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Università di Roma “La Sapienza”

piazzale A. Moro 3
00185 Roma, Italy

Ref. S.I.S.S.A. 123/95/M
(October 1995)



1 Introduction

“Free-discontinuity problems” are those problems in the Calculus of Variations
where the unknown is a pair (u,K), with K a closed set and u a function
(sufficiently) smooth on Ω\K (Ω a fixed open set). As an example of problems of
this type we can consider some models in fracture mechanics for brittle materials.
A hyperelastic medium subject to fracture, following Griffith’s theory, can be
modeled by the introduction, besides the elastic volume energy, of a surface term
which accounts for crack propagation. In its simplest formulation, the energy
of a deformation u will be of the form

(1.1) E(u,K) =
∫

Ω\K
f(∇u) dx+ λHn−1(K),

where ∇u is the deformation gradient, Ω the reference configuration, and K is
the crack surface. The bulk energy density f accounts for elastic deformations
outside the crack, while λ is a constant given by Griffith’s criterion for fracture
initiation (see [23], [25], [33], [32], [11]). The existence of equilibria, under
appropriate boundary conditions, can be deduced from the study of minimum
pairs (u,K) for the energy (1.1). Other models leading to similar minimization
problems can be found in the theory of computer vision (see [30], [27], [14], [5]).
Note that if E(u,K) < +∞, then the Lebesgue measure of K is zero, u can be
regarded as a measurable function defined on Ω, and the set K can be thought
of as (a set containing) the set of discontinuity points for u, which explains the
name “free discontinuity” problems. Note moreover that in general K will not
be the boundary of a set (in this special case we talk of free boundary problems).

The application of the direct methods of the Calculus of Variations to min-
imum problems involving such functionals is forbidden by the impossibility of
finding suitable topologies on closed sets that guarantee the compactness for
minimizing sequences. The presence of two unknowns, the surface K and the
deformation u, can be overcome by a weak formulation of the problem in spaces
of discontinuous functions. The space of “special functions of bounded varia-
tion” SBV (Ω; Rm) has been introduced by De Giorgi and Ambrosio ([16]) as
the subset of Rm-valued functions of bounded variation on the open set Ω ⊂ Rn,
whose measure first derivative can be written in the form

Du = ∇uLn Ω + (u+ − u−)⊗ νuHn−1 S(u),

where ∇u is now the approximate gradient of u, S(u) is the complement of
the set of Lebesgue points of u, νu is the unit normal to S(u), and u± the
approximate trace values of u on both sides of S(u). The measures Ln andHn−1

are the n-dimensional Lebesgue measure and the (n− 1)-dimensional Hausdorff
measure, respectively, and µ A denotes the restriction of the measure µ to the
set A.

1



The energy functional in (1.1) can be rewritten as

E(u) =
∫

Ω

f(∇u) dx+ λHn−1(S(u)),

which makes sense on SBV (Ω; Rm). If f is quasiconvex and satisfies some
standard growth conditions, then we can apply Ambrosio’s lower semicontinu-
ity and compactness theorems to obtain minimum points for some problems
involving functionals like E (see [3], [4], [5], [6]). A complete regularity theory
for minimum points u for E has not been developed yet, but in some cases it
is possible to prove that the jump set S(u) is Hn−1-equivalent to its closure or
even more regular, and that u is smooth on Ω\S(u), thus obtaining minimizing
pairs (u,K) = (u, S(u)) for the functional E (see [17], [8], [9]).

The viewpoint described above privileges the reference configuration, ne-
glecting the effects of crack deformation. The aim of this paper is to define a
sub-class of SBV functions which allows the statement (and solution) of prob-
lems which involve also the deformation of S(u), i.e., the shape of the crack
surface in the deformed configuration. To fix ideas, we can think of an elastic
body in two dimensions subject to fracture, so that a “hole” is formed, bounded
by two curves Γ+ and Γ− which are the images of S(u) by u+ and u−, respec-
tively. If the traces are sufficiently smooth then the length of (the boundary of
the hole) Γ+ ∪ Γ− is given by

E1(u) =
∫
S(u)

(∣∣∂u+

∂τ

∣∣+
∣∣∂u−
∂τ

∣∣) dH1,

where τ is the tangent to S(u). Similarly, if u is bounded and we have an
“opening hole” (that is, Γ+ ∪ Γ− is compactly contained in u(Ω)) we can also
consider the “area of the hole”, given by

E2(u) =
∫

hole

dy1dy2 = −
∫

Γ+∪Γ−
y1dy2

= −
∫
S(u)

(
u+

1

∂u+
2

∂τ
− u−1

∂u−2
∂τ

)
dH1,

which again makes sense if the tangential derivatives of u± exist. An analogous
formulation for three dimensional elasticity is possible, taking into account the
orientation of the surface Γ+ ∪ Γ−.

It is clear that the crucial point in order to extend the definition of functionals
as E1 and E2 to a wide-enough class to apply the direct methods of the Calculus
of Variations is a weak definition of the tangential derivatives of u+ and u−

on S(u). Our method is close in spirit to the one adopted in [10] (see also
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[31]), where a general theory of BV , SBV and Sobolev functions on rectifiable
sets is derived. The idea is to look for suitable integrations by parts formulas
characterizing the weak derivatives.

Let us consider the simplest case of u : Ω ⊂ R2 → R, with S(u) and u|Ω\S(u)

smooth enough, and any φ ∈ C1
0

(
Ω
)
, ψ ∈ C1

b

(
R
)
. A simple application of the

Gauss-Green formula gives

−
∫
S(u)

(
ψ(u+)

∂u+

∂τ
−ψ(u−)

∂u−

∂τ

)
φ(x) dH1 =

∫
Ω

ψ(u)
( ∂φ
∂x1

∂u

∂x2
− ∂φ

∂x2

∂u

∂x1

)
dx

so that an integration on Ω provides information on the integrability of tan-
gential derivatives of u±. On the other hand, a different integration by parts
yields∫

Ω

ψ(u)
( ∂φ
∂x1

∂u

∂x2
− ∂φ

∂x2

∂u

∂x1

)
dx =

∫
S(u)

(∫ u+(x)

u−(x)

ψ(y) dy
)∂φ
∂τ

(x) dH1(x)

which provides a weak definition of tangential derivatives. We say that a
bounded function u belongs to SBV0(Ω,R) if the linear functional

(1.4) L(φψ) =
∫
S(u)

(∫ u+(x)

u−(x)

ψ(y) dy
)∂φ
∂τ

dH1

defines a measure (i.e., it can be extended to a bounded linear functional on
C0

0 (Ω ×R)). If Ω ⊂ Rn it is possible to define the space SBV0(Ω,R), asking
that there exist measures µα (α multi-index of order n− 2) such that∫

Ω×R

ϕ(x)ψ(y) dµα =
∫
S(u)

(∫ u+(x)

u−(x)

ψ(y) dy
)( ∂φ

∂xi1
νi2 −

∂φ

∂xi2
νi1

)
dHn−1 ,

where i1, i2 are indices such that

dxi1 ∧ dxi2 ∧ dxα = dx1 ∧ . . . ∧ dxn.

This definition is coherent with the characterization by means of an integration
by parts formula of the space SBV due to Ambrosio (see [7]): a bounded func-
tion u belongs to SBV (Ω) and Hn−1(S(u)) < +∞ if and only if the functionals

(1.5) Li(φψ) =
∫

Ω

(
∂φ

∂xi
ψ(u) + φψ′(u)

∂u

∂xi

)
dx

define n measures for i = 1, . . . , n. This characterization is a consequence of the
chain rule formula for function in BV .

We can interpret formulas (1.4) and (1.5) above as a properties of the graph
of u, which is given for BV functions by

Γ = {(x, u(x)) : x ∈ Ω, ∃∇u(x)},
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and is oriented by the unit n-covector

η(x, u(x)) =
1√

1 + |∇u|2(x)
(e1,

∂u

∂x1
(x)) ∧ . . . ∧ (en,

∂u

∂xn
(x)) ,

where {e1, . . . , em} is the standard orthonormal basis of Rn. We can define the
linear functional on n-forms (n-current) Tu “integration on the graph”, by

ω 7→ 〈Tu, ω〉 =
∫

Γ

〈ω, η〉dHn ,

and the boundary of Tu as the (n− 1)-current ∂Tu given by

〈∂Tu, ω〉 = 〈Tu, dω〉 .

We can read formula (1.5) as a property of ∂Tu. In fact, using the area formula,
we have Li(φψ) = ∂Tu(φψdx̂i), where

dx̂i = (−1)i+1dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn,

so that (1.5) states precisely that the boundary of Tu is a measure when com-
puted on “horizontal forms” (i.e., forms with no dy). Formula (1.4), which
defines SBV0, requires that ∂Tu be a measure also when computed on (n− 1)-
forms with a vertical part. Roughly speaking, this is equivalent to requiring
that the traces u± be functions of bounded variation on S(u) (this is not pre-
cisely true, since S(u) may present a very complex structure). Moreover, we
prove in Proposition 3.11 that the approximate tangential derivatives ∇u± exist
Hn−1-a.e. on S(u), and ∫

S(u)

|∇u±| dHn−1 < +∞.

We denote by ∂vTu the vector of the measures µα; i.e., the components of
∂Tu corresponding to differential forms ϕdxα ∧ dy. The letter v refers to the
fact that we have in mind “vertical components”. The class SBV0(Ω) has the
following compactness property, proved in Theorem 3.10.
Compactness Theorem Let (uh) be a sequence in SBV (Ω,R)∩L∞(Ω), p > 1
and assume that

sup
h∈N

{∫
Ω

|∇uh|p dx+Hn−1
(
S(uh)

)
+ ‖uh‖∞

}
< +∞.

and that the sequence ‖∂vTuh‖(Ω×R) be bounded; then there exists a subsequence
(uh(k)) converging in L1

loc(Ω) to u ∈ SBV0(Ω,R) and ∂Tuh(k) weakly converges
to ∂Tu in Ω×R.
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As a subclass of SBV0(Ω,R) (that is, “SBV -functions with BV -traces on
S(u)”) we can consider the family of “SBV -functions with Sobolev traces on
S(u)”, that is, those SBV0 functions such that∫

S(u)

|∇u±|p dx < +∞

for some p ≥ 1, and such that the measure ∂vTu is determined by ∇u±; e.g., in
the case n = 2

〈∂vTu, φψ〉 = −
∫
S(u)

(
ψ(u+)∇u+ − ψ(u−)∇u−

)
φ(x)dH1 .

Unfortunately, this subclass is not compact: it is possible to find (see Exam-
ples 4.6 and 4.7) an example such that all hypotheses of the compactness the-
orem are satisfied and in addition ∇u±h are equi-bounded, but the limit u does
not possess Sobolev traces on S(u). This phenomenon is due to the fact that
S(uh) may converge only in a weak sense to S(u), losing area in the limit;
the phenomenon does not occur if we have no area loss, i.e., Hn−1(S(uh)) →
Hn−1(S(u)).

In the vector-valued case the definition of SBV0(Ω,Rm) is the same, requir-
ing that ∂Tu be a vector measure. Notice however that now we must take into
account all differential forms

ϕdxα ∧ dyβ ,

where α and β are multi-indices with |α| + |β| = n − 1. This means that we
will have to take into account also non-linear quantities involving minors of
the matrix ∇u. As in the scalar case, we prove a compactness theorem for
SBV0(Ω,Rm), under the additional hypothesis (analogous to the one in the
classical compactness theorems by Ball [12]) that all approximate determinants
are summable enough.

It is interesting to notice (see (5.6), (3.2) and Proposition 3.1) that the class
SBV p0 (Ω,Rm) consists of functions u such that the (distributional) determinant
of minors of ∇u can be split into an absolutely continuous measure with respect
to the Lebesgue measure and a measure absolutely continuous with respect to
Hn−1 S(u), computable in terms of ∇u±.

The plan of our paper is the following. In §2 we introduce the basic notions of
Geometric Measure Theory (rectifiable sets, approximate continuity and approx-
imate differentiability, BV functions, currents) that we will use in the sequel. In
particular, following the ideas of [22], [21] and using essentially the area formula,
we explain in Theorem 2.11 and Theorem 2.14 the structure of currents asso-
ciated to graphs on rectifiable sets. In §3 we introduce the space SBV0(Ω,R)
and we prove some of its properties. Moreover, we notice that SBV0(Ω,R) is
a proper subset of SBV (Ω,R) and we give several examples showing to what
extent the traces u+, u− are “functions with bounded variation on S(u)”. In
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§4 we define the class SBV p0 (Ω,R) of functions u ∈ SBV (Ω,R) with “Sobolev
traces on S(u)”, we show that the weak derivatives of ∇u± are precisely their
approximate differentials (thus extending to this context the Calderon-Zygmund
theorem) and we prove in Theorem 4.5 a closure property of this class. Finally,
in §5 we extend the definitions of §3 and §4 to vector-valued functions.

2 Rectifiable sets, SBV functions, currents

2.1 Rectifiable sets

In this paper Ω denotes an open set in Rn, Hk denotes the k-dimensional
Hausdorff measure in Rn, Hk E the measure Hk restricted to the set E.

Definition 2.1 (rectifiable sets) (see [19, 3.2.14]) We say that E ⊂ Rn is
countably Hk-rectifiable if Hk-almost all of E can be covered with a sequence of
C1 hypersurfaces Γi, i.e.

Hk
(
E \

∞⋃
i=1

Γi
)

= 0.

We say that E is Hk-rectifiable if E is countably Hk-rectifiable and Hk
(
E
)
<

+∞.

The approximate tangent space Tank
(
E, x

)
of a Hk-rectifiable set E at x is

the k-plane S ⊂ Rn such that, denoting by Eρ = ρ−1(E − x) the dilations of E
around x, we have

lim
ρ→0

∫
Eρ

φ(y) dHk(y) =
∫
S

φ(y) dHk(y) ∀φ ∈ C1
0 (Rn).

The map x 7→ Tank
(
E, x

)
is defined Hk-a.e. on E and is Hk-measurable (see

[19, 3.2.25]). An additional, useful property of this map is the locality (see [34,
Remark 11.5]):

Tank
(
E, x

)
= Tank

(
E′, x

)
for Hk-a.e. x ∈ E ∩ E′(2.1)

for any pair of Hk-rectifiable sets E, E′. Using this property, the approximate
tangent space can be defined even for countably Hk-rectifiable sets and this
extension still satisfies (2.1).

2.2 BV and SBV functions

Let u ∈ BV (Ω,Rm), the space of functions whose components have bounded
variation in Ω. We denote by S(u) the jump set of u, defined as the complement
of the Lebesgue set of u:

x 6∈ S(u) ⇐⇒ ∃z ∈ R such that lim
ρ→0

ρ−n
∫
Bρ(x)

|u(y)− z| dy = 0.
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It is well-known (see for instance [19, 4.5.9(16)]) that S(u) is countably Hn−1-
rectifiable. The matrix of measuresDu representing the distributional derivative
of u can be decomposed into its absolutely continuous part ∇uLn and its singu-
lar part Dsu with respect to the Lebesgue measure Ln. It is clear that u belongs
to the Sobolev space W 1,1(Ω,Rm) if and only if Du = ∇uLn, or, equivalently,
Dsu = 0.

Definition 2.2 (SBV functions) We say that u is a special function with
bounded variation in Ω, and we write u ∈ SBV (Ω,Rm), if Dsu is supported in
S(u); i.e., |Dsu|

(
Ω \ S(u)

)
= 0.

It is well-known (see [35], [36]) that for any BV function u the restriction of
Du to the jump set can be represented by the following formula∫

S(u)

φ(x)Du =
∫
S(u)

φ(x)(u+(x)− u−(x))⊗ ν(x) dHn−1(x)(2.2)

where ν(x) is a unit normal to Tann−1
(
S(u), x

)
and u± are the traces on both

sides of S(u), defined for Hn−1-almost every x ∈ S(u):

lim
ρ→0+

ρ−n
∫
B±ρ (x)

|u(y)− u±(x)| dy = 0(2.3)

where

B±ρ (x) =
{
y : ±〈y − x, ν(x)〉 ≥ 0

}
.(2.4)

Note that a change of sign of ν induces a permutation of u+, u−, and only
for scalar functions there is a canonical choice of the sign of ν which ensures
that u+(x) > u−(x). To simplify our notation, in what follows we omit the
dependence of ν on u and the dependence of u+ and u− on ν (our formulas will
be invariant under changes of sign of ν).

By (2.2) we infer that u ∈ SBV (Ω,Rm) if and only if the following integra-
tion by parts formula holds∫

Ω

u
∂φ

∂xi
dx = −

∫
Ω

φ
∂u

∂xi
dx−

∫
S(u)

φ
(
u+ − u−

)
νi dHn−1(2.5)

for any φ ∈ C1
0 (Ω) and i ∈ {1, . . . , n}. Hence, for a SBV function u, Du is the

sum of an absolutely continuous measure and of a measure absolutely continuous
with respect to Hn−1 S(u).

The space SBV has been introduced in [16] to give a rigorous mathematical
formulation to several variational problems involving both a “volume” energy
and a “surface” energy. The utility of this space of functions in the Calculus of
Variations is shown by the following theorem, proved in [3], [7].
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Theorem 2.3 (compactness theorem) Let (uh) ⊂ SBV (Ω)∩L∞(Ω), p > 1
and assume that

sup
h∈N

{∫
Ω

|∇uh|p dx+Hn−1
(
S(uh)

)
+ ‖uh‖∞

}
< +∞.

Then, there exists a subsequence (uh(k)) converging in L1
loc(Ω) to u ∈ SBV (Ω).

Moreover, ∇uh(k) weakly converges to ∇u in Lp(Ω,Rn) and Hn−1 S(uh(k))
weakly converges in Ω to a measure µ greater than Hn−1 S(u).

A similar compactness result is true for vector valued SBV functions. Re-
cently, the partial regularity of solutions of some free discontinuity problems has
been established (see [8], [9]).

2.3 Approximate continuity and differentiability

In this section we assume that M ⊂ Rn is Hk-rectifiable for some integer k ∈
[1, n], u : M → Rm is a Borel function and x0 ∈M is a point where Tank

(
M,x0

)
is defined. In particular, the k-dimensional density of M at x0 is 1.

Definition 2.4 We say that u is Hk-approximately continuous at x0 if there
exists y0 ∈ Rm such that all the sets

Eε :=
{
x ∈M \ {x0} : |u(x)− y0| > ε

}
(2.6)

have k-dimensional density 0 at x0. The vector y0, if it exists, is unique and we
write

y0 = ap- lim
x→x0

u(x).

Remark 2.5 In the definition above, the convergence of u(x) to y0 is under-
stood in a measure theoretic sense, that is, neglecting not only sets of zero
Lebesgue measure, but also sets with zero density at x0. Using Lusin’s the-
orem, it can be proved that u is Hk-approximately continuous at Hk-almost
every point x0 ∈M .

It is easy to see that any Lebesgue point for u, i.e., a point x0 ∈ M such
that

lim
ρ→0+

ρ−k
∫
M∩Bρ(x0)

|u(x)− y0| dHk(x) = 0

is a point of approximate continuity for u, and the opposite implication holds if
u is bounded. The advantage of the notion of approximate continuity is that it
makes sense even for maps which are not locally summable. For instance, one
can notice that for a BV functions u the maps u+(x) and u−(x) need not be
summable on S(u).

In the “differential calculus on rectifiable sets” the role of the classical dif-
ferential is played by the approximate one, defined as follows.
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Definition 2.6 Let m = 1. We say that u is Hk-approximately differentiable
at x0 if there exists a vector v ∈ Tank

(
M,x0

)
such that

ap- lim
x→x0

|u(x)− u(x0)− 〈v, x− x0〉|
|x− x0|

= 0.

The vector v, called approximate differential, is uniquely determined and de-
noted by ∇Mu(x0) (we will drop the superscript M when there is no ambiguity
on the domain of u, in particular when M is open). We say that u is Hk-
approximately differentiable on M if ∇Mu(x) is defined for Hk-almost every
x ∈ M . The notion of approximate differentiability can also be extended to
vector functions, arguing componentwise, and the usual rules of calculus can be
extended to approximate differentials.

A very useful property of approximate differentials is the locality, that we
can state as follows.

Proposition 2.7 Let M , M ′ be Hk-rectifiable sets and let u : M → Rm, v :
M ′ → Rm be Borel functions. If u is Hk-approximately differentiable on M
and u ≡ v on M ∩M ′ then the function v is Hk-approximately differentiable at
x and ∇Mu(x) = ∇M ′v(x) for Hk-a.e. x ∈M ∩M ′.

Proof. For Hk-a.e. x0 ∈ M ∩ M ′ the two approximate tangent spaces
Tank

(
M,x0

)
and Tank

(
M ′, x0

)
are both defined and coincide. Moreover, since

M ′ and M ∩M ′ are Hk-rectifiable, Hk-a.e. x0 ∈ M ′ ∩M is a point of density
1 for M ′ and M ∩M ′ (see [18]). In particular, we have

Tank
(
M,x0

)
= Tank

(
M ′, x0

)
and lim

ρ→0+

Hk
(
Bρ(x0) ∩M ′ \M

)
ρk

= 0

and there exists ∇Mu(x0) for Hk-a.e. x0 ∈ M ∩M ′. It is easy to check, using
the definition of approximate differential, that ∇M ′v(x0) = ∇Mu(x0) for any
x0 ∈M ∩M ′ with these properties.

We recall now a classical theorem, due to Calderon-Zygmund (see for in-
stance [18]):

Theorem 2.8 Let u ∈ BV (Ω,Rm). Then,

lim
ρ→0+

ρ−n
∫
Bρ(x0)

|u(x)− u(x0)− 〈∇u(x0), x− x0〉|
|x− x0|

dx = 0 for a.e. x0 ∈ Ω.

In particular, u is Hn-approximately differentiable on Ω and the approximate
differential coincides almost everywhere with ∇u.
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2.4 Currents

Let A ⊂ Rs be an open set. A k-dimensional current T in A is a linear functional
on the space of k-differential forms in A with coefficients in C∞0 (A) such that

ϕ 7→ 〈T, ϕdxα〉

is a distribution in A for any multi-index α of order k. Hence, a k-dimensional
current can be viewed as a vector distribution whose components are indexed
by multi-indices α of order k in Rs.

A k-current T is representable by integration in A if all its components are
measures of finite total variation in A. By Riesz’s theorem, this is equivalent to
require the existence of constants Cα such that∣∣〈T, ϕdxα〉∣∣ ≤ Cα‖ϕ‖∞ ∀ϕ ∈ C1

0 (A)

for any multi-index α of order k. Any current representable by integration can be
extended in a natural way to forms with bounded Borel coefficients in A. Note
that 0-dimensional and s-dimensional currents representable by integration can
be identified with scalar measures (in this case there is only one component).

Among currents representable by integration, the integral ones are those
associated with integration on rectifiable sets, endowed with a multiplicity and
an orientation of the tangent space. Namely, we say that a k-current T is
integral if there exist a Hk-rectifiable set E and Borel functions θ : E → N and
η1, . . . , ηk : E → Rs such that the simple k-vector

η(x) := η1(x) ∧ . . . ∧ ηk(x)

has length equal to 1, provides an orientation of Tank
(
E, x

)
(i.e., the vectors

ηi(x) span the space) for Hk-a.e. x ∈ E and

〈T, ϕdxα〉 =
∫
E

θ(x)ϕ(x)〈η(x), dxα〉 dHk(x) ∀ϕ ∈ C∞0 (A)(2.7)

where 〈·, ·〉 is the duality between k-vectors and k-covectors.
In order to be closer to the classical theory of integration of differential forms,

we will use the shorter notation ∫
E

θϕdxα

for the right hand side in (2.7). With this notation, the dependence on the
orientation will not be emphasized, but of course we will always specify the
orientation of the sets we are dealing with. In the particular case of integrations
on codimension-one sets E (as the jump set of a BV function) we will choose a
unit normal ν(x) to Tans−1

(
E, x

)
and we will orient the approximate tangent

space to E by the simple, unit (s− 1) vector

η = η1 ∧ . . . ∧ ηs−1
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uniquely determined by the condition

ν ∧ η = dx1 ∧ . . . ∧ dxs.

The vector η defined in this way is usually denoted by ∗ν.
If k ≥ 1 the boundary of a k-dimensional current T is the (k−1)-dimensional

current ∂T defined by
〈∂T, ω〉 = 〈T, dω〉

where d denotes the usual exterior differential operator mapping (k − 1)-forms
in k-forms. When dealing with integral currents associated to the integration on
smooth oriented manifolds, this definition of boundary is consistent with Stokes
theorem (up to a change of sign).

A fundamental result in the theory of currents has been established by
Federer-Fleming (see [19], [26]):

Theorem 2.9 (boundary rectifiability) Let T be an integral k-current in
A, and assume that ∂T is representable by integration. Then ∂T is integral.

The Federer-Fleming theorem can be viewed as the generalization to the
theory of currents of De Giorgi’s theorem on the structure of the distributional
derivative of sets of finite perimeter (that is, the boundary of the s-current
associated to the integration on the set).

2.5 Currents associated to graphs

We are interested in the connection between the approximate differentiability
properties of a function and the rectifiability properties of its graph (see also
[22], [10]). We will use this connection on one hand to associate to a function
u ∈ BV (Ω) an integral n-current Tu in Ω × R whose boundary gives much
information on u, and on the other hand to obtain differentiability properties
of the traces u+(x), u−(x) on the jump set S(u) by the rectifiability of their
graph.

Definition 2.10 For any j × l matrix A and any integer k ∈ [1,min{j, l}] we
define

Mk(A) =
√∑
B⊂A

(detB)2

where B varies among the k × k minors of A.

If A is the Jacobian of a parametrization map of a k-dimensional manifold
Γ contained in Rl then the quantity Mk(A) is the k-dimensional area element.
It reduces to |A| and to |det(A)| in the extreme cases k = 1 and k = l.

In the following theorem we assume that M ⊂ Rn is contained in countably
many C1 hypersurfaces of dimension k and Hk

(
M
)
< +∞ (this assumption is

slightly stronger than Hk-rectifiability).
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Theorem 2.11 Let M ⊂ Rn be contained in countably many C1 hypersurfaces
of dimension k with Hk

(
M
)
< +∞, let u : M → Rm be Hk-differentiable at

every point in M , and let

Γ :=
{(
x, u(x)

)
: x ∈M

}
⊂ Rn ×Rm

be the graph of u on M . Then
(i) Γ is countably Hk-rectifiable and

Hk
(
Γ
)

=
∫
M

Mk(JΦ) dHk,(2.8)

where Φ(x) = (x, u(x)) and JΦ is the linear map

v ∈ Tank
(
M,x

)
7→
(
v,∇Mu(x)v

)
.

(ii) For Hk almost any (x, y) ∈ Γ the unit k vector

η =
σ1 ∧ . . . ∧ σk

Mk(JΦ)
with σi(x, y) =

(
vi,∇Mu(x)vi

)
(where v1, . . . , vk is an orthonormal basis of Tank

(
M,x

)
) induces an orientation

of Γ.
(iii) If Hk

(
Γ
)
< +∞ and the orientation of Γ is induced by the orientation of

M as in (ii), then we have∫
Γ

ϕ(x, y)dxα ∧ dyβ =
∫
M

ϕ(x, u(x))dxα ∧ duβ(2.9)

for any k-differential form ϕdxα∧dyβ in Rn+m with ϕ bounded Borel function.

Proof. All the statements follow by the classical area formula for Lipschitz
functions. In fact, M can be covered by a family of sets Mh such that the
restriction of u to Mh is a Lipschitz function (see [19], Theorem 3.1.8). The
locality properties of the approximate differentials allow a restriction to Mh,
where the area formula can be applied (see [22] for details).

Definition 2.12 Let u ∈ BV
(
Ω,Rm

)
. By Theorem 2.8 the function u is Hn-

differentiable in Ω. Assuming Mn(JΦ) ∈ L1(Ω) (with Φ(x) = (x, u(x))), we
will denote by Tu the n-current given by Theorem 2.11; i.e., the integral current
associated to the graph of u with multiplicity 1 and orientation induced by the
canonical one in Ω. By (2.9), Tu acts as follows

〈Tu, ϕdxα ∧ dyβ〉 =
∫

Ω

ϕ(x, u(x))dxα ∧ duβ(2.10)

for any bounded Borel function ϕ defined in Ω × Rm. Notice that in the in-
tegration on the right hand side is involved a minor of ∇u of the same order
of β.

12



The compatibility condition between the orientation of the graph and the
orientation of the basis used in Theorem 2.11(ii) can be rephrased as follows.

Definition 2.13 Assume that Γ is a Hk-rectifiable set in Rn+m and let π :
Rn+m → Rn be the orthogonal projection on the first n variables. Then,
denoting by M the projection of Γ on Rn and denoting by η(x), σ(x, y) simple
k-vectors orienting M and Γ respectively, we say that the orientations of Γ and
M are compatible if

π(σ1(x, y)) ∧ . . . ∧ π(σk(x, y)) = λ(x, y) η1(x) ∧ . . . ∧ ηk(x)

with λ(x, y) ≥ 0 for Hk-almost every (x, y) ∈ R.

Theorem 2.14 Let M ⊂ Rn be a k-rectifiable set, u : M → Rm, Γ ⊂M ×Rm

be the graph of u and assume that Γ is Hk-rectifiable. Then
(i) the function u is Hk-approximately differentiable on M and

Hk
(
Γ
)
≥
∫
M

Mk(JΦ) dHk(2.11)

where Φ(x) = (x, u(x)) and JΦ is the linear map

v ∈ Tank
(
M,x

)
7→
(
v,∇Mu(x)v

)
.

(ii) If Hk
(
Γ
)
< +∞ and the orientations of M and Γ are compatible as in

Definition 2.13 then we have∫
Γ

ϕ(x, y)dxα =
∫
M

ϕ(x, u(x))dxα(2.12)

for any multi index α in Rn of order k and any bounded Borel function ϕ.

Proof. Using the locality properties of approximate tangent spaces and
of approximate differentials it is not restrictive to assume that Γ is a compact
subset of a k-dimensional C1 surface Γ0. Let S(x, y) be the (classical) tangent
space to Γ0 at (x, y) and let π : Rn+m → Rn be the projection on the first n
coordinates.

We denote by Γ1 ⊂ Γ the non vertical part of Γ; i.e., the set of points
(x, y) ∈ Γ such that π

(
S(x, y)

)
is a k-dimensional space. Since the rank of the

restriction of π to S(x, y) is strictly less than k for any (x, y) ∈ Γ \ Γ1, the
area formula (see [18]) implies that the set π(Γ \ Γ1) is Hk-negligible. We will
prove that u is approximately differentiable at any point x0 ∈ π(Γ1) such that
Tank

(
M,x0

)
exists. Indeed, if x0 ∈ π(Γ1) is such a point then, by the implicit

function theorem the surface Γ0 coincides for r sufficiently small with the graph
of a C1 function v defined in π

(
Γ0 ∩ Br(x0, u(x0))

)
. Denoting by M ′ this set,

the functions u and v coincide in π
(
Γ∩Br(x0, u(x0))

)
, which is contained in M ′

13



and contains M ∩Bs(x0) for s sufficiently small. The definition of approximate
differential shows that, in this situation, the classical differentiability of v at x0

implies the approximate differentiability of u at x0. Hence, the approximate
differentiability of u is proved.

Finally, since u is Hk-approximately differentiable in M , (i) and (ii) follow
by the area formula arguing as in Theorem 2.11.

Remark 2.15 The main difference between Theorem 2.11 and Theorem 2.14 is
that in the latter the function u need not be approximately differentiable on all
of M , hence Γ may contain “vertical parts” which are responsible for the strict
inequality in (2.11). For this reason, in (2.12) we are only able to carry from
Γ to M the integration of “horizontal” differential forms; i.e., those containing
no dyj .

Let us consider, for instance, the graph of the Cantor-Vitali function u(t) :
[0, 1]→ [0, 1]. In this case ∫ 1

0

√
1 + (u′)2 dt = 1

because u′ = 0 almost everywhere in [0, 1]. On the other hand, since Γ is a
connected set containing (0, 0) and (1, 1), we have H1

(
Γ
)
≥
√

2 > 1 (a more
accurate projection argument shows that H1

(
Γ
)

= 2). Similarly, we see that∫ 1

0

ϕ(t, u(t))u′(t) dt = 0

while an approximation argument shows that∫
Γ

ϕ(t, y) dy =
∫ 1

0

ϕ(t, u(t))Du(t)

and this integral is not equal to 0 if, for instance, ϕ(t, u(t)) is strictly positive
on the Cantor set (the support of Du).

We conclude this section by introducing functionals on graphs corresponding
to the integration of a power of the gradient on the basis.

Let Γ ⊂ Rn
x ×Rm

y be a Hk-rectifiable set, let {ξi(x, y)} be an orthonormal
basis of Tank

(
M, (x, y)

)
. The vector ξ = ξ1 ∧ . . .∧ ξk provides an orientation of

Γ. Similarly, we denote by v1 ∧ . . . ∧ vk an orientation of π(Γ), where π is the
projection on the x variables. We define

ξ0 := 〈ξ, dv1 ∧ . . . ∧ dvk〉

ξ1
i,j := 〈ξ, dv1 ∧ . . . dvi−1 ∧ dyj ∧ dvi+1 ∧ . . . dvk〉.
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We assume that the two orientations are compatible; i.e., ξ0(x, y) ≥ 0 for any
(x, y) ∈ Γ. For p > 1 we set

φp(ξ) :=


|ξ1|p

(ξ0)p−1
if ξ0 > 0;

+∞ otherwise.

Using the inequality |a + b|p ≤ 2p−1(|a|p + |b|p) it is not hard to see that φp is
a convex, lower semicontinuous, positively 1-homogeneous function in the space
of k-vectors in Rn ×Rm. Finally, we set

Fp(Γ) =
∫

Γ

φp(ξ) dHk.

Theorem 2.16 Under the assumptions of Theorem 2.11, we have∫
M

|∇Mu|p dHk = Fp(Γ) ∀p > 1.

Conversely, assume that Γ is the graph of a function u defined on a Hk-rectifiable
set M ⊂ Rn, and let M ′ ⊂M be a set such that Hk

(
M \M ′

)
= 0 and (u,M ′)

satisfy the assumptions of Theorem 2.11. Then, denoting by Γ′ the graph of u
on M ′, Fp(Γ) < +∞ for some p > 1 implies Hk

(
Γ \ Γ′

)
= 0.

Proof. We first assume that u, M, Γ are as in Theorem 2.11. Choosing
the orientation as in statement (ii) of the theorem we find

∇Muj(vi)
Mk(JΦ)

= ξ1
i,j ,

1
Mk(JΦ)

= ξ0

hence ∫
M

|∇Mu(x)|p dHk(x) =
∫
M

|∇Mu(x)|p

Mk(JΦ(x))
Mk(JΦ(x)) dHk(x)

=
∫

Γ

|ξ1|p

|ξ0|p−1
dHk = Fp(Γ).

The second part of the statement follows by the same argument of Theo-
rem 2.14, noticing that in this case Hk

(
Γ \ Γ1

)
= 0. Indeed, Fp(Γ) < +∞ for

some p > 1 implies ξ0 > 0 for Hk-a.e. (x, y) ∈ Γ, hence the rank of π restricted
to the tangent space of Γ at (x, y) is k for Hk-a.e. (x, y) ∈ Γ.

Remark 2.17 The functional Fp defined above is not lower semicontinuous
with respect to the weak convergence of currents. We can consider n = 2,
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m = 1, and the sequence (Th) of 1-dimensional currents with support on the
sets

Γh = {(x, y, z) : x =
1
h

cos(ht), y =
1
h

sin(ht), z = t, 0 < t < 1} .

and orientation given by

ξh(x, y, z) =
1√
2

(−hy, hx, 1).

We provide γh = π(Γh) with the orientation given by vh(x, y) = (−hy, hx),
so that ξ0

h = ξ1
h = 1/

√
2. The weak limit of Th is the current with support

on Γ = {(0, 0, t) : 0 < t < 1}, and constant orientation e3, so that ξ0 = 0,
and Fp(Γ) = +∞, whatever orientation we provide γ = π(Γ) = {0} with.
Nevertheless we have

Fp(Γh) =
∫

Γh

1√
2
dH1 = 1 .

Note that the vector measures (ξ0
h, ξ

1
h)H1 Γh weakly converge to the measure

(1, 1)H1 Γ.

3 Functions of class SBV0(Ω, R)

Let u ∈ SBV
(
Ω
)

= SBV
(
Ω,R

)
and let us compute the boundary of the integral

current Tu of Definition 2.12 on (n − 1)-differential forms ϕdx̂i, where dx̂i by
definition satisfies

dxi ∧ dx̂i = (−1)i+1dx1 ∧ . . . ∧ dxn.

In what follows we will denote by T (Ω×R) the class of C1-functions ϕ(x, y)
such that |ϕ|+ |∇ϕ| is bounded and the support of ϕ is contained in K ×R for
some compact set K ⊂ Ω. This class of functions, larger than C1

0 (Ω×R), will
be technically more convenient since we are going to integrate over graphs.

Let ϕ ∈ T (Ω × R) and U(x) = ϕ(x, u(x)); applying (2.5) to the SBV
function U (see [[7]]) and using the identities

∂U

∂xi
=
∂ϕ

∂xi
+
∂ϕ

∂y

∂u

∂xi
, U+(x) = ϕ(x, u+(x)), U−(x) = ϕ(x, u−(x))

we get (see also (2.10))

〈Tu, d
(
ϕdx̂i

)
〉 = 〈Tu,

∂ϕ

∂xi
dxi ∧ dx̂i +

∂ϕ

∂y
dy ∧ dx̂i〉

= (−1)i+1

∫
Ω

(
∂ϕ

∂xi
(x, u(x)) +

∂ϕ

∂y
(x, u(x))

∂u

∂xi
(x)
)
dx
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= (−1)i+1

∫
Ω

∂U

∂xi
dx = (−1)i

∫
S(u)

(
U+(x)− U−(x)

)
νi dHn−1

= (−1)i
∫
S(u)

(
ϕ(x, u+(x))− ϕ(x, u−(x))

)
νi(x) dHn−1.(3.1)

In particular, if ϕ ∈ C∞0 (Ω × R) then this identity shows that for a func-
tion u ∈ SBV

(
Ω
)

with Hn−1-rectifiable jump set the components dx̂i of ∂Tu
are representable by integration. Actually, it turns out that this is a charac-
terization of SBV functions with this property. This characterization has been
used in [7] to give a new proof of the compactness properties of SBV , stated in
Theorem 2.3:

Theorem 3.1 (geometric characterization of SBV ) Let u ∈ BV
(
Ω
)

and
let Tu be the graph of u, defined in (2.12). Then, the following properties are
equivalent:
(i) u ∈ SBV

(
Ω
)

and Hn−1
(
S(u)

)
< +∞;

(ii) For any i ∈ {1, . . . , n} there exists a constant Ci such that∣∣〈Tu, d(ϕdx̂i)〉∣∣ ≤ Ci‖ϕ‖∞ ∀ϕ ∈ T
(
Ω×R).

In this case (3.1) holds.

Remark 3.2 The geometric characterization of SBV functions with a Hn−1-
rectifiable jump set can be restated without using currents by requiring the
existence of Radon measures µi in Ω×R such that the following integration by
parts formula holds∫

Ω

( ∂ϕ
∂xi

(x, u(x)) +
∂ϕ

∂y
(x, u(x))

∂u

∂xi
(x)
)
dx =

∫
Ω×R

ϕdµi(3.2)

for any ϕ ∈ T (Ω × R). Indeed, we need only to invoke Riesz representation
theorem and to remark that the left hand side in (3.2) is (−1)i+1〈Tu, d(ϕdx̂i)〉.
Moreover, (3.1) shows that the measures µi are given by

µi = −
(

Φ+
#

(
νiHn−1 S(u)

)
− Φ−#

(
νiHn−1 S(u)

))
(3.3)

where Φ±(x) =
(
x, u±(x)

)
.

Theorem 3.1 shows that membership to SBV is related to the properties
of the boundary of Tu; i.e., to the possibility of representing by integration
some components (the “horizontal” ones) of ∂Tu. Assuming n ≥ 2, this sug-
gests the following definition, in which we require all components of ∂Tu to be
representable by integration.
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Definition 3.3 (the class SBV0) Let u ∈ SBV
(
Ω
)

with a Hn−1-rectifiable
jump set. We say that u belongs to the class SBV0

(
Ω
)

if for all multi-index α
in Rn of order (n− 2) there exists a constant Cα such that∣∣〈Tu, d(ϕdxα ∧ dy)〉∣∣ ≤ Cα‖ϕ‖∞ ∀ϕ ∈ T

(
Ω×R

)
.(3.4)

In particular, ∂Tu is representable by integration in Ω×R.

As in (3.2), we can formulate the condition (3.4) without using explicitly
Tu. Let C1

b (R) be the space of bounded, Lipschitz, C1 functions ψ(y); for any
function φ ∈ C1

0 (Ω) the product ϕ(x, y) := φ(x)ψ(y) belongs to T (Ω×R). We
use these products in the following

Theorem 3.4 Let u ∈ SBV
(
Ω
)

with Hn−1(S(u)) < +∞. Then, u ∈ SBV0

(
Ω
)

if and only if, for any multi index α in Rn of order (n−2) there exists a measure
µα with finite total variation in Ω×R such that∫

Ω×R

φ(x)ψ(y) dµα(x, y) =
∫
S(u)

(∫ u+(x)

u−(x)

ψ(y) dy
)
dxα ∧ dφ(3.5)

for any φ ∈ C1
0 (Ω) and ψ ∈ C1

b (R). If (3.5) holds, then µα is the α-th component
of ∂Tu.

Proof. Let i1, i2 be indices such that

dxi1 ∧ dxi2 ∧ dxα = dx1 ∧ . . . ∧ dxn.

Taking into account (2.10), for any φ ∈ C2
0 (Ω) and any ψ ∈ C1

b (R) we have

〈Tu, d
(
φψdxα ∧ dy

)
〉 =

2∑
j=1

〈Tu, ψ
∂φ

∂xij
dxij ∧ dxα ∧ dy〉

=
2∑
j=1

∫
Ω

ψ(u)
∂φ

∂xij
dxij ∧ dxα ∧ du

=
2∑
j=1

∫
Ω

∂φ

∂xij
dxij ∧ dxα ∧ dΨ(u)

= (−1)n−2

∫
Ω

( ∂φ

∂xi1

∂Ψ(u)
∂xi2

− ∂φ

∂xi2

∂Ψ(u)
∂xi1

)
dx1 ∧ . . . ∧ dxn

= (−1)n−1

∫
Ω

Ψ(u)
(

∂2φ

∂xi2∂xi1
− ∂2φ

∂xi1∂xi2

)
dx

+(−1)n−1

∫
S(u)

(
Ψ(u+)−Ψ(u−)

)( ∂φ

∂xi1
νi2 −

∂φ

∂xi2
νi1

)
dHn−1

= (−1)n
∫
S(u)

(
Ψ(u+)−Ψ(u−)

)
dφ ∧ dxα
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where Ψ is a primitive of ψ. The last equality follows easily by the fact that
S(u) is oriented by ∗ν and

vi1νi2 − vi2νi1 = −〈v ∧ dxα, ∗ν〉

for any co-vector v ∈ Rn. By approximation, the same formula holds in the
case φ ∈ C1

0 (Ω). Hence, if u ∈ SBV0

(
Ω
)

then (3.5) holds for a suitable measure
µα. Conversely, if (3.5) holds, then (3.4) is fulfilled by functions ϕ(x, y) of the
form φ(x)ψ(y), with Cα = |µα|(Ω ×R). A standard approximation argument
shows that the inequality is true in the general case.

Remark 3.5 In the case n = 2, (3.5) simply becomes∫
Ω×R

φ(x)ψ(y) dµ(x, y) =
∫
S(u)

(∫ u+(x)

u−(x)

ψ(y) dy
)
∂φ

∂τ
dH1(3.6)

for any φ ∈ C1
0

(
Ω
)
, ψ ∈ C1

b

(
R
)
, where τ = (τ1, τ2) = ∗ν = (−ν2, ν1).

As ∂Tu is related to the integration of the graphs of u± (see (3.1)), we may
heuristically think of SBV0

(
Ω
)

as the class of functions u ∈ SBV
(
Ω
)

such
that S(u) is Hn−1-rectifiable and u+, u− are “functions of bounded variation”
on S(u). The following examples illustrate this idea and show that there are
functions in SBV

(
Ω
)

with Hn−1-rectifiable jump set which do not belong to
SBV0

(
Ω
)
.

Example 3.6 Let n = 2 and let f+, f− ∈ L1(R). Denoting by H+ = {y >
0}, H− = {y < 0} the upper and lower half planes of R2, respectively, it is
well-known (see Gagliardo [20], Alberti [2]) that we can find functions u± ∈
W 1,1(H±) such that u±(x, y) = 0 for |y| ≥ 1, whose trace on ∂H± is f±. Let

u(x, y) =

u+(x, y) if y > 0;

u−(x, y) if y ≤ 0.

Then, u ∈ SBV
(
R2
)

and its jump set is contained (up to H1-negligible sets) in
the horizontal line. Moreover, choosing as normal the vector e2, we have

u+(x, 0) = f+(x), u−(x, 0) = f−(x)

for a.e. x ∈ R such that f+(x) 6= f−(x).
Let us first choose f− = 0. Then, using (3.6) with ψ ≡ 1, it is not hard to

see that u ∈ SBV0

(
R2
)

if and only if f+ ∈ BV
(
R
)

and∫
R2
φ(x1, x2) dµ =

∫
R

φ(t, 0)Df+(t) ∀φ ∈ C1
0

(
R
)
.
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In particular, choosing f+ /∈ BV
(
R
)
, we have an example of a function in

SBV
(
R2
)
, withHn−1-rectifiable jump set, which does not belong to SBV0

(
R2
)
.

Let u1(x, y) = y/|y|, and let u2 ∈W 1,1(R2) be a function with trace on the
x-axis f(x) = u2(x, 0) with 0 ≤ f ≤ 1. Then, ui ∈ SBV0(Ω) for all bounded
open subsets Ω of R2 but if f 6∈ BV (I), where Ω∩{y = 0} = I×{0}, we deduce
immediately from (3.6) that u1 + u2 6∈ SBV0(Ω). This shows that SBV0(Ω) is
not a vector space.

Example 3.7 Given a set E ⊂ (0, 1) with infinite perimeter, we choose f+ =
χE and f− = χ(0,1)\E . In this case, using (3.6) as in the previous example
and assuming by contradiction that u ∈ SBV0

(
(0, 1) ×R

)
, we would find the

identity ∫
(0,1)×R2

φ(x1, x2) dµ = −
∫ 1

0

(f+ − f−)φx1(x1, x2) dx1

which would easily imply that f+ − f− is a BV function. However, since
f+ − f− = χE − χ(0,1)\E = 2χE − 1, this is false.

Note that in this example
{
u+(x), u−(x)

}
= {0, 1} for H1-almost every x ∈

S(u), hence there is an orientation of S(u) for which u+ = 1 and u− = 0. This
example shows that membership to SBV0 should be understood as a “regularity”
property of the triplet (u+, u−, ν) and not of the single components.

Example 3.8 We can easily build a SBV (Ω) function u with ∇u = 0 in Ω,
∇u+ = 0, ∇u− = 0 Hn−1 a.e. on S(u), but such that u 6∈ SBV0, as follows. Let
g ∈W 1,1((0, 1))∩C1((0, 1)) be such that 0 ≤ g ≤ 1 and g(x) = 0⇐⇒ 1/x ∈ N.
We take n = 2 and Ω = (0, 1)×(−1, 1) ⊂ R2. We define u : (0, 1)×(−1, 1)→ R
by

u(x, y) =


3 if 0 < y < g(x), [1/x] even,
2 if 0 < y < g(x), [1/x] odd,
1 if y < 0,
0 otherwise

([1/x] denotes the integer part of 1/x). This example shows that we cannot
expect the regularity of ∇u to increase the regularity of the traces u±. At the
same time, taking

uh(x, y) =

u(x, y) if x > 1/h,
1 if x ≤ 1/h,
0 otherwise,

since uh ∈ SBV0, and uh → u in L1, this example also shows that the limit
of a sequence in SBV0 may fail to belong to this space, even if ∇uh = 0 and
Hn−1(S(uh))→ Hn−1(S(u)) (for closure properties of SBV0 see Theorems 3.10
and Theorem 4.5 below).
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Example 3.9 Let K ⊂ [0, 1] be the Cantor set and let v : [0, 1] → R be a
continuous function with infinite total variation in (0, 1), locally constant in
(0, 1) \K. Denoting by Ji = (ai, bi) the connected components of (0, 1) \K, we
can define f+ and f− as follows:

f±(t) =

 v(t) if t ∈ K;

v(t)± ci(t− ai)(bi − t) if t ∈ Ji for some i.

Choosing properly the constants ci > 0 we have∫
(0,1)\K

|f±′|(t) dt =
∞∑
i=1

ci

∫ bi

ai

|bi − ai − 2t| dt < +∞.

Let ψ ∈ C1
b (R) and let Ψ be a primitive of ψ. Since K is negligible, f+ = f− in

K and v is constant in Ji, the distributional derivative of uψ := Ψ(f+)−Ψ(f−)
is given by

∞∑
i=1

[
ψ(f+)f+′ − ψ(f−)f−′

]
L1 Ji,

and this is a finite measure by our choice of ci.
In this situation, (3.6) becomes∫

(0,1)×R2
φ(x1, x2)ψ(y) dµ =

∫
(0,1)

φ(t, 0)Duψ.

Hence, the formula is fulfilled by a finite measure µ, given by S+ − S−, where
S± are the 1-currents in R2 ×R associated to the integration on the graphs of
f± on (0, 1) \K (viewed as a subset of R2).

This shows that the function u constructed as in Example 3.6 belongs to
SBV0

(
(0, 1)×R

)
. However, since

Df± = Dv ±
∞∑
i=1

ci
(
bi − ai − 2t

)
χ(ai,bi)L

1

in the sense of distributions, neither f+ nor f− belong to BV
(
(0, 1)

)
.

In this case S(u) = ((0, 1) \K) × {0} and f± ∈ BV ((0, 1) \K). However,
modifying the construction above following Example 3.8, we can also give an
example where S(u) ⊃ (0, 1)×{0}, and u± have unbounded variation on (0, 1)×
{0}.

Similar examples can be repeated in any dimension (in this case it is nec-
essary to use (3.5)). The last example shows that, even though S(u) coincides
(up to Hn−1-negligible sets) with a smooth hypersurface, the functions u+ and
u− need not be BV along S(u).
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Regarding ∂Tu as a vector measure in Ω × R, we will denote by ∂vTu the
vector of the measures µα in (3.5); i.e., the components of ∂Tu corresponding
to differential forms ϕdxα ∧ dy. The letter v refers to the fact that we have in
mind “vertical components” (remember that for a function u ∈ SBV

(
Ω
)

the
“horizontal components” of ∂Tu can be already controlled with the area of the
jump set of u).

The class SBV0

(
Ω
)

has the following compactness property.

Theorem 3.10 (compactness of SBV0

(
Ω
)
) Let (uh) ⊂ SBV (Ω) be as in

Theorem 2.3 and assume in addition that the sequence ‖∂vTuh‖(Ω × R) be
bounded. Then, the limit u of any subsequence (uh(k)) given by Theorem 2.3
belongs to SBV0

(
Ω
)

and ∂Tuh(k) weakly converges to ∂Tu in Ω×R.

Proof. By Theorem 2.3 we can assume that the whole sequence (uh) con-
verges in L1

loc(Ω) to u ∈ SBV
(
Ω
)

with Hn−1
(
S(u)

)
< +∞. Let ϕ ∈ T (Ω×R),

and let ω be the (n− 1) form given by ϕdxα ∧ dy. Then, the weak convergence
of the gradients and the identity

〈Tuh , dω〉 =
n∑
i=1

∫
Ω

∂ϕ

∂xi
(x, uh)dxi ∧ dxα ∧ duh

(see (2.10)) imply that 〈Tuh , dω〉 converges to 〈Tu, dω〉 as h→ +∞, because

lim
h→+∞

∫
Ω

∣∣∣∣ ∂ϕ∂xi (x, uh)− ∂ϕ

∂xi
(x, u)

∣∣∣∣ dx = 0.

For any ϕ ∈ C1
0 (Ω×R) we have∣∣〈Tuh , d(ϕdxα ∧ dy)〉∣∣ ≤ ‖ϕ‖∞ sup

h∈N
‖∂vTuh‖(Ω×R).

By approximation, the same inequality holds with ϕ ∈ T (Ω × R), therefore
passing to the limit as h→ +∞ we obtain that u ∈ SBV0

(
Ω
)
.

As in the case of SBV functions, it is desirable to have a characterization of
∂vTu in terms of pointwise quantities, such as traces and approximate differen-
tials. A first step in this direction is the following:

Proposition 3.11 Let u ∈ SBV0

(
Ω
)
. Then, the traces u+(x), u−(x) : S(u)→

R are Hn−1-approximately differentiable in S(u). Moreover,∫
S(u)

(
|∇u+|+ |∇u−|

)
dHn−1 < +∞.

Proof. Since ∂Tu is representable by integration, by Theorem 2.9 we can
find a Hn−1-rectifiable set R ⊂ Ω × R with a suitable orientation ξ and a
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multiplicity function θ : R → N such that ∂Tu is representable by (R, θ). The
idea of the proof is to compare this representation with (3.1).

Let us denote by π : R → Ω the projection on the first n variables and by
R1 the nonvertical part of R as in the proof of Theorem 2.14. Denoting by R2

the set π(R1), endowed with a suitable orientation η, π induces a map between
the spaces Tann−1

(
R1, (x, y)

)
and Tann−1

(
R2, x

)
. We set σ(x, y) = 1 if π is

orientation-preserving and σ(x, y) = −1 if π is not.
For any choice of φ ∈ C1

0 (Ω) and ψ ∈ C1
0 (R) we have∫

S(u)

φ(x)
(
ψ(u+(x))− ψ(u−(x))

)
νi dHn−1

= (−1)i
∫
R

θ(x, y)φ(x)ψ(y)dx̂i = (−1)i
∫
R1

θ(x, y)φ(x)ψ(y)dx̂i

= (−1)i
∫
R2

φ(x)
∑

(x,y)∈π−1(x)

σ(x, y) θ(x, y)ψ(y)dx̂i.

In order to pass from the integration on R to the integration on R2 we used
the co-area formula (see [[18]]). Since φ and ψ are arbitrary, we obtain that
Hn−1

(
S(u)∆R2

)
= 0. Possibly changing the sign of ν, we can assume that

S(u) and R2 have the same orientation in their intersection. In this case we get∫
S(u)

φ(x)
(
ψ(u+(x))− ψ(u−(x))

)
νi dHn−1

= −
∫
R2

φ(x)
∑

(x,y)∈π−1(x)

σ(x, y) θ(x, y)ψ(y)νidHn−1.

Denoting by D a countable dense subset of C1
0 (Ω), we infer the existence of a

Hn−1-negligible set S ⊂ S(u) ∩R2 such that∑
(x,y)∈π−1(x)

σ(x, y) θ(x, y)ψ(y) = ψ(u−(x))− ψ(u+(x)) ∀ψ ∈ D

for any x ∈ S(u) ∩R2 \ S. Denoting by M this set, we obtain

π−1(x) =
{

(x, u+(x)), (x, u−(x))
}

∀x ∈M

so that, the graphs of u± on M are contained in R. Applying Theorem 2.14 to
u± (with k = (n − 1)) we obtain that the traces are Hn−1-differentiable in M
(hence in S(u)) and∫

S(u)

(
|∇u+|+ |∇u−|

)
dHn−1 ≤ Hn−1

(
R
)
< +∞

as desired.
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Definition 3.12 By Proposition 3.11, we can find a set M ⊂ S(u) contained
in countably many hypersurfaces such that Hn−1

(
S(u) \M

)
= 0 and u+ and

u− are Hn−1-differentiable at every point of M . Under these assumptions, we
denote by Tu+ and Tu− the (n−1)-currents in Ω×R associated to the integration
on the graphs of u+ and u− on M . By (2.9), Tu± acts as follows

〈Tu± , ϕdxα ∧ dy〉 =
∫
S(u)

ϕ(x, u(x))dxα ∧ du±(3.7)

for any bounded Borel function ϕ defined in Ω×R.

4 Functions with absolutely continuous traces
on S(u)

We deal now with the special case where u± have neither jump part nor Cantor
part of derivative on S(u). Heuristically, we want the traces u± to belong to a
“Sobolev space”. This motivates the following definition, in which we require
the “distributional derivative” ∂vTu to be completely determined by u± and by
their approximate differentials.

Definition 4.1 (the class SBV p0 ) Let p ∈ [1,∞). We denote by SBV p0
(
Ω
)

the class of all functions u ∈ SBV
(
Ω
)

such that S(u) is Hn−1-rectifiable and
there exist two Borel functions w+, w− : S(u) → Rn such that w±(x) is or-
thogonal to ν(x) for Hn−1-almost every x ∈ S(u),∫

S(u)

(
|w+|p + |w−|p

)
dHn−1 < +∞

and

〈Tu, d
(
ϕdxα ∧ dy

)
〉(4.1)

= (−1)n−1

∫
S(u)

(
ϕ
(
x, u+(x)

)
w+(x) ∧ dxα − ϕ

(
x, u−(x)

)
w−(x) ∧ dxα

)
for any multi-index α of order (n − 2) in Rn and any function ϕ ∈ T (Ω ×R).
In the case p = ∞ the definition is similar, requiring the functions w± to be
essentially bounded on S(u).

Remark 4.2 We will see that the functions (w+, w−) are uniquely determined
and of course they depend on the orientation of S(u); i.e., a change of sign of ν
induces a permutation of (u+, u−) and a permutation of (w+, w−) as well.

The integration by parts formula (4.1) implies the estimate∣∣〈∂Tu, ϕdxα ∧ dt〉∣∣ ≤ ‖ϕ‖∞ ∫
S(u)

(
|w+|+ |w−|

)
dHn−1(4.2)
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for any multi-index α in Rn of order (n − 2). Hence, SBV p0
(
Ω
)

is a subset
of SBV0

(
Ω
)
. The inclusion is strict even with p = 1. Indeed, using the same

notations of Example 3.6 with f− = 0, and using again (3.6) with ψ ≡ 1, it can
be seen that u ∈ SBV p0

(
(0, 1)×R

)
if and only if f+ ∈W 1,p

(
(0, 1)

)
and in this

case w+ = (f+)′e1.

Proposition 4.3 Let u ∈ SBV p0
(
Ω
)
. Then, the functions w± coincide with the

approximate differentials of u± given by Proposition 3.11 and ∂Tu = Tu−−Tu+ ,
with Tu± given by Definition 3.12.

Proof. Using the locality properties of approximate differentials, it is not
restrictive to prove the theorem with a particular choice of the orientation ν,
the one for which u− < u+. The proof is based on a blow-up argument, starting
from the identity (see (4.1), (3.5))∫

S(u)

φ(x)ψ(u+(x))w+(x) ∧ dxα −
∫
S(u)

φ(x)ψ(u−(x))w−(x) ∧ dxα =

= −
∫
S(u)

(∫ u+(x)

u−(x)

ψ(y) dy
)
dφ ∧ dxα

with φ ∈ C1
0 (Ω) and ψ ∈ C1

0 (R). We will prove that ∇u+(x0) = w+(x0) for any
x0 ∈ S(u) with the following properties (the argument for w− is similar):
(i) S(u) has an approximate tangent plane at x0;
(ii) x0 is an Hk-approximate continuity point for the maps u±(x) and for the
maps w±(x) on S(u);
(iii) u+(x) is Hn−1-approximately differentiable at x0.

Let Sρ = ρ−1(S(u)−x0), S = Tann−1
(
S(u), x0

)
, ϕ(z) ∈ C1

0 (Rn) and γ(s) ∈
C1

0 (R). Inserting in the identity φ(x) = ϕ
(
(x − x0)/ρ

)
and ψ(y) = γ

(
(y −

u+(x0))/ρ
)

and changing variables we get

−ρ−1

∫
Sρ

(∫ u+(x0+ρz)

u−(x0+ρz)

γ
(y − u+(x0)

ρ

)
dy

)
dϕ ∧ dzα

=
∫
Sρ

ϕ(z) γ
(u+(x0 + ρz)− u+(x0)

ρ

)
w+(x0 + ρz) ∧ dzα

−
∫
Sρ

ϕ(z) γ
(u−(x0 + ρz)− u+(x0)

ρ

)
w−(x0 + ρz) ∧ dzα.

Changing variables also in the inner integral and passing to the limit as ρ ↓ 0,
by (i), (ii), (iii) we infer

−
∫
S

(∫ 〈∇u+(x0),z〉

−∞
γ(s) ds

)
dϕ ∧ dzα =

∫
S

ϕ(z)γ
(
〈∇u+(x0), z〉

)
w+(x0) ∧ dzα.
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Using Stokes theorem on the plane S we get∫
S

ϕ(z) γ
(
〈∇u+(x0), z〉

)(
∇u+(x0)− w+(x0)

)
∧ dzα = 0.

Since α, ϕ and γ are arbitrary we obtain that∇u+(x0) must be equal to w+(x0).
Finally, the equality ∂Tu = Tu− −Tu+ follows directly from the definition of

SBV p0
(
Ω
)

and from (3.7).

The proposition above suggests an alternative, equivalent definition of the
space SBV p0

(
Ω
)
: a function u ∈ SBV

(
Ω
)

belongs to SBV p0
(
Ω
)

if S(u) is Hn−1-
rectifiable, the traces u±(x) are Hn−1-approximately differentiable on S(u),
their gradients belong to Lp

(
Hn−1 S(u)

)
and

〈Tu, d
(
ϕdxα ∧ dy

)
〉(4.3)

= (−1)n−1

∫
S(u)

(
ϕ
(
x, u+(x)

)
∇u+(x) ∧ dxα − ϕ

(
x, u−(x)

)
∇u−(x) ∧ dxα

)
for any ϕ ∈ T (Ω×R). However, Definition 4.1, based on “weak derivatives”, is
closer to the classical definition of the Sobolev space W 1,p(Ω). Notice also that
(3.5) shows the possibility of defining the class SBV p0

(
Ω
)

without reference to
currents, using an integration by parts formula involving test function φ(x) ∈
C1

0 (Ω), ψ(y) ∈ C1
b (R).

Proposition 4.4 If u ∈ SBV0

(
Ω
)

then the following three conditions are equiv-
alent:
(i) (4.3) holds;
(ii) π#(‖∂vTu‖) = (|∇u+|+ |∇u−|)Hn−1 S(u);
(iii) π#(‖∂vTu‖) is absolutely continuous with respect to Hn−1 S(u).

Proof. Following the notation of Proposition 3.11 let R1 be the non-vertical
part of the support R of ∂Tu. From the proof of Proposition 3.11 it follows
immediately that∫

R1

θ(x, y)ϕ(x, y) dxα ∧ dy

= (−1)n−1

∫
S(u)

(
ϕ
(
x, u+(x)

)
∇u+(x) ∧ dxα − ϕ

(
x, u−(x)

)
∇u−(x) ∧ dxα

)
for all ϕ ∈ T (Ω×R), where θ is the multiplicity of ∂Tu. Thus, we get

〈Tu, d
(
ϕdxα ∧ dy

)
〉(4.4)

= (−1)n−1

∫
S(u)

(
ϕ
(
x, u+(x)

)
∇u+(x) ∧ dxα − ϕ

(
x, u−(x)

)
∇u−(x) ∧ dxα

)
+
∫
R\R1

θ(x, y)ϕ(x, y) dxα ∧ dy
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for any ϕ ∈ T (Ω × R). Let now v1 ∧ . . . ∧ vn−1 be an orientation of S(u)
compatible with the orientation ξ of ∂Tu, and let ξ1 = (ξ1

i )i, where

ξ1
i = 〈ξ, dv1 ∧ . . . dvi−1 ∧ dy ∧ dvi+1 ∧ . . . dvk〉

is defined as in Section 1. Recall that, up to Hn−1-negligible sets, R1 =
{(x, u+(x)), (x, u−(x)) : x ∈ S(u)} and

|ξ1(x, u±(x))| = |∇u±(x)|
Mn−1(JΦ)

on R1. From (4.4) it follows that

π#(‖∂vTu‖)(A) =
∫
S(u)∩A

(|∇u+|+ |∇u−|
)
dHn−1(4.5)

+
∫

(R\R1)∩(A×R)

θ|ξ1|dHn−1

for every open subset A of Ω.
The equivalence between (i) and (ii) now follows easily: if (ii) holds then by

(4.5) Hn−1(R \R1) = 0, since by definition |ξ1| > 0 on R \R1. Hence, by (4.4)
we obtain (4.3). Vice versa, by (4.3) we have

π#(‖∂vTu‖) ≤ (|∇u+|+ |∇u−|)Hn−1 S(u),

while the opposite inequality is assured by (4.5).
Similarly we get the equivalence between (ii) and (iii).

If p > 1, we have the following closure theorem.

Theorem 4.5 (closure of SBV p0 ) Let (uh) ⊂ SBV p0
(
Ω
)

be a sequence con-
verging in L1

loc(Ω) to u ∈ SBV (Ω) such that Hn−1(S(uh))→ Hn−1(S(u)) and,
for constants p, q > 1 and C ≥ 0

‖uh‖∞ +
∫

Ω

|∇uh|q dx+
∫
S(uh)

(
1 + |∇u+

h |
p + |∇u−h |

p
)
dHn−1 ≤ C(4.6)

Then u ∈ SBV p0
(
Ω
)
.

Proof. The inequality (4.2) and the Hölder inequality imply that the se-
quence ‖∂vTuh‖(Ω×R) is bounded. By the compactness properties of SBV0

(
Ω
)

we have u ∈ SBV0

(
Ω
)
, ∇uh weakly converges to ∇u in Lq(Ω,Rn) and ∂Tuh

weakly converges to ∂Tu in Ω×R. We have to prove that u ∈ SBV p0
(
Ω
)
.

Let ϕ ∈ C1
0 (Ω) with ϕ ≥ 0. Since uh ∈ SBV p0

(
Ω
)

by Proposition 4.4, using
Hölder’s inequality, we get∫

Ω

ϕdπ#(‖∂vTuh‖) =
∫
S(uh)

ϕ
(
|∇u+

h |+ |∇u
−
h |
)
dHn−1

≤
(∫

S(uh)

(
|∇u+

h |+ |∇u
−
h |
)p
dHn−1

)1/p(∫
S(uh)

|ϕ|p
′
dHn−1

)1/p′

.
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Then since Hn−1 S(uh) weakly converges to Hn−1 S(u), taking the limit as
h→ +∞ we get ∫

Ω

ϕdπ#(‖∂vTu‖) ≤ I
(∫

S(u)

|ϕ|p
′
dHn−1

)1/p′

,(4.7)

where

I = lim inf
h→+∞

(∫
S(uh)

(
|∇u+

h |+ |∇u
−
h |
)p
dHn−1

)1/p

,

which is finite by hypothesis. This implies that π#(‖∂vTu‖) is absolutely con-
tinuous with respect to Hn−1 S(u), and hence there exists f ∈ L1(S(u),Hn−1)
such that π#(‖∂vTu‖) = f Hn−1 S(u). Therefore, from (4.7) we obtain∣∣∣∫

S(u)

φf dHn−1
∣∣∣ ≤ I (∫

S(u)

|φ|p
′
dHn−1

)1/p′

(4.8)

for every φ ∈ Lp′(S(u),Hn−1). By Riesz’s Theorem f ∈ Lp(S(u),Hn−1). The
proof is concluded by applying Proposition 4.4.

Example 4.6 The thesis of Theorem 4.5 is in general false if only the bound-
edness assumption (4.6) holds, without assuming Hn−1(S(uh))→ Hn−1(S(u)).
We can give a counterexample in the spirit of Remark 2.17. Let n = 2, and let
the function u : B(0, 1)→ R be given by

u(x, y) =


−π if x < 0,
arctan

(x
y

)
if x > 0,

π/2i if x = 0, y ≥ 0,
−π/2i if x = 0, y < 0.

Note that u belongs to SBV0(B(0, 1)), but it does not belong to SBV p0 (B(0, 1))
for any p ≥ 1. Moreover ∇u ∈ Lq(B(0, 1)) if q < 2. For every h ∈ N we
can choose a non self-intersecting piecewise C1 curve γh with the following
properties: γh ⊂ B(0, 1/h), suph∈NH1(γh) < +∞, the endpoints of γh are
(0,−1/h) and (0, 1/h), the restriction of u to γh is continuous, and its tangential
derivative ∂u/∂τ is equi-bounded (uniformly with respect to h). We can give
an explicit example of such γh simply by choosing the piecewise linear curve
connecting the points Pk (k = 0, . . . , 2h), where

Pk =
( 1
h

cos
(π

2
(
k

h
− 1)

)
,

1
h

sin
(π

2
(
k

h
− 1)

))
, k even ,

Pk =
( 1

2h
cos
(π

2
(
k

h
− 1)

)
,

1
2h

sin
(π

2
(
k

h
− 1)

))
, k odd .
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We can define uh equal to −π on the region bounded by γh and the axis {x = 0},
and equal to u otherwise. Clearly uh ∈ SBV∞0 (B(0, 1)). Moreover, ‖uh‖∞ = π,∫
B(0,1)

|∇uh|q dx ≤
∫
B(0,1)

|∇u|q dx, and

sup
h∈N

∫
S(uh)

(1 + |∇u+
h |
p + |∇u−h |

p) dH1

≤ (1 + sup
h∈N
‖∂u
∂τ
‖pL∞(γh)) sup

h∈N
H1(γh) < +∞

for all p ≥ 1. Nevertheless, uh → u in L1(B(0, 1)), so that the thesis of the
theorem is violated.

Note that in the same way we can give an example where the traces u± of
the limit function on {x = 0} are any pair of piecewise constant functions. Since
the quantities involved in all the estimates depend only on the BV norm of u±

we obtain by a diagonal argument that the example can be constructed with
every pair of BV functions as traces.

Example 4.7 In the previous example low integrability on the gradient ∇u
was required to obtain discontinuous traces on S(u). Now we show that for all
q ≥ 1 a similar example can be constructed with ∇u ∈ Lq.

First, letK > 2 and let F be the Cantor set-like fractal of unitary log 2/ logK-
dimensional Hausdorff measure generated by the two similitudes S0 and S1 of
ratio 1/K which carry (0, 1) in (0, 1/K) and in (1 − 1/K, 1), respectively (see
[24]). Note that the Cantor-Vitali-like function f : (0, 1)→ R given by

f(t) = Hlog 2/ logK((0, t) ∩ F )

is (log 2/ logK)-Hölder continuous, and hence it belongs to W 1−1/q,q((0, 1)) for
all q < 2 logK/(logK − log 2) (see [1]).

Now, given q ≥ 1, we choose K sufficiently close to 2 in such a way that
q < 2 logK/(logK−log 2). The function f can be approximated by the sequence
(fj) of piecewise affine functions given by

fj(t) =
(K

2

)j
L1(Aj ∩ (0, t)),

where Aj =
⋃
{(Si1 ◦ · · · ◦ Sij )(0, 1) : il ∈ {0, 1}} (this is the usual con-

struction of the Cantor-Vitali function if K = 3). The functions fk belong to
W 1−1/q,q((0, 1)) if q < 2 logK/(logK − log 2). If we define uk ∈ W 1,q((0, 1)2)
by

uk(x, y) =


1
x

∫ y+x

y

fk(t) dt if y < 1− x

1 otherwise
then uk(0, y) = fk(y) in the sense of traces. The sequence (uk) converges in
W 1,q((0, 1)2) to the function u constructed in the same way from f .
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Let us define ũ : (−1, 1)× (0, 1)→ R by

ũ(x, y) =
{
u(x, y) if x > 0
0 otherwise.

Clearly, the function ũ does not belong to any SBV p0 ((−1, 1)× (0, 1)).
We can construct a sequence (ũh) in SBV∞0 ((−1, 1)×(0, 1)) converging to ũ

and satisfying (4.6) by modifying the sequence (uk) in the spirit of Example 4.6.
In fact, we can find a sequence of piecewise C1 curves (γk) in [0, 1)× (0, 1) with
equibounded length, such that each γk consists of the union of {0}×((0, 1)\Ak)
and 2k piecewise C1 arcs with endpoints (Si1 ◦· · ·◦Sik)(0) and (Si1 ◦· · ·◦Sik)(1)
((i1, . . . , ik) ∈ {0, 1}k) on which the tangential derivative of uk is bounded,
uniformly with k. An explicit construction of such arcs is not difficult, as in
Example 4.6. The functions

ũk(x, y) =


0 if x ≤ 0
0 in the region bounded by {x = 0} and γk
uk(x, y) otherwise

provide the desired example.

5 Vector-valued SBV0 functions

In this section we generalize the notions introduced in the previous chapters to
the vector-valued case. The definition of SBV0 remains unchanged as follows.

Definition 5.1 Let u be a function in SBV
(
Ω,Rm

)
with a Hn−1-rectifiable

jump set, with all determinants of minors of∇u in L1(Ω). We say that u belongs
to the class SBV0

(
Ω,Rm

)
if there exists a constant C such that∣∣〈Tu, d(ϕdxα ∧ dyβ)〉∣∣ ≤ C‖ϕ‖∞ ∀ϕ ∈ T

(
Ω×Rm

)
(5.1)

for every pair of multi-indices α, β with |α|+ |β| = n− 1. In particular, ∂Tu is
representable by integration in Ω×Rm.

Remark 5.2 If u ∈ SBV0

(
Ω,Rm

)
, then there exist bounded measures µαβ

such that
〈∂Tu, ϕdxα ∧ dyβ〉 =

∫
Ω×Rm

ϕdµαβ(5.2)

for every ϕ ∈ T
(
Ω×Rm

)
. In particular there exist n bounded measures µi on

Ω×Rm (corresponding to µı̂0 in the notation above) such that

〈∂Tu, ϕdx̂i〉 = (−1)i+1

∫
Ω

∂ϕ

∂xi
(x, u) +

m∑
j=1

∂ϕ

∂yj
(x, u)

∂uj
∂xi

dx =
∫

Ω×Rm

ϕdµi,
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where u1, . . . , um are the components of u. This is a characterization of functions
in SBV

(
Ω,Rm

)
with a Hn−1-rectifiable jump set. Proceeding as in (3.1) we

can show that the measures µi are given by∫
Ω×Rm

ϕdµi = (−1)i
∫
S(u)

(
ϕ(x, u+(x))− ϕ(x, u−(x))

)
νi dHn−1.(5.3)

The measures in (5.2) can be sometimes characterized by formulas of the
type (5.3), which take different forms, depending on α and β.

Let u : Ω→ Rm, and let Γ be the graph of u. By Theorem 2.11(i) we have
that Hn(Γ) < +∞ if and only if ∂uβ/∂xγ ∈ L1 for all pairs of multi-indices γ,
β of the same order k ∈ {1, . . . ,min{n,m}}, where we use the notation

∂uβ
∂xγ

= det
(

((∇uβi)γj )ij
)
.

In this case, by (2.10), the integration on the current ∂Tu can be expressed by

〈Tu, d(ϕdxα ∧ dyβ)〉

= 〈Tu,
n∑
i=1

∂ϕ

∂xi
dxi ∧ dxα ∧ dyβ〉+ 〈Tu,

m∑
j=1

∂ϕ

∂yj
dyj ∧ dxα ∧ dyβ〉

=
∫

Ω

n∑
i=1

σ(i, α)
∂ϕ

∂xi

∂uβ
∂x̂(i,α)

dx+ (−1)|α|σ(α)
∫

Ω

m∑
j=1

∂ϕ

∂yj

∂u(j,β)

∂x̂α
dx

(we define σ(α) ∈ {−1, 1} by dxα ∧ dx̂α = σ(α)dx1 ∧ . . . ∧ dxn, and σ(i, α) ∈
{−1, 0, 1} by dxi ∧ dxα ∧ dx̂(i,α) = σ(i, α)dx1 ∧ . . . ∧ dxn). We can reformulate
then the definition of SBV0

(
Ω,Rm

)
as follows.

Proposition 5.3 Let u ∈ SBV
(
Ω,Rm

)
with ∂uβ/∂xγ ∈ L1(Ω) for all pair of

multi-indices γ, β of order 1, . . . ,min{n,m}, and let Hn−1(S(u)) < +∞. Then
u belongs to SBV0

(
Ω,Rm

)
if and only if for every pair of multi-indices α, β

with |α|+ |β| = n− 1 there exists a bounded measure µαβ on Ω×Rm, such that∫
Ω×Rm

ϕdµαβ(5.4)

=
∫

Ω

n∑
i=1

σ(i, α)
∂ϕ

∂xi

∂uβ
∂x̂(i,α)

dx+ (−1)|α|σ(α)
∫

Ω

m∑
j=1

∂ϕ

∂yj

∂u(j,β)

∂x̂α
dx

for all ϕ ∈ T (Ω×Rm).

Remark 5.4 Let λh ∈ R for h = 1, . . . ,m. Taking φ ∈ T (Ω×R), and

ϕ(x, y) = φ
(
x,

m∑
h=1

λhyh

)
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in (5.4) it is easy to check by Definition 3.3 that w =
∑
h λhuh ∈ SBV0

(
Ω
)
. In

fact, taking |α| = n− 2 we have
m∑
h=1

λh〈Tu, d(ϕdxα ∧ dyh)〉 =
m∑
h=1

λh〈Tu,
n∑
i=1

∂φ

∂xi
dxi ∧ dxα ∧ dyh〉

+
m∑
h=1

m∑
k=1

〈Tu,
∂φ

∂y
λhλkdyk ∧ dxα ∧ dyh〉

=
m∑
h=1

λh〈Tu,
n∑
i=1

∂φ

∂xi
dxi ∧ dxα ∧ dyh〉

=
∫

Ω

n∑
i=1

σ(i, α)
∂φ

∂xi

∂(
∑m
h=1 λhuh)
∂x̂(i,α)

dx

= 〈Tw, d(φdxα ∧ dy)〉

(we have used the equality dyk ∧ dxα ∧ dyh = −dyh ∧ dxα ∧ dyk). In particular,
taking λi = δih, each component uh belongs to SBV0

(
Ω
)
.

Moreover, if u is bounded, taking ϕ(x, y) = φ(x)yh on the range of u in (5.4),
for some h and some φ ∈ C1

0 (Ω), we obtain∫
Ω×Rm

φyhdµαβ(5.5)

=
∫

Ω

n∑
i=1

σ(i, α)
∂φ

∂xi
uh

∂uβ
∂x̂(i,α)

dx+ (−1)|α|σ(α)
∫

Ω

φ
∂u(h,β)

∂x̂α
dx.

This equation implies that for every couple of multi-indices γ, δ of the same
order k ∈ {1, . . . ,min{n,m}} the following integration by parts formula holds

〈(Adjk∇u)γδ , φ〉 =
∫

Ω

φ(adjk∇u)γδ dx+
∫

Ω×Rm

φyγ1dµδ̂γ′1
,(5.6)

where γ′1 = (γ2, . . . , γk), which links the distributional and the Jacobian (point-
wise) adjoint matrices (of order k) of ∇u (see [12], or [13] Chapter 4 for defini-
tions and remarks). Note that the equality

(Adjk∇u)γδ = (adjk∇u)γδ L
n

holds if u ∈W 1,min{n,m}(Ω,Rm) but it may be false even when u ∈W 1,q(Ω,Rm)
with q < min{n,m} (see [12], [28]).

Remark 5.5 In order to better understand the meaning of the vector measures
µαβ we consider the case n = m = 2. In this case, the orientation η of the graph
Γ of u is given by

η(x, y) =
1√

1 + |∇u|2(x) + |det∇u|2(x)

(
e1 ∧ e2 −

∂u1

∂x1
(x) e2 ∧ ε1
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−∂u2

∂x1
(x) e2 ∧ ε2 +

∂u1

∂x2
(x) e1 ∧ ε1 +

∂u2

∂x2
(x) e1 ∧ ε2 + det∇u(x) ε1 ∧ ε2

)
,

where (e1, e2) and (ε1, ε2) denote the canonical orthonormal bases on Ω and on
the target space, respectively, and H2(Γ) < +∞ if and only if ∇u ∈ L1 and
det∇u ∈ L1. The integration of the “vertical components” of the current ∂Tu
can be expressed then by

〈∂Tu, ϕdy1〉 =
∫

Ω

( ∂ϕ
∂x1

∂u1

∂x2
− ∂ϕ

∂x2

∂u1

∂x1
− ∂ϕ

∂y2
det∇u

)
dx(5.7)

〈∂Tu, ϕdy2〉 =
∫

Ω

( ∂ϕ
∂x1

∂u2

∂x2
− ∂ϕ

∂x2

∂u2

∂x1
+
∂ϕ

∂y1
det∇u

)
dx.(5.8)

By Proposition 5.3 we have that u ∈ SBV0

(
Ω,R2

)
if and only if there exist two

bounded measures µ1 and µ2 on Ω×R2, such that∫
Ω

( ∂ϕ
∂x1

∂u1

∂x2
− ∂ϕ

∂x2

∂u1

∂x1

)
dx =

∫
Ω

∂ϕ

∂y2
det∇u dx+

∫
Ω×R2

ϕdµ1,(5.9)

∫
Ω

( ∂ϕ
∂x2

∂u2

∂x1
− ∂ϕ

∂x1

∂u2

∂x2

)
dx =

∫
Ω

∂ϕ

∂y1
det∇u dx+

∫
Ω×R2

ϕdµ2.(5.10)

for all ϕ ∈ T (Ω ×R2). These two measures correspond to µ01 and µ02 in the
notation of Definition 5.1, respectively. In particular, if u is bounded, as in (5.5)
we get∫

Ω

u2

( ∂φ
∂x1

∂u1

∂x2
− ∂φ

∂x2

∂u1

∂x1

)
dx =

∫
Ω

φdet∇u dx+
∫

Ω×R2
φy2dµ1,(5.11)

∫
Ω

u1

( ∂φ
∂x2

∂u2

∂x1
− ∂φ

∂x1

∂u2

∂x2

)
dx =

∫
Ω

φdet∇u dx+
∫

Ω×R2
φy1dµ2.(5.12)

for all φ ∈ C1
0 (Ω). Formula 5.12 can be summarized in the equality, which links

the distributional and the pointwise determinant,

Det∇u = det∇uL2 + π#(y2 µ1) .(5.13)

Note that the equality Det∇u = det∇uLn + λ may hold with non-trivial λ
also when u is a Sobolev function. In the case u : {x ∈ R2 : |x| < 1} → R2

given by u(x) = x/|x|, for example, det∇u = 0, but

Det∇u = πδ0.

Some examples by Müller ([29]) show that λ may also be a Hausdorff measure
of fractional dimension restricted to a fractal set.
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If S(u), the restriction of u to Ω \ S(u), and its traces on S(u) are smooth
enough to justify the application of the Gauss-Green formula, the measures µi
are easily characterized. In fact, we get

0 =
∫

Ω

ϕ(x, u) div
(∂u1

∂x2
,−∂u1

∂x1

)
dx

=
∫
S(u)

(
ϕ(x, u+)

(∂u+
1

∂x1
ν2 −

∂u+
1

∂x2
ν1

)
− ϕ(x, u−)

(∂u−1
∂x1

ν2 −
∂u−1
∂x2

ν1

))
dH1

−
∫

Ω

( ∂ϕ
∂x1

∂u1

∂x2
− ∂ϕ

∂x2

∂u1

∂x1
− ∂ϕ

∂y2
det∇u

)
dx,

= −
∫
S(u)

(
ϕ(x, u+)

∂u+
1

∂τ
− ϕ(x, u−)

∂u−1
∂τ

)
dH1

−
∫

Ω

( ∂ϕ
∂x1

∂u1

∂x2
− ∂ϕ

∂x2

∂u1

∂x1
− ∂ϕ

∂y2
det∇u

)
dx,

so that ∫
Ω×R2

ϕdµ1 = −
∫
S(u)

(
ϕ(x, u+)

∂u+
1

∂τ
− ϕ(x, u−)

∂u−1
∂τ

)
dH1 .(5.14)

In the same way we obtain∫
Ω×R2

ϕdµ2 = −
∫
S(u)

(
ϕ(x, u+)

∂u+
2

∂τ
− ϕ(x, u−)

∂u−2
∂τ

)
dH1 .(5.15)

In particular, the total variation of µ represents the length of the images of S(u)
by u+ and u−:

|µ|
(
Ω×R2

)
=
∫
S(u)

(
|∂u

+

∂τ
|+ |∂u

−

∂τ
|
)
dH1.(5.16)

Remark 5.6 In the physical case n = m = 3 the integration by parts formulas
(5.6) characterize the distributional and Jacobian determinants of ∇u and its
(2-dimensional) adjoint matrices. We have for all φ ∈ C1

0 (Ω)

〈Adj∇u, φ〉 =
∫

Ω

φ adj∇u dx+
∫

Ω

φ(x)dλ

where λ is the matrix measure whose components are λij = π#(yβ1 µiβ2), β = ĵ,
and

〈Det∇u, φ〉 =
∫

Ω

φdet∇u dx− σ(β̂)
∫

Ω×R3
φ(x)y

β̂
dµ0β ,

for any multi-index β of order two.
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Remark 5.7 Note that the inclusion SBV0(Ω,Rm) ⊂
(
SBV0(Ω)

)m is strict.
As an example we can take n = m = 2, and u = (u1, u2), where

u1(x, y) =
{

1 if y > 0
−1 if y < 0,

and u2 is any function in some Sobolev space W 1,q(B(0, 1)) (q ≥ 1), whose
trace u2(·, 0) is smooth but does not belong to W 1,1(−1, 1). In this case (5.16)
is violated (see also Proposition 5.10).

As in the scalar case, we denote by ∂vTu the vector of the measures µαβ as
in (5.2) with |α|+ |β| = n− 1 and |α| < n− 1.

Theorem 5.8 (compactness) Let (uh) be a sequence in SBV0

(
Ω,Rm

)
such

that
sup
h∈N

(
‖uh‖∞ +H1(S(uh)) +

∫
Ω

|∇u|q dx+ ‖∂vTuh‖
)
< +∞,

where q ≥ min{n,m}, and assume in addition that (∂(uh)β/∂xγ) is a equi-
integrable sequence for every pair of multi-indices β, γ of order min{n,m} if q =
min{n,m}. Then, there exists a subsequence (uh(k)) converging in L1

loc(Ω,Rm)
to u ∈ SBV0

(
Ω,Rm

)
, such that

∇uh(k) → ∇u weakly in Lq(Ω,Rnm),

∂(uh(k))β
∂xγ

→ ∂uβ
∂xγ

weakly in L1(Ω)

for every pair of multi-indices β, γ of equal order not greater than min{n,m},
and ∂Tuh(k) converges weakly to ∂Tu. In particular ∂vTuh(k) converges weakly to
∂vTu in the sense of measures.

Proof. Without loss of generality, by Theorem 2.3, we can suppose that
(uh) converges a.e. to u ∈ SBV

(
Ω,Rm

)
and that ∇uh weakly converges to ∇u

in Lp(Ω,Rnm).
Fixed a pair of multi-indices β, γ of order k ∈ {2, . . . ,min{n,m}}, by our

assumptions the sequence (∂(uh)β/∂xγ) is equi-integrable. Fixed ε > 0 and
v ∈ L1(Ω), Theorem 4.3 of [6] assures the lower semicontinuity of the functional

Fv(w) =
∫

Ω

(
|v − ∂wβ

∂xγ
|+ ε|∇w|q

)
dx

along the sequence (uh) (see also [6] Corollary 4.9). Hence∫
Ω

(
|v − ∂uβ

∂xγ
|+ ε|∇u|q

)
dx ≤ lim inf

h→+∞

∫
Ω

(
|v − ∂(uh)β

∂xγ
|+ ε|∇uh|q

)
dx,

35



and, letting ε→ 0+.∫
Ω

|v − ∂uβ
∂xγ
| dx ≤ lim inf

h→+∞

∫
Ω

|v − ∂(uh)β
∂xγ

| dx .

Since v is arbitrary, this inequality yields the weak convergence of ∂(uh)β/∂xγ
to ∂uβ/∂xγ in L1(Ω) (see [6] Lemma 4.4). For any form

ω =
∑

|α|+|β|=n

ωαβdxα ∧ dyβ ,

the identity (see (2.10))

〈Tuh , ω〉 =
∫

Ω

∑
|α|+|β|=n

σ(α)ωαβ(x, uh(x))
∂(uh)β
∂x̂α

dx

(if |β| = 0 we set ∂uβ/∂x̂α = 1) easily implies the weak convergence of Tuh to
Tu in the sense of measures in Ω × Rm because of the strong convergence of
ωαβ(x, uh) to ωαβ(x, u) and the weak convergence of the gradients and of the
determinants.

In the same way

lim
h→+∞

〈∂Tuh , ϕdxα ∧ dyβ〉 = lim
h→+∞

〈Tuh , d(ϕdxα ∧ dyβ)〉

= 〈Tu, d(ϕdxα ∧ dyβ)〉 = 〈∂Tu, ϕdxα ∧ dyβ〉 ,
if |α| + |β| = n − 1. As in Theorem 3.10 we obtain |〈∂Tu, ϕdxα ∧ dyβ〉| ≤
‖ϕ‖∞ suph ‖∂vTuh‖, so that u belongs to SBV0

(
Ω,Rm

)
.

Remark 5.9 If n = m then the hypothesis of the equi-integrability of the
minors of maximum order in Theorem 5.8 is simply the hypothesis of equi-
integrability of det∇uh.

Proposition 5.10 The traces u+, u− : S(u) → Rm of a function u belonging
to SBV0

(
Ω,Rm

)
are Hn−1-approximately differentiable Hn−1-a.e. on S(u), and∫

S(u)

(
|∇u+|+ |∇u−|

)
dHn−1 < +∞.

Proof. From Remark 5.4 we have that for every choice of λ1, . . . , λm ∈ R
the function

∑
h λhuh belongs to SBV0(Ω). In particular, by Proposition 3.11

we have that the approximate differentials ∇(
∑
h λhuh)± exist on S(

∑
h λhuh).

We take care of choosing the same orientation for S(u) and S(uh) on their
intersection so that (

∑
h λhuh)± =

∑
h λhu

±
h .

In particular, for all i and j there exist ∇u±i on S(ui), and ∇(u±i + u±j )
on S(ui + uj). Hence, fixed i, there exist ∇u±i = ∇(u±i + u±j ) − ∇u±j on
S(ui + uj) \ S(ui) = S(uj) \ S(ui) for all j, so that ∇u±i exist on the whole
S(u) =

⋃
j S(uj).

The same argument also shows the integrability of the gradients.
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Remark 5.11 Ripeating the argument of Proposition 3.11 one can prove the
stronger statement (with the notation of Theorem 2.11)∫

S(u)

[
Mn−1(JΦ+) +Mn−1(JΦ−)

]
dHn−1 < +∞

where Φ±(x) = (x, u±(x)). In particular, all determinants of k-minors of ∇u±
are summable with respect to Hn−1 S(u) for 1 ≤ k ≤ (n− 1).

We conclude the section extending the definition of SBV p0 to the vector-
valued case.

Definition 5.12 Let p ∈ [1,∞). We say that a function u ∈ SBV0

(
Ω,Rm

)
belongs to SBV p0

(
Ω,Rm

)
if there exist 2m measurable functions w±i : S(u) →

Rn, i = 1, . . . ,m, such that w±i (x) is orthogonal to ν(x) for Hn−1-almost all
x ∈ S(u), ∫

S(u)

(
|w+
i |
p + |w−i |

p
)
dHn−1 < +∞

for all i, and, for all pairs of multi-indices α, β with |α|+ |β| = n−1, w±β ∧dxα ∈
L1(Ω) and

〈∂Tu, ϕdxα ∧ dyβ〉(5.17)

= (−1)n−1

∫
S(u)

(
ϕ
(
x, u+(x)

)
w+
β (x) ∧ dxα − ϕ

(
x, u−(x)

)
w−β (x) ∧ dxα

)
,

where w±β = w±β1
∧ . . . ∧ w±βs if β = (β1, . . . , βs). In the case p = ∞ we require

the functions w±i to be essentially bounded on S(u).

Proposition 5.13 If u ∈ SBV p0
(
Ω,Rm

)
then w±i = ∇u±i , as defined in Propo-

sition 5.10.

Proof. Let λh ∈ R, h = 1, . . . ,m, let v =
∑
h λhuh. Since S(v) is a subset

of S(u) we can endow it with the same orientation of S(u). As in Remark 5.4
we see that for every multi-index α of order n− 2, and φ ∈ T (Ω×R), we have

〈∂Tv, φdxα ∧ dy〉 =
m∑
h=1

λh〈∂Tu, ϕdxα ∧ dyh〉,

where ϕ(x, y1, . . . , ym) = φ(x,
∑
h λhyh). Hence,

〈∂Tv, φdxα ∧ dy〉

= (−1)n−1
m∑
h=1

λh

∫
S(u)

(
ϕ
(
x, u+(x)

)
w+
h (x) ∧ dxα − ϕ

(
x, u−(x)

)
w−h (x) ∧ dxα

)
.
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This shows that
∑
h λhuh ∈ SBV p0 (Ω), and, by Proposition 4.3 also that the

functions
∑
h λhw

±
h coincide with the approximate differentials of

∑
h λhu

±
h

given by Proposition 3.11. Moreover ∂Tv = Tv− − Tv+ , with Tv± as in Def-
inition 3.12.

In particular, for all i and j,∇u±i = w±i on S(ui), and∇(u±i +u±j ) = w±i +w±j
on S(ui + uj). Hence, fixed i there exist w±i = ∇(u±i + u±j ) −∇u±j = ∇u±i on
S(ui + uj) \ S(ui) = S(uj) \ S(ui) for all j, so that ∇u±i = w±i on the whole
S(u) =

⋃
j S(uj).

Proposition 5.14 If u ∈ SBV0

(
Ω,Rm

)
then the following three conditions are

equivalent:
(i) (5.17) holds;

(ii) π#(‖∂vTu‖) =
(√√√√n−1∑

k=1

(Mk(|∇u+|))2 +

√√√√n−1∑
k=1

(Mk(|∇u−|))2
)
Hn−1 S(u);

(iii) π#(‖∂vTu‖) is absolutely continuous with respect to Hn−1 S(u).

Proof. The proof is quite similar to that one given for the scalar case (see
Proposition 4.4).

Theorem 5.15 (closure of SBV p0
(
Ω,Rm

)
) Let (uh) ⊂ SBV p0

(
Ω,Rm

)
, u as

in Theorem 5.8, and assume in addition that

Hn−1(S(u)) = lim
h→+∞

Hn−1(S(uh)).

If we have

sup
h

(∫
S(uh)

(n−1∑
k=1

(Mk(|∇u+|))2
)p/2

+
(n−1∑
k=1

(Mk(|∇u−|))2
)p/2

dHn−1
)
< +∞

then u ∈ SBV p0
(
Ω,Rm

)
.

Proof. The proof can be obtained following the lines of the proof of The-
orem 4.5 (closure of SBV p0

(
Ω
)
).
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