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Abstract

We analyze systems of atomistic interactions on a triangular lattice al-
lowing for fracture under a geometric condition on the triangles corre-
sponding to a microscopic impenetrability constraint. Such systems can
be thought as a computational simulation of materials undergoing brittle
fracture. We show that in the small-deformation regime such approxima-
tion can be validated analytically in the framework of variational models
of fracture. Conversely, in a finite-deformation regime various pathologies
show that the continuum approximation of such a system differs from the
usual variational representations of fracture and either needs new types
of formulations on the continuum, or a proper interpretation of the atom-
istic constraints limiting their range and adapting them to a dynamical
framework.
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Introduction

In this paper we analyze a problem related to Computational Mechanics
formulated on energies defined on a two-dimensional triangular grid (see
for instance [5], [28], [27], [29], and [18]). The class of energies we consider
have two main features:

e they allow for macroscopic fracture. At the lattice level this is mod-
eled by having solutions with very elongated triangles in the deformed
configuration, corresponding to triangles approximating a linear crack in
the reference configuration;

e they mimic a impenetrability constraint. Indeed, at the lattice level
such energies are finite only on configurations that maintain the same
ordering of the vertices of the triangles in the reference and deformed
configurations.

Many of our considerations will remain valid also for analogous problems
in a three-dimensional setting, but the corresponding lattice formulations
in that case are more involved.

A simple such model for the energies we have in mind consists in a col-
lection of central interactions between nearest neighbours with Lennard-



Jones potentials, to which the impenetrability constraint is added as a
topological adherence to a crystalline reference configuration. We may
suppose that the coefficients of the Lennard-Jones potentials are tuned
so that the energies are minimized on the reference triangular grid (i.e.,
on the identity on the triangular lattice). We then expect that their be-
haviour can be approximated by a continuum description with some en-
ergy for which again the identity is a minimizer. In a small-strain regime
for deformations close to the identity, the expected approximation is that
either we have an approximately linear behaviour for the strain, or brittle
fracture arises governed by a Griffith-type energy. The effect of the im-
penetrability constraint is translated on constraints on the fracture; e.g.,
that we may only have ‘opening fracture’. Our analysis aims on one hand
at validating such a heuristic suggestion for small deformations and on
the other hand to understand the implication of this microscopic model
beyond the small-strain regime.

Another standpoint for this analysis is the general problem of the pas-
sage from discrete theories to continuum theories. In order to have a
manageable passage to the limit, a balance is required between consider-
ing large number of interactions and complex multi-body potentials, and
a modeling simplification that enables to diminish the number of variables
involved thanks to geometrical or topological constraints. The microscopic
impenetrability condition described above is one such constraint, and is
often used when only few interactions (e.g., nearest neighbours) are taken
into account, since without any additional constraint this simplification
often may introduce un-physical spurious states such as everted configu-
rations.

In analytical terms, the problem we have in mind is the question of
the validity of a variational principle underlying fracture phenomena,; i.e.,
the statement that a discrete problem involving a large number of nodes
can be approximately described by a continuum problem involving an en-
ergy similar to that of the variational theory of Griffith brittle fracture,
which is then described separately by a bulk and a fracture energy func-
tion. This can be exemplified by looking at lattice problems where we
minimize our discrete energy prescribing the displacement on a portion
of the boundary of the sample. Accordingly, the discrete system will be
deformed producing a configuration depending on the grid size, which
we denote by . For ¢ small, we conjecture that such a configuration is
approximately a discretization of the solution to a continuum minimiza-
tion problem defined by the corresponding boundary displacement. This
approximating continuum problem is defined through an energy indepen-
dent of the boundary conditions, which is then regarded as describing a
(approximate) continuum brittle medium.

The suggestion that the approximating problem could be linked to
a (possibly anisotropic) Griffith energy, such as those recently consid-
ered to study crack growth by Francfort, Marigo et al. [20, 6], can be
explained by referring to the description of the effective cohesive be-
haviour of layers of interatomic planes for atomistic systems described
by Lennard-Jones interactions by Braides, Lew and Ortiz [11], which is a
(much simpler) one-dimensional analog of the model under examination.
That one-dimensional problem depends on a scalar function u describing



the displacement in the direction orthogonal to a system of parallel planes.
In the hypothesis of small boundary displacement then the behaviour of
v = u—id (suitably scaled) is described by a one-dimensional Griffith
energy. The microscopic impenetrability condition translates in u being
increasing, and hence on a simple opening condition for v on the crack
sites: v* — v~ > 0, where v, v~ denote the value of the left-/right-hand
side of the crack, respectively. That analysis also highlights a decoupling
principle (already noticed in the earlier paper by Truskinovsky [31]); i.e.,
that volume and surface effects can be analyzed separately, the first one
by looking only at deformations that do not develop fracture through
a linearization procedure close to the identity, and the latter by scal-
ing discontinuous deformations at fracture sites so that in the limit only
(discontinuous) piecewise-affine functions have to be taken into account
(brittle rigid behaviour). These two analyses correspond to the characteri-
zation of the behaviour of the same microscopic energy after two different
scalings. The derivation of linearly elastic energies from atomistic inter-
actions is a classical computation going back to the work of Cauchy, and
in recent times has been reinterpreted in terms of a rigorous variational
principle (see [14] and successive generalizations, e.g., in [30]). Note that
the microscopic constraint does not influence the form of the continuum
linear elastic approximation, but ensures that the passage to the limit is
analytically well posed by the use of the rigidity estimates by Friesecke,
James and Miiller [25].

In this paper we will concentrate on the surface scaling, which can be
thought as examining samples close to the fracture site in the reference
configuration, so that bulk effects are negligible. At a microscopic level
this amounts to looking at the response of the system when a macro-
scopic fracture is obtained by the application of forced displacements.
The response depends on the orientation of the sample and of the frac-
ture opening, and can be analyzed by computing minimum problems with
hard device boundary conditions. In a regime of small displacements such
boundary conditions can be thought to be the identity and a translation
of the identity by a vector b, respectively, on opposite sides of a unit
square (in the units of the continuum model), as represented in Fig. 1.
This square is triangulated using a triangular lattice €T of lattice spacing
€ obtained by scaling a fixed triangular lattice T.

If the displacement b is in the same direction of the sample orientation
v (in other words, it is orthogonal to the fracture site) then, under some
hypotheses on the atomistic interactions, an optimal configuration is ob-
tained by elongating a minimum amount of triangles in the direction b.
The corresponding minimal energy only depends on v and its computa-
tion reduces to the problem of counting such triangles. Note that, since we
think of this behaviour as representing a typical sample close to the frac-
ture site, we have to impose periodic boundary conditions in the direction
orthogonal to v in order that this optimal configuration be compatible
with neighbouring lattice arrangements. As a technical remark, this can
be easily imposed if v is a “rational” lattice direction (i.e., it is a multiple
of a vector in the lattice), while it needs some approximation argument
if v is not rational, since in that case periodic boundary conditions can
be exactly satisfied only in the limit as ¢ — 0. The computation of this



Figure 1: A hard-device microscopic test in the reference and deformed config-
uration

minimum problem highlights an anisotropic behaviour of the energy ¢(v)
necessary to produce a macroscopic fracture in a given direction v per unit
length due to the underlying lattice symmetries, and gives a candidate for
the fracture energy density in the variational principle stated above.

We will focus on two issues.

e analysis for infinitesimal displacements. In this case we will show
that the macroscopic description as a brittle Griffith material with an
opening condition on the fracture holds;

e analysis for finite displacements. In this case the surface energy
cannot be determined by a simple analysis of the minimal number of
elongated triangles. We will see that more complex (and less physical)
configurations will appear, forced by the microscopic constraint.

These analyses will be performed in the framework or the variational
theory of fracture, which requires some concepts of Geometric Measure
Theory. To that end we will include some technical definitions and outline
the main points of the proofs, whose details can be found in [10].

1 The analytical setting

1.1 Lattice sets and functions

At this moment, we have to be more specific about the discrete energies
that we are going to consider, even though many of our arguments will
rely on geometric considerations only. We will denote by T the triangular
lattice in R? generated by the vectors n' = (1,0), n* = (1/2,/3/2). We
introduce also the following notation

n’=n'—n’,  S={&n", =0’ =’}

Note that S is the set of unitary vectors in the lattice T and for each i € T
i+ S is the set of its nearest neighbours in T.



We define also the set D of coordinate directions as
D={n":nesk

i.e., directions orthogonal to some vector n".

Given a reference configuration 2 and a lattice spacing £ which is
thought to be very small (eventually, tending to 0 in the analytical ap-
proximation), we will consider the collection 7¢(€2) of all triangles with
vertices in T and contained in Q. For any T € 7.(Q2) we will consider a
triple (i7,43,43) composed of its vertices labelled clockwise. Our admis-
sible displacements are functions

uw:eTNQ — R, i — u(7)

with the property that for all T € 7:(Q) the triple (u(i] ), u(i3 ), u(i3))
defines the vertices of a non-degenerate triangle, which in this way are
still ordered clockwise. This requirement can be translated in a functional
condition on the affine function defined on the triangle 7" interpolating the
discrete values at the vertices ijT, which we may still denote u : T — R?;
namely, that

det Vu > 0.

Patching up this definition of v on each such T" we simply have a positive-
determinant constraint on the piecewise-affine interpolation of w on eTN(2.

1.2 Lattice energies

The simplest way to define the energy of such a lattice function u on Q2
will be through summation of three-point interactions as

Fulu) = Fuu,0) = Yo p(M00, 2 wi))

e

the summation being performed on 7.(2).

T T T

The value f(w7 u(lz),w) can be regarded as the energy nec-
£ € £

essary to deform the reference triangle T° with vertices (z{,zg,zg) We

suppose this energy to be of order 1 for large deformations of the triangle;

i.e., when one (actually, necessarily at least two) of the deformed sides

has length much larger than e, that is,

|u(2]T) —u(if )| >> e for some j, k.

Since the linear dimension of each T is of order €, in order to generate a
macroscopic crack we will have a number of deformed triangles of order
1/e, which explains the scaling by ¢ in the definition of Fr.

Note that this energy may be regarded as defined on functions v : T —
R? by setting

v(i) = éu(si), so that F:(u, Q) = 52]“((’0(1{),@(2;),1}(1?)),

with the summation now on triangles in 7'1(%(2) with unit side length.
This observation may be handy in computations where we can simplify
the notation by parameterizing functions v on the fixed unit lattice.



The assumptions on f are as follows. We suppose that

e f(u,v,w) is independent of permutations of the vertices which keep
the clockwise ordering (i.e., f(u,v,w) = f(v,w,u) = f(w,u,v)), so that
indeed it depends on the deformation of the triangle T';

e (frame indifference) f is invariant by rigid motions; i.e.,

f(Ru+q,Rv+q, Rw+q) = f(u,v,w)

for all R rotations and g € R?;

e (minimization on rigid motions) the minimum of f is achieved ex-
actly on clockwise-ordered vertices of equilateral triangles with unit side
length, so that ground states are exactly images of the lattice T by rigid
motions. We normalize the minimum of f setting it to 0;

e (non-degeneracy of minimum points) f is C* on its domain, and we
have

Flu,v,w) = C((fu = o] = 1) + (Ju— w] - 1)?)

on a neighbourhood of the minimizers of f, for some positive constant C.

e (possibility of fracture) there exists a positive constant Cp which gives
the optimal value of f(u,v,w) as at least two side lengths of the deformed
triangle tend to +o0o. We make the simplifying assumption that Co is
achieved when two sides tend to infinity and the other one has length 1.

Remark 1.1 (surface relaxation effects). The last simplifying assumption
is indeed a restriction, since it implies that, as triangles neighbouring
elongated triangles producing a macroscopic crack are concerned, triangles
with minimal energy are still of equal scaled side-lengths 1, thus neglecting
surface relaxation and boundary-layer effects. We are then supposing that
we may neglect those (however fundamental) effects in this model (see
however Remark 2.6 below).

Remark 1.2 (Lennard-Jones interactions). As an example, we may con-
sider f as the summation of independent central interactions such as
Lennard-Jones ones; i.e., after normalizing,

flu,v,w) =J(u—v]) + J(Jv — w|]) + J(|lw — u|) — 3min J,

where

for which Cp = 2J(00)+J(1) —3min J = 2C. In our setting we could also
consider more general energies, taking into account next-to-nearest neigh-
bour or longer-range interactions, as long as the geometry of minimizers
remains the same, but we prefer to stick to this simpler formulation.

1.3 Approximate continuum parameters

We now consider the problem of characterizing the space of continuum
functions v on which approximations of discrete functions u. for £ small
can be parameterized, under the hypothesis of F.(u.) be equi-bounded.
We have already noticed that such u. may be interpreted as piecewise-
affine functions and justified the scaling of the energy so that fracture



is allowed in the limit. For & small we will then have the possibility of
having a set of triangles that are deformed into very elongated triangles
and can be considered a crack in the limit reference configuration. The
equiboundedness of the energies also implies that Vu. must be close to a
rotation for most of the triangles 7' which do not contribute to the limit
crack. We will see that the limit parameter is characterized as being a
piecewise-rigid motion outside a crack set. In order to properly define
this set of functions u we recall some definitions that are common in
the modern variational theory of Fracture [6]. The key idea in the def-
inition of a correct functional-analytic framework is to consider possibly
discontinuous functions and identify cracks with the discontinuity sets of
such functions. In such a context Griffith-type fracture energies are well
defined and a number of boundary-value problems have solutions. The
definition of such functions (special functions of bounded variation [4])
requires some Geometric Measure Theory concepts in order to define in a
proper way the length of a crack (in three dimensions this would be the
surface area of a crack) in the reference configuration and its orientation.
This is done by considering the one-dimensional Hausdorff measure as
measuring the length, and a measure-theoretical normal at almost every
point of the crack site. The latter can be characterized by a blow-up ar-
gument: if we “zoom in” close to a point of the crack site, the crack site
tends to appear as a straight line with a well-defined orientation, except
for some exceptional points (crack tip, bifurcation points, corners). Be-
sides a technical definition, we will try to maintain the analytical details
to a minimum.

In the surface scaling, the sample will behave as a brittle rigid material;
i.e., the continuum reference configuration will be subdivided into regions
where the deformation is approximately a constant rigid motion. The
crack site; i.e., the boundaries of such regions, will have finite total length
(more precisely, finite one dimensional Hausdorff measure) and will be
regular enough as to have a normal at almost every point of its (suitably
defined) boundary in the sense hinted at above. The precise analytical
definition that we will use is the following.

Definition 1.3 (sets of finite perimeter). We say that a set E C §Q is
a set of finite perimeter in Q if there exists a sequence of polyhedral sets
{P;} whose boundaries have equibounded lengths such that the symmetric
difference has infinitesimal Lebesgue measure |[EAP;| as j — +oo. If E
is a set of finite perimeter then there exists a set OF (the (approximate)
boundary of E) of finite H' measure and a unit vector v (the internal unit
normal to E) such that the distributional derivative of the characteristic
function of E is a measure concentrated on OF with density v with respect

to H!.

Despite its technical appearance this definition simply states that sets
of finite perimeter can be regarded as sets with piecewise C' boundary
with finite length. Similarly, special functions of bounded variation u can
be regarded as C* functions outside a piecewise-C' crack set S(u) (see [4]
for a rigorous definition and their properties, which will only be used as
a technical tool in the proof of Theorem 1.5).

We can now define the space of continuum parameters as those func-



tions whose gradient is a constant rotation on each sets of finite perimeter
of an underlying partition.

Definition 1.4 (piecewise rigid deformations). A function u : Q — R?
will be called a piecewise rigid deformation if there exists a partition {Ep}
of Q into sets of finite perimeter, vectors bn and rotations Ap € SO(2)
such that

u(x) = by + Apzx almost everywhere on Ep,

and the set
Su=JOEx
h

has finite H* measure.

We may show that (a subset of) the space of piecewise-rigid defor-
mations is the correct functional setting of our continuum description, as
stated in the following theorem.

Theorem 1.5 (piecewise-rigid deformations as continuum parameters).
Let ue be functions with F:(u:) < C < 400 and |Jucllo < C < 400
regarded as piecewise-affine functions. Then, up to extraction of subse-
quences, such functions converge in L'(Q;R?) to a piecewise-rigid defor-
mation on €.

This theorem states that functions u. equibounded in energies, which
we also suppose to be pointwise equibounded in order to avoid that u.
tend to infinity on a portion of 2 (which is perfectly allowed in Fracture
theory), are approximated by piecewise-rigid deformations.

Proof. We fix a positive constant C' and consider the functions u. defined
as the piecewise-affine interpolation of u. on triangles where f < C' and an
arbitrary vector, e.g., 0, elsewhere. We can picture these sets as obtained
by removing from the domain triangles undergoing a large deformation.
The number of those triangles is at most of order 1/e and their total
measure is then at most of order €, and hence negligible. Describing the
limits of ue is then equivalent to describing the limits of w.. Since the
gradients Vu. are equibounded, and the total lengths of their crack sites
are also bounded, their limit is a special function of bounded variation,
denoted by u, whose crack site S(u) has with finite * measure. It remains
to note that the hypotheses of frame indifference and non-degeneracy of
minimum points for f imply that the gradients Vu. are close to some
rotations, that may vary from triangle to triangle, although the sum of
the contributions of their distance from the sets of rotation is globally
going to 0. As V. tends to Vu only weakly, we use a lower semicontinuity
argument and the classical rigidity result to infer that Vu € SO(2) almost
everywhere and its crack site has finite H' measure. A rigidity theorem
for special functions with bounded variation [16] allows us to conclude the
claim. O

2 The small-displacement regime

We now consider small displacements from the identity function, which
is by assumption an absolute minimizer of our energies. This amounts to



making the assumption that
e = id + d ve, with e << § << 1, (2.1)

with v. equibounded; i.e., ||ve[loc < C < +4o0. Analytically, we first
consider the limit as ¢ — 0 and then as § — 0.

A first application of Theorem 1.5 gives that u. can be approximately
described by a limit «’, which is a piecewise-rigid deformation with un-
derlying partition {Eﬁ} As a consequence, also v. can be approximately
described by a function v°, so that, on each element Ef“ we have

Vu' = R) =id + 6 A3,

where A2 is the constant value of Vv’ on E. Passing to the limit as
0 — 0 we eventually obtain an underlying partition of sets Ep, and the
corresponding function v with Vv = Ay on Ej. Since the tangent space
to SO(2) at the identity are skew-symmetric matrices and

. R —id
Ap = lim fn — 14
§—0+ 1)
we obtain that A is a skew-symmetric matrix; i.e., it is an infinitesimal
rotation.

Summarizing, in the small-displacement regime, the continuum pa-
rameter will be a piecewise infinitesimal rotation v, with an underlying
partition of  into sets of finite perimeter {E4 }, on each of which Vv is a
constant skew-symmetric matrix.

2.1 Computation of a candidate Griffith-fracture
energy density

We now turn our attention to the description of the asymptotic behaviour
of sequences of energies F;(u.) under assumption (2.1) as ¢ — 0 and 6 —
0. This can be done using the formalism of I"-convergence, which consists
in estimating a lower and an upper bound energy separately. Both lower
and upper bounds are defined on the limit parameters v; if these bounds
coincide, then their common value F is called the I'-limit. The reason why
it is important to compute a I'-limit is that its definition is equivalent to
the validity of the variation principle that minimum problems for the I'-
limit F' approximate those for F.
We first focus on the lower bound.

Definition 2.1 (lower bound). We say that F is a lower bound for F.
if whenever u. is of the form (2.1) with ve — v ase — 0 and § — 0, then
we have

F.(ue) > F(v) +0(1)

ase — 0 and 6 — 0.

Our aim is to define a lower bound that depends only on the underlying
partition {Ep}, more precisely on the boundaries of the element of the
partition, and not on the traces of the function v on such boundaries.
This is in accord with the energies in the Griffith theory of Fracture,



whose energy densities depend on the crack site but not on the fracture
opening.

In order to define the energy density corresponding to such a lower
bound, we focus on a point xo at the crack site with normal v. Up to
a scaling argument (corresponding to the definition of v as the orienta-
tion of the limit normal after blow-up) we may suppose that the crack is
approximately straight close to xo, and estimate the energy due to the ap-
pearance of a crack considering a unit square centered in xo. On the two
sides of the crack the function takes approximately the value id+dv™ (zo)
and id+6vt (z0); i.e., up to a constant translation of —v™(z0), we are
driven to considering test problems as described in the Introduction with
boundary data the identity and the identity plus b, with

b=6[v(zo)] = 6(v" (w0) — v (20))

on opposite sides of the test square.
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Figure 2: Opening cracks in direction e; and e

Under these assumptions, if b is a positive multiple of v (straight
opening-crack regime), then the minimal energy in the problems in Fig. 1
will be given by € Cy times the number of triangles with two elongated
sides. We note that this number is proportional to 1/¢ but may de-
pend on the orientation v of the fracture site. In Fig. 2 we picture the
configurations with minimal energy in two different cases, the first one
corresponding to fracture orthogonal to a lattice direction.

The computation in this straight opening regime gives an energy per
unit length with a hexagonal symmetry that can be explicitly written in

10



the form
3

2
e(v) = %Co ; [(v,n")] (22)
This energy density is minimal when v is a coordinate direction. The
rigorous computation of this energy density can be found in [10].

The energy ¢ is the candidate for an anisotropic Griffith fracture en-
ergy, the anisotropy due to the underlying triangular lattice at a micro-
scopic level. Indeed, we have the following result.

Proposition 2.2 (lower bound). Let v be a piecewise infinitesimal ro-
tation with underlying partition {En}, and denote S(v) = Q N, OFn.
Then a lower bound for F is given by

Fo) = [ plwan, (2.3)
S(v)
where v, denotes the normal to S(v).

Proof. The proof is obtained by a blow-up argument at each point of S(v).
Up to a scaling argument we reduce to a test problem in a unit square
and to a limit interface which is orthogonal to v. Up to the addition of an
asymptotically negligible number of triangles, the union of the elongated
triangles at the discrete level must contain a set S disconnecting the two
sides of the square perpendicular to v. If we use the function u which
coincides with the identity and identity plus v on the two sets disconnected
by S, we obtain a test function for ¢(v) which gives a lower bound. [

The lower bound has been obtained by comparing with test functions
for a straight opening fracture, but may be reached also if b is not exactly
a multiple of v. We now show a converse statement; i.e., that we may
deduce a constraint on the fracture opening vector b from the validity
of the lower bound: If for a given v the corresponding energy density
is the ¢(v) described above at some point in S(v), then the (possibly
non-straight) opening-fracture constraint

(b,v) >0 (2.4)

for b = v — v~ must hold, which gives this as a macroscopic counterpart

of the microscopic constraint.

Proposition 2.3. Suppose that the lower bound in Proposition 2.2 holds.
Then the opening-crack constraint ([v],v) > 0 holds at almost all points

of S(v).

Proof. This constraint can be deduced from the fact that when the mini-
mum of the test problems in the unit squares is (approximately) ¢(v) then
essentially only one layer of triangles can be elongated and all other ones
must remain essentially undeformed. The actual computation is rather
sophisticated, so we only give a hint of the proof. It relies on the fact
that bounds on the Jacobian determinant of u. on the set composed of
non-elongated triangles guarantee the convergence of the traces of u. on

11



the boundary of such sets to the traces of its limit (which we have de-
noted by u’) on its jump set S,s[3]. From this, one can deduce that
§([v°],v) = ([id + 6v°],v) = ([u®],v) > o(1), so that ([v°],v) > o(1) and
eventually ([v],v) > 0. O

Proposition 2.3 will allow us to exhibit an upper bound for F: accord-
ing to the following definition.

Definition 2.4 (upper bound). We say that F is an upper bound for F.
at v if there exist ue of the form (2.1) with ve — v ase — 0 and § — 0,
such that

F.(ue) < F(v) +0(1) (2.5)

ase — 0 and 6 — 0.

Figure 3: Deformation-free opening angle

Remark 2.5 (deformation-free opening angle). The opening-crack con-
straint is sharp if v is a coordinate direction; i.e., if at almost all points
of S(v), v is a coordinate direction (i.e., the cracks follow the directions
of the lattice) and ([v],v) > 0 then we may find u. such that (2.5) holds.
Some extra care must be taken when v is not orthogonal to a lattice di-
rection. Indeed, in this case, the orientation assumption on microscopic
triangles gives a constraint on the direction of b in terms of a cone (or,
in a two-dimensional terminology, an angle) of possible opening vectors
that we obtain without deforming any additional triangle other the ones
necessary to open the crack, as represented in Fig. 3.

If we denote by v and v~ the two directions closest to v orthogonal
to the lattice vectors such that v lies in the arc (v~,v"), then we have
the constraints

(b,v™)y > 0and (b,v™) > 0. (2.6)

Note that these constraints can be regarded as a homogenization of
the single constraint (b,v) > 0 when we restrict to v € D; i.e., when we

12



consider only cracks with normal v being a coordinate direction, at almost
every point of S(v).

This defines a deformation-free opening angle. This angle is a straight
angle centered in v only when v is a coordinate direction, in which case
the constraint is (2.4), and otherwise it describes an angle of 120 degrees
containing v in its interior.

Remark 2.6. When listing the assumptions on the function f as the pos-
sibility of fracture is concerned, we have made the simplifying assumption
that triangles with two (very) elongated sides have minimal energy when
the third side has length € (i.e., it is “undeformed”). For general energies,
we do not expect this to hold, and the minimal energy will be achieved
when the third side has length approximately ae for some a > 0. This
would influence the width of the deformation-free opening angle, and the
constraint (2.6), but the deformation-free opening angle always contains
the normal v itself and for opening cracks the correction to ¢ only gives
a constant addition to ¢(v) due to the boundary-layer effect of the rear-
rangements of the triangles on both sides of the crack.

For functions v for which b = [v] satisfies the constraint (2.6) the
description in terms of the fracture energy density ¢ is sharp.

Theorem 2.7 (asymptotic description). Let {Exr} be a partition of Q
composed of Lipschitz sets with piecewise C*-boundaries, and let v be a
piecewise infinitesimal rigid motion with underlying partition {Ep} such
that (2.6) holds at almost all points in S(v) with b = [v] and v = v,. Then
the fracture energy F' defined in (2.3) is the I'-limit of F. at v; i.e., F is
both an upper and a lower bound for Fx.

Proof. Since the lower bound holds for all v, we only have to prove the
upper bound. By an approximation argument, we can suppose that all Ep,
are polygons with normals coordinate directions at almost every point, and
that at most three such sets meet at a single point. Note that condition
(2.6) ensures that an approximation by polygons satisfies (2.4). A recovery
sequence for the upper bound is then obtained simply by taking u. as the
discretization of id+dwv. O

It must be noted that the regularity of the boundaries of {Ex} is
required only for technical reasons. Its necessity is due to the lack of ap-
proximation theorems for functions satisfying an opening-crack constraint
when the underlying partition is not regular. From Theorem 2.7 we de-
duce that the same result holds for a set of admissible deformations D(2)
abstractly defined as the set of piecewise infinitesimal rigid motions v
with underlying partitions {Ep} that can be approximated by functions
v; satisfying the hypotheses of Theorem 2.7 and such that F(v;) — F(v).

We note that there is a gap between the necessary condition obtained
in Proposition 2.3 and the more strict condition (2.6) for which we prove
the upper bound in Theorem 2.7. We conjecture that indeed Proposition
2.3 can be improved to prove the necessity of condition (2.6).
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Figure 4: Surface relaxation for directions external to the deformation-free angle

Remark 2.8 (geometric surface relaxation). The domain of the I'-limit
is larger than the one described in Theorem 2.7, or its abstract comple-
tion D(2). Indeed, we can exhibit a finite upper bound under the sole
condition ([v],v) > 0, and still obtained by elongating only one row of
triangles. It this case, though, we have to deform also some boundary
triangles, which justifies the terminology “deformation-free” introduced
above. In order to explain this fact, we consider the test problems on
squares for opening vectors b satisfying the larger constraint (2.4) but not
(2.6). The minimum value in the test problem is still finite, but cannot be
achieved by only elongating one layer of triangles while keeping all others
undeformed. It is necessary instead to deform the boundary triangles on
either side of the elongated layer, in order to accommodate the triangles
to satisfy the orientation constraint. This is a sort of geometric surface
relazation. We use this term in order to distinguish this rearrangement of
boundary triangles from the energetic surface relaxation due to the unbal-
ance of interactions close to the fracture site. That type of relaxation is
typical to systems with next-to-nearest neighbour interactions, which gen-
erate a boundary layer in the direction orthogonal to the fracture site to
accommodate missing interactions, as observed by Charlotte and Truski-
novsky [17]. Here, the overall effect is felt only when b does not lay in the
“deformation-free” angle.

Note that this last remark suggests that a complete I'-limit should
be expressed through an energy density of the form ¢([v],v), where this
function is finite only when ([v],v) > 0 and it coincides with ¢(v) if v is a
coordinate direction, or [v] and v satisfy (2.6). This addition to the clas-
sic Griffith theory does not seem unreasonable, since a rearrangement of
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atomistic position is necessary at a microscopic level for fracture openings
(almost) orthogonal to v, when v itself is not orthogonal to the lattice
directions. However, since in general we expect fracture to follow the
lattice direction, this more precise value of the energy density may have
little impact on the actual computational issues, while it seems to be a
challenging analytical problem.

These considerations and Theorem 2.7 validate the use of this discrete
model as a finite-element approximation of an (anisotropic) Griffith frac-
ture model with a linearized opening constraint ([u],v) > 0 on the fracture
site in the hypothesis of small-opening fracture.

3 The finite-deformation regime

In the case of finite deformations we are not restricted to small pertur-
bation of the identity, and absolute minimizers of the discrete energies
are all (discretizations of) rigid motions. The macroscopic description
for elastic deformations subjected to the positive-determinant constraint
is a long-standing challenging analytical problem. Our scaling allows to
concentrate on surface effects.

Theorem 1.5 ensures that the limit energies will be finite only on piece-
wise rigid motions. We now consider the question whether the micro-
scopic fracture-opening mechanism can be described macroscopically by
a Griffith energy density with an opening constraint also in the finite-
deformation regime.

For the sake of simplicity in the sequel we assume that the three-point
interaction density f(u,v,w) be as in Remark 1.2, where we choose the
constant C' in the Lennard-Jones potential to be equal to Co/2, in order
that f satisfy the hypotheses of Section 1.2.

3.1 Validity of the lower bound

As a first step in our analysis we show that the anisotropic Griffith-fracture
energy F'(u) defined in (2.3) provides a lower bound for the energies F(u.)
also for general sequences of deformations u., not necessarily small pertur-
bations of rigid motions, extending thus the result stated in Proposition
2.2 for straight-opening-crack deformations and valid more generally in
the small-displacements regime.

Proposition 3.1 (lower bound for finite deformations). Let u be a piece-
wise rigid rotation with underlying partition {En}, and denote S(u) =
QNU, OEn. Then a lower bound for F. is given by

P = [,
S(u)
where vy, denotes the normal to S(u) and ¢ is given by (2.2).

Proof. Also in this case one may argue by the blow-up argument quoted
in the proof of Proposition 2.2. We may also give an alternative proof
based on a direct counting argument of the elongated sides of triangles of

15



a given sequence u. approximating u. This can be done regrouping such
sides in dependence of their orientation with respect to lattice directions
and using a slicing technique. With fixed 7, a lattice direction, the slicing
argument allow us to estimate asymptotically the number of elongated
sides parallel to 7 as proportional to the quantity |(vu,nx)| per unit
crack length. In particular, the factor of proportionality is independent
of k and coincides with Cp multiplied by an explicit constant depending
only on the geometry of the lattice (see [10] for details). O

3.2 A new type of constraint on the opening frac-
tures

We now analyse the constraint at a point  belonging to the fracture site.
Since the analysis for small opening fracture relies mainly on geometrical
arguments we can repeat it for finite opening, taking into account that
on either side of the fracture site the deformation is a discretization of a
rigid motion.

Deformed triangles \

Triangles subject to a rigid motion

Y
<

\

Figure 5: Triangles deformed by the pointwise interpolation

We first consider the simpler case of a fracture with a discontinuity set
in a lattice direction. For a pictorial description we refer to Fig. 5.

Note that the image of any deformed triangle, with clockwise ori-
ented vertices (i7,43,43 ) in the reference configuration, is in one case
(u™(4T),uT(43),u™ (i3)), and, in the other one, (v~ (] ), u™ (43), " (i1)).
Thus, the orientation-preserving constraint amounts to the new opening-
fracture constraints

(ut —u™,R"v) >0,

and, exchanging the role of u*,u™,
(wh —u”,RTv) > 0.

This new constraint is consistent with the fact that at the points u™ (z), u™ (x),
image respectively of the point € S(u), RTv, R™v are the new normals,
in the deformed configuration, to the crack sites.

We now show that for deformations such that the lower bound in
Proposition 3.1 is optimal the new constraint on the fracture opening
[u] = uT —u~ above holds true.
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Proposition 3.2. Let u be a function in the domain of the continuum
limit energy. Let v be the normal to the fracture site at a point x, and
suppose that the fracture energy density at the point x be given by p(v).
Then, if R € SO(2) denote the rotations corresponding to u on either
sides of the fracture site, we have

([u], REv) > 0.

Proof. At a discrete level, close to  we will have a single layer of deformed
triangles; which can be regarded as a stripe between two piecewise-linear
curves made by triangle sides. An energetic argument shows that most of
the images of the triangles must have boundary segments oriented orthog-
onally to RTv, on the respective side. The orientation constraint applied
on any of those triangles then translates in the desired inequality. O

We now provide a class of deformations for which F'(u) is an upper
bound.

Contrarily to what happens for small displacements, a relevant condi-
tion to ensure the validity of the upper bound for finite deformations is a
strict opening-fracture constraint, that is

([u], R*1.) >0 (3.1)

together with the condition that S(u) be a finite union of segments with
normal a coordinate direction.

Indeed, if the segments composing S(u) meet at most pairwise, con-
dition (3.1) ensures that a discretization of u, obtained as a pointwise
evaluation of w at the lattice points, is orientation preserving and pro-
vides a recovery sequence for the upper bound.

We point out that the gap between condition (3.1) and the necessary
condition to the validity of the upper bound of Proposition 3.2 cannot
be overcome. In fact, in case of a folded deformation, that is, S(u) con-
sisting of a line parallel to a lattice direction and R™ = —R™, it holds
([u], RF 1) = 0, and any discretization of such deformation violates the
impenetrability constraint.

When more than two segments meets, in the configurations considered
above, more compatibility conditions have to be taken into account. By
a density argument a target case to be considered is the case in which we
have three segments with coordinate normals meeting at a triple point xo.
In such a case in order to prove the validity of the upper bound we have to
add to condition (3.1) along each single segment, the additional hypothesis
that, denoted by (A1, A2, A3) a clockwise ordering of the regions delimited
by the three segments and by wu; the rigid deformation on the region A;,
then the triangle with vertices (u1 (o), u2(xo), us(ro)) maintains the same
ordering. When these conditions are satisfied, then we call xg a positive
triple point for u.

We can now state a result validating the macroscopic description by a
Griffith-type anisotropic surface energy of our microscopic lattice model
subject to a impenetrability constraint for a class of finite deformations.
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Figure 6: A positive triple point

Theorem 3.3 (asymptotic description). Let u be a piecewise rigid motion
such that its underlying partition of 2 is composed by polygons whose
boundaries have coordinate normals, meeting at most at positive triple
points and such that condition (3.1) holds along the boundaries. Then the
fracture energy F defined in (2.3) is the T'-limit of Fr at u; i.e., F is both
an upper and a lower bound for Fk.

Proof. Since the lower bound holds for all u, we only have to prove the
upper bound. A recovery sequence for the upper bound is then obtained
simply by taking u. as the discretization of u. Indeed, for such u., the
hypothesis on positive triple points ensures that, at level €, the deforma-
tion of the microscopic triangle containing the triple point has positive
determinant. O

Remark 3.4. In the case when a piecewise rigid motion u has polygonal
underlying partition with normal v which is not a coordinate direction,
then in order for u to be approximated by coordinate polygons with nor-
mal orthogonal to a lattice direction and satisfying (3.1), condition

([u], REv) >0

is not sufficient and must be replaced by the stronger fracture-opening
constraint

([, R*v"y >0, ([u], RFv7) >0,
where v~ and v are the two minimal normals orthogonal to two consec-
utive lattice directions generating v.

Remark 3.5. Theorem 3.3 and in particular condition (3.1) imply that

the energy density actually depends on the trace of the rotations R*v
on both sides of the fracture. This can be seen as a dependence on the
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tangential derivative of the traces ut

into account energy densities

o1 205.)

This is an unexplored type of energies depending on the deformation of

S(u).

, so that actually we have to take

3.3 Pathologies for finite deformations

In the previous sections we have computed the I'-limit of our discrete sys-
tem when the macroscopic configuration satisfies compatibility conditions
on the fracture site and at meeting points of three (or more) fracture
sites. Those conditions can be regarded as a positive-determinant con-
straint on the fracture. In this section we will see how all those conditions
can be removed. In this way macroscopic configurations “with fracture
with negative-determinant” can be obtained from atomistic configurations
satisfying a microscopic positive-determinant constraint, at the expense
of a strictly greater energy.

3.3.1 Removal of compatibility conditions on the fracture
site — multiple microfracture

By introducing more than one layer of deformed microscopic triangles we
may remove all constraints on S(u), while the macroscopic energy varies
by a factor proportional to the number of additional layers.

Figure 7: Multiple microscopic fracture

In Fig. 7 the macroscopic deformation on the fracture does not satisfy
the conditions
(uh(z) —u(z), R 1) > 0
for the two “microscopic” coordinate normals v;. However, the discrete
functions in the construction depicted in Fig. 7 all have positive determi-
nant thanks to the introduction of a “fictitious” layer of atoms. In this
case the limit energy per length doubles.
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Figure 8: Multiple microscopic fracture - reference and deformed configurations

A variation of this example is given in Fig. 8 and 9 to highlight that
the introduction of an extra layer of atomic interactions allows to remove
the condition (u™(z) —u~ (), R¥v) > 0 even when v is a coordinate nor-
mal. By repeating this process the macroscopic deformation may exhibit
a interpenetration phenomenon.

-Id + const.

Figure 9: Multiple microscopic fracture - macroscopic configurations

Note that for some deformations surface relaxation may be energet-
ically convenient with respect to multiple-layer fracture. This clearly is
the case the situation exemplified in Fig. 4.

3.3.2 Removal of compatibility conditions on “triple points”
— micro-deformed fracture

The condition on triple points in the previous section ensures that the
deformation of a microscopic triangle at that point is of positive de-
terminant (and hence, being a single triangle, gives a negligible energy
contribution). If such a condition does not hold then the use of (small
variations of) pointwise interpolations on the different regions of the un-

20



derlying partition is not possible, since for ¢ small there will always be
a microscopic triangle whose vertices are mapped in three points which
fail the positive-determinant constraint. However, it is possible to use a
different interpolation by introducing an additional microscopic fracture
enclosing small sets where the deformation is not in SO(2). Note that
this is possible if such sets have the dimension of an interface.

B
B
A
A /e
c
Figure 10: Triple point with “negative determinant” — reference and deformed

macroscopic deformation

In Fig. 10 it is represented a deformation with a triple point failing the
positive-determinant condition. In this case we introduce a microscopic
approximation as represented in Fig. 11.

Figure 11: Triple point with “negative determinant” — reference and deformed
microscopic deformations

On the fracture site we introduce a segment [A, X| where the point-
wise single-layer interpolation of the jump is substituted by a double-layer
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approximation. Note that the image [A’, X'] of this segment undergoes an
additional linear deformation. Note that the energy of this approximation
provides the additional contribution
A/ X/] 1
J(i[ ) ) HA (AL XD),
(o) +7 (T35 ) )7 4. x)

where the second term is due to the compression of the triangles on the
segment [A, X] in the reference configuration. This energy depends on
the choice of X and X', which are variables in the construction (sat-
isfying some constraints due to the positive-determinant requirement in
the resulting construction). This shows that even in this simple case an
optimization problems arises between the introduction of an additional
microfracture and a microscopic compression. Of course, more complex
constructions with more parameters can also be introduced.

Figure 12: Deformation violating the impenetrability constraint

Figure 13: Construction of approximations satisfying the positive-determinant
constraint
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3.3.3 Global failure of impenetrability constraints — opti-
mal decomposition and healing microfractures

In the constructions illustrated above we were able to exhibit a micro-
scopic recovery sequence by working separately on each fracture site or
triple point. In the presence of a complex geometry of the domain, be-
sides a use of those constructions one has also to take into account the
possibility of introducing further “fictitious” microscopic interfaces to get
around impenetrability constraints. As a simple example, we may consider
the deformation in Fig. 12, where the central smaller triangle is removed
and translated from its position in the larger triangle. This macroscopic
deformation can be approximated by microscopic ones all satisfying the
positive-determinant constraint (see Fig. 13). One such approximation
can be obtained by translating a rhombus and subsequently composing
this translation with a deformation rotating half of this rhombus as de-
scribed in Section 3.3.1 (see also Fig. 9). Note that this last rotation
entails the introduction of one or more microscopic fictitious layers of
atoms.

YNV

X!

Figure 14: Deformation that can be obtained with auxiliary fractures

Another simple example is depicted in Fig. 14, where the triangle to
be removed is strictly contained in the interior of a larger triangle. In
this case, in order to proceed as in the previous construction, one has
to introduce an “auxiliary fracture” as the segment [X, X'] in the figure.
The determination of the optimal shape and location of such auxiliary
fracture sites is clearly a complex optimization problem. Note that in this
case, also the determinant constraint for triple points has to be taken into
account.

4 Conclusions

We have examined a two-dimensional atomistic system of nearest-neighbour
interactions allowing for macroscopic fracture parameterized on a trian-
gular lattice, with a microscopic positive-determinant constraint which
mimics the effect of long-range interactions and limits the ground states
to rotations.

In parallel to the one-dimensional case we have focused our attention
on the fracture term of the resulting continuum approximation by suitably
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scaling the energies. We have thus determined

e a surface energy density ¢ = ¢(v) depending on the orientation of
the crack site, this reflecting the triangular symmetries of the underlying
lattice;

e conditions on the interface that reflect the positive-determinant con-
straint.

In the case of small deformations such conditions can be interpreted
as an opening-crack constraint and the surface energy density describes
precisely the energetic cost of opening a crack, except for some corrections
when the crack is not oriented following the lattice directions and for crack
opening almost tangential to the crack. As a conclusion, and taking into
account the corresponding analysis for the bulk scaling (also analyzed in
recent works by Friedrich and Schmidt [22, 23, 24, 21]), we infer that in
this case a good continuous approximation is a Griffith brittle fracture
energy with opening constraint on the fracture.

In the case of finite deformations the analysis is more complex. In
particular we have

e the conditions on the interfaces are of a novel type that take into
account both the gradient of the deformation on both sides of the fracture
and the orientation of the fracture site in the reference configuration.
Energies containing interfacial terms considering such quantities have been
only partially examined and seem to be a challenging analytical issue [3];

e we also have a positive-determinant constraint on points where more
cracks meet (triple points). Failure to satisfy such conditions also at
one point give an additional contribution of the order of a finite fracture
energy;

e such conditions are not a closed constraint, and can be removed
by adding “fictitious” micro-fractures. The optimal location and form of
those micro-fractures depends on the corresponding macroscopic defor-
mation, and is a complex optimization problem.

We argue then that in the finite-deformation case, a hyperelastic frac-
ture energy is not a good approximation of the discrete system that we are
examining. Conversely, the use of such a system to model fracture phe-
nomena outside the small-deformation regime seems to need some cor-
rections in order to avoid non-local effects highlighted by the analytic
description of the corresponding continuum model. In particular

e the fictitious micro-fractures caused by the determinant constraint
seem to be completely artificial. In a dynamical test they would be pro-
duced when the two sides of a crack are at a finite distance. It seems more
reasonable to enforce the determinant constraint only for small distances
(e.g., a multiple of the lattice spacing), and to introduce a dynamical cri-
terion for the evolution of fracture, such as the ones studied by Francfort,
Marigo and colleagues [20, 6].

e the effect of conditions on triple points seems to be overestimated
since the failure of the determinant constraint at a single point results in
the creation of a finite crack. A mechanism to avoid this phenomenon
could be to substitute a strict determinant constraint with the penaliza-
tion on the number of triangles which fail to satisfy the positive-determin-
ant condition.
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Moreover, we have neglected interactions other than nearest neigh-
bours. In this way the interfacial energy does not reflect the possibility of
surface relaxation; i.e., the fact that atomistic interactions are unbalanced
close to interfaces. This is an important effect as first highlighted by Char-
lotte and Truskinovsky [17], especially at the boundary of the domain and
in the determination of the location of fractures. It has been partially ad-
dressed by Theil [32], and should be included in further investigations on
the subject. The one-dimensional analysis by Braides and Solci [13] sug-
gests that considering longer range of interactions (e.g., next-to-nearest
neighbours) could be used in the place of the determinant constraint in
order to eliminate non-local effects for non-opening cracks, at the expense
of introducing internal and external boundary layers, whose precise de-
scription in dimension larger than one seems analytically challenging.
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