left hand side of (6.8) is strictly increasing in [0, π2 ],
and it is zero just at one value of θ ∈ (0, π2 ), which must coincide with θ0.

(32) Computing the first derivative (w.r.t. θ) of the left hand side of (6.8), we get 2(π−θ) cos θ+π cos θ sin θ+
2 sin θ(sin θ − 1). Notice that, since θ ∈ (0, π

2
), the first term in the previous line is greater than π cos θ. Now,

using for instance the identities sin θ = 2t
1+t2

, cos θ = 1−t2
1+t2

, since t ∈ (0, 1), it is easy to show that for every
θ ∈ (0, π

2
)

π cos θ + π cos θ sin θ + 2 sin θ(sin θ − 1) = (1− t)(1 + t2)−2 ˆπ(1 + t2)(1 + t) + 2πt(1 + t)− 2t(1− t)
˜

≥ (1− t)(1 + t2)−2 ˆπ(1 + t2)(1 + t) + 2πt(1 + t)− 1/2
˜
> 0.
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Fix θ ∈ (0, θ0). For ε > 0, let Pε
θ,M be the set of class C1,1 obtained by taking the union of

Pθ,M with the curved triangles, bounded by Pθ,M and a disk with radius ε and externally
tangent to Pθ,M : see Figure 6(b). Similarly to Example 6.5, we choose ε > 0 so small
(depending on the difference between the two terms in (6.7)) that F = Fε := Pε

θ,M is not
Cheeger.
By construction, F is neither convex nor φc-calibrable. Moreover, for any β ∈ (1, 1

sin θ ), there
still exists a unique circumference Γ̂β ⊂ F with curvature β, and tangent to ∂F at two points;
again, referring to Figure 6(b), these points must lie on the arcs bounded by pεj , q

ε
j , where

j = 1, 2. We denote by Γβ the shortest connected component of int(F ) ∩ Γ̂β.
Similarly to Example 6.5, we can still determine Ch(F ) as the unique subset of F (strictly)
containing B1(0, 0), and such that int(F ) ∩ ∂Ch(F ) = Γh(F ). In particular, Ch(F ) is strictly
Cheeger. Moreover, reasoning as in Example 6.5,(33) there is no β̄ ∈ (h(F ), 1

sin θ ) such that
κφc,F = β̄ in some subset of F with positive Lebesgue measure.
Therefore:

- for any β ∈ (h(F ), 1
sin θ ), ΘF

β is the closed subset of F containing B1(0, 0), and such
that int(F ) ∩ ∂ΘF

β = Γβ;

- κmax = 1
sin θ , and κφc,F = κmax in int(F ) \

⋃
β< 1

sin θ
ΘF
β .

Also in this case, we can exhibit an optimal selection Ñ (Remarks 4.10-6.1) which is continu-
ous in F , and analytic in int(Ch(F )). More precisely, Ñ is defined as follows: Ñ := ∇u√

1+|∇u|2

in int(Ch(F )), where u is given in Theorem 1.1 (with the choice Ω := int(Ch(F )), and
h := h(F )); for β ∈ (h(F ), 1

sin θ ) and x ∈ Γβ, Ñ(x) is the outer normal to ΘF
β at x; finally, if

κφc,F (x) = κmax, we set Ñ(x) := Ñ(x̃), where x̃ ∈ int(F ) ∩ ∂ΩF
1

sin θ

is such that x̃2 = x2.
We notice the presence of a full-measure subset of F , unrelated to the maximal Cheeger
subset of F , and where it is possible to construct an optimal selection without making use of
Theorem 1.1.

We conclude this section with an example in which we are not able to provide an explicit
optimal selection, even if we determine the φc-mean curvature of F .

Example 6.7 (“Dumbbell-like” facet). Let θ and θ0 be as in Example 6.5, and suppose
θ ∈ (0, θ0). Let M > 2 sin θ + 1, and let Dθ,M be the set obtained as the union of Pθ ∪P′θ,
and the strip [cos θ, cos θ +M ]× [− sin θ, sin θ], where Pθ is the set in Example 6.5, and P′θ
is its symmetric with respect to the straight line {(x1, x2) ∈ R2 : x2 = cos θ + M

2 }.
We observe that

P (Dθ,M )
|Dθ,M |

=
M + 2(π − θ)

cos θ sin θ + π − θ +M sin θ
, (6.9)

which, as M → +∞, tends to 1
sin θ . In particular, since θ < θ0, recalling also (6.2) and (6.6),

P (Ch(Pθ))
|Ch(Pθ)|

<
P (Dθ,M )
|Dθ,M |

, (6.10)

for M > 0 sufficiently large.
(33)Recall in particular the proof of (6.6).
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Dε
θ,M

(pε
2)′

(pε
1)′

(qε
1)′

(qε
2)′

pε
1
qε
1

pε
2

qε
2 Γκmax

Γ′κmax

Figure 7: The dumbbell facet Dε
θ,M in Example 6.7. In grey, its maximal Cheeger subset, some level

sets of κφc,F , and the set {κφc,F = κmax} bounded by the arcs Γκmax and Γ′κmax
. Notice that in this

case κmax <
1

sin θ .

For ε > 0, let Bε
j and (Bε

j )
′ for j = 1, 2, be the four balls of radius ε externally tangent

to Dθ,M in pεj and qεj , and in (pεj)
′ and (qεj )

′ respectively. For M such that (6.10) holds,
let F = Fε := Dε

θ,M be the set of class C1,1 obtained by taking the union of Dθ,M with
the four curved triangles, bounded by pεj , q

ε
j and (cos θ, (−1)j sin(θ)) and (pεj)

′, (qεj )
′ and

(cos θ + M, (−1)j sin(θ)) respectively, see Figure 6.7. Then, we choose ε > 0 so small that
(6.10) holds with F replacing Dθ,M ; hence, F is not φc-calibrable.
For any β ∈ (1, 1

sin θ ) let Γβ (resp. Γ′β) be the arc of minimal length of the circumference of
radius 1

β , which is internally tangent to ∂F in two points, belonging to the arcs bounded by
pεj and qεj (resp. (pεj)

′ and (qεj )
′), for j = 1, 2. Let Cβ ⊂ F be the disconnected set bounded by

Γβ ∪Γ′β, let C 1
sin θ

:= ∪β∈(1, 1
sin θ

)Cβ, and let Γ 1
sin θ

and Γ′ 1
sin θ

be the two connected components

of int(F ) ∩ ∂C 1
sin θ

.
Reasoning as in Example 6.5, Ch(F ) is the disconnected subset of F bounded by Γh(F ) and
Γ′h(F ) (see again Figure 6.7). Moreover,(34) for all β̄ ∈ (κmin, κmax), we can still exclude
the presence of regions of the form {κφc,F = β̄} with positive Lebesgue measure. As a
consequence,

int(F ) ∩ ∂ΘF
β = Γβ ∪ Γ′β = int(F ) ∩ ∂ΩF

β , β ∈ (κmin, κmax).

By the geometry of F , κmax ≤ 1
sin θ . Therefore, we have |F \ ΩF

κmax
| > 0: indeed, if Q ⊂ F is

the connected (full-measure) set bounded by Γ 1
sin θ
∪ Γ′ 1

sin θ

, then Q ⊆ F \ ΩF
κmax

.

(34)Recall once again the proof of (6.6).
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It is interesting to show now that, differently from Example 6.6, the maximal value κmax of
κφc,F depends on M , and

κmax <
1

sin θ
. (6.11)

Indeed, recalling (4.10) and the equality F = ΘF
κmax

, the value κmax must verify

P (F )− P (ΩF
κmax

) = κmax|F \ ΩF
κmax
|. (6.12)

Notice that
P (F )− P (ΩF

κmax
) = 2M − 2H1(Γκmax) +O(ε). (6.13)

We estimateH1(Γκmax) with the length of the arc of circumference of curvature κmax contained
in Bsin θ(cos θ, 0), and passing through the points (cos θ,± sin θ). We denote by ω := ω(κmax)
the angle such that

sinω = κmax sin θ. (6.14)

Notice that proving (6.11) is in turn equivalent to show that ω 6= π
2 . From (6.13), we get

P (F )− P (ΩF
κmax

) = 2
[
M − 2ω

sin θ
sinω

]
+O(ε). (6.15)

Similarly, we estimate |F\ΩF
κmax
| with the area of the connected subset of the strip [cos θ, cos θ+

M ] × [− sin θ, sin θ] bounded by two arcs of circumference of curvature κmax, and passing
through the vertices of the strip. Thus

|F \ ΩF
κmax
| = 2

[
M sin θ − ω sin2 θ

sin2 ω
+ sin2 θ

cosω
sinω

]
+O(ε). (6.16)

Combining (6.12), (6.15), and (6.16) we get

M (1− sinω) = ω
sin θ
sinω

+ sin θ cosω +O(ε), (6.17)

which does not admit ω = π
2 as a solution, for ε > 0 sufficiently small. This proves (6.11).

Remark 6.8. Referring to Example 6.7, we notice that we can still apply Theorem 1.1
separately in each connected component of Ch(F ), thus obtaining a subunitary vector field
X satisfying divX = h(F ) in Ch(F ), and the third equation in (1.4) on ∂F ∩ ∂Ch(F ).
If we extend X following the normal direction of the curvature level lines in ΩF

κmax
\ Ch(F ),

and then transporting the field parallelly to itself in ΘF
κmax

\ ΩF
κmax

, we end up with a field
not belonging to H 2

div(F ). Indeed we cannot avoid the field to jump in the normal direction
of some vertical discontinuity segment.
We observe that the difficulty for building an optimal selection seems to be related to the
presence of two minimal Cheeger subsets of F . We are not aware whether there exists an
optimal selection equal to X in Ch(F ).

As we have already said, we are not able to find an optimal selection Ñmin in F : we notice
that [52, Theorem 1.1] cannot be applied with the choice of h = κφc,F , since any ΩF

β violates
[52, formula (1.3)].
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7 Calibrability and total variation flow

Here we want to recall some general facts concerning the total variation flow in R2,(35) namely
the nonlinear degenerate parabolic equation

∂u

∂t
= div

(
Du

|Du|

)
in (0, T )× R2, (7.1)

coupled with an initial condition
u(0, ·) = 1Ω, (7.2)

where T > 0, Ω ⊂ R2 is the interior of a φc-calibrable facet F . We recall that equation (7.1)
is the gradient flow in L2(R2) of the convex functional given by the total variation

∫
R2 |Du|,

for u ∈ L2(R2) ∩BV (R2).

Remark 7.1. Let v ∈ C1(Ω), and let E be the subgraph of v. Then the φc-perimeter(36) of
E in Ω× R is∫

Ω
φoc

(
− ∇v√

1 + |∇v|2
,

1√
1 + |∇v|2

) √
1 + |∇v|2 dx =

∫
Ω

(1 + |∇v|) dx,

which, up to the constant |Ω|, coincides with the total variation of v.

Well-posedness of (7.1)–(7.2) follows using the theory in [34], see also [15]. In particular, it
is possible to prove that there exists a unique u ∈ C([0, T ];L2(R2)) ∩W 1,2(0, T ;L2(R2)) and
there exists η ∈ L∞((0, T ) × R2; R2), with ||η||∞ ≤ 1, such that ut = divη in the sense of
distributions, and (recalling also (5.3) and setting u(t) = u(t, ·))∫

R2

(u(t)− w)∂tu(t) dx =
∫

R2

(η(t), Dw)−
∫

R2

|Du(t)|, a.e. t ∈ (0, T ),

for all w ∈ L2(R2)∩BV (R2); the initial datum is taken in the L2(R2) sense. We also mention
the existence – uniqueness result for the entropic solution, well-suited for more general initial
data [15].
It is interesting to consider also the time-step discretization of (7.1), which reads as the
denoising problem

min
u∈BV (R2)

{∫
R2

|Du|+ 1
2τ

∫
R2

|u− f |2 dx
}
, τ > 0, (7.3)

originally proposed in [65].(37)

(35) Total variation flow in a bounded open set of R2, for m ≥ 2, has been treated for instance in [9]. See also
[62], [37], [40] for the anisotropic formulation of the flow.
(36) Notice that φoc(ξ

?) =
p

(ξ?1)2 + (ξ?2)2 + |ξ?3 | for any ξ? ∈ R3?.
(37)In dimension one, the denoising problem (7.3) is solved by the function u(τ), solution of the total variation

flow with initial condition u(0) = f , see [35, Proposition 4.2].
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In [8] (see also [19] for eventual regularity of solutions), solutions of (7.1)–(7.2) are shown to
vanish in a finite time T (u0), and the rescaled function u(t,·)

T (u0)−t converges along subsequences,

as t→ (T (u0))−, to a solution(38) of the eigenvalue problem

div
(
Dv

|Dv|

)
= −v. (7.4)

The problem of detecting explicit solutions of (7.4) has an independent interest: first of all,
given v solution of (7.4), the function u(t, ·) := (1 − t)+v(·) is the solution of (7.1) starting
at v. Secondly, as shown in [15], any solution of (7.4) allows to construct an explicit solution
of problem (7.3).(39)

It is natural to look for special solutions of (7.4) of the form v := 1Ω, for some bounded
open set Ω ⊂ R2. This corresponds to characterizing all flat graphs in R3 which, under the
total variation flow, decrease their height without distorsion of the boundary. The case of a
connected Ω has been studied in [15]: as one can expect, this characterization leads to the
same necessary and sufficient conditions obtained by Giusti within the framework of capillary
problem (hence, in turn, within the study of φc-calibrable facets of solids).
The following result enlightens the relation between solutions of (7.4) and calibrability. We
recall that by κB we denote the (Euclidean) curvature of ∂B, for B ⊂ R2 of class C1,1.

Theorem 7.2 ([15]). Let Ω ⊂ R2 be a bounded connected open set, and let h := P (Ω)
|Ω| . Then,

v := h1Ω is a solution of (7.4) if and only if Ω is convex, of class C1,1, and κΩ ≤ h on ∂Ω.
In particular Ω is a convex calibrable set, see Theorem 5.4.

Concerning a non connected set Ω, the following result holds.

Theorem 7.3 ([15]). Let Ω ⊂ R2 be a bounded open set, and let h := P (Ω)
|Ω| . Then, v := h1Ω

is a solution of (7.4) if and only if Ω has a finite number of connected components C1, . . . ,
Cq, and

(i) Cj is convex of class C1,1, for every j = 1, . . . , q;

(ii) P (Cj)
|Cj | = h, and κCj ≤ h, for every j = 1, . . . , q;

(iii) for any k = 1, . . . , q, and for any J := {j1, . . . , jk} ⊆ {1, . . . , q}, we have

P (B) ≥
k∑
l=1

P (Cjl),
k⋃
l=1

Cjl ⊆ B ⊆
(
R2 \

⋃
j /∈J

Cj
)
.

Condition (iii) is a requirement on the mutual distance between the sets C1, . . . , Cq: roughly
speaking, the sets cannot be too close. Theorems 7.2-7.3 have been extended to general di-
mension n ≥ 2 in [5], and then to the anisotropic setting in [37], under convexity assumptions
on the sets.
(38)A function v ∈ BV (R2) solves (7.4) if there exists a subunitary vector field η ∈ L∞(R2; R2) such that
−divη = v in the sense of distributions. See [16] and also [8] for more.
(39) In the most simple case, let v ∈ BV (R2) be a solution of (7.4), let b ∈ R, and let f := bv. Then, setting
a := sign(b)(|b| − τ)+, the function u := av is the solution of (7.3).
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The study of piecewise constant solutions of (7.4) has been extended in [16] to the case of an
open bounded set Ω ⊂ R2 of the form

Ω := C0 \
q⋃
j=1

Cj , (7.5)

where C0, . . . , Cq are bounded open sets of R2 of class C1,1, such that Cj ⊂ C0, and Cj∩Cl = ∅,
for all j, l = 1, . . . , q, j 6= l. Fix k ∈ {0, . . . , q}, and set

h :=
1
|Ω|

 k∑
j=0

P (Cj)−
q∑

j=k+1

P (Cj)

 . (7.6)

In this setting, the existence of a solution v of (7.4) of the form v := h1Ω leads to the
problem of the existence of a vector field η ∈ L∞(Ω; R2), with ||η||L∞(Ω) ≤ 1, and with
L2(Ω)-summable divergence, which solves the following system

divη = h in Ω,
〈νΩ, η〉 = 1, on ∂Cj , j = 0, . . . , k,
〈νΩ, η〉 = −1, on ∂Cj , j = k + 1, . . . , q.

(7.7)

In view of the identification v = h1Ω, one can check that (7.6) corresponds to the mean
velocity of F := {(x, 1) ⊂ R3 : x ∈ Ω}, seen as a facet in Facetsφ(∂E) of a Lip φc-regular
set E ⊂ R3 which is locally convex (resp., locally concave) at F around ∂C0,. . . , ∂Ck (resp.,
around ∂Ck+1,. . . , ∂Cq). The main result is summarized in Theorem 7.4 below. Let us set,
for the sake of brevity, Ji := {0, . . . , k} and Je := {k + 1, . . . , q}.

Theorem 7.4. Let Ω, h be as in (7.5)-(7.6). The following assertions hold:

(i) if system (7.7) has a solution, then

κC0 ≤ h, κCj ≥ −h, j ∈ Ji, κCj ≥ h, j ∈ Je; (7.8)

(ii) if the third inequality in (7.8) holds true, the set Ω ∪ (∪j∈JeCj) satisfies an interior
1
h -ball condition, and

dist(Cj , Cl) >
2
h
, (j, l) ∈ (Ji × Ji) ∪ (Je × Je), j 6= l,

then system (7.7) has a solution.

In order to obtain a solution v := h1Ω of (7.4), one has to couple the solution provided by
Theorem 7.4 with the solution of divη = 0 in R2 \ Ω, with proper boundary conditions. See
again [16].
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