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Abstract

We are interested in some energy functionals concentrated on the discontinuity
lines of divergence-free 2D vector fields valued in the circle S1. This kind of energy
has been introduced first by P. Aviles and Y. Giga in [4]. They show in particular
that, with the cubic cost function f(t) = t3, this energy is lower semicontinuous. In
this paper, we construct a counter-example which excludes the lower semicontinuity
of line energies for cost functions of the form tp with 0 < p < 1. We also show that,
in this case, the viscosity solution corresponding to a certain convex domain is not
a minimizer.

1 Introduction

1.1 Line energies

Let Ω be a Lipschitz domain in R2. We are interested in measurable vector fieldsm : Ω→
R2 such that

|m| = 1 a.e. and ∇ ·m = 0 on Ω, (1)

where the second equation holds in a distributional sense. In the following, we will
assume that m is of bounded variation so as to be able to define its jump line. So, we
consider the set

A(Ω) :=
{
m ∈ BV (Ω,R2) : |m| = 1 a.e. and ∇ ·m = 0 on Ω

}
.

Vector fields m ∈ A(Ω) are related to solutions of the eikonal equation in Ω. Let define
the set

S(Ω) := {ϕ ∈ Lip(Ω) : |∇ϕ| = 1 a.e. and ∇ϕ ∈ BV (Ω)}.

Then, given m ∈ A(Ω), there exist a scalar function ϕ ∈ S(Ω) such that

m(x) = (∇ϕ(x))⊥ a.e.,
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where (∇ϕ)⊥ = R∇ϕ stands for the image of ∇ϕ by the rotation R of angle π/2 centered
at the origin in R2. Moreover, a function ϕ ∈ Lip(Ω) satisfying (∇ϕ)⊥ = m a.e. is unique
up to a constant and is called stream function. We are now able to define line energies:

Definition 1 Let f : [0, 2]→ [0,+∞] be a measurable scalar function. Let m ∈ A(Ω) ⊂
BV (Ω,R2). Then, there exists a H1-rectifiable jump line J(m) oriented by a unit normal
vector νx such that m has traces m±(x) ∈ S1 on each side of J(m) for H1 a.e. x ∈ J(m)
(see [3] for more details).

Then, the energy associated to the jump cost f is denoted by If and defined for
m ∈ A(Ω) as follows:

If (m) =

∫
J(m)

f(|m+ −m−|) dH1(x). (2)

f is called the jump cost. Note that the divergence constraint on m ∈ A(Ω) implies that
for a.e. x ∈ J(m), m±(x) ∈ S1 and νx satisfy the following condition (see figure 3):

m+(x) · νx = m−(x) · νx . (3)

Then, in the orthogonal basis (νx, ν
⊥
x ), there exists some angle θ such that m± =

(cos θ,± sin θ) and the jump size is defined as

t = |m+ −m−| = 2| sin θ|.

Similarly, If can be interpreted as a functional of the stream function on the set S(Ω):
Writing m = (∇ϕ)⊥ ∈ BV (Ω,R2), then If (m) = Jf (ϕ) where

∀ϕ ∈ S(Ω), Jf (ϕ) =

∫
J(∇ϕ)

f(|(∇ϕ)+ − (∇ϕ)−|) dH1(x). (4)

An interesting question is to find the minimizing structures of If if it exists. Remark
that for this problem to be relevant, we have to consider a constraint on the boundary
otherwise all constant functions are minimizers. A natural choice is to minimize If along
all configurations m belonging to the set

A0(Ω) := {m ∈ A(Ω) : m · n = 0 a.e. on ∂Ω} , (5)

where n is the exterior unit normal vector of ∂Ω. In terms of the stream function ϕ, this
is equivalent to consider the set

S0(Ω) := {ϕ ∈ S(Ω) : ϕ = 0 on ∂Ω} . (6)
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1.2 Related models

Line energies naturally appear in micromagnetics when studying the asymptotic behavior
of the magnetization in a thin ferromagnetic sample. We are going to give two simplified
micromagnetic models illustrating this phenomenon.

The first example is due to P. Aviles. and Y. Giga. In [5], they have conjectured
that if f(t) = 1

3 t
3, then If is the Γ-limit of the following Ginzburg-Landau type energy

functional AGε(u) =

∫
Ω
ε|∇u|2 +

1

ε
(1− |u|2)2 if u ∈ H1(Ω,R2) and ∇ · u = 0,

AGε(u) = +∞ otherwise,
(7)

where Ω is a bounded open set in R2 and ε > 0 is some parameter.
It is clear that finite energy limiting configurations u, i.e. limits of finite energy

sequences (uε)ε>0, have to be solutions of (1). It is also straightforward to see that the
energy will concentrate on the singular set of u. However, it is a challenging problem to
determine rigorously the asymptotic behavior of these functionals when ε goes to zero.
More precisely, given some energies Eε depending on ε > 0, a fundamental question is to
find some appropriate topology, given by the L1 distance for instance, and some limiting
energy E0 such that the three following properties hold (see [6] for example):

1. Compactness: If (uε)ε>0 is a finite energy sequence, i.e. lim supε→0Eε(uε) < ∞,
then (uε)ε>0 is relatively compact.

2. The sequence (Eε)ε>0 Γ-converges to E0, that is:

• Γ-liminf property: For all sequence (uε)ε>0 converging to some u,

E0(u) ≤ lim inf
ε→0

Eε(uε).

• Γ-limsup property: for all u, there exists a sequence (uε)ε>0 converging to u
such that:

E0(u) = lim
ε→0

Eε(uε).

For the Γ-convergence of functionals Eε = AGε to E0 = If with f(t) = 1
3 t

3, only partial
results are shown. In [5], the authors have been able to prove the Γ-liminf property for
the L1 convergence using the notion of entropies related to the problem (1) (see also
[15]). Unfortunately, the Γ-limsup is still an open problem for limiting configurations
u /∈ BV (Ω,R2). The strong compactness of finite energy sequences has been proved by
Ambrosio, De Lellis and Mantegazza in [2] and by De Simone, Kohn, Müller and Otto in
[8] using a compensated compactness method based on a new notion of regular entropy
on R2. This notion of entropy together with the kinetic equation has also been used in
[13] to characterize the structure of zero-energy states of (7) and in [14] to deduce some
regularity properties in the limit.
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The second model we want to address comes from the Ginzburg-Landau theory in thin
film micromagnetics for some asymptotical regime (see [10]). Given a bounded domain
Ω ⊂ R2 and a magnetization m = (m1,m2,m3) : Ω → S2, where S2 stands for the unit
sphere in R3, the energy of m is defined as follows:

Eε(m) = ε

∫
Ω
|∇m|2 +

1

ε

∫
Ω
φ(m) +

1

β

∫
R2

|H|2, (8)

where:

• ε is a small parameter called exchange length and 0 < β << ε.

• φ : S2 → R is some smooth function called anisotropy function such that:{
φ(m) = 0 if m ∈ S2 ∩ {m3 = 0},
φ(m) > 0 otherwise.

(9)

• H ∈ L2(R2,R2) is the solution, called stray field, of the following problem:{
∇×H = 0 on R2,

∇ ·H = ∇ ·m′ on R2,

where m′ = (m1,m2).

A simplified model consists in adding a divergence constraint ∇ · m′ = 0 to the
functional so that the last term disappears: this is equivalent to take the limit when β
tends to 0.

A finite energy sequence (mε)ε>0 is expected to converge to some divergence free and
unit length vector field m. Some experiments show that, at least for ε very small, the
magnetization is smooth out of a thin layer (very close to a line) of size ε on which it
changes very quickly between two values m± (see [9]). The microstructures formed by
the magnetization into this layer can be more or less complex. In the simplest case, it is
one-dimensional, i.e. it depends only on the normal (to the jump line) variable. However
more complex structures can appear as cross-tie wall ([1], [17]) or zizag-patterns ([12])
for example.

If φ(m) = |m3|α with 0 < α ≤ 4, only one-dimensional structures are expected and
it is easy to compute what should be the limiting energy of functionals Eε by a 1D-
analysis. As for the Modica-Mortola model for phase transition ([16]), Eε is expected to
Γ-converge to c If for some c > 0 where f(t) = tp

p , p = 1 + α
2 is the primitive of

√
φ

vanishing at 0.
The case φ(m) = |m3|2 was studied by R. Ignat and B. Merlet in [11] in which a com-

pactness result was proved and a lower bound was found. However, the Γ-liminf property
in the definition of Γ-convergence was established only for limiting 1D configurations of
the form m(x) = ±ν⊥ for ±x · ν > 0 with ν ∈ S1 (see figure 3 with θ0 = π/2).
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1.3 Lower semicontinuity, Viscosity solution

As explained above, some of the line energies If are conjectured to be the Γ-limit of
functionals coming from micromagnetics in the space X = L1. If that is the case, If has
to satisfy the following lower semicontinuity property:

Definition 2 Let F : X → [0,+∞] be a functional defined on some topological space X.
F is said to be lower semicontinuous or l.s.c. if the following holds:

∀(xn)n≥0 ⊂ X −→
n→+∞

x, F (x) ≤ lim inf
n→∞

F (xn).

Since this property strongly depends on the topology of the space X, we have to
specify the choice we make for the study of line energies If .

First of all, due to the non convex constraint |m| = 1, we need strong compactness
in L1. Moreover, since all the results of the previous part (compactness and Γ-liminf
property) holds for the L1 strong topology, it seems natural to consider the line energies
If in the space X = L1.

However, since definition 1 uses the notion of trace of a function, another natural
choice would be X = BV endowed with the weak topology which is a very common
choice for phase transition problems. Unfortunately, in the general case, the space BV
is not adapted to our problem.

Suppose f(t) = tp with p > 1 for instance. Then finite energy configurations m (i.e.
mn −→

n→+∞
m in L1 with If (mn) ≤ C < +∞) are not necessarily of bounded variation

since the total variation ofm around its jump line can’t be controlled by
∫
J(m)
|m+−m−|p

if p > 1. That’s why we need a subspace of solutions of the problem (1) included in L1(Ω)
(and containing BV ) because of the non convex constraint |m| = 1 such that we are still
able to define a jump line J(m) and traces m±. This is done in [7] where a regularity
result is shown for solution of (1) with bounded "entropy production".

Note that if X and Y are two topological spaces such that Y is continuously embed-
ded in X and F : X → [0,+∞] is l.s.c. in X then the restriction of F to Y is l.s.c. in Y .
In this paper, we only want to prove a necessary condition for functionals If to be l.s.c..
We then prefer to restrict our analysis to BV functions (see remark 2).

In the case where f(t) = tp for some p > 0, only partial results are known. In [2], the
following is conjectured:

Conjecture 1 Let If be the relaxation of If (only defined on the space BV ) in L1:

If (m) = Inf

{
lim inf
n→+∞

If (mn) : mn ∈ BV and mn −→
n→+∞

m in L1

}
. (10)

If f(t) = tp with 1 ≤ p ≤ 3 then If is l.s.c. for the strong topology in L1.
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For p > 3, this conjecture is false (see [2]). The case p = 3 has been studied by P. Aviles
and Y. Giga in [5]. More recently the case p = 2 has been proved by R. Ignat and B.
Merlet in [11]. They also proved that for every 1 ≤ p ≤ 3, there exist cost-functions
f(t) = tp for t ∈ [0,

√
2] leading to a l.s.c functional If i.e. the conjecture is true for

every 1 ≤ p ≤ 3 if we resctrict the jump to angles between 0 and π/4. Here we are
interested in the open case p < 1.

We point out that line energies associated to the cost f(t) = tp with 1 ≤ p ≤ 3
correspond exactly to the expected Γ-limits of functionals (8) when φ(m) = |m3|α with
0 < α ≤ 4 where bloch walls seem to be optimal. This is quite natural since when 2D
structures, as cross tie wall or zigzag wall for instance, have less energy than bloch walls,
the Γ-limit of these functionals may be non lower semicontinuous. In the next part, we
are going to give a 2D construction which gives some necessary condition on f for If to
be l.s.c. This condition excludes cost functions of the form f(t) = tp with p < 1:

Theorem 1 Let f : [0, 2] → [0,+∞]. Let Ω be an open and non empty subset of R2.
Assume that If is lower semicontinuous in X = BV (Ω, S1) endowed with the weak
topology. Then f is lower semicontinuous and we have

lim sup
t→0

f(t)

t
≤ 2 lim sup

t→2
f(t). (11)

Remark 1 The fact that the lower semicontinuity of If implies the lower semicontinuity
of f has already been proved in [11]. The main new point here is the condition (11).

Remark 2 Theorem 1 is stronger than an equivalent formulation in which BV is re-
placed by some banach space X such that BV is continuously embedded in X and where
If is replaced by its relaxation in X.

Remark 3 The inegality (11) in theorem 1 is optimal in the sense that we can find a
lower semicontinuous functionnal If in BV (Ω,S1) for which

lim sup
t→0

f(t)

t
= 2 lim sup

t→2
f(t).

This is based on a theorem of Ignat and Merlet in [11] stating that for a cost function
f associated to an entropy, If is l.s.c.. We just have to remark that the cost function
f(t) = t3

√
4− t2 is associated to the entropy Φ(x) = sin 3θx+ 3 cos 3θx⊥.

As we will see, the lower semicontinuity of functionals If is closely related to the
following question: Is the viscosity solution a minimizer of If? More precisely, it is
expected that the following is true:

Conjecture 2 Assume that If is l.s.c. in L1 and that Ω is convex. Then (∇ϕ0)⊥ is a
global minimizer of If where ϕ0(x) = dist(x, ∂Ω).
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For a regular domain Ω the distance function ϕ0(x) = dist(x, ∂Ω) belongs to S0(Ω) and
(∇ϕ0)⊥ is the viscosity solution of the problem (1). In particular, if Ω is convex, ϕ0

is concave and −D2ϕ0 is a positive vectorial radon measure. In [2], the authors give a
microstructure which shows that this is false for f(t) = tp if p > 3. As explained below,
we are going to give a structure with lower energy than the viscosity solution for p < 1.

Proposition 1 Let f : [0, 2] → [0,+∞]. There exists a convex domain Ω such that the
following holds: let ϕ0 ∈ S0(Ω) be the distance function ϕ0(x) = dist(x, ∂Ω). Assume
that ϕ0 is a minimizer of Jf defined by (4). Then f satisfies (11).

Corrolary 1 There exists a convex domain Ω such that the viscosity solution is not a
minimizer of If if f(t) = tp with p ∈ [0, 1[.

2 Construction of a competitor of the viscosity solution

In order to obtain inequality (11), we have to construct a domain Ω on which the jump
size t = |m+ −m−| of the viscosity solution along its singular set is very small. Then,
we find a competitor whose jump size t is close to the maximal possible value t = 2. In
other words, we want to substitute small jumps by large ones.

We will use the polar coordinates (r, θ), r ≥ 0, θ ∈ [−π, π] and we will identify R2

and C with the usual bijection. Let D be the unit disk and C be its boundary.

Let θ0 be a fixed angle in ]0, π/2[ and define the two points A = eiθ0 and A′ = e−iθ0

on the circle C. Define also TA (resp. TA′) the tangent to the circle C at the point A
(resp. A′).

We consider the domain Ω delimited by the large arc Cθ0 = {eiθ : |θ| > θ0}, TA and
TA′ (see figure 1). In other words Ω is the interior or the convex envelope of C∪{B} where
B = TA∩TA′ . Define also ω = Ω∩{|θ| < θ0 and r > 0} and Γ = ∂Ω∩∂ω = [AB]∪ [A′B].

We now consider two solutions ϕ0 and ϕ in S0(Ω) of the eikonal equation vanishing
on the border :

• ϕ0 is the usual distance function : ∀x ∈ Ω, ϕ0(x) = dist(x, ∂Ω).

• ϕ is the distance from the union of ∂Ω and the large arc C \ Cθ0 :
∀x ∈ Ω, ϕ(x) = dist(x, ∂Ω ∪ C).

We also denote by m0 = (∇ϕ0)⊥ and m = (∇ϕ)⊥ the corresponding solutions of (1).
Then m0,m ∈ A0(Ω).

We now compute If (m0) and If (m) in order to prove that the function ϕ as lower
energy than ϕ0 if f(t) = tp with p < 1.

7



O

A

A′

BI

M

θ
θ0

C

Figure 1: The domain Ω and the microstructure m

O

A

A′

B
θ0

Figure 2: Viscosity solution m0 on Ω

Heuristic: The idea is that a small jump along a fixed length is replaced by big jump
on a small length : This will reduce the energy for subadditive power costs (i.e. f(t) = tp

with p < 1) which favor "small jumps". Let us give more details.
For a small angle θ0 > 0, m0 only presents small jumps: m0 is C1 out of segment

[OB] on which the jump size is |m+
0 −m

−
0 | =: t0 = 2 sin(θ0).
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On the contrary, m only presents "big" jumps: i.e. jumps whose size is close to 2.
The singular set of m consists in 3 different lines : [IB] whose length is equivalent to θ2

0

and the two curves Cθ0 and γθ0 (defined below) on which the jump size tends to 2 and
the length of these lines is equivalent to 2θ0.

As a result, the energy of m0 is close to f(2 sin θ0) while the energy of m is close to
4θ0 × f(2). A necessary condition for m0 to minimize If is then (see proposition 1)

lim sup
t→0

f(t)/t ≤ 2f(2).

This excludes sub-additive power costs. Now let us give more details on the critical angle
θ0.

Energy of m0: The jump line of m0 is the segment [OB] and the traces of m0 on each
side of this line are given by m0,± = −ei(π/2±θ0). In particular,

If (m0) = f(2 sin θ0)|OB| = f(2 sin θ0)

cos θ0
. (12)

Energy of m: The jump line of m is the union of the 3 curves:

• Cθ0 = {eiθ : |θ| < θ0}.

• γθ0 := {z ∈ ω : d(z, Cθ0) = d(z,Γ)} = {z = reiθ : |θ| < θ0, d(z, C) = d(z, ∂Ω)}.

• The segment [IB] where I = γθ0 ∩ [OB].

First, let us find a polar equation for the curve γθ0 : Given z = reiθ such that |θ| < θ0

and r > 1 we have d(z, Cθ0) = r − 1, it remains to compute λ := d(z,Γ).

Since Ω is symmetric with respect to the axe (OB), one can restrict to the case
M = r eiθ with 0 < θ < θ0. So λ := d(z,Γ) = |z − P | where P is the orthogonal
projection of M = reiθ on the segment [AB] : P should satisfy

−−→
MP = λ

−→
OA = λ eiθ0

and
−−→
MP ·

−→
AP = 0.

We then compute
−−→
MP ·

−→
AP =

−−→
MP · [

−→
AO +

−−→
OM +

−−→
MP ]

=<{λ e−iθ0 (−eiθ0 + r eiθ + λ eiθ0)}
=λ[−1 + r cos(θ0 − θ) + λ].

Since
−−→
MP ·

−→
AP = 0, this implies λ = MP = 1− r cos(θ0 − θ).

Then we have z ∈ γθ0 if and only if r − 1 = 1− r cos(θ0 − θ) and the polar equation
of the curve γθ0 is given by

r(θ) =
2

1 + cos(θ0 − θ)
; −θ0 < θ < θ0. (13)

Now, we can compute the energy of m along the curve γθ0 :
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• dγ(θ) =
√
r(θ)2 + r′(θ)2 dθ where we find r′(θ) =

−2 sin(θ0 − θ)
(1 + cos(θ0 − θ))2

. Introducing

the notation α = θ0 − θ, we obtain

dγ(θ) = 2

√
(1 + cosα)2 + sin2 α

(1 + cosα)2
dθ = 2

√
2(1 + cosα)

(1 + cosα)2
dθ =

4 cos(α/2)

(2 cos2(α/2))2
dθ.

So dγ writes
dγ(θ) = cos−3(α/2) dθ.

• The size of the jump at the point γ(θ) is given by

t(θ) = |m+ −m−| = |ei(θ0+π/2) + ei(θ+π/2)| = |ei(θ0−θ) + 1|.

Using once again the notation α = θ0 − θ, this gives

t(θ) =

√
(cosα+ 1)2 + sin2 α =

√
2(1 + cosα) = 2 cos(α/2).

• We conclude that the energy of m induced by the jump line γθ0 is given by

I1
f (m) =

∫ θ0

−θ0

f [2 cos(α/2)]

cos3(α/2)
dα. (14)

The energy concentrated on the arc Cθ0 is

I2
f (m) = f(2)H1(Cθ0) = 2θ0 f(2). (15)

Finally, we compute the energy on the line [IB]:

I3
f (m) = f(2 sin θ0)|IB|. (16)

If the distance function is a minimizer of If we should have

If (m)− If (m0) ≥ 0.

Using these results, we have

If (m)− If (m0) =I1
f (m) + I2

f (m) + I3
f (m)− If (m0)

=

∫ θ0

−θ0

f [2 cos(α/2)]

cos3(α/2)
dα+ 2θ0 f(2) + (|IB| − |OB|) f(2 sin θ0).

Since |IB| − |OB| = −|OI| = −r(0) = − 1

cos2(θ0/2)
, this gives

If (m)− If (m0) =

∫ θ0

−θ0

f [2 cos(α/2)]

cos3(α/2)
dα+ 2θ0f(2)− f(2 sin θ0)

cos2(θ0/2)
.
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Hence, if m0 is a minimizer of If , the following condition should be satisfied:

f(2 sin θ0)

2 sin θ0
≤θ0 cos2(θ0/2)

sin θ0

[
1

θ0

∫ θ0

0

f [2 cos(α/2)]

cos3(α/2)
dα+ f(2)

]
≤ θ0

sin θ0 cos(θ0/2)
× 2 sup{f(t) : 2 cos(θ0/2) ≤ t ≤ 2}.

Taking the lim sup for θ0 → 0 leads to (11):

lim sup
t→0

f(t)

t
≤ 2 lim sup

t→2
f(t).

This proves proposition 1 and corollary 1 follows from the fact that the preceding in-
equality holds false for f(t) = tp with p < 1. Note that in this case, we get something
more precise that proposition 1:

Proposition 2 There exists θ0 ∈]0, π/2[ only depending on p such that for all
θ ∈]−θ0, θ0[, the viscosity solution is not a minimizer of If on Ωθ where Ωθ is the convex
set constructed in the previous part (θ being the angle (

−−→
OB,

−→
OA)).

3 Lower semicontinuity of line energies, proof of theorem 1.

The fact that if If is l.s.c then f is l.s.c can be found in [11] (proposition 1). In this
section we prove that (11) is a necessary condition for If to be lower semicontinuous
with respect to the weak convergence in BV on bounded open subsets of R2.

The key is to use the construction m ∈ S(Ω) depending on θ0 of the first part by
restriction to ω (see figure 3.). The 1D transition defined by (17) corresponds to the
viscosity solution m0 of the previous part. Given a small parameter ε > 0, it will costs
less energy to substitute the 1D transition around its jump line by the microstructures
m rescaled at the level ε (see figure 4).

x2

x1O

θ0

m+

m−

Figure 3: The vector field m on the left and the 1D-transition m0 on the right
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We are going to prove theorem 1 when Ω = [0, 1]× [−1, 1]. The general case follows
easily.

Fix θ0 ∈]0, π/2[ and define the 1D transition m0 for x1 ∈ [0, 1] and x2 ∈ R by

m0(x1, x2) = m± := (∓ sin θ0, cos θ0) if ± x2 > 0. (17)

Then, let us consider the vector field m = mθ0 of the preceding section restricted to ω
and define the rescaled and prolongated vector field m̃ for x1 ∈ [0, 1] and x2 ∈ R:

m̃(x1, x2) =

{
−m

(
(cos θ0)−1 x1, (cos θ0)−1 x2

)
if
(
(cos θ0)−1 x1, (cos θ0)−1 x2

)
∈ ω,

m0(x1, x2) otherwise.

Note that m̃ ∈ A(Ω) and is continuous on ∂ω. Then, let n be a positive integer and
define mn ∈ M(Ω) by aligning n times the vector field m̃ (see figure 4). More precisely,
for 0 ≤ i < n and x = (x1, x2) ∈ Ω such that i/n ≤ x1 < (i+ 1)/n, define

mn(x1, x2) = m̃(nx1 − i, n x2).

(see figure 4). We have mn(x1, x2) = m0(x1, x2) for |x2| > 1/n and ∀x ∈ Ω, |mn(x)| = 1.
Consequently, (mn)n>0 converge to m0 in L1(Ω). Moreover, |mn|BV (Ω) = |m̃|BV (Ω) so
that (mn)n>0 is bounded in BV (Ω) and weakly converge to m0.

Sincemn is obtain by scaling a fixed structure, it is easy to see that If (mn) is constant.
Indeed, If (mn) = n×1/n If (m̃) = If (m̃). That’s why we obtain the following condition:
assuming If is l.s.c.,

If (m0) = f(2 sin θ0) ≤ lim inf
n→∞

If (mn) = If (m̃).

In other words, the viscosity solution costs less energy than the construction mθ0 of the
preceding part. For this reason, we obtain exactly the same necessary condition (11) and
theorem 1 follows.

x2

x1O

θ0 θ0 θ0

m+

m−

ε = 1
n

Figure 4: The microstructure mn
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