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Abstract

Given an anisotropy ¢ on R?, we discuss the relations between the ¢-calibrability of a
facet I C OF of a solid crystal E, and the capillary problem on a capillary tube with base
F. When F is parallel to a facet Bg of the unit ball of ¢, ¢-calibrability is equivalent to
show the existence of a ¢-subunitary vector field in F', with suitable normal trace on OF,
and with constant divergence equal to the ¢-mean curvature of F. Assuming E convex
at I, Bg a disk, and F' (strictly) ¢-calibrable, such a vector field is obtained by solving
the capillary problem on F in absence of gravity and with zero contact angle. We show
some examples of facets for which it is possible, even without the strict ¢-calibrability
assumption, to build one of these vector fields. The construction provides, at least for
convex facets of class C1'1, the solution of the total variation flow starting at 1p.

1 Introduction

The aim of this paper is to point out some connections between crystalline mean curvature of
facets of a solid set E C R?, and the capillary problem in absence of gravity. In particular, we
are interested in examples of facets F' C 0F which admit a subunitary vector field allowing to
define an anisotropic mean curvature not easily expressible in terms of a scalar function. The
study of anisotropic mean curvature of facets is related to crystalline mean curvature flow
[68], [70], [71], [2], [48], [49]: for instance, the constancy of the crystalline mean curvature
makes a facet to translate parallely to itself in normal direction, at least for a short time,
thus preventing the facet-breaking and bending phenomena [21].

Let us start with a brief overview of the action principle for a capillary, referring the reader
for instance to [44], [59], [33] and references therein, for a more complete discussion on this
topic.

In the absence of gravity, the capillary problem on a bounded connected Lipschitz open set
Q C R™ (m = 2 being the physical case) can be stated as follows: given b, u € R, solve

inf {%(u) L ue BV(Q), /Qudm _ b}, (1.1)
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where BV (Q) is the space of functions with bounded variation in €2, and ¥, is the strictly

convex functional
—/\/1+|Du]2—/ pu dH™ L (1.2)
Q [5)9]

Here, [, /1 + [Dul? is the area of the (generalized) graph of u [59], [53], H™ ! is the (m—1)-
dimensional Hausdorff measure in R™ [43], u can be thought of as the height of the liquid,
and the last term in involves the trace of u on 0€2. Let pu > O Then, one can show
[59] that, when p > 1, the functional ¢, is unbounded from below. In what follows, we shall

confine ourselves to the cas.
€ (0,1].

We then set 1 = cos v, where v represents, for m = 2, the (assigned) contact angle between the
liquid and the bounding walls of the capillary tube 2xR. From the first variation computation
of ¢, supposing for simplicity that 0 is of class C!, it turns out that if u € (0,1), then

solving (/1.1)) is equivalent to find
ueC(Q)ncl(Q) (1.3)

such that

Vu
div| ———= | =h in 0 1.4
v ( 1+ \Vu|2> - (14)

for a suitable constant A € R independent of b. The prescribed mean curvature equation (|1.4])
is coupled with the Neumann-type boundary condition

Vu QO

V1+ |[Vul|? v

where v is the unit normal vector field to 99 pointing outside of Q. The constant h is
identified integrating by parts, since

=pu on 01}, (1.5)

_ i Vu Q m—1 __ MP(Q)
\Q|/ ( 1—|—]Vu\2> da:—’QI 397*1+\Vu|2 v dH = o (1.6)

where P(Q2) denotes the perimeter of Q in R and |Q)| is the Lebesgue measure of 2. From
, it follows that solutions of can be expected only when p < 1. Once p has been
chosen, the problem becomes to find necessary and sufficient conditions on the set €2 ensuring
existence of solutions of , and . In this respect, it is convenient to introduce
the prescribed mean curvature functionals defined, for A € R, and p € [—1,1], as

Fau(B) = P(B,Q) +pH™ 1 (0*BnoQ) - \|B|, BCQ,

where 0* B denotes the reduced boundary [6] of the finite perimeter set B, and P(-,) is the
perimeter in Q (if 4 = 1 we have %) 1(B) = P(B) — A|B| for any B C Q). The problem

inf {#) ,,(B) : B of finite perimeter, B C 2} (1.7)

M Up to a change of sign of b, this is not restrictive, since %, (u) = 9 ,,(—u).
@1f i = 0, then problem ([1.1) is trivially solved by a suitable constant.



has been studied by several authors, see for instance [67], [44], [25], [40], (see also [12], [27],
[28], [29], [30], [31], [32]) and references therein. By direct methods, it turns out that there
exists a solution of and, again, if such a solution is sufficiently regular, its boundary
inside 2 has mean curvatur equal to A, and contact angle with 02 equal to arccos u.

Now, let u € (0,1) and h be as in 1’ Then [44, Chapter 7] there exists a solution of
(L3), (T4) and (L) if and only if

0= Fu(0) = F1p() < Fuu(B),  BCQ BAD; (18)

moreover, the solution is unique up to an additive constant, and it is bounded from below in 2.
On the other hand [45], if is violated, still admits a solution in some nonempty set
B* C Q, and such a solution becomes unbounded on 2N JB*. In this situation, the expected
physical phenomenon is that the height of the fluid increases unboundedly on €2\ B*, until
part of the base in B* remains uncovered.

In connection with the case u = 1, and for taking into account unbounded functions u, we
mention that problem can be generalized into a minimization over subsets which are
not necessarily subgraphs of a function. This formulation is originally due to M. Miranda
[60], [61], and has led to the notion of generalized solution.

In [52], Giusti proved that is a necessary and sufficient condition also in the case u = 1,
thus identifying a “maximal” set €2 where the elliptic equation has a solution

—

Theorem 1.1 ([52]). Let Q C R™ be a bounded connected open set with Lipschitz boundary,
and let h := (Tﬂz) Then there exists a solution u € C*() of (1.4)) if and only if

T

P(B)

h<
| Bl

BCQ, B#0. (1.9)

Moreover, if Q is of class C%, the solution is unique up to an additive constant, bounded from
below in 2, and its graph is vertical at the boundary of ), in the sense that

Vu
V14 |[Vul|?

Finally, if m = 2 and  is convex, (1.9) is in turn equivalent to assume that the curvature of
0, at all points of O where it is defined, is less than or equal to h.

— Y uniformly on 99. (1.10)

Similarly to the case pu € (0,1), if Q does not satisfy , the fluid height is expected
to become unbounded in correspondence of the complement of some nonempty regular set
B* C Q (see Remark , such that QQ N dB* has mean curvature equal to h. Moreover, it is
proven in [52, Theorem 3.2] that u is unbounded from above around a relatively open region
(if any) of 02 where the maximum of the mean curvature of 992 equals P(Q2)/|Q].

(®)Here and throughout the paper, if B C R™ is of class C2, we shall call mean curvature of B the sum of
the (n — 1)-principal curvatures of dB.

¥ Note that, for any B C Q, there holds .%, ,(Q\B) = .% (B), where we set . (B) := P(B,Q)—uH™ ' (8* BN
o) + h|B|.

®)The result in [52] is given, more generally, for a right hand side of belonging to Lip(€2) N L ().



Theorem provides a subunitary vector field with constant divergence on €2 and satisfying
(1.10]). Interestingly enough [64], an equation of the form

divN = const in Q, (1.11)

hence very similar to ([L.4]), appears, supposing for simplicity m = 2, in connection with the
motion of a solid set £ C R? = R? x R by its anisotropic mean curvature. Equation (1.11)

. . . Yu o
is coupled with (|1.10)) (where the subunitary vector field N replaces 7\/W), and it gives

the ¢.-mean curvature of a facet F' C F which is parallel to the horizontal plane R?; here,
¢ is the norm of R? induced by the (portion of) “Euclidean” cylinder

By, = {(51,52,53> e R’ :max( & 18, |531) < 1}. (1.12)

If F is evolving under ¢.-mean curvature flow, and OF has constant ¢.-mean curvature at F,
then F' is called ¢.-calibrable, and it is expected to move parallely to itself for short times.

The notion of calibrability can be given for any convex anisotropy ¢ [20], [2I], and in any
dimension m > 1 [5], [37}@ Noncalibrable facets allow to construct explicit examples of
facet breaking-bending phenomena, see again [20], [21]: indeed, it seems reasonable that, at
least at time ¢ = 0, the facet breaks in correspondance of the jump set of its curvature and
bends if the curvature is continuous and not constant.

For simplicity, let us state the problem when m = 2, and for a facet F' C OF of a solid
set E which is convex at F' (Definition . Let ¢: R — [0, +00) be a convex nonregular
anisotropy, and let By be the unit ball of ¢ (the Wulff shape). Assume that F' is parallel to
a facet E(f of the Wulff shape, and let IIx =2 R? be the affine plane spanned by F. Then, F

is said to be ¢-calibrable if there exists a vector field N € L™ (F; R?) satisfying

(N(z) € Eg a.e. ¢ € F,

divN = h a.e. in F), (1.13)

\<5F,N>:1 H! — a.e. on OF,

where 7' € I is the unit normal vector field to OF pointing outside of F, (-,-) is a suitable
notion of normal trace, and the constant h > 0 is again determined by an integration by
parts (Section . What is more informative, is that is obtained as a by-product
of a minimization of a functional defined on divergences of vector fields (Section , which
remains interesting also for facets which are not ¢-calibrable. This corresponds to the case
when the right hand side of the second line in is not constant anymore. We shall call
any vector field solution of the above mentioned minimization problem an optimal selection
in the (possibly non ¢-calibrable) facet F'. Remarkably, it is possible to prove [21] that a facet
is ¢-calibrable if and only if its “mean velocity” is less than or equal to the mean velocity of

(G)Actually, the case m = 1 is trivial, since all edges contained in the boundary of a planar domain have
constant anisotropic mean curvature. See for instance [71], and references therein.



any subset of the facet We say that F' is strictly ¢-calibrable if it is ¢-calibrable and there
isno B C F, B # (), having mean velocity equal to that of F.

The analogy with , is now apparent: a strictly ¢.-calibrable facet F' such that FE
is convex at F' is nothing but a set {2 where the problem addressed in Theorem has a
solution. As a consequence (Proposition , in such a facet there exists an optimal selection
which is induced by any scalar function u solving the capillary problem in the relative interior
of F' with zero contact angle; moreover, this optimal selection is (disregarding the sign) the
horizontal component of the outer unit normal vector to the graph of u. Incidentally, we
recall [50] that it is not possible for an optimal selection in F' to coincide with the gradient of
a scalar function, unless the facet is the unit disk. Actually, constructing an optimal selection
in non ¢.-calibrable facets is the main scope of the present paper (Section @ Indeed, even if
the facet is ¢.-calibrable but not strictly ¢.-calibrable, it is possible in some case to extend
the selection out of the maximal subset of F' where the capillary problem is solvable. This
extension, in general, may not be induced by a scalar function, nevertheless it still provides
information on the regularity of the anisotropic mean curvature at F. Our construction is
based on the characterization of sublevel sets of the anisotropic mean curvature (Section .

It is worth to notice that, by virtue of [5, Theorem 17], and for a convex facet F' of class
CH1, our construction provides also the solution of the total variation flow in R? with initial
datum the characteristic function of F' (see ) Heuristically, if u is a solution of , and
p(t) = (x,u(t,x)) is a point of graph(u(t)) C R? around which u(t) is sufficiently smooth with
nonzero gradient, then the vertical velocity of p(t) equals the mean curvature of the level set
of u(t) passing through z; strictly ¢.-calibrable flat regions F' of graph(u(t)) evolve in vertical
directio with velocity equal to P(F')/|F|; vertical walls (provided u(t) is discontinuous) of
graph(u(t)) do not move; finally, isolated points where the gradient of w(t) vanishes, such as
local minima or local maxima, may develop instantaneously flat horizontal regions. See also
[15], [16], [5], [37], and Section [7} Therefore, there are analogies between the total variation
flow in R? and the anisotropic mean curvature flow of ¢.-calibrable facets; however the two
motions differ immediately after the initial time. Indeed, even for ¢.-calibrable facets, the
graph of v = 1p decreases its height without distortion of the boundary, while the shape of
F' is expected in general to change for ¢ > 0.

The plan of this paper is the following. In Section [2| we recall the definitions of anisotropic
perimeter, duality maps, and anisotropic mean curvature, and we fix the family of regular
sets we shall deal with. In Section [3] we briefly collect some results on the anisotropic and
Euclidean Cheeger problem. In Section [4] we focus on the three dimensional case: we recall
the definition of normal trace at a facet, needed to localize the anisotropic mean curvature
at a facet. Theorems|4.12 enlight the relation between sublevel sets of the restriction of
kg on facets and Cheeger-like problems. In this respect, Theorem plays a role also for
its application to the construction of optimal selections. This is done in Section [6] which,
together with Section |5} contains the main results of this paper. In Section |5, we consider the
problem of ¢-calibrable facets. Let ¢ be the bidimensional metric induced by Bg , let P(g(F )

(M See Theorem See also [37] for an extension to convex facets in dimension n > 2.

(®)Upwards or downwards depending on whether F consists of points of local minimum or local maximum
of u(t).



be the <;~5-perimeter of F', and denote by /{5 the (E—mean curvature of OF. Then, we show in

Theorem [5.8] that

P5(F)
/{E < ¢
¢ = |F]

(1.14)

is a necessary condition for calibrability when F' is g—convex. This result was already known
for convex facets [2I], and in that context the two conditions are actually equivalent. For
general ¢-convex facets (Definition , condition is not sufficient for ¢-calibrability
(Example . In Section we prove some facts on the calibrability of “annular” facets.
Theorems [5.9 could be considered as a first step towards an extension to the crystalline
setting of the study of “oscillating towers” given in [16]. Finally, in Section |7} we provide a
very brief overview on the relations between the total variation flow in R? and the arguments
considered in the paper.

2 Anisotropic mean curvature

General references for this section are for instance [26], [24], [22], [23].

Let n:=m+12> 2. A convex anisotropy (an anisotropy, for short) on R™ is any even convex
function ¢ : R™ — [0,400) such that ¢(&) > A¢], for some A > 0, and ¢(t&) = [t|o(E), for
£eR” and t € R.

The dual of an anisotropy ¢ on R™ is the function ¢° : R"* — [0, +00) defined as ¢°(£*) :=
sup{¢*- ¢ : ¢(&) < 1}, which is an anisotropy on the dual R™* of R™. We will usually denote
by By C R™ and Bgo C R™ the closed unit ¢-ball and ¢°-ball respectively@ i.e.

By={€R": ¢(§) <1} By ={€ €R™: ¢°(¢") < 1}.

By M(R") we denote the class of all anisotropies on R"”. We say that ¢ € M(R") is regular,
and we write ¢ € Myeg(R™), if By and Bgo have uniformly convex boundary of class C2.
However, the relevant cases for this paper are when ¢ € M(R") \ M;eg(R™), namely when ¢
is nonregular, and more precisely:

- when By (and Bge) is an n-dimensional polyhedron. In this case we say that ¢ is a
crystalline anisotropy.

- when By, = C x [-1,1], C being an (n — 1)-dimensional centrally symmetric convex
body. In this case, we say that ¢ a cylindrical anisotropy. We say that ¢ is the Euclidean
cylindrical norm if n = 3 and C is the Euclidean unit disk (see (1.12])).

Definition 2.1 (Duality maps). Let ¢ € M(R"). We define the (mazimal monotone
possibly multivalued) one-homogeneous maps Ty : R™ — oR™ Tgo : R™ — oR™ " as

Ty(€) = 50)(E), Tol€) = 30())E),  EER™, ¢ R™,

where 0 denotes the subdifferential.

) In the literature, Bgo is sometimes called Frank diagram.



The ¢-anisotropic perimeter of a finite perimeter set £ C R™ in the open set 2 C R" is
defined as

P4y(E,Q) := ¢y / ¢°(F) dH™ L, (2.1)
QNo*E
where ¥ is the generalized unit normal to 0*FE [6], ¢, := |§—Z)| and wy, is the Lebesgue measure

of the Euclidean unit ball of ]R” It turns out that By satisfies the following isoperimetric
property for every set £ C R" of finite perimeter and finite Lebesgue measure, we have

P(E) > (@) Py(By). (2.2)

with equality if and only if E coincides (up to a translation) with By.
For simplicity, we shall always assume ¢ to be such that the constant ¢, in (2.1]) is 1.

Let E C R"™ be a Lipschitz set, and vgo := #ZJE) For z,y € R™, we set distg(x,y) := ¢(y—x),
distg(x, E) := infycp disty(z,y), and we define the ¢-signed distance function df from OF as
dg(x) = disty(x, E) — disty (2, R™ \ E). It turns out that df is Lipschitz in a neighbourhood
U of OF, and it satisfies the eikonal-type equation

¢°(Vdy) =1 ae. inU. (2.3)

2.1 Regular case

Suppose that ¢ € M,e(R"), and let £ C R™ be Lipschitz. The Cahn-Hoffman vector field
ney on OF is defined as ng := Tyo(vgo), H" ! almost everywhere on 9E. When OF is compact
and of class C2, there exists a tubular neighbourhood U of OF where d,g is of class C2; hence,
by , Vdf = Vgo on OF. We extend the Cahn-Hoffman vector field ng on the whole of
U as Ny 1= Tyo (Vdf) in U, and we define the ¢ — anisotropic mean curvature Iﬂ?g of OF as
/{g :=divNy on OF.

Anisotropic mean curvature appears in the first variation of the anisotropic perimeter func-
tional. More precisely, let (Uy)rer C C(R";R™) be a family of diffeomorphisms of the form
Uy (z) =z + Mp(x)Ng(x) + o(A) for any € R", where the scalar function ¢ is Lipschitz
with compact support in R™. Then?

1
d 2
inf —P,(V,\(E =— N2 o (yFy aH™ ! 2.4
it @, = ([ et ae) e
faEwQ QZSO(I/E) dHn—lgl

and the infimum is realized by a suitable scalar multiple of /if .

(19) The constant ¢, plays a role in the definition of the ¢-anisotropic volume | - |4, see for instance [26], [24].
We recall that |- |¢ = cnl - |, so that |Bg|e = wy for any ¢ € M(R"™).

(Y See [68], [69], [70], [46], [47], and [42] for a quantitative version.

(12 See [25], [17], and [I3] for an extension to nonconvex smooth anisotropies.



2.2 Nonregular case

When ¢ € M(R") \ M;ee(R™), there can be (for instance for ¢ crystalline or cylindrical)
several possible choices of vector fields N : OE — R" satisfying N(x) € Tyo(vgo(x)) for
H"-almost every = € OF.

Definition 2.2 (Selection). A selection on JF is an element of
Norg(9E) := {N: 0E — R" : N(z) € Tyo(vgo()) for H" '—a.e. x € OE}.

Definition 2.3 (Neighbourhood ¢-regular sets). We say that E is neighbourhood-Lip
¢-regular if there exists a tubular neighbourhood U of OF and a bounded vector field n €
Lip(U; R™) such that n(z) € T¢0(Vdg(z)) for almost every z € U.

Remark 2.4. In the Euclidean case, F is neighbourhood-Lip ¢-regular if and only if OF is
of class Cb!. Neighbourhood regularity of boundaries has some connection with the notion
of inner-outer tangent ball: given r > 0, we say that I satisfies the rBy-condition if, for any
x € OF, there exists y € R" such that 7By +y C E, and « € 0(rBy + y). It turns out [14]
that, if E is neighbourhood-Lip ¢-regular, then there exists r > 0 such that £ and R*\ F
satisfy the rBy-condition. Moreover, if F is convex, then E is neighbourhood-L> ¢-regular
if and only if E and R" \ E satisfy the rBg-condition for some 7 > 0.

Neighbourhood Lipschitz regularity has been used in [37] to give a characterization of convex
subsets of R"~! which are ¢-calibrable, see Section [5| In this paper, we shall adopt a second
notion of regular sets.

Definition 2.5 (Lip ¢-regular sets). We say that E is Lip ¢-regular if there exists a vector
field N € Nory(OF) N Lip(OE; R™).

It turns out that a Lip ¢-regular set is also neighbourhood Lip ¢-regular, in the sense of
Definition Indeed, for any N € Nory(OF) it is possible to exhibit a Lipschitz extension
of N inside a tubular neighbourhood U of OF, see [22]

Definitions and make sense also when ¢ € M,¢s(R™); in this case, if U is the tubular
neighbourhood of JF where holds, then the unique vector field € Lip(U;R™) satisfying
Definition [2.3]is 7 := Ny.

Anisotropic mean curvature is defined, as in formula , by computing the first variation
of the perimeter functional. For A € R and z € U, define ¥ (z) := z + A\°(2)N¢(2), where
¥ € Lip(U) and N€¢ € Lip(U;R"™) is a Lipschitz extension of N on U. It is convenient to
introduce the family

A, (OE) :== {N € Nory(9E) : div,N € L*(0E)}, (2.5)

(13) When ¢ is crystalline, a polyhedron E is Lip ¢-regular if and only if, at every vertex v € 0F,

m Tgo (VF) # 07
F' facet of OFE,
vEF

where the definition of facet is given in Section [4] below.



where the tangential divergence of a vector field N € Nory(OF) is defined as in [22]. Set
K(N) := / (div,N)? ¢°(vF) an™t, N e #} (OF). (2.6)
oF

The following result is proven in [22].

Theorem 2.6 (First variation in the nonregular case). Suppose that E is Lip ¢-regular.
Then

By(UA(E)) — Py(E)

1
inf lim inf =— inf K(N))z. 2.7
weLlig(aE), 0t A Ne,%%liv(aE)( (V) 27)

Jop? ¢°(WF) dH* <1

The minimization problem in may admit, in general, more than one solution. Neverthe-
less, by the strict convexity of I in the divergence, two minimizers have the same divergence.
In the following, we denote by

Nrin € %?V(GE)

any minimizer of ({2.6)).

Definition 2.7 (Anisotropic mean curvature). The ¢-mean curvature Hf of OF is de-
fined as
/if := div; Nmin.-

Actually, Lip ¢-regular sets have anisotropic mean curvature which is more than just square
integrable on OF: indeed, the following result holds [23].

Theorem 2.8 (Boundedness of K,g) We have K,g € L>(0F).

Some further regularity properties of nf are expected for those (n — 1)-dimensional portions
of OF which correspond (via the map 7o) to (n — 1)-dimensional portions of 0B,. We shall
collect some of these results in Section 4l

When ¢ is the euclidean norm, we omit the dependence on ¢ of the various symbols, thus
letting v in place of v4, P in place of Py,  in place of k4, and so on.

3 Prescribed mean curvature problem

Let m > 2, ¢ € M(R™), Q C R™ be a bounded open set with Lipschitz boundary, and 5 > 0.
In the following, we shall consider solutions Cg to the prescribed mean curvature problem,
namely solutions to

inf {Py(B) —3|B|: BC Q,B#0}. (3.1)

Existence of solutions of (3.1) can be proved by direct methods. The following regularity
result holds.

Theorem 3.1. Let 1 be the Euclidean norm. Then QN 0*Cy is an analytic hypersurface
with constant mean curvature equal to B, and the set QN (0C3 \ 0*Cy) is a closed set with
Hausdorff dimension at most (m —8). Moreover, 0*Cg can meet 0*Q only tangentially, that
is, V¥ =18 on 0*CgNo*Q.



Proof. The analyticity of 2 N 0*Cg, the closedness and the estimate on the dimension of
QN (0Cs\ 0*Cy) follow from classical regularity results, see for instance [67] or [58]. We refer
the reader to the latter reference for a proof of the tangentiality condition on 0*CzN9*§2. O

For 1) € Myeg(R™) of class C3* on R™\ {0}, and « € (0, 1), solutions of (3.1]) are hypersurfaces
of class C®, out of a closed singular set of zero H™ '-measure, see For m = 2, in
[7] the authors study the problem for a more general notion of perimeter, and prove that the
inner boundary of a solution of is a Lipschitz curve out of a closed singular set of zero
H!-measure. The result has been improved in [63, Theorem 4.5], with the following theorem.

Theorem 3.2. Let ¢y € M(R?), 8 > 0, and let Cs be a solution of [B3.1). Then, every
connected component of QN OCy is contained in a translated of ﬁ_183¢.

Remark 3.3. In dimension m > 2, even with the Euclidean metric, we cannot deduce from
Theorem that any connected component of 2 N dCj is contained in the boundary of a
ball of radius 37!, see for instance [54] for an explicit example.

The 1-Cheeger proble for Q consists in solving

P,(B
m% g);Bnghm}:mwm, (3.2)
see [37], [40]. A minimizer of (3.2) is sometimes called a 1-Cheeger subset of 2, while A ()
is called the 1)-Cheeger constant of 2. Notice that, when (3 := hy(£2), a nonempty set B C €2

solves (3.1)) if and only if B is a minimizer of (3.2]).

Definition 3.4 (Cheeger and strict Cheeger sets). If 2 is a solution of (3.2), we say
that Q is a ¥-Cheeger set. If

Py(©) _ Py(B)

< . BCQ B+, 3.3
o < B (3:3)

we say that Q is a strict ¢-Cheeger set.

If B C Qis a ¢-Cheeger subset of €, then B is a 1)-Cheeger set (namely, hy(B) = hy(Q2) =

P“’(B)). We say that B is a strict ¥-Cheeger subset of €} provided that B is a 1-Cheeger

|B]
subset of , and Plfé?) < PTéﬁ ), for every B’ C B, B’ # .

It can be proved [58] that the union of 1)-Cheeger subsets of (2 is still a ¢-Cheeger subset of
Q.

Definition 3.5 (Maximal/minimal Cheeger subsets). We denote by
Chy ()

the maximal 1-Cheeger subset of 2, which is defined as the union of all 1)-Cheeger subsets
of Q2.

Moreover, we say that a 1-Cheeger subset C' of € is minimal if, for any 1-Cheeger subset
C' CQ, either C CC" or CNC' = 10.

(19 See also [1], [66] for the case ¥ € Myeg(R™) of class C**.
(19 Problem (3.2) has been introduced in [41], in the effort to give an estimate from below for the spectrum
of the Laplacian operator.
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We observe that any minimal 1-Cheeger subset of €2 is connected. Existence of Chy,(€2) and
of a finite number of minimal -Cheeger subsets is proven for example in [40], [38].

When 1 is the euclidean norm, we omit the dependence on 1 of the various symbols, thus
letting h(Q2) in place of hy(£2), Ch(£2) in place of Chy(£2), and so on.

Remark 3.6. Let B* C Q be a minimal Cheeger subset of 2. Then B* satisfies ((1.9) (with
B* replacing €2, and h := h(Q) = h(B*)). Hence, by Theorem the capillary problem in
B* admits a solution of class C?(int(B*)).

Concerning uniqueness, examples of planar sets 0 admitting more then one (Euclidean)
Cheeger subset, and also an uncountable family of Cheeger subsets, can be found in [55],
58] Further results hold for a convex Q2 C R™, see [4].

Theorem 3.7. Let Q@ C R™ be convex. Then Ch(Y) is the unique Cheeger subset of 2, and
it is conver.

In the anisotropic Cas Y € M(R™) \ M;eg(R™), instead, the uniqueness of the Cheeger
subset of a convex set {2 C R™ is proven, at our best knowledge, only in dimension m = 2
(see Theorem; anyway, when €2 is convex, Chy,(12) is also convex [37, Theorem 6.3]. Both
in the Euclidean and in the anisotropic case, there is also a necessary and sufficient condition
for a smooth enough convex body to be a 1)-Cheeger set. It appeared at first in [51] for m = 2
and v Euclidean; in [21] for m = 2, ¢ € M(R?); in [4] for m > 2 and 1 the Euclidean norm;
finally in [37] in the whole generality. This latter result is recalled in Theorem below.

Theorem 3.8. Let 2 C R™ be a convex body satisfying the TB¢—conditio for somer > 0.
Then ) is a ¥-Cheeger set if and only if

Py (22
esssup k,, < dj( )
20 €2

Finally we have a complete characterization of the (unique) Cheeger subset of a planar convex
domain, proven in [55] for the Euclidean norm and in [56] for a general anisotropy

<20

Theorem 3.9 (Cheeger subset of a planar convex domain). If Q C R? is a bounded,
open and conver set, then Chy(S2) is the union of all 1-balls of radius r = hy(Q)™! that are
contained in 2. Moreover, setting Q. := {x € Q: disty(z,0Q) > r}, we have

Ch¢(Q) = Q; + TBdJ,

and Q07| = 12| By|.

(16) Anyway, even when uniqueness fails, it is possible to prove [38] that any connected open set Q@ C R™ with
finite volume generically admits a unique Cheeger subset, namely it has a unique Cheeger subset up to small
perturbations in volume. More precisely, for any compact K C 2, there exists an open set Qx C  such that
K C Qk, and Qi admits a unique Cheeger subset.

a7 1n [36l, Remark 3.6] the authors extend the uniqueness result in Theorem to the case of an anisotropy
1 € Myeg(R™) and a uniformly convex set Q C R™ of class C.

(18)Recall Remark

9 1n [58] the authors prove that in the Euclidean case most of the peculiarities of the planar convex case
can be proven also for bi-dimensional (non necessarily convex) strips.
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4 Anisotropic mean curvature on facets

From now on, we shall focus on the case n = 3, and
b € M(R?) \Mreg(R?’).

Let E be a Lip ¢-regular set. We say that F' C OF is a (two-dimensional) facet of OF if F is
the closure of a connected component of the relative interior of 0F NT,0F, for some x € OF
such that the tangent space T,O0F of OF at x exists. Given a facet F C OF, by IIr C R? we
denote the affine plane spanned by F. Whenever necessary, we identify IIr with the plane
parallel to Il and passing through the origin, and F' with its orthogonal projection on this
latter plane.

Definition 4.1 (Facets of 0F corresponding to facets of the Wulff shape) We write
F € Facetsy(OF) if F is parallel to a facet BF of 0By, and vge(F) = y¢o(BF).

If F € Facetsy(OF), then Bg = Tyo(vgo(F)). With a slight abuse of notation, we can see Eg
as a subset of IIp. We shall assume, unless otherwise specified, that E(f is a convex body

which is symmetric with respect to the origin of ITr. Let o : 11 [[r — [0, +00) be the (convex)
anisotropy on Ilz such that {¢F <1} = BF We denote by qu the dual of (bF we denote

by f@f the qﬁ curvature of the boundary of a Lip qﬁ regular set B C IIy. If no confusion is
possible, we shall omit the dependence on F' of ap, thus writing gg in place of $F.

The following regularity result is proven in [23].
Theorem 4.2 (Bounded variation of anisotropic mean curvature). Let F' € Facetsy(0F).

Then K,dE) € BV (int(F)).

Another result related to Facets,(0F) allows to detect the anisotropic mean curvature of 0F
at a facet F' from a minimization problem on F' (Proposition |4.9). We need the following
definition.

Definition 4.3 (Convexity at a facet). We say that E is convex (resp. concave) at F' if
E lies, locally around F, in the half-space obtained as that side of Il opposite to (resp. same
as) the exterior normal to E at F.

We recall from [23] a regularity result for the boundary of F'; which will be used to give a
meaning to the normal trace of a selection (Definition [4.5).

Theorem 4.4. Let F' € Facetsy(0F). Then there exists a finite set Zp C OF such that, for
any x € OF \ Zp, OF is a Lipschitz graph locally around x. Moreover, if E is convex (or
concave) at F, then F is Lipschitz.

Now, let N € Nory(0F) N Lip(9E;R3). Notice that the orthogonal component of N with
respect to the plane Il is constant. Hence,

div, N = div(projp(V)), (4.1)

where projp(N): F — Il is the projection of N on F, and its divergence is computed in
Ip. Let ¥ be the outer Euclidean unit normal to OF (when it exists).

12



It turns out that

¢°(0F () if ¥ (x) points outside E,

—&’(ZF(QC)) if 7' (x) points inside E, (42)

vt pijF(N) = {

for any = € O*F (see [22], [23]).

Definition 4.5 (Maximal/minimal normal trace cf,) Let E be a Lip ¢-regular set, and
F € Facetsy(OF). The ¢-normal trace at OF,

0 e L®(9F),
is defined as the right hand side of (4.2)).

When E is convex (resp. concave) at F', we have cf, = ¢°(0F) (resp. c(f; = —¢°(vF)).

We recall [10] that any N € 52 (OF) admits a normal tmc (@ projp(N)) € L¥(dF).
However, we cannot say in general that (7%, projp(N)) = ¢}, for any N € 2, (OF). The
result is true under stronger regularity assumptions on the behaviour of 9F around F. We

refer the reader to [21] for a related discussion. To our purposes, we can confine ourselves to
the case described by Proposition [£.6] below.

Proposition 4.6. Suppose
F Lipschitz, OF \ F intersects transversally F. (4.3)
Then (0¥, projp(N)) = c?}, for any N € % (OF).
It is now natural to look at the family
A2 (F) = {N € Norg(F) : divN € L*(F), (5", N) = ¢5 H'-ae. on dF},

where Norg(F') := {Kf € L>®(F;Ip) : N(z) € Eg for H2-a.e. x € F}W Set als
Kp(N) = / (divN)? dz, N e A3, (F). (4.4)
F

The minimum problem
mf{ch(N) . Ne %%V(F)} (4.5)
admits a solution, and two minimizers have the same divergence

Definition 4.7 (Optimal selection). Given F' € Facetsy(OF), we call optimal selection in
F, and we denote by Nyin € H5 (F) any solution of (.5).

(20)Gee below, with X := projp(N).

(2D Notice that HE,(F) # 0, by the Lip ¢-regularity of E.

22 For notational simplicity, hereafter we shall identify the H?-measure on F with the two-dimensional
Lebesgue measure on Ilg.

(23) Notice that the minimum problem is nonlocal, in the sense that it depends on the shape of OF
around F.
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Remark 4.8 (Minimality criterion). Let Ny € A2 (F) be such that
/ div(Nog) div(Ng — N) dz <0, N € #2 (F). (4.6)
F

Then Nj is an optimal selection in F'. In particular, if there exists No € e%ﬂd%v(F ) such that

divﬁo is constant on F', then ]\70 is optimal ((4.6) is satisfied with equality instead of the
inequality), and necessarily

. X7 1 . X7 1 (0] 1
leNO:m/FdIVNOd;U:m 8FCFdH .

Let Nmin € jff-w(F ) be an optimal selection in F', and set

R¢,F ‘= diV(Nmin).

Proposition 4.9 (Restriction and localization on facets). Assume (4.3). Let Npyin €
%‘fiv(aE) be so that /{g = div;Npin. Then projp(Nmin) is an optimal selection in F. In
particular,

/ig = K¢, F H?-a.e. in F. (4.7)

Proof. We follow |21, Remark 4.4 and Proposition 4.6]. Let Ny, € %ﬂfiv (OF) (resp. Nyin €
A2 (F)) be a minimizer of K (resp. of Kr). Let N € L>®(9E;R3) be such that N = Nyin
on OF \ F, and such that projy(N) = Npin. By Proposition N € % (OF). Thus

K(Nonin) < K(N) = /

(divNmin)? dH? + / (div, Nmin)? dH?
F

OE\F

< / (divy Nyin)? dH? + / (div Nuin)® dH?
F OE\F

_ / (divy Nupin)? dH2 = K(Noin),
OFE

which gives the statement. O

Despite its obviousness, the following observation will be used repeatedly in Section [6]

Remark 4.10. If there exists Ny € A2 (F) such that divNy = kg in int(F'), then Ny is
an optimal selection in F', since

/F (divﬁo)Q dH? = /F (.p)? dH? = /F (divﬁmm)2 dH? < /F (divﬁ)Q dH?,

for any N € J2 (F).
For notational simplicity, and when no confusion is possible, we set
Kmin 1= essinf kg p, Kmax = €SSSUD K¢, - (4.8)

Now, we recall from [21I] and [22] some results on regularity of facets and on the function
R, F-
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Theorem 4.11 (Regularity of facets). Let F' € Facetsy(0F), and let E be convex (or
concave) at F'. Then F is Lip ¢-regular.

For 8 € [Kmin, Kmax], define
Qg ={zx e int(F) : kg r(x) <}, @g ={zx eint(F) : kg r(x) < B}. (4.9)

Theorem 4.12 (Sublevels of the anisotropic mean curvature). Let F' € Facets,(0F),
and suppose that E is convex at F. Then kuyin > 0. Moreover, for any 8 € [Kmin, Kmax)

_ p_(OF _ p_(aF
/Qg K¢, F dw_P({)(Qﬂ)’ /@g R, F dx—P¢(®ﬂ), (4.10)

and Qg and @g are solutions of the variational problem
inf {PJ(B) _ BB : BC F} . (4.11)

Remark 4.13. In the setting of Theorem assume further ¢ € Mieg(Ilp). Let g €
[Fmin, Kmax]- Since @g solves (4.11]), the ¢-mean curvature of a@g is less than or equal to (3,
and equality holds in int(F') N 8@5 . A similar result holds for Qg .

Theorem 4.14 ([63]). Let F' € Facetsy(OF), and suppose that E is convex at F. Then, for
any B € [Kmin, Kmax), I0t(F) N 895 and int(F) N aeg are contained in a translated copy of
p1OBY.

Now, we want to show that the minimal level set of the curvature corresponds to the maximal

g—Cheeger subset of F' (recall Section .
Theorem 4.15. Let F' € Facetsg(0F), and assume that E is convex in F'. Then

O = Chy(F). (4.12)

Rmin
Proof. We start with two preliminary steps.

Step 1. |©F | > 0. Essentially, this fact has been observed in [2I, Remark 5.3]. We repeat
the proof, for the sake of completeness. Let 8 > ki, so that in particular |@g | > 0. From

Theorem using (2.2) (with ¢ replacing ¢), we get
0= P;(0) - 810 > P5(0F) — 51O5| = v51/I0F| - 81O,
where 75 := P$(§£)|§£|1/2. Thus, we deduce the estimate
!95| > 577 ’73; > K’r;lix '73;: B > Kmin- (4.13)

By (4.13), and since ©f = A @g, we get Step 1.

Step 2. The g—Cheeger constant of F' equals Kpin. By definition of ha(F ), using Step 1 and
(4.10), we get

Kmin o .

Kmin Kmin

Pof ) _ Jor g dr

(4.14)
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On the other hand, let C be a gg—Cheeger subset of F'. Then, thanks to Theorem we get

0= POF )~ rminl®F,.| < PHC) — mia|C| = (h3(F) — i) C]. (4.15)

Coupling (4.14)) with (4.15)), we get ha(F ) = Kmin- In particular, ©f isa ¢-Cheeger subset
of F and ©f C Ch(F).
Now, we prove (4.12]).

Suppose, by contradiction, that there exists a ¢-Cheeger subset C C F such that |C \@fmm\ >
0. We observe that k¢ p > Kmin on C'\ @fmm, hence

Fomin|C| < / K dr = / div Nugin dzz = / (7", Nain) dH' < P3(C), (4.16)
C C oxC

where Ny is any optimal selection on F. At the same time, since C'is a a—Cheeger subset of
F, using Step 2 we have Pg(C) = Kmin|C/|, which, coupled with (4.16]), leads to a contradiction.
O

In the same paper [21], the authors give a stronger regularity result for k4  in the case F is
convex at F', and F' itself is convex in the Euclidean sense.

Theorem 4.16. Let I' € Facetsy(0F), and assume that E is conver at F. Assume further
that F' is conver. Then kg r is convex. Moreover,

Qg = U {B Cint(F) : B is a translated copy of 5_155}, B > Kmin,

G)g = U {B C F : B is a translated copy of ﬁflég}, B > Kmin-

Finally, we recall kg, p € Lipyy.(int(F)), see [39, Theorem 2].

5 Calibrability of facets

Let ¢ € M(R3?) \ Mee(R?), and let E be a Lip ¢-regular set. We shall focus on those
F € Facetsy(OF) such that kg p is constant. From now on in this section, we shall assume
(4.3), and so kg p is the restriction of mf to F' (see (4.7)).

Recalling also Remark it follows that kg p is constant in F' € Facetsy(OF) if and only if
there exists N € L*°(F;I1p) such that

(N(z) € Bg H2-a.e. z € F,
divN = iy fypepdH!  in F, (5.1)
@F,N) = ¢ H'-a.e. on OF.

The following definition has been proposed in [21].
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Definition 5.1 (Calibrability). We say that ' € Facetsg(OF) is ¢-calibrable if there exists
a solution of (|5.1)).

From the view point of crystalline mean curvature flow, the right hand side of the PDE in

(1), namely

can be interpreted as the “mean velocity” of F' (in direction normal to int(F)), at time zero.
We want to define a similar quantity also for subsets of the facet since, heuristically, subsets
of I’ are expected to move not slower than F', consistently with the comparison principle for
crystalline mean curvature flow [I§], see Theorem below.

Let B C F be a nonempty set of finite perimeter. We define C% :0B — R as

Cp 1= 5.2
B c}@ otherwise, (5:2)

0 {(/3(53) on 9*B\ OF,

and we set

¢ 1
Vg = — cpdH".
1Bl Jorp P

Let us recall [I1], [10] that, given a function v € BV (int(F)) and a vector field X €
L>®(F;1Ir) with L?(F)-summable divergence, it is possible to define a Radon measure (X, Du)
on F' by setting

(X,Du): ¢ — — ’LL(,OdiVXd:L’—/ uX -Veodr, ¢eCCX(int(F));
int(F) int(F)

moreover, there exists a function (7¥', X) € L°°(dF) such that the following generalized
Gauss-Green formula holds:

/ udivX dm+/ 9(X,Du)d\Du|:/ @, X) u dHY; (5.3)
int(F) int(F) oF

here, 0(X, Du) € LTBU|(F) denotes the density [6] of the measure (X, Du) with respect to

|Du|. We recall that in [23, Proposition 7.7] it has been shown that

— 6(Numin, Dlg) = FE)=cl,,  ae fER, (5.4)
B

where Qg is the (-sublevel set of k¢ r (see (4.9)), and where 14 denotes the characteristic
function of a subset A C F.

Theorem 5.2 ([21I], Characterization of ¢-calibrable facets). Let F' € Facets,(OF).
Then, F' is ¢-calibrable if and only if

vp < g, BCF, B#0. (5.5)
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Proof. Assume N to be a solution of (5.1). In particular, divN = vpin F. Let B C F be a
nonempty set of finite perimeter. Integrating diviV on B and using (5.3) we get

vp|B| :/ divN dz :/ (B, N dH? §/ c%d?‘[l,
B o0*B 0*B
where we used (5.2)) and (5.1). This gives ({5.5]).
The converse implication can be proved as follows. Assume that F' is not ¢-calibrable. Let

Nuin € %%V(F ) be an optimal selection on F'. Recalling that almost every sublevel set of a
BV function has finite perimeter, there exists 3 < v such that Qg # (), and Qg has finite

perimeter. Applying (5.3 with the choice u := 1Q§ and X := Ny, we have

J

divﬁmin dr = —/
int(F)No*Qf

__ / O(Nomins Do) dH' + / (5 Nonin) dH.
int(F)No* QL s OFNo*Qf

9(1\7min,p1ﬂg) dH! +/

", Nin) 1or dH!
OF B

F
B

Observe that, by definition, (7F, ]\~fmin> = cf, = c‘é »on 0F N 8*95 . Therefore, recalling also
3

(B4). we get
/,

div Ny, do = / . dH.

; orap %
Hence,
1 o 1 ¢ 1
vp > B> — divNpi, doe = —= cor AH™ = vgr,
8] Jor Q8] Jovar 0 ;
which contradicts (5.5]). O

In view of Theorem we give the following definition.

Definition 5.3 (Strict ¢-calibrability). We say that F' is strictly ¢-calibrable if
vp < UB for every nonempty B C F.

In the same paper [21], the authors characterize convex ¢-calibrable facets F' € Facetsy(0F)
such that F is convex at F'.

Theorem 5.4 (¢-calibrability for convex E at F' and convex F'). Suppose that E is
convez at ' € Facetsg(OF), and that F is convex. Then, F is ¢-calibrable if and only if

_ P3(F)
€SS Sup R~
or 6 = TP

(5.6)

Hence, under the assumptions of Theorem M problem is solvable if and only if the
¢-curvature of OF' is bounded above by the mean velocity of F'; this means, roughly speaking,
that the edges of OF cannot be too “short”. When 5 is the Euclidean norm of Ilp, has
been given by Giusti in [52], compare Theorem

The following observation clarifies in which sense calibrability extends Definition [3.4
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Remark 5.5 (Calibrability versus Cheeger sets). Suppose that F is convexr at F. In
this case, the mean velocity of any nonempty finite perimeter set B C F' is

1 ¢ 1 1/ Yo (~B 1 P$(B)
Vg = — cpr dH = — v dH = . 5.7
5= 151 ., B] Jpor " B (5.7)

Then, using Theorem and recalling also Secj:vion ¢-calibrability (resp. strict ¢-calibrability)
of F' is equivalent to the property that F' is a ¢-Cheeger (resp. strict ¢-Cheeger) set.

Definition 5.6 (q?—convexity). We say that F' € Facetsy(OF) is p-convex if mg > 0.

One can ask whether the convexity assumption in Theorem can be relaxed to just ¢-
convexity of F'; the next example shows that this can not be expected in general.

a

nF
By

h = b

f B? d

&

Figure 1: An example of ¢-convex facet F satisfying (5.6)), and not ¢-calibrable (¢ > 0 is sufficiently
small and M sufficiently large). Here, Bf is the square of length ¢ represented on the top right. In
grey, a subset of the facet with mean velocity smaller than the mean velocity of F.

Example 5.7. Let 5 be the two-dimensional crystalline metric having as unit ball the square
with side £ > 0, centered at the origin. Let F be as in Figure [I| where B! and B? are two
copies of {5 < 1}, rescaled by a factor L/¢, and Ry is a rectangle of height ¢ and base M.
We recall [71] that, for planar crystalline sets, /{5 is the derivative of the vector field obtained

as the linear interpolation of the vectors at the vertices represented in the figure. Thus, /@g
equals ¢/L on the sides a, d, e and h, while Iig vanishes on the sides b, ¢, f, and g; hence, F'

is g—convex. ~

Now, let ¢ be the cylindrical norm defined as ¢(§) = ¢(&1,&2,&3) = max{p(&1,E2), (€3]}
and let £ C R?® be any prism with base F, for instance E = F x [0,1]; in particular,
F € Facetsy(0F), and E is convex at F

@Y Other choices of ¢ € M(R?)\ Meg(R?) are possible, for which there exists E C R®, E Lip ¢-regular, such
that F' € Facetsg(OF).
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Recalling ((5.7)), we can compute explicitely the mean velocity of F':

oy — Py(F)  2(4L — e+ M)

|F| — 2L24eM
Hence Iﬁg < vr when
2L(—LL+4AL+ M)
€
- {M + 2L ’
the right hand side being positive for M large enough. Now, the mean velocity of B! is
Py(BY) 4
gt = ———— = —.
BYZ B T L
Therefore
ML

< el ——.
UBL S U S oMt L

Hence, for € > 0 small enough and M large enough, F' is not ¢-calibrable (Theorem [5.4)).
However, it is still possible, for gz~5—convex facets, to recover one implication from Theorem

Theorem 5.8. Suppose that gg is crystalline. Assume that E is convex at F' € Facetsy(0F),
that F' is ¢-convex and ¢-calibrable. Then (5.6) holds.

Proof. We closely follow the argument in [2I, Theorem 8.1]. By contradiction, let x € OF be

Pi(F
a point where ng (z) > ‘fiﬂ' ). Then, = belongs to the relative interior of an edge L that is

parallel to an edge of BT , and such that F' is convex at L (indeed, k£ vanishes in all portions

of OF that do not satisfy the previous requirements, see [71]); with a small abuse of language,
we denote by L also the length of this edge, while ¢ is the length of the corresponding edge
of BF Since F is (b regular, we can deduce that By, NU C F, where U is a neighbourhood

of the side L, while By, denote the rescaled copy of Bg having an edge in L, and lying on
the same half-plane of F' around L. Applying [2I, Lemma 8.3], we get

14

B < ng(x) <7 (5.8)

P3(F
where 3 € < Ilgl )’Hg(x)> is such that Qg solves (4.11]).

Following [2I, Theorem 8.1, Step 3|, let us define, for ¢ > 0 sufficiently small, the set F; of
all points of F' having Euclidean distance from the line through L greater than or equal to €.
Set FE = F. U By, see Flgure

It is possible to prove that, for ¢ sufficiently small

[Pl = |E| +o(e%),  P3(F) = Py(F). (5.9)

(25) Clearly, we just need to justify the second equality in (5.9). Let I' be a connected component of 8F\8}/7\a,
and let € > 0 be so small that D‘i lies between two consecutive vertices v1, vz of the unit ball of ¢°. Then,

fr NF d’H1 = ng (fr ot d’Hl), where we used Jensen’s inequality (which holds with equality, since the

restriction of ng on the segment between v1, vy is a linear function). Now, a direct computation shows that
the right hand side in the previous equality only depends on the ending points of I'.
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h

EF

Bre

Figure 2: The construction used to prove Theorem 135 is obtained by slightly modifying I’ near
the edge L (the original boundary is drawn with a dotted line); By, is the rescaled copy of Bg
(represented on the top right) having L as an edge; F: is the competitor subset.

Moreover, we notice that

|Fe| = |Fe| = eL + o(e), (5.10)
and, using [21, Lemma 8.5],
P(F.) — P3(F.) = el + o(e). (5.11)

Coupling (5.9), (5.10), and (5.11)), also recalling (5.8)), we get
P(E(Fs) - ﬁ’Fe| :P(E(F> —el+ ﬁ(EL - |F|) + 0(5)

=P5(F) = BIF| +(BL — 1) + o(¢) < P5(F) — B|F|, (5.12)

for € > 0 sufficiently small. But then, since F is ¢-calibrable, F' = Qf so that (5.12) violates
Theorem a contradiction. O

5.1 Annular facets

In this section we prove some facts about the ¢-calibrability of “annular facets” F' € Facetsg(OF).
A more general case with By the Euclidean cylinder is covered in Theorem

For z € Ilp, and p > 0, we denote by B(x;p) be the copy of pgg centered at x.

Theorem 5.9. Let F' € Facetsy(OF). Assume that there exist x1, xo € int(F), and R > 1 >0
such that
F = B(z1;R) \ B(z2;7),  Bl(az;r) CC B(z1; R),

and that v points outside of E along 0B(z1; R), and inside of E along 0B(xa; r) Then,
F is ¢-calibrable.

Proof. We start by computing the mean normal velocity of F':

Py(BY) R :P;;(Ef) 1
,Eg‘ R2 — 2 \55\ R+

Vp = (5.13)

291n particular, E is not convex at F'.
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5] Pe

E

BR BR

Figure 3: On the top right, as an example we take the square as the unit ball g(f . We shorthand
B(z1; R) with Br and B(zy;r) with B,.. On the left, the facet F', which can be seen as an “annulus”.
We assume that 7" points outside (resp. inside) of E on Bg (resp. on dB,). In grey, the sets U and
C used in Theorem to prove the ¢-calibrability of F'.

Let C be any subset of F' containing B(z2;7) and obtained as the difference of two rescaled
¢-balls, namely C' = B(xz;t) \ B(y;s) for suitable z,y € int(F'), such that r < s <t < R and
B(xe;1) C B(y;s) CC B(w;t). Then, recalling (5.2)),

nF nF

P5(Bg) s _ P3(By) 1 fs>r

|BY| *=s® = |BL| 1-s’ ’
vo = 2. 2. (5.14)

PsBg) t—s 7P$(B¢)L if g =r:

|BL| ti—s? T |BI| t+s? -

in any case,

vr < Ug. (5.15)

Now, let U C F be a nonempty open finite perimeter set; we have to show that vy > vp.
Write ~
0~ U :=0U NOB(zg;r), otU :==0U\ 07U, U :=UUB(z;r).
Let t € (r,R] be such that \U| = |B(x;t)|, where = € int(F) is such that B(za;r) CC
B(z;t) C B(z1; R). By the anisotropic isoperimetric inequality (with ¢ replaced by 5),
we get R
P3(U) = P3(B(x;t)),

that is

o° (V) dH + o° (") dH" — ° (") dH' > P°(PED) aHt.  (5.16)
otu OB (x2;r) o—U OB(x;t)

Let C := B(x;t)\ B(x2;7). Notice that |C| = |U|. Then, using also (5.16)) and (5.15)), we get

To(U dHl _ _ To(F dHl
_ f8+U¢ (") |U|fa U¢ ") > 0o > vp.

vy
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Remark 5.10. We cannot expect in general to prove ¢-calibrability of a facet F' such that
FE is convex at F, and which is obtained by removing from a ball a smaller ball. This is a
difference compared to what happens when F is not convex at F’ (Theorem. To show this
fact, let us consider the bidimensional anisotropy having a square of side £ as unit ball, and
let us consider the facet F' in Figure 4| obtained by removing from a rescaled ball %Bg (1)

the ball %Eg (z2), where S and s are the Euclidean lengths of the sides of the two squares.
We assume also that the center of the smaller ball lies on the diagonal of the bigger one, and
we denote by a the Euclidean distance between the boundaries of the two balls. The mean
velocity of the facet is vp = %. If we consider the set B in Figure [4| we get

48
vB = S2 — (a+s)?’

and the inequality v < vp is verified when a < —s + V/S’s.

Figure 4: If F is a nonconcentric annulus and F is convex at F', then F is non ¢-calibrable if the
distance a between the two connected components of JF is small enough.

5.2 Closed strips

The case of strips has been investigated in [57] in the Euclidean setting. Our aim is to
generalize it to the anisotropic setting.

Assume the facet F' to have the following shape. Let I' := 9 be a closed planar simple
curve, where €) is a ¢-regular and ¢-convex set. For some positive integers 0 < I < k, we
denote by I';, 2 = 1, .., [, the relatively open edges of I' parallel to some edges on the ball BF ,
and by I';, j =1 +1,..., k, each relatively open connected component of I' with zero quS—mean
curvature (if & = [, we mean that there is no such a connected component); ; denotes the
value of the ¢-curvature of I';. On I' we take the optimal selection Nr, defined as the linear
interpolation of the (uniquely determined) vectors on the vertices of I'; while, on each I'j, Np
is a constant vector, which we denote by Nr;.

For a > 0 such that a <inf;—; /ii_l, set

F:={zeR?: x=q+tNr(q), g €T, |t| <a}.
Due to the gz~5—convexity of T and to the bound on a, for any = € F the gz?—projection q(x) is
uniquely determined, and it satisfies © = q(z) + ¢(x) Nr(q(x)) with ¢(z) := d%(m)
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Theorem 5.11. Assume that E is convex at F. Then F is ¢-calibrable, and kg p = %

Proof. In order to prove the statement, recalling also Remark [4.8] we want to construct a
selection with divergence constantly equal to i Following [57] we define the vector field

N on F as
G lfa><n;1+a>) —a; o
~ (1 (p(z—=))2 2a q(x) ey, 1=1,...,1
N(fL‘) =
d%(x) .
¢a NFj? Q(I) EF]’7] :l—}-]_’_”’k’
where, for ¢ = 1,...,l, x; is the center of the copy of Ki—l Bq~$ having T; as an edge, lying

in the side of T'; opposite to the direction of Nr. An immediate computation shows that
&(N(z)) <1, and (FF, N) =1 = ¢p, so that N is a selection on F.
Moreover, we notice that B

N € %’é?v( )- (5.17)
Indeed, for every z € F, N(z) is parallel to Nr(q E (28)| which implies that divN € L2(F),

and hence (j5.17)).

Let us explicitely compute the divergence of N. For any ¢ = 1,...,1 and for any x € F such
that g(z) € I';, there holds:

~ _ k2 = a2)(To(z — ) - (2 — 24
divRi(z) = L <<¢<w—xi>>2—<ni 1>2+a2) L () = ) (15 j (@) 1
(9l — i) a(la - 2,)) a

a
where in the last equality we noticed that Tg(m — ;) (x — x;) = (¢(x — ;))?. When z € F
is such that q(z) € I'j, j =1+ 1,.., k we get:

~ Vd2(x) - Nr, 1
divN(z) = —2— 71—~
a a
Hence, N has constant divergence in F', and the proof is completed. ]

Remembering Remark [5.10, we observe that in Theorem we cannot easily drop the
symmetry with respect to the curve I'.

6 Optimal selections in facets for the ¢.-norm

In this section we shall restrict our attention to the case in which ¢ = ¢. is the Euclidean
cylindrical norm in R?® = R? x R, 4.e. the norm of R? whose unit ball By, is given by the
right hand side of (| - We shall assume that E is a Lip ¢-regular set, F' € Facetsy(0F),
and F is convex at F. Hence, by Theorems .12 and 2.8} we have fimin > 0 and fmax < 400.
Notice that <b F= <b is the Euclidean norm in the plane I1x (identified with the horizontal plane
R?), so that F is of class C1'! (Theorem . To avoid possible ambiguity in the notation,

(2D See also [I5] for a similar computation.
(28) In general, N is not continuous in F, since it may jump on {z € F' : g(z) is a vertex of I'}.
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in this section we shall restore symbol ﬁg in order to denote the (Euclidean) curvature of
oF.

From now on, by h(F) we mean h(int(F')), and by Ch(F') we mean Ch(int(F)). It is useful
to remember that, by Theorem we have h(F') = Kmin.

Remark 6.1. Let u be a solution of (1.4), with  := int(F') and h := h(F). Repeating the
proof in [52, Section 2], which is still valid assuming € of class C!'!, one proves that u is
bounded from below in int(F') and satisfies ([1.10]).

We recall that, by Remark F is strictly ¢.-calibrable if and only if F' is a strict Cheeger
set, which in turn is equivalent, when F' is convex, to require that ess supmeaan (z) < h(F).

Proposition 6.2. Suppose that F is strictly ¢.-calibrable. Then there exists u solving (|1.4))
in Q :=int(F'). Moreover, the vector field

\/ﬁ in int(F),
N = (6.1)
vl on OF,

is an optimal selection in F', continuous in F' and analytic in int(F).

Proof. The first assertion follows recalling Remark and Theorem [I.T} By construction,
using also Remark N belongs to 2 (F) and satisfies (5.1). Analytic regularity of N
follows from elliptic regularity. O

Clearly, the vector field N in (6.1) is, up to the sign, the “horizontal” component of the
Euclidean outer normal to the subgraph of .

Remark 6.3 (Lipschitz regularity). From [52] p. 125] it follows that if ess supxeapkag(a:) <

He = h(F), then

N € Lip(F;1Ip).

6.1 Examples of optimal selections in non ¢.calibrabile facets

In this section we give some examples of non ¢.-calibrable facets F' for which we can exhibit
an optimal continuous selection.

Example 6.4 (Non ¢.-calibrable convex facets). Let F' be convex and not ¢.-calibrable
(see Theorem [5.4). By virtue of Theorem the maximal Cheeger subset Ch(F') of F' is
strictly Cheeger, and (Theorem it is of class C''. Moreover (Theorem [4.15) Ch(F) =
©f . Applying Propositionwith Ch(F) in place of F, we get a function u € C?(int(Ch(F))

Kmin

solving ([1.4) in int(Ch(F')) with h := h(F'). Set
Nim— Y% 0 int(Ch(F)).

V1+ |[Vu|?

By Theorem kg F is convex in F', so that there cannot be subsets of F' with positive
Lebesgue measure where g p is constant, except for @fmm. Hence, for every 8 € [Kmin, Kmax),

25



int(F) N a@g ={x € int(F) : Ky r(r) = B}. From Theorems and each connected

component of int(F') N 8@5 is contained in a circumference of radius ~'. Thus, we extend
N in int(F) \ ©F  as the outward normal unit vector to the level curves of kg4 p — namely,
7 ~ F . . . 7 .

N := 779 on {k¢,;r = B}. By construction, recalling also Remark divN = kg in

int(F"), and N verifies the third equation in (j5.1)). Hence, N € %%V(F ), and N is an optimal
selection in F' (Remark . Moreover, N is continuous in F, analytic in int(©f ), and

N(x) € 8§£ for any z € int(F) \ ©F

The following examples have been inspired by [44], [58]. For » > 0 and (Z1,Z2) € R?, we set
BT(El,.TQ) = {l’ = (l'l,x'Q) cR?: (.Z'l — 51)2 + (.%'2 — f2)2 < 7’2}.

Bo

i

(a)

Figure 5: In (a), the set Py and its maximal Cheeger subset Ch(By) (in grey). In (b), the construction
of the facet F' = F, in Example ﬁ In (c¢), some sublevel sets @g of kg, F are represented. For every
B € (Kmin, Fmax), INt(F) N 8@5 is an arc of circumference with radius 37!, and tangent to F. For

any 3 € (1, ﬁ), such an arc is unique, and its terminal points belong to the arcs bounded by p5 and

q;, for j =1,2.

Example 6.5 (Rounded two circle facets). Let § € (0, 7), and
PBo := B1(0,0) U Bging(cosd,0).

One can prove [58] the following facts: Py admits a unique (hence maximal) Cheeger subset
Ch(By) (as in Figure ; moreover, there exists a unique p € (0,%) such that Py, is
Cheeger. Our idea is to construct an optimal selection, solving in Ch(By) (for 6 # 6p),
and then foliate the remaining part of By with arcs of circles, taking as vector field the
outward unit normal to the arcs. Fix 6 # 6, so that

P(Ch(Bo)) - P(Po)
|Ch(PBo)| 1P|

h(Be) = (6.2)

Notice that 1

h _— .
B0) < (69
since h(Pp) equals the curvature of int(Py) NOCh(Py), which is strictly less than 15 by the
geometry of Py.
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Even if By is regarded as a facet of a three-dimensional set E convex at By, the set £ cannot
be Lip ¢.-regular, since Py is not of class Cl’1 Thus we perform the following smoothing
construction near the non-differentiability points of 0g. For ¢ > 0, let B}, B5 be the two
closed disks satisfying the following properties: for j = 1,2, B5 is externally tangent to P,
and Pp N B; = {p?,qu}, for some p; € 0B1(0,0), and q; € OBging(cos6,0). According to
Figure we define F' = F; as the union of Py with the curved triangles having vertices
p5, 45, and (cosf,(—1)7sin@), for j =1,2.

By construction F is of class CI*! (and it is not convex). Recalling also , we choose € > 0

so small that
P(Bo) PE)| _ 5 _ P(Ps) P(Ch(F))
T~ =00 < Tt et 64

In particular,

P(Ch($0) _ P(F)
[Ch(Po)| = I

which implies that F'is not Cheeger, or equivalently (Remark i that F'is not qbc—calibrable
We observe that, for any € (1, ﬁ), there is a unique circumference r g C I, with curvature
0, and tangent to OF at two points, lying on the arcs of 0F bounded by P, 45, for j = 1,2: see
Figure|5(c)l We denote by I's the shortest connected component of int (£ )ﬂfﬁ. Then Ch(F) is
determined as the subset of I containing B (0, 0) and such that int(F)NOCh(F) = I'y(gy.
In particular, Ch(F) is strictly Cheeger and of class C**!. Furthermore, recalling Remark 4.13
and taking into account the geometry of F', we have

int(F) N 00§ =Tg =int(F) N0, B € (Kmin, Fmax)- (6.5)

Now, we exclude the presence of regions in int(£')\ Ch(F") where x4, r is constant. Suppose by
contradiction that there exists 8 € (Kmin, Fmax] such that {ky g = B} has positive Lebesgue
measure. If § < Kmax, then

int(F) N 90§ # int(F) NdQg, (6.6)

which contradicts (6.5)). If 3 = Kmax, then 6@§max = JF, and so (Remark [4.13]) ess sup /eg =
L < Kmax. On the other hand, since we are assuming int(F)NOQE 2 (), int(F) NoQE

sinf — Kmax Kmax
should be an arc of circumference with curvature xKmax, and tangent to OF. In particular, by
the geometry of F, Kpax < ﬁ, a contradiction.

As a consequence, we have

1
@7
otherwise k4, 7 would be constantly equal to kmax in the full-measure subset of /' bounded
by I'kpax» and not containing By (0, 0) —again a contradiction.

. . . Yu . . . .
We define N in F as follows: N := T in int(Ch(F)), where u is given bz Theorem
with Q = int(Ch(F)) and h = h(F); while, for § € (h(F), z5) and = € ['3, N(x) is the

Rmax =

(29 Therefore, strictly speaking, we cannot apply Theorem in order to define mf on Py. In the present
paper we do not want to insist on the minimal regularity assumptions on OF needed the study problem .
(9 Our argument neither provides nor excludes the ¢.-calibrability of F := B, -

(Y Actually, we have B;(0,0) C Ch(F), since it can be proven that B;(0,0) C Ch(e).
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outward unit normal to @i at z. Notice that N € HE(F) (Remark, and }vi: is an optimal

selection in F' (Remark . Concerning the regularity of N, we notice that N is continuous
in F', and analytic in int(Ch(F')). Moreover, N(x) € 835 for any = € int(F') \ Ch(F).

By modifying Example we now build an optimal selection for a facet F' admitting an
open region outside of @fmin where ¢, p is constant (and equal to Amax)-

Example 6.6 (Rounded proboscis). Let M > 0, and let 6, 6y and By be as in Example
Set

PBo.v = Bl(O,O)U{CIJE]R2 : z=y+(c,0), y € Bging(cosh,0), ce[0,M]},

see Figure

(a) (b)

Figure 6: In (a), the set Po as and its Cheeger subset Ch(Bg,ar). In (b), the facet F' = F, described
in Example @ In this case, there are two full-measure subsets where x4  r is constant.

We claim that, for any M > 0 and any 6 < 6,

P(Bs) - P(Bo,nr)
|%Bo| Bo,nr|

Indeed, since P(Pg) = 2(7 — 0) + wsind, [Po| = 7+ Zsin? 0 — (0 — sin6 cos ), P(Po.u) =
P(Bg) + 2M, and |Bg pr| = [Po| +2M sin b, (6.7)) is equivalent to P(Py) sinh < [Py, i.e.

(6.7)

(m—0)(2sinf — 1) — sinf cos b + g sin?@ < 0; (6.8)

direct computation show that the left hand side of is strictly increasing in [0, 5],

and it is zero just at one value of 6 € (0, 5), which must coincide with 6.

32) Computing the first derivative (w.r.t. 6) of the left hand side of (6-8), we get 2(m —6) cos 6+ cos 0 sin 6+
2sinf(sin 6 — 1). Notice that, since 6 € (0, ), the first term in the previous line is greater than m cos§. Now,

1—¢2

cosf = Tre2

using for instance the identities sinf =
0e(0,%)

%, since ¢ € (0,1), it is easy to show that for every

meos + meosfsind + 2sinO(sin @ — 1) = (1 — ¢) (L +£°) 7> [r(1 +£°) (1 +¢) + 27t(1 + t) — 2¢(1 — t)]
>(1—t)(1+¢) 2 [r(L+ )1 +1t) +27t(1 + ) — 1/2] > 0.

—
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Fix 6 € (0,6p). For ¢ > 0, let B3 ,, be the set of class C1'! obtained by taking the union of
Bo,ms with the curved triangles, bounded by Bo, v and a dlsk with radius € and externally
tangent to Py as: see Figure [6(b) - Similarly to Example we choose € > 0 so small
(depending on the difference between the two terms in hat F = F. := Py ,, is not
Cheeger. 7

By construction, F' is neither convex nor ¢.-calibrable. Moreover, for any 3 € (1, Sm@) there
still exists a unique circumference fg C F with curvature §, and tangent to OF at two points;
again, referring to Figure . these points must lie on the arcs bounded by p5, ¢5, where

j =1,2. We denote by I's the shortest connected component of int(F) N Fﬁ

Similarly to Example we can still determine Ch(F') as the unique subset of F' (strictly)
containing B1(0,0), and such that int(F) N OCh(F) = I'y(p). In particular, Ch(F) is strictly
Cheeger. Moreover, reasoning as in Example there is no 8 € (h(F), ﬁ) such that
Ké.,F = [ in some subset of F' with positive Lebesgue measure.

Therefore:

- for any g € (h(F), sme) @g is the closed subset of F' containing Bj(0,0), and such
that int(F) N 0OL =T'g;

- Kmax = 511110’ and R¢.,F = Kmax in lnt( ) \UB< 1

sin 0

Also in this case, we can exhibit an optimal selection ]\L (Remarks |4. .i which is continu-
ous in F', and analytic in int(Ch(F")). More precisely, N is defined as follows N = —Yu

v 1+|Vul?
in int(Ch(F)), where u is given in Theorem [L.1] (with the choice Q := int(Ch(F)), and

h = h(F)); for B € (M(F), 25) arid xz e, N(z) is the outer normal to @g at z; finally, if
Ko, F(T) = Kmax, We set N(z) := N(&), where Z € int(F) N O0F, is such that To = 9.

sin 6
We notice the presence of a full-measure subset of F, unrelated to the maximal Cheeger

subset of F', and where it is possible to construct an optimal selection without making use of
Theorem [L.11

We conclude this section with an example in which we are not able to provide an explicit
optimal selection, even if we determine the ¢.-mean curvature of F'.

Example 6.7 (“Dumbbell-like” facet). Let 6§ and 6y be as in Example and suppose
6 € (0,6p). Let M > 2sin6 + 1, and let Dy as be the set obtained as the union of By U Pj,
and the strip [cosf, cosf + M| x [—sin 6, sin 6], where Py is the set in Example and ),
is its symmetric with respect to the straight line {(z1,22) € R? : 2o = cosf + 4 }.

We observe that
P®on) M +2(m—0)

1Dy, M! ~ cosfsinf 47 —60+ Msinf’
In particular, since 6 < 6y, recalling also and .,

P(Ch(Bo)) = P(Do,m)
|Ch(PBy)| |Dom|

(6.9)

which, as M — 400, tends to

sin 9

(6.10)

for M > 0 sufficiently large.

3 Recall in particular the proof of ‘
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Figure 7: The dumbbell facet Dj ,, in Example In grey, its maximal Cheeger subset, some level
sets of kg, , and the set {Ky, F = Kmax} bounded by the arcs T’ and I'}, . Notice that in this
1

CaSe Kmax < snd:

Kmax

For ¢ > 0, let B; and (B]E-)’ for 7 = 1,2, be the four balls of radius ¢ externally tangent
to D, in p§ and g5, and in (pj)’ and (qj)' respectively. For M such that holds,
let FF = F, := CD‘aM be the set of class C1'! obtained by taking the union of Do, with
the four curved triangles, bounded by p%, ¢ and (cos, (—1)/ sin(6)) and (p5)', (¢5)" and
(cos® + M, (—1)7sin(0)) respectively, see Figure Then, we choose ¢ > 0 so small that
holds with F' replacing Dy jr; hence, I is not ¢.-calibrable.

For any 3 € (1, =25) let I'g (resp. I';) be the arc of minimal length of the circumference of
radius %, which is internally tangent to JF in two points, belonging to the arcs bounded by
p§ and g5 (resp. (p5)" and (¢5)"), for j = 1,2. Let Cz C F be the disconnected set bounded by
Fpul, let C 1 = Usea L)C’g, andlet I' 1 and IV ; be the two connected components

sin 0 sin 0 sin 0 sin 6

of int(F) ﬂ@Cﬁ.

Reasoning as in Example Ch(F) is the disconnected subset of F' bounded by I'j,(r) and
Moreover for all 3 € (Kmin, Kmax), We can still exclude

the presence of regions of the form {4, r = B} with positive Lebesgue measure. As a

consequence,

F;L( ) (see again Figure

int(F) N 005 =T UT =int(F) N0, B € (Kmin, Fmax)-

By the geometry of F, kmax < 5. Therefore, we have |[F'\ Qf | > 0: indeed, if Q C F is
the connected (full-measure) set bounded by I' 1 UT’, , then Q C F\ QF

nod - Kmax *
sin sin 6

G Recall once again the proof of .
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It is interesting to show now that, differently from Example the maximal value kpax of
k¢, F depends on M, and

1
max < ——. A1
Fimax < sin 6 (6.11)
Indeed, recalling (4.10) and the equality F' = @fmx, the value Kmax must verify
P(F)—P(QL )= kmax|F\ QL |. (6.12)
Notice that
P(F)—-PQL y=2M — 21 (Ty,..) + O(e). (6.13)

We estimate H'(T,.., ) with the length of the arc of circumference of curvature i,y contained
in Bging(cos6,0), and passing through the points (cos#, £sin ). We denote by w := w(Kmax)
the angle such that

SIN W = Kmax sin 6. (6.14)

Notice that proving (6.11)) is in turn equivalent to show that w # 7. From (6.13]), we get

sin 6

Kmax

P(F)-PQF =2 {M — 2w ] +O(e). (6.15)

sin w

Similarly, we estimate |[F\QE | with the area of the connected subset of the strip [cos 8, cos 6+
M] x [—sin6,sin 0] bounded by two arcs of circumference of curvature kmayx, and passing
through the vertices of the strip. Thus

. 2 9
IF\QF | =2 [Msin@ —w T 4sin® 0 Cf’sw] +0(e). (6.16)
sin® w sinw
Combining §12), E15), and (16) we get
in6
M(1-sinw)=w S 4 sing cosw + O(e), (6.17)

sin w

which does not admit w = 7 as a solution, for € > 0 sufficiently small. This proves (6.11]).

Remark 6.8. Referring to Example we notice that we can still apply Theorem [1.1
separately in each connected component of Ch(F'), thus obtaining a subunitary vector field
X satisfying divX = h(F') in Ch(F'), and the third equation in on OF N OCh(F).

If we extend X following the normal direction of the curvature level lines in Qf  \ Ch(F),
and then transporting the field parallelly to itself in @fmx \ Qfmx, we end up with a field
not belonging to 3 (F). Indeed we cannot avoid the field to jump in the normal direction
of some vertical discontinuity segment.

We observe that the difficulty for building an optimal selection seems to be related to the
presence of two minimal Cheeger subsets of F'. We are not aware whether there exists an
optimal selection equal to X in Ch(F).

As we have already said, we are not able to find an optimal selection Nmin in F': we notice
that [52, Theorem 1.1] cannot be applied with the choice of h = ky_ , since any Qg violates
[52, formula (1.3)].
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7 Calibrability and total variation flow

Here we want to recall some general facts concerning the total variation flow in ]R2 namely
the nonlinear degenerate parabolic equation

ou Du
— =div [ = in (0,7) x R? 7.1
5 1V<’Du|> in (0,7) x R?, (7.1)
coupled with an initial condition

u(0,) = 1q, (7.2)

where T > 0,  C R? is the interior of a ¢.-calibrable facet F. We recall that equation (7.1)
is the gradient flow in L?(R?) of the convex functional given by the total variation [g, [Dul,
for u € L?(R?) N BV (R?).

Remark 7.1. Let v € C1(Q2), and let E be the subgraph of v. Then the qbc—perimete of
EFin Q xRis

/Q¢0< > )dex—/ 1+ Vo) da

V14 [Vol? \/1+ [Vol?
which, up to the constant ||, coincides with the total variation of v.

Well-posedness of (7.1)—(7.2)) follows using the theory in [34], see also [15]. In particular, it
is possible to prove that there exists a unique u € C([0, T]; L?(R?)) N W2(0, T'; L?(R?)) and
there exists n € L®((0,T) x R%;R?), with ||n||sc < 1, such that u; = divy in the sense of
distributions, and (recalling also and setting u(t) = u(t,-))

/ (u(t) — w)yult) da = / @), Dw)— [ |Dut)], ae. te(0,T),
R2 R2 R2

for all w € L?(R?)N BV (R?); the initial datum is taken in the L?(R?) sense. We also mention
the existence —uniqueness result for the entropic solution, well-suited for more general initial
data [15].

It is interesting to consider also the time-step discretization of , which reads as the
denoising problem

min { | u|+1/ lu — f? dm} T >0, (7.3)

u€BV (R?)

originally proposed in [65]

(35) Total variation flow in a bounded open set of R?, for m > 2, has been treated for instance in [9]. See also
[62], [37], [40] for the amsotroplc formulatlon of the flow.

(36) Notice that ¢2(€*) = \/(61)2 + (£3)2 + |§3| for any £* € R3*.

G In dimension one, the denoising problem ([7.3)) is solved by the function u(7), solution of the total variation
flow with initial condition w(0) = f, see [35] Proposition 4.2].

32



In [8] (see also [19] for eventual regularity of solutions), solutions of (7.1)—(7.2]) are shown to

vanish in a finite time 7'(up), and the rescaled function Tqéiz) ) 7

ast — (T'(up))~, to a solutio of the eigenvalue problem

div (ﬁ;z') = —v. (7.4)

The problem of detecting explicit solutions of has an independent interest: first of all,
given v solution of (7.4), the function u(t,-) := (1 —t)Tv(:) is the solution of starting
at v. Secondly, as shown in [I5], any solution of allows to construct an explicit solution
of problem

It is natural to look for special solutions of of the form v := 1q, for some bounded
open set ) C R2. This corresponds to characterizing all flat graphs in R? which, under the
total variation flow, decrease their height without distorsion of the boundary. The case of a
connected ) has been studied in [15]: as one can expect, this characterization leads to the
same necessary and sufficient conditions obtained by Giusti within the framework of capillary
problem (hence, in turn, within the study of ¢.-calibrable facets of solids).

The following result enlightens the relation between solutions of and calibrability. We
recall that by x” we denote the (Euclidean) curvature of 9B, for B C R? of class C!'1.

converges along subsequences,

Theorem 7.2 ([I5]). Let Q C R? be a bounded connected open set, and let h = %. Then,

v := hlq is a solution of (7.4) if and only if Q is convex, of class C*', and % < h on 0.
In particular Q2 is a convex calibrable set, see Theorem[5.

Concerning a non connected set €2, the following result holds.

Theorem 7.3 ([15]). Let Q C R? be a bounded open set, and let h := %. Then, v := hlg
is a solution of (7.4) if and only if Q has a finite number of connected components C1, ...,

Cy, and

(i) C; is convex of class CH, for every j =1,...,¢q;

(i1) P|(CCJ|) =h, and K% < h, for every j =1,...,q;
J

(i1i) for any k =1,...,q, and for any J := {j1,...,5x} C {1,...,q}, we have

k k
P(B)EZP(Cjz)v UCjngg(R2\Uﬁj)'
=1 =1

2

Condition (777) is a requirement on the mutual distance between the sets C1, ..., Cy: roughly
speaking, the sets cannot be too close. Theorems have been extended to general di-
mension n > 2 in [5], and then to the anisotropic setting in [37], under convexity assumptions
on the sets.

GHA function v € BV (R?) solves if there exists a subunitary vector field n € L>(R?;R?) such that
—divn = v in the sense of distributions. See [16] and also [8] for more.

(39 In the most simple case, let v € BV (R?) be a solution of (7.4)), let b € R, and let f := bv. Then, setting
a := sign(b)(|b] — 7), the function u := av is the solution of
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The study of piecewise constant solutions of (7.4 has been extended in [16] to the case of an
open bounded set Q C R? of the form

0=\ T, (7.5)
j=1

where Cy, ..., Cy4 are bounded open sets of R? of class C11, such that C; C Cp, and C;NC; = 0,
forall j,l=1,...,q,5#!. Fix k€ {0,...,q}, and set

q

k
h:—|512’ S Pe)- Y Py (7.6)
=0

j=k+1

In this setting, the existence of a solution v of ([7.4]) of the form v := hlg leads to the
problem of the existence of a vector field n € L>(Q;R?), with ||n|[feq) < 1, and with
L?(2)-summable divergence, which solves the following system

divp = h in €,

(V) =1, on 9C;, j=0,...,k, (7.7)

(V) = —1, on0Cj, j=k+1,...,q.
In view of the identification v = hlg, one can check that corresponds to the mean
velocity of F':= {(x,1) C R® : x € Q}, seen as a facet in Facets,(0F) of a Lip ¢.-regular
set £ C R? which is locally convex (resp., locally concave) at F' around 9Cy,. .., OC}, (resp.,

around 0Cyy1,..., 0Cy). The main result is summarized in Theorem below. Let us set,
for the sake of brevity, J; :={0,...,k} and J. :={k+1,...,q}.

Theorem 7.4. Let Q, h be as in (7.5)-(7.6). The following assertions hold:
(i) if system (7.7) has a solution, then
kG0 < h, kG > —h, jeJ; kK >h, jeE (7.8)

(it) if the third inequality in (7.8) holds true, the set QU (Ujcs, C;) satisfies an interior
%—ball condition, and

AHCs Cl) > 3 G € (i x T U e % o), £

then system (7.7)) has a solution.

In order to obtain a solution v := hlq of (7.4)), one has to couple the solution provided by
Theorem with the solution of divy = 0 in R? \ Q, with proper boundary conditions. See
again [16].
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