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Abstract

Models for branched networks are often expressed as the minimization of an
energy Mα over vector measures concentrated on 1-dimensional rectifiable sets with
a divergence constraint. We study a Modica-Mortola type approximation Mα

ε , in-
troduced by Edouard Oudet and Filippo Santambrogio, which is defined over H1

vector measures. These energies induce some pseudo-distances between L2 functions
obtained through the minimization problem min{Mα

ε (u) : ∇ · u = f+ − f−}. We
prove some uniform estimates on these pseudo-distances which allow us to establish
a Γ-convergence result for these energies with a divergence constraint.

1 Introduction

Branched transportation is a classical problem in optimization: it is a variant of the
Monge-Kantorovich optimal transportation theory in which the transport cost for a mass
m per unit of length is not linear anymore but sub-additive. More precisely, the cost
to transport a mass m on a length l is considered to be proportional to mαl for some
α ∈]0, 1[. As a result, it is more efficient to transport two masses m1 and m2 together
instead of transporting them separately. For this reason, an optimal pattern for this
problem has a “graph structure” with branching points. Contrary to what happens in
the Monge-Kantorovich model, in the setting of branched transportation, an optimal
structure cannot be described only using a transport plan, giving the correspondence
between origins and destinations, but we need a model which encodes all the trajectories
of mass particles.

Branched transportation theory is motivated by many structures that can be found
in the nature: vessels, trees, river basins. . . Similarly, as a consequence of the economy
of scale, large roads are proportionally cheaper than large ones and it follows that the
road and train networks also present this structure. Surprisingly the theory has also had
theoretical applications: recently, it has been used by F. Bethuel in [4] so as to study the
density of smooth maps in Sobolev spaces between manifolds.

Branched transportation theory was first introduced in the discrete framework by E.
N. Gilbert in [14] as a generalization of the Steiner problem. In this case an admissible
structure is a weighted graph composed of oriented edges of length li on which some mass
mi is flowing. The cost associated to it is then

∑
i lim

α
i and it has to be minimized over

all graphs which transport some given atomic measure to another one. More recently, the
branched transportation problem was generalized to the continuous framework by Q. Xia
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in [23] by means of a relaxation of the discrete energy (see also [24]). Then, many other
models and generalizations have been introduced (see [15] for a Lagrangian formulation,
see also [1], [2], [3] for different generalizations and regularity properties.). In this paper,
we will concentrate on the model with a divergence constraint, due to Q. Xia. However,
this is not restrictive since all these models have been proved to be equivalent (see [3]
and [19]).

In this model, a transport path is represented as a vector measure u on some open
set Ω ⊂ Rd such that ∇ · u = µ+ − µ− for two probability measures µ+ and µ−. Then
the energy of u is defined as Mα(u) =

´
M θαdH1 if u is a vector measure concentrated

on a rectifiable 1-dimensional set M on which u has multiplicity θ w.r.t. the Hausdorff
measure (see [3] for more details). In this framework, u must be considered as the
momentum (the mass θ times the velocity) of a particle at some point. Then (∇ · u)(x)
represents the difference between incoming and outcoming mass at each point x.

In this paper, we are interested in some approximation of branched transportation
proposed by E. Oudet and F. Santambrogio few years ago in [18] and which has interesting
numerical applications. This model was inspired by the well known scalar phase transition
model proposed by L. Modica and S. Mortola in [16]. Given u ∈ H1(Ω,Rd) for some
bounded open subset Ω ⊂ Rd, E. Oudet and F. Santambrogio introduced the following
energy:

Mα
ε (u) = ε−γ1

ˆ
Ω
|u|β + εγ2

ˆ
Ω
|∇u|2,

where β ∈ (0, 1) and γ1, γ2 > 0 are some exponents depending on α (see (2.4)). If u does
not belong to the set H1(Ω), the value of Mα

ε is taken as +∞.
We recall the heuristic which shows why Mα

ε is an approximation of Mα (see [18]):
assume that µ− (resp. µ+) is a point source at S1 (resp. S2) with mass m. Then, it
is clear that the optimal path for Mα between these two measures is the oriented edge
S = (S1, S2) of length l with a mass m flowing on it. We would like to approximate
this structure, seen as a vector measure u concentrated on S, by some H1 vector fields v
which are more or less optimal forMα

ε . What we expect is that v looks like a convolution
of u with a kernel ρ depending on ε and m: v = u ∗ ρR for some R = R(ε,m), where

ρR(x) = R−dρ(R−1x) (1.1)

for some fixed smooth and compactly supported radial kernel ρ ∈ C∞c (Rd). Then the
support of v is like a strip of width R around S so that |v| is of the order of m/Rd−1 and
|∇v| is of the order of m/Rd. This gives an estimate of Mα

ε (v) like

Mα
ε (v) ' ε−γ1Rd−1(m/Rd−1)βl + εγ2Rd−1(m/Rd)2l. (1.2)

With our choice for the exponents γ1, γ2 and β, the optimal choice for R is

R = εγm
1−γ
d−1 , (1.3)

where
γ =

2

2d− β(d− 1)
=

γ2

d+ 1
. (1.4)

This finally leads to Mα
ε (v) ' mα as expected.

It was proved in [18] that, at least in two dimensions, the energy sequence (Mα
ε )ε>0

Γ-converges to the branched transportation functional c0M
α for some constant c0 and

for some suitable topology (see Theorem 2.1 page 5). This result has been interest-
ingly applied to produce a numerical method. However, rather than a Γ-convergence

2



result on Mα
ε we would need to deal with the functionals Mα

ε , obtained by adding a
divergence constraint: it should be shown that Mα

ε (u) := Mα
ε (u) + I∇·u=fε Γ-converges

to c0M
α
(u) := c0M

α
ε (u) + I∇·u=µ+−µ− , where fε ∈ L2 is some suitable approximation

of µ+ − µ− and IA(u) is the indicator function in the sense of convex analysis that is
0 whenever the condition is satisfied and +∞ otherwise. Even if this property was not
proved in [18], the effectiveness of the numerical simulations made the authors think that
it actually holds true. Note that an alternative using a penalization term was proposed
in [20] to overcome this difficulty.

In section 2 we recall Xia’s formulation of branched transportation and its approx-
imation Mα

ε introduced by E. Oudet and F. Santambrogio. The longest part of this
paper, section 3, is devoted to a local estimate which gives a bound on the minimum
value dαε (f+, f−) := min{Mα

ε (u) : ∇ · u = f} depending on ‖f‖L1 , ‖f‖L2 and diam(Ω)
(see Theorem 3.2 page 6). In section 4, we deduce a comparison between dαε and the
Wasserstein distance with an “error term” involving the L2 norm of f+ − f−. As an ap-
plication of this inequality, in the last section, we will prove the following Γ-convergence
result which was lacking in [18]

Theorem 1.1. Let (fε)ε>0 ⊂ L2(Ω) be a sequence weakly converging to µ as measures
when ε→ 0. Assume that the sequence (fε)ε>0 satisfies

ˆ
Ω
fε(x) dx = 0 and εγ2‖fε‖2L2 −→

ε→0
0.

There exists a constant c0 > 0 such that the functional sequence (M
α
ε )ε>0 Γ-converges to

c0M
α as ε→ 0. Moreover c0 is the minimum value for the minimizing problem (5.1).

This answers the Open question 1 in [20, 18] and validates their numerical method.

2 Mathematical setting.

The branched transportation energy In all what follows, we will use the model
proposed by Q. Xia (see [23] and [24]):

Let d ≥ 1 be an integer and Ω be some open and bounded subset of Rd. Let us
denote by Mdiv(Ω) the set of finite vector measures on Ω such that their divergence is
also a finite measure:

Mdiv(Ω) :=
{
u measure on Ω valued in Rd : ‖u‖Mdiv(Ω) < +∞

}
,

where ‖u‖Mdiv(Ω) := |u|(Ω) + |∇ · u|(Ω) with

|u|(Ω) := sup

{ˆ
Ω
ψ · du : ψ ∈ C(Ω, Rd), ‖ψ‖L∞ ≤ 1

}
and, similarly,

|∇ · u|(Ω) := sup

{ˆ
Ω
∇ϕ · du : ϕ ∈ C1(Ω,R), ‖ϕ‖L∞ ≤ 1

}
.

In all what follows, ∇·u has to be thought in the weak sense, i.e.
´
ϕ∇·u = −

´
∇ϕ ·du

for all ϕ ∈ C1(Ω). Since we do not ask ϕ to vanish at the boundary, ∇ · u may contain
possible parts on ∂Ω which are equal to u · n when u is smooth, where n is the exter-
nal unit normal vector to ∂Ω. In other words, ∇ · u is the weak divergence of u1Ω in
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Rd, where 1Ω is the classical indicator function of Ω, equal to 1 on Ω and 0 elsewhere.
From now on, the notation 1X for the classical indicator function of a set X and IX
for the indicator function in the sense of convex analysis (equal to 1 inside and +∞
outside) will be used. Mdiv(Ω) is endowed with the topology of weak convergence on

u and on its divergence: i.e. un
Mdiv(Ω)−→ u if un ⇀ u and∇·un ⇀ ∇·u weakly as measures.

Given 0 < α < 1, the energy of branched transportation can be represented as follows
for measures u ∈Mdiv(Ω):

Mα(u) =

{ ´
M θα dH1 if u can be written as u = U(M, θ, ξ),

+∞ otherwise,
(2.1)

where U(M, θ, ξ) is the rectifiable vector measure u = θξ · H1
|M with density θξ with

respect to the H1−Hausdorff measure on the rectifiable set M . The real multiplicity is
a measurable function θ : M → R+ and the orientation ξ : M → Sd−1 ⊂ Rd is such that
ξ(x) is tangential to M for H1-a.e. x ∈M .

Given two probability measures µ+ and µ− on Ω, the problem of branched trans-
portation consists in minimizing Mα under the constraint ∇ · u = µ+ − µ−:

inf
{
Mα(u) : u ∈Mdiv(Ω) and ∇ · u = µ+ − µ−

}
. (2.2)

Note that, if µ±(∂Ω) = 0, the divergence constraint implies a Neumann condition on u:
u · n = 0 on ∂Ω.

Functionals Mα
ε For the minimum value in (2.6) to be finite whatever µ+ and µ−

in the set of probability measures, we will require α to be sufficiently close to 1. More
precisely, we make the following assumption:

1− 1

d
< α < 1. (2.3)

Q. Xia has shown in [23] that, under this assumption, there exists at least one vector
measure u ∈Mdiv(Ω) such that Mα(u) < +∞.

We are interested in the following approximation ofMα which was introduced in [18]:
for all u ∈Mdiv(Ω) and for all open subset ω ⊂ Ω,

Mα
ε (u, ω) :=

 ε−γ1
ˆ
ω
|u(x)|β dx+ εγ2

ˆ
ω
|∇u(x)|2 dx if u ∈ H1(ω)

+∞ otherwise,
(2.4)

where β, γ1 and γ2 are three exponents depending on α and d through:

β =
2− 2d+ 2αd

3− d+ α(d− 1)

and
γ1 = (d− 1)(1− α) and γ2 = 3− d+ α(d− 1).

Note that inequality 1 − 1/d < α < 1 implies that 0 < β < 1. When ω = Ω, we simply
write

Mα
ε (u,Ω) =: Mα

ε (u).

4



We point out the 2-dimensional case where Mα
ε rewrites as

Mα
ε (u) = εα−1

ˆ
Ω
|u(x)|β dx+ εα+1

ˆ
Ω
|∇u(x)|2 dx, (2.5)

where β = 4α−2
α+1 .

Given two densities f+, f− ∈ L2
+(Ω) := {f ∈ L2(Ω) : f ≥ 0} such that

´
f+ =

´
f−,

we are interested in minimizing Mα
ε (u) under the constraint ∇ · u = f+ − f−:

inf
{
Mα
ε (u) : u ∈ H1(Ω) and ∇ · u = f+ − f−

}
. (2.6)

The classical theory of calculus of variation shows that this infimum is actually a mini-
mum. A natural question that arises is then to understand the limit behavior for mini-
mizers of these problems when ε goes to 0. A classical tool to study this kind of problems
is the theory of Γ-convergence which was introduced by De Giorgi in [12]. For the def-
inition and main properties of Γ-convergence, we refer to [11] and [8]. In particular, if
Mα
ε Γ-converges to some energy functional Mα

0 and if (uε) is a sequence of minimizers
for Mα

ε admitting a subsequence converging to u, then, u is a minimizer for Mα
0 . By

construction of Mα
ε , we expect that, up to a subsequence, Mα

ε Γ-converges to c0M
α. In

the two dimensional case, we have the following Γ-convergence theorem proved in [18]:

Theorem 2.1. Assume that d = 2 and α ∈ (1/2, 1). Then, there exists a constant c > 0
such that (Mα

ε )ε>0 Γ-converges to cMα inMdiv(Ω) when ε goes to 0.

Nevertheless, this does not imply the Γ-convergence of Mα
ε (u) + I∇·u=f+−f− to

Mα
ε (u) + I∇·u=f+−f− . Indeed, the Γ-convergence is stable under the addition of con-

tinuous functionals but not l.s.c. functionals. Consequently, we cannot deduce, from this
theorem, the behavior of minimizers for (2.6). For instance, it is not clear that there
exists a recovery sequence (uε), i.e. uε converges to u inMdiv(Ω) and Mα

ε (uε) converges
toMα(u) as ε→ 0, with prescribed divergence ∇·uε = f+−f−. To this aim, we require
some estimates on these energies and this is the purpose of this paper.

Distance of branched transportation We remind our hypothesis 1− 1/d < α < 1.
In [23], Q. Xia has remarked that, as in optimal transportation theory, Mα induces a
distance dα on the space P(Ω) of probability measures on Ω:

dα(µ+, µ−) = inf
{
Mα(u) : u ∈Mdiv(Ω) such that ∇ · u = µ+ − µ−

}
,

for all µ+, µ− ∈ P(Ω). Thanks to our assumption α > 1 − 1/d, dα is finite for all
µ± ∈ P(Ω) and it induces a distance on the set P(Ω) which metrizes the topology of
weak convergence of measures. Actually, dα has a stronger property which is a comparison
with the Wasserstein distance:

Proposition 2.2. Let µ+ and µ− be two probability measures on Ω. We denote by Wp

the Wasserstein distance associated to the cost (x, y) → |x − y|p for p ≥ 1. Then, one
has

W1/α(µ+, µ−) ≤ dα(µ+, µ−) ≤ C W1(µ+, µ−)1−d(1−α),

for a constant C > 0 only depending on d, α and the diameter of Ω.

We refer to [17] for a proof of this property (see also [3], and [9] for an alternative proof)
and [22], [21] for the definition and main properties of the Wasserstein distance. In the
same way, we define dαε as follows:

dαε (f+, f−) = inf
{
Mα
ε (u) : u ∈ H1(Rd) such that ∇ · u = f+ − f−

}
, (2.7)
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where f+, f− ∈ L2
+(Ω) satisfy

´
Ω f

+ =
´

Ω f
−. Although dα is a distance, it is not

the case for dαε which does not satisfy the triangular inequality. Actually, because of the
second term involving |∇u|2,Mα

ε is not subadditive. However, for u1, . . . , un inMdiv(Ω),
the inequality |∇u1 + · · ·+∇un|2 ≤ n{|∇u1|2 + · · ·+ |∇un|2} implies

Mα
ε

(
n∑
i=1

ui

)
≤ n

n∑
i=1

Mα
ε (ui).

In particular, dαε is a pseudo-distance in the sense that the three properties in the following
proposition are satisfied:

Proposition 2.3. Let f+, f− and f1,. . . , fn be L2 densities, i.e. L2 non negative
functions whose integral is equal to 1. Then one has

1. dαε (f+, f−) = 0 implies f+ = f−,

2. dαε (f+, f−) = dαε (f−, f+),

3. dαε (f0, fn) ≤ n
[
dαε (f0, f1) + dαε (f1, f2) + · · ·+ dαε (fn−1, fn)

]
.

3 Local estimate

We remind our assumption (2.3) which insures that dα(µ+, µ−) is always finite. Our goal
is to prove that dαε enjoys a property similar to the following one.

Proposition 3.1. Let Q0 = (0, L)d ⊂ Rd be a cube of side length L > 0. There exists
some constant C > 0 only depending on d and α such that for all non negative Borel
finite measure µ of total mass θ > 0,

dα(µ, θδ0) ≤ C θαL,

where δ0 is the Dirac measure at the point cQ0 , the center of Q0.

Since dαε (f+, f−) is only defined on L2 functions f±, to do so, we first have to replace
θδ0 by some kernel which concentrates at the origin when ε goes to 0. Let ρ ∈ C1

c (B,R+)
be a radial non negative function such that

´
Rd ρ = 1, where B ⊂ Rd is the unit ball

centered at the origin, and define ρθ,ε := ρR as in (1.1), where

R =: Rθ,ε = εγθ
1−γ
d−1 .

Here, we recall that R and γ = γ2
d+1 were introduced in (1.4). Let Q be a cube in

Rd centered at some point cQ ∈ Rd and f ∈ L2
+(Q) be a density such that

´
Q f =: θQ.

Then, we will denote by ρQ the kernel θρθ,ε refocused at cQ with a small abuse of notation
(indeed, ρQ also depends on f):

ρQ(x) = θQρθQ,ε(x− cQ).

The main result of this section is the following theorem

Theorem 3.2 (Local estimate). Let us set Q0 = (0, L)d for some L > 0. There exists
C > 0 only depending on α, ρ and d such that for all f ∈ L2

+(Q0) with
´
Q0
f = θ, we

have
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• If supp ρQ0 ⊂ Q0 then, there exists u ∈ H1
0 (Q0) such that ∇ · u = f − ρQ0 and

dαε (f, ρQ0) ≤Mα
ε (u) ≤ C

{
θαL+ εγ2‖f‖2L2

}
and ‖u‖L1 ≤ C Lθ.

• Otherwise, there exists u ∈ H1
0 (Q̃0) such that

dαε (f, ρQ0) ≤Mα
ε (u) ≤ Cεγ2‖f‖2L2 and ‖u‖L1 ≤ C Lθ,

where Q̃0 = 2 supp ρQ0 := B(cQ0 , 2Rθ,ε).

Remark 3.3. The Dirichlet term, εγ2‖f‖2L2 , in the estimates above is easily understand-
able. Indeed, if ε is very large so that one can get rid of the first term in the energy Mα

ε ,
then, one can use a classical Dirichlet type estimate, that is Theorem 3.4 below. On the
contrary, for ε very small, the Γ-limit result on Mα

ε tells us that these energies are close
to Mα so that it is natural to hope a similar estimate as the one for Mα: that is to say
an estimate from above by θαL (see [3]).

The main difficulty to prove Theorem 3.2 is the non subadditivity of the pseudo-
distances λαε . Indeed, our proof is based on a dyadic construction used by Q. Xia in
[23] to prove Proposition 3.1 (see also [3]). This gives a singular vector measure u which
is concentrated on a graph. Since Mα

ε contains a term involving the L2 norm of ∇u,
we have to regularize u by taking a convolution with the kernel ρθ,ε on each branch of
the graph (θ being the mass traveling on it). Unfortunately in this way, two different
branches are no longer disjoints.

It is useful to see that we have a first candidate for the minimization problem (2.7).
This candidate is of the form u = ∇φ, where φ is the solution of the Dirichlet problem{

∆φ = f+ − f− in Q,

φ = 0 on ∂Q.
(3.1)

Then u = ∇φ satisfies ∇·u = f+−f− in Q and u(x) ∈ Rn a.e. on ∂Q where n stands for
the external unit normal vector to ∂Q. Alternatively, one could consider Neumann ho-
mogeneous boundary conditions for φ rather than Dirichlet boundary conditions. Then,
one would obtain u(x) ·n = 0 a.e. on ∂Q. Theorem 3.4 below gives a better result in the
sense that the candidate u vanishes at the boundary:

Theorem 3.4. Let Q0 = (0, L)d be a cube of side length L > 0. There exists C > 0
only depending on d such that for all f ∈ L2

0(Q0), there exists u ∈ H1
0 (Q0,R2) solving

∇ · u = f and satisfying ‖u‖L1(Q0) ≤ CL ‖f‖L1(Q0) together with

‖u‖H1
0 (Q0) :=

(ˆ
Q0

|∇u|2
)1/2

≤ C ‖f‖L2(Q0),

where L2
0(Q0) =

{
f ∈ L2(Q0) :

´
Q0
f(x) dx = 0

}
.

For a proof of this theorem, see, for instance, Theorem 2 in [7]: the only difference with
Theorem 3.4 is that we add the estimate ‖u‖L1(Q0) ≤ CL ‖f‖L1(Q0) which can be easily
obtained following the proof of J. Bourgain and H. Brezis. The corresponding property
formulated on a Lipschitz bounded connected domain Ω is also true (see Theorem 2’ in
[7]) except that the constant C could depend on Ω in this case.

Of course, this candidate is usually not optimal for (2.7) and this does not allow for
a good estimate because of the first term in the definition of Mα

ε . For this reason, we
have to use the dyadic construction of Q. Xia up to a certain level (“diffusion level”) from
which we simply use Theorem 3.4.
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3.1 Dyadic decomposition of Q0 and “diffusion level” associated to f

Let us call “dyadic descent” of Q0 = (0, L)d the set Q =
⋃
j≥0Qj , where Qj is the jth

“dyadic generation”:

Qj =
{

(x1, . . . , xd) + 2−jQ0 : xi ∈ {k2−jL : 0 ≤ k ≤ 2j − 1} for i = 1, . . . , d
}
.

Note that Card(Qj) = 2jd. For each Q ∈ Q, let us define

• D(Q): the descent of Q, the family of all dyadic cubes contained in Q.

• A(Q): the ancestry of Q, the family of all dyadic cubes containing Q.

• C(Q): the family of children of Q composed of the 2d biggest dyadic cubes strictly
included in Q.

• F (Q): the father of Q, the smallest dyadic cube strictly containing Q.

We now remind the dyadic construction described in [23] which irrigates f from a point
source. We first introduce some notations: fix a function f ∈ L2

+(Q0) with integral θ
and let Q ∈ Q be a dyadic cube centered at cQ ∈ Rd. Then we introduce θQ the mass
associated to the cube Q as

θQ =

ˆ
Q
f .

If θQ 6= 0, we also define the kernel associated to Q through

ρQ(x) = ρR(x), (3.2)

where ρR is defined in (1.1) for

R = RQ := εγθ
1−γ
d−1

Q , γ =
γ2

d+ 1
.

Here γ was defined in Define also the weighted recentered kernel by

ρQ(x) = θQρQ(x− cQ) (3.3)

if θQ 6= 0 and ρQ(x) = 0 otherwise. Lastly, we introduce the point source associated to
the cube Q as

SQ := θQ ×Dirac measure at point cQ.

We are now able to construct a vector measure X such that Mα(X) < +∞. First define
the measures XQ as below:

XQ =
∑

Q′∈C(Q)

θQ′ nQ′ H1
|[cQ,cQ′ ]

, (3.4)

where nQ′ =
cQ′ − cQ
‖cQ′ − cQ‖

. Then, we have

∇ ·XQ =
∑

Q′∈C(Q)

SQ′ − SQ

and the energy estimate
Mα(XQ) ≤ 2d−2θαQ diam(Q),

where diam(Q) stands for the diameter of Q. Finally, the measure X =
∑

Q∈QXQ solves
∇ ·X = f − SQ0 and satisfies

Mα(X) ≤ Cθα diam(Q0).

Indeed, it is enough to apply the following lemma with λ = α:
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Lemma 3.5. Let Q ∈ Q and λ ∈]1− 1/d, 1]. There exists a constant C = C(λ, d) such
that ∑

Q′∈D(Q)

θλQ′ diam(Q′) ≤ CθλQ diam(Q).

Proof. Let j0 ≥ 0 be such that Q ∈ Qj0 . The definition of D(Q), the Jensen inequality
and the fact that d− 1− λd < 0 give∑

Q′∈D(Q)

θλQ′ diam(Q′) =
∑
j≥0

2−j diam(Q)
∑

Q′∈D(Q)∩Qj0+j

θλQ′

≤ diam(Q)
∑
j≥0

2−j2jd

2−jd
∑

Q′∈D(Q)∩Qj0+j

θQ′

λ

≤ θλQ diam(Q)
∑
j≥0

2j(d−1−λd)

≤ CθλQ diam(Q).

Now, the idea is to replace each term in (3.4) by its convolution with the kernel ρQ′ .
Unfortunately, this will make appear extra divergence terms around each node. We have
to modify X so as to make this extra divergence vanish using, for instance, Theorem 3.4.
Furthermore, we cannot follow the construction for all generations j ≥ 1, otherwise the
“enlarged edges” (convolution of a dyadic edge and the kernel ρθ,ε) may overlap. This is
the reason why we introduce the following definition:

Definition 3.6 (“Diffusion level”). For a cube Q0 and f ∈ L2
+(Q0) we define the set

D(Q0, f) or D(f) ⊂ Q as the maximal element for the inclusion in the set

Λ = {D ⊂ Q : ∀Q ∈ D, A(Q) ∪ C(F (Q)) ⊂ D and supp ρQ ⊂ Q} .

If Λ = ∅, that is supp ρQ0 * Q0, we take the convention D(f) = ∅. For all x ∈ Q0, define
also the “generation index” of x associated to f as

j(f, x) = max {j : ∃Q ∈ D(f) ∩Qj , x ∈ Q} ∈ N ∪ {±∞},

where the convention max(∅) = −∞ has been used.

In this way, each cube in D(f) contains the support of its associated kernel. Moreover,
if Q is an element of D(f), then all its ancestry and its brothers (i.e. elements of the
set C(F (Q))) are elements of D(f). D(f) can be constructed by induction as follows:
first take j = 0 and D(f) = ∅. If supp ρQ0 ⊂ Q0 then add Q0 to the set D(f) and j is
replaced by j + 1. For all cubes Q in Λ ∩ Qj−1: if all cubes Q′ ∈ C(Q) ⊂ Qj are such
that their associated kernels are supported on Q′ then D(f) is replaced by D(f)∪ C(Q).
If D(f) has been changed at this stage j is replaced by j + 1 and the preceding step is
reiterated. This process is repeated for j ≥ 1 until it fails.

Let Dmin(f) be the set of all cubes in D(f) which are minimal for the inclusion. If
Dmin(f) 6= ∅, we also define

D(f) =
⋃

Q∈Dmin(f)

Q .

Note that this is actually a disjoint union: two distinct cubes in Dmin(f) are disjoint.
Indeed, for Q, Q′ ∈ Dmin(f) ⊂ Q, either Q∩Q′ = ∅ or Q and Q′ are comparable: Q ⊂ Q′
or Q′ ⊂ Q. In the last case, since Q and Q′ are minimal, we deduce that Q = Q′.
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Moreover, it is not difficult to see that, if Dmin(f) 6= ∅, then D(f) = {x ∈ Q0 :
j(f, x) is finite} and also that f(x) = 0 whenever j(f, x) = +∞, where f is the precise
representative of f (i.e. the limit of the mean values of f on small cubes). Indeed, assume
that Q ∈ D(f) is a cube of side length LQ. Then, by definition, supp ρQ ⊂ Q and for
some constant C depending on ρ and for ν = 1−γ

d−1 , one has εγθνQ ≤ CLQ and so
 
Q
f := L−dQ θQ ≤ ε−γ/νL1/ν−d

Q .

Since 1/ν − d = (d−1)(αd−d+1)
d+1 is positive, we deduce that LQ cannot be arbitrarily small

if there exists x ∈ Q such that f(x) > 0. Moreover, if f(x) ≥ η a.e. for some η > 0, then
there exists some constant Cη > 0 depending on η, ε, d and α such that

∀Q ∈ D(f), LQ ≥ Cη. (3.5)

In particular, one can deduce that Dmin(f) = ∅ if and only if D(f) = ∅ or f(x) = 0
a.e. Indeed, if D(f) = ∅, then it is clear that Dmin(f) = ∅. Conversely, assume that
Dmin(f) 6= ∅ (i.e. Q0 ∈ D(f)) and that there exists x ∈ Q0 such that f(x) > 0. Since⋃
Q∈D(f) ∂Q is negligible for the Lebesgue measure, one can assume that x ∈

⋃
Q∈D(f)Q.

Then 0 ≤ j(f, x) < +∞ and so there exists a minimal cube Q ∈ D(f) containing x.
Then Q ∈ Dmin(f). Indeed, if Q′ ∈ D(f) and Q′ ( Q, then A(Q) ⊂ D(f) and there
exists Q′′ ∈ A(Q) such that Q′′ ( Q and x ∈ Q′′ which is a contradiction.

We are now able to define two approximations of f which are useful for our problem.
The first is a dyadic approximation of f by an atomic measure,

Λεf =


∑

Q∈Dmin(f)

SQ if Dmin(f) 6= ∅,

SQ0 otherwise,

where we recall the definition of SQ := θQδcQ . We also define an approximation in
H1(Q0),

λεf =


∑

Q∈Dmin(f)

ρQ if Dmin(f) 6= ∅,

ρQ0 otherwise,

where ρQ is defined in (3.3). The following result shows in which sense λεf is an approx-
imation of f and justifies the term “diffusion level”. Indeed, this proposition indicates
that we get a good estimate by using a local diffusion from λεf to f , i.e. minimizing´
Q |∇u|

2 over the constraint ∇ · u = λεf − f for all Q ∈ Dmin(f) (see Theorem 3.4).

Proposition 3.7. There exists a constant C > 0 depending on d and ρ such that for all
f ∈ L2

+(Q0),
dαε (λεf, f) + dα(Λεf, f) ≤ C εγ2‖f‖2L2(Q0).

More precisely, if supp ρQ0 ⊂ Q0, there exists u ∈ H1
0 (Q0) such that ∇ · u = f − λεf as

well as
Mα
ε (u) ≤ C εγ2‖f‖2L2 and ‖u‖L1 ≤ C diam(Q0)‖f‖L1 .

If supp ρQ0 * Q0 the same estimates hold but the condition u ∈ H1
0 (Q0) has to be replaced

by u ∈ H1
0 (Q̃0), where Q̃0 is a cube containing Q0 and supp ρQ0.

Proof. First assume that supp ρQ0 ⊂ Q0 i.e. Q0 ∈ D(f). If Dmin(f) = ∅, then f(x) = 0
a.e. and the proposition is trivial. Hence, one can assume that Dmin(f) 6= ∅. Then f
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is supported on D(f) and Dmin(f) =: {Qi}i∈I is a finite or countable partition of D(f).
Denote for simplicity Di := diam(Qi), fi := f1Qi (restriction of f to Qi), θi := θQi and
ρi := ρQi = θi ρRi for i ∈ I, where

Ri := RQi = εγθ
1−γ
d−1

i .

Since Qi is minimal in D(f), we deduce that, for some constants C,C ′ > 0,

C ′Ri ≤ Di ≤ CRi. (3.6)

Indeed, the first inequality follows from the fact that supp ρi ⊂ Qi and diam(supp ρi) =
cRi for some constant c depending on ρ. For the second inequality observe that, since Qi
is minimal, there exists Q ∈ C(Qi) such that supp ρQ * Q and hence RQ ≥ c′ diam(Q) =
c′/2Di for some constant c′ > 0 depending on ρ. Since θQ ≤ θQi = θi, one has RQ ≤ Ri
and the second inequality follows.

Now, Theorem 3.4 allows us to find ui ∈ H1
0 (Qi) such that ∇ · ui = gi, ‖ui‖H1(Qi) ≤

C ‖gi‖L2(Qi) and ‖ui‖L1(Qi) ≤ C Di‖gi‖L1(Qi), where gi := fi − ρi. Since ui vanishes
at ∂Qi, one can extend ui by 0 out of Qi to get a function in H1(Rd): for the sake
of simplicity, this function is still denoted by ui. Consequently, u =

∑
i ui belongs to

H1
0 (Q0) and ∇ · u = f − λεf . It remains to estimate Mα

ε (u) and ‖u‖L1(Q0). First of all,

‖u‖L1(Q0) ≤
∑
i

‖ui‖L1(Qi) ≤ C diam(Q0)
∑
i

‖gi‖L1(Qi)

and the inequality ‖gi‖L1(Qi) ≤ 2θi leads to ‖u‖L1 ≤ 2C diam(Q0)‖f‖L1 as required.
Let us compute the L2-norm of ρi:

‖ρi‖2L2(Qi)
= θ2

i ‖ρRi‖2L2(Qi)
= θ2

iR
−d
i ‖ρ‖

2
L2(Qi)

= Cθ2
iR
−d
i .

By a Cauchy-Schwarz inequality,

θ2
i =

(ˆ
Qi

fi

)2

≤ |Qi|‖fi‖2L2(Qi)
= Dd

i ‖fi‖2L2(Qi)
(3.7)

which, together with (3.6), gives

‖ρi‖2L2(Qi)
≤ C Rdi ‖fi‖2L2(Qi)

R−di = C ‖fi‖2L2(Qi)
.

Since ‖ui‖H1(Qi) ≤ C‖fi− ρi‖L2(Qi), we get ‖ui‖H1(Qi) ≤ C‖fi‖L2(Qi). Now, because the
energy Mα

ε is local and since each ui is supported on Qi, one has

Mα
ε (u) =

n∑
i=1

Mα
ε (ui) =

n∑
i=1

(
ε−γ1

ˆ
Qi

|ui|β + εγ2
ˆ
Qi

|∇ui|2
)

By construction of ui, one has
ˆ
Qi

|∇ui|2 ≤ ‖ui‖2H1(Qi)
≤ C‖gi‖2L2(Qi)

≤ 2C
(
‖ρi‖2L2(Qi)

+ ‖fi‖2L2(Qi)

)
≤ C ′‖fi‖2L2(Qi)

.

It remains to estimate the first term. First of all, we use the Hölder and Poincaré
inequalities as follows:
ˆ
Qi

|ui|β ≤ |Qi|1−β/2
(ˆ

Qi

|ui|2
)β/2

≤ Dd−dβ/2
i

(
D2
i

ˆ
Qi

|∇ui|2
)β/2

≤ Dν
i ‖fi‖

β
L2(Qi)

,
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where ν = β + d− dβ
2 . In view of (3.7) and (3.6), we have

Di ≤ CRi = Cεγθ
1−γ
d−1

i ≤ Cεγ(D
d
2
i ‖fi‖L2(Qi))

1−γ
d−1

and, introducing δ := 1− d(1−γ)
2(d−1) ,

Dδ
i ≤ Cεγ‖fi‖

1−γ
d−1

L2 . (3.8)

Finally, since −γ1 + γν
δ = γ2 and β + ν(1−γ)

δ(d−1) = 2, we get

ε−γ1
ˆ
Qi

|ui|β ≤ Cε−γ1+ γν
δ ‖fi‖

β+
ν(1−γ)
δ(d−1)

L2(Qi)
= Cεγ2‖fi‖2L2(Qi)

.

The proof of the second inequality is quite similar but easier:

dα(Λεf, f) ≤
n∑
i=1

dα(SQi , fi) ≤
n∑
i=1

θαi Di .

Once again, applying (3.7) and then (3.8), we get

dα(Λεf, f) ≤ C εγ2‖f‖2L2 .

In the case where supp ρQ0 * Q0, i.e. RQ0 := εγθ
1−γ
d−1

Q ≥ CL (L being the side length
of Q0 and C a constant depending on ρ), the proof is the same. Indeed, we just apply
Theorem 3.4 to g = f − ρQ0 and the same computations as above lead to the same
result.

3.2 Proof of Theorem 3.2

Let Q0 = (0, L)d, L > 0 and f ∈ L2
+(Q0) with

´
Q0
f = θ. In the case where supp ρQ0 *

Q0, Theorem 3.2 is a particular case of Proposition 3.7. Consequently, one can assume
that supp ρQ0 ⊂ Q0 i.e. Q0 ∈ D(f). In the case where D(f) = {Q0}, one has λεf = ρQ0

and Theorem 3.2 is a consequence of Proposition 3.7 as well. For this reason, one can
assume that C(Q0) ⊂ D(f). Moreover, up to replacing f by f+η for some small constant
η > 0 and passing to the limit when η → 0, one can assume that D(f) is finite. Indeed,
in view of (3.5), D(f + η) is finite since for all Q ∈ D(f + η), diam(Q) ≥ Cη > 0.

Our aim is to prove that there exists C > 0 only depending on α, d and ρ such that

dαε (f, ρQ0) ≤ C
{
θαL+ εγ2‖f‖2L2(Q0)

}
.

The idea of the proof is to approximate the vector field X =
∑
XQ of the previous

section (see (3.4)) by a vector field in H1 using the kernel ρ. In this part, we will use the
notations of the previous section: in particular, the definition of D(f) in Definition 3.6,
the measures XQ in (3.4) and X =

∑
Q∈D(f)XQ.

Since C(Q0) ⊂ D(f), we can construct the regularized vector field Y by the formula

Y =
∑

Q∈D(f)
Q6=Q0

ZQ,

where, for all Q ∈ D(f) such that Q 6= Q0 (see Figure 1),

ZQ := θQ nQ ρQ ∗ H1
|[cF (Q),cQ], (3.9)
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nQ being the normalized vector nQ =
cQ−cF (Q)

‖cQ−cF (Q)‖
and ρQ being defined in (3.2).

Q1 Q2

Q3 Q4

Q

ZQ1

ZQ2

ZQ3 ZQ4

ρQ1

ρQ2

ρQ3 ρQ4

Figure 1: A square Q and its 4 dyadic children Qi with the associated vector field ZQ

By definition of the kernel ρQ, one has

Mα
ε (ZQ) ≤ CθαQ diam(Q). (3.10)

This a consequence of the choice of RQ as a minimizer in (1.2). Indeed, for the sake of
simplicity, let us assume that supp ρ is the unit ball centered at the origin. Then ZQ is
concentrated on a strip of width RQ around the segment S = [cF (Q), cQ], i.e.

suppZQ ⊂ S̃ := {x ∈ Rd : dist(x, S) ≤ RQ} (3.11)

and ZQ satisfies the two estimates

‖ZQ‖L∞ ≤ CθQR1−d
Q and ‖∇ZQ‖L∞ ≤ CθQR−dQ . (3.12)

Then, the same computations as in (1.2) and the fact that RQ ≤ diam(Q) give (3.10).
Let us estimate the L1 norm of Y which has to be controlled by θ as stated in Theorem

3.2:

‖Y ‖L1(Q0) ≤
∑
j≥1

∑
Q∈D(f)∩Qj

‖ZQ‖L1(S̃) ≤
∑
j≥1

∑
Q∈D(f)∩Qj

θQ L 2−j = Lθ.

Note that
∇ · Y = ρQ0 − h− λεf,

where h stands for the extra divergence. h can be written as

h =
∑

Q∈Dfr.

ρQ − ∑
Q′∈C(Q)

ρQ′,Q

 ,
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where ρQ′,Q represents the kernel ρQ′ translated at cQ, center of Q, and, for the sake of
simplicity, the set of all cubes Q such that C(Q) ⊂ D(f) has been denoted by Dfr.:

Dfr. := {Q ∈ D(f) : C(Q) ⊂ D(f)}.

Since ∇ · Y = ρQ0 − f + (f − λεf)− h 6= ρQ0 − f , we have to slightly modify the vector
field Y . This will be done replacing Y by

V = Y + V1 + V2,

where V1, V2 ∈ H1(Q0,Rd) are constructed so that ∇ · V1 = h and ∇ · V2 = λεf − f .
The construction of V1 and the estimate of Mα

ε (V1), ‖V1‖L1 will be the object of the first
step. In the second step we prove that Mα

ε (Y ) ≤ CθαL. Then, Proposition 3.7 allows
us to construct V2 ∈ H1 such that ∇ · V2 = λεf − f with an estimate on Mα

ε (V2) and
‖V2‖L1 .

First step: Correction at the nodes, construction of V1. For all Q ∈ Dfr., let
BQ be the support of ρQ. Since supp ρ has been supposed to be the unit ball centered
at the origin and ρQ(x) = θQρRQ(x− cQ), we have BQ = B(cQ, RQ) ⊂ Q. Let us define
the extra divergence corresponding to this node,

hQ = ρQ −
∑

Q′∈C(Q)

ρQ′,Q .

For each Q ∈ Dfr., thanks to Theorem 3.4, we can find VQ ∈ H1
0 (BQ) such that ∇·VQ =

hQ and ‖VQ‖H1(BQ) ≤ C ‖hQ‖L2(BQ). But in this case, because hQ is radial up to a
translation, we essentialy use the proposition in dimension 1 which is quite easy and
gives better estimates. Let us give more details on this point:

Lemma 3.8. Let d ≥ 1 and B = B(0, R) ⊂ Rd be a ball centered at the origin. There
exists a constant C > 0 only depending on d such that the following holds:

Let F ∈ L∞(B) be a radial function: i.e. for a.e. x ∈ B, F (x) = f(|x|) for some f ∈
L∞(0, R). Assume that

´
B F = 0. Then, there exists a radial function V ∈W 1,∞

0 (B,Rd)
such that ∇ · V = F and

‖∇V ‖L∞(Q0) ≤ C ‖F‖L∞(Q0) .

Proof. First of all, by a scaling argument, one can assume that R = 1. The vector field
V : B → Rd defined by V (x) = v(|x|)x for some Lipschitz function v : R+ → R satisfies

∇ · V (x) = r1−d[rdv(r)]′

in the distributional sense. Thus, if v is chosen as

v(r) = r−d
ˆ r

0
f(s)sd−1 ds,

then V solves the following problem:{
∇ · V (x) = F (x) on B,
V (x) = 0 on ∂B.

Moreover, for a.e. x ∈ B, we have ∇V (x) = v′(|x|)x ⊗ x
|x| + v(|x|) Id, where Id is the

matrix identity. In particular, we get ‖∇V ‖L∞ ≤ C(‖rv′(r)‖L∞ + ‖v‖L∞). The second
term in the RHS on the preceding equation is estimated by ‖v‖L∞ ≤ r1−d‖f‖L∞rd−1 =
‖f‖L∞ . For the first term, one has v′(r) = −dr−d−1

´ r
0 f(s)sd−1 ds + r−1f(r) and so

‖rv′(r)‖L∞ ≤ C‖f‖L∞ . Thus, ‖∇V ‖L∞ ≤ C‖F‖L∞ .
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Applying Lemma 3.8 to F = hQ and R = RQ gives VQ ∈ H1
0 (BQ) such that ∇·VQ =

hQ and

‖∇VQ‖L∞(BQ) ≤ CθQR−dQ , ‖∇VQ‖L1(BQ) ≤ |BQ|‖∇VQ‖L∞(BQ) ≤ CθQ. (3.13)

Moreover, since VQ is supported on BQ = B(cQ, RQ), we deduce that ‖VQ‖L∞(BQ) ≤
RQ‖∇VQ‖L∞(BQ) ≤ CθQR

1−d
Q so that VQ satisfies the same estimate as (3.12). In par-

ticular, we get Mα
ε (VQ) ≤ CθαQ diam(Q). Now define

V1 =
∑

Q∈Dfr.

VQ.

Since ‖VQ‖L1(BQ) ≤ CRQ‖∇VQ‖L1(BQ) ≤ C diam(Q)θQ, Lemma 3.5 implies

‖V1‖L1(Q0) ≤ C diam(Q0)θQ0 ≤ C ′L‖f‖L1(Q0)

as required. Then, using the definition of Mα
ε in (2.4) and the subadditivity of x→ |x|β ,

one gets

Mα
ε (V1) ≤ ε−γ1

∑
Q∈Dfr.

ˆ
|VQ|β + 2 εγ2

ˆ ∑
Q,Q′∈Dfr. : Q′⊂Q

∣∣∇VQ′ : ∇VQ
∣∣ , (3.14)

where A : B stands for the euclidian product of two matrices A = (Aij)1≤i,j≤d, B =
(Bij)1≤i,j≤d of size d× d: A : B :=

∑
ij AijBij . For the estimate of |∇V1|2, we have used

the identity |∇V1|2 = ∇V1 : ∇V1 =
∑

Q,Q′∈Dfath ∇VQ : ∇VQ′ . Since VQ is supported on
Q, ∇VQ : ∇VQ′ vanishes except when Q∩Q′ 6= ∅, i.e. Q ⊂ Q′ or Q′ ⊂ Q, thus justifying
the factor 2 and the inclusion Q′ ⊂ Q in (3.14).

We need to estimate the two terms in (3.14). Since Mα
ε (VQ) ≤ CθαQ diam(Q), thanks

to Lemma 3.5, this term is less or equal than CθαL as required. Using the inequality
‖fg‖L1 ≤ ‖f‖L∞‖g‖L1 , one can estimate the second term of (3.14) by

2 εγ2
∑

Q,Q′∈Dfr. : Q′⊂Q
‖∇VQ‖L∞(BQ)‖∇VBQ′‖L1(BQ′ )

.

Note that it would be more natural to use a Cauchy-Schwarz inequality (L2-L2) at this
step but, using it, we were not able to deduce the estimate by θαL. Once again, since
RQ′ ≤ diam(Q′), we have

‖∇VQ′‖L1(BQ′ )
≤ CθQ′ ≤ diam(Q′)R−1

Q′ θQ′ = C diam(Q′)ε−γθ
1− 1−γ

d−1

Q′ . (3.15)

Since 1− 1
d < 1− 1−γ

d−1 < 1, Lemma 3.5 gives∑
Q′∈Dfr. : Q′⊂Q

‖∇VQ′‖L1(BQ′ )
≤ Cε−γ diam(Q)θ

1− 1−γ
d−1

Q .

Now, elementary computations on exponents α, γ2, γ and Lemma 3.5 give successively
γ2 = (d+ 1)γ, α = 2− (d+ 1)1−γ

d−1 and

Cεγ2
∑

Q∈Dfr.

diam(Q)θQR
−d
Q ε−γθ

1− 1−γ
d−1

Q = C
∑

Q∈Dfr.

diam(Q)θαQ ≤ CθαL.

Finally, we have obtained the desired inequality: Mα
ε (V1) ≤ C θαL.
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Second step: estimate of the energy of Y on the node set. In order to get
estimates on Y , it is convenient to divide Q0 into 2 domains: the node set N and its
complementary N c, where

N :=
⋃

Q∈D(f)

B(cQ, cRQ)

and c > 0 is a constant which will be chosen later. By analogy with V1, one can write
Y|N as a sum of vector fields YQ, where

YQ =

{
1B(cQ,cRQ)

(
ZQ −

∑
Q′∈C(Q) ZQ′

)
if Q ∈ Dfr. (see (3.9)),

1B(cQ,cRQ)ZQ otherwise.

Now, from (3.12), we deduce the estimates (3.13) satisfied by VQ are also true for YQ
and consequently, we obtain Mα

ε (Y,N) ≤ C θαL as well (see (2.4) for the definition of
Mα
ε (Y,N)).

Third step: estimate of the energy of Y out of the node set. Reminding that

Y =
∑

Q∈D(f)
Q 6=Q0

ZQ ,

considering that Mα
ε is not subadditive (due to the term |∇Y |2), the first thing to do is

to understand to which extent the supports of ZQ can intersect. To this aim, let us note
that if the constant c > 0 in (3.2) is chosen equal to

√
d or more, due to (3.11), then each

ZQ restricted to N c is supported on Q (see figure 1): suppZQ ∩N c ⊂ Q. In particular,
this implies that

suppZQ ∩ suppZQ′ ∩N c 6= ∅ =⇒ Q ∩Q′ 6= ∅ =⇒ Q ⊂ Q′ or Q′ ⊂ Q.

For this reason, Mα
ε (Y,N c) can be estimated exactly in the same way as we did for the

estimate ofMα
ε (V1) in (3.14). Moreover, the Young inequality, ‖f ∗µ‖L1 ≤ ‖f‖L1 |µ|(Rd),

valid for all f ∈ L1(Rd), µ ∈M(Rd), and the definition of ZQ in (3.9), easily give

‖∇ZQ′‖L1(Q′) ≤ CθQ′R−1
Q′ diam(Q′).

Since this estimate (which is the same as (3.15)) and (3.10) are the only ones we have
used in the first step for the estimate of Mα

ε (V1), we get Mα
ε (Y,N c) ≤ CθαL as well.

End of the proof of Theorem 3.2 Finally, the vector field V = Y + V1 + V2, where
V2 is given by Proposition 3.7, satisfies ∇ · V = ρQ0 − f ,

Mα
ε (V ) ≤ 3{Mα

ε (Y ) +Mα
ε (V1) +Mα

ε (V2)} ≤ C{θαL+ εγ2‖f‖2L2}

and
‖V ‖L1 ≤ ‖Y ‖L1 + ‖V1‖L1 + ‖V2‖L1 ≤ CL‖f‖L1 .

4 Estimate between dαε and the Wasserstein distance

Our aim is to prove an estimate on the pseudo-distances dαε similar to Proposition 2.2.
Because of the Dirichlet term in the definition of Mα

ε , dαε cannot be estimated only by
the Wasserstein distance W1 but one has to add a term involving ‖f+ − f−‖L2 . Using
Theorem 3.2, we are going to prove the following theorem:
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Theorem 4.1. Let Q = (0, L)d be a a cube of side length L > 0 in Rd and ε ∈ (0, 1).
There exists C > 0 only depending on α, d and L such that for all f+, f− ∈ L2

+(Q) with´
Q f

+ =
´
Q f
− = 1, there exists u ∈ H1(Rd) compactly supported on the set Qε := {x ∈

Rd : dist(x,Q) ≤ Cεγ} satisfying ∇ · u = f := f+ − f− as well as

dαε (f+, f−) ≤Mα
ε (u) ≤ C H

(
W

1−d(1−α)
1 (f+, f−) + εγ2‖f‖2L2

)
and ‖u‖L1 ≤ C, (4.1)

where H : R+ −→ R+ is the scalar function defined by H(x) = x+xλ for some λ ∈ (0, 1)
depending on α, and W1 stands for the Wasserstein distance associated to the Monge cost
(x, y)→ |x− y|.

Remark 4.2. One can replace the condition
´
f± = 1 by

´
f± = θ ≥ 0. Then, the

constant C will also depend on θ: C = C(θ, α, d, L). However, we can easily check that
C is locally bounded with respect to θ, i.e. it is uniform for bounded values of θ.

Remark 4.3. It is tempting to think that estimate (4.1) also holds when H(x) = x which
would be the natural choice. Indeed, if ε is taken very small, since Mα

ε Γ-converge to
Mα and because of Proposition 2.2, one can expect that dαε (f+, f−) ' dα(f+, f−) ≤
CW1(f+, f−)1−d(1−α). On the contrary, when ε is very large, because of Theorem 3.4,
one can expect that dαε (f+, f−) ' εγ2‖f‖2L2 . However, for technical reasons, due to the
lack of subadditivity of the second term (Dirichlet energy) in the definition of Mα

ε , we
were not able to reach the case H(x) = x.

Proof. Our method to prove this proposition is an adaptation of that of J.-M. Morel and
F. Santambrogio in [17] (see also Proposition 6.16. page 64 in [3]).

Up to replacing (f+, f−) by (f+ − f+ ∧ f−, f− − f+ ∧ f−), one can assume that
f+ ∧ f− = 0, where for all x ∈ Q, (f− ∧ f+)(x) = inf(f−(x), f+(x)). Indeed, it is
sufficient to note that, if µ± are two measures with the same mass and ν is a positive
measure on Q then we have W1(µ+ + ν, µ− + ν) = W1(µ+, µ−).

For the sake of simplicity, in all the proof, C > 0 will denote some constant only
depending on α, d and L and big enough so that all the inequalities below are satisfied.

Let f+, f− ∈ L2
+(Q) be two densities on the cube Q = (0, L)d such that

´
Q f
± = 1.

Chose an optimal transport plan Π between f+ and f− for the Monge-Kantorovich
problem associated to the cost c(x, y) = |x− y|. Hence Π satisfies the constraint P±# Π =

f±(x) dx where P+ (resp. P−) is the projection on the first variable x (resp. the second
variable y) and dx is the Lebesgue measure. Moreover we have

ˆ
Q
|x− y| dΠ(x, y) = W1(f+, f−) =: W. (4.2)

So as to use the local estimate of the previous part, let us classify the set of ordered pairs
(x, y) with respect to the distance |x− y|. More precisely, for j ≥ 0, set

Xj = {(x, y) ∈ Q2 : dj ≤ |x− y| < dj+1},

where dj = (2j − 1)w and w ∈ (0, 1) will be chosen later. In particular, d0 = 0 and Xj

is empty if dj > diam(Q), i.e. j > J :=
⌊
ln2

(
diam(Q)

w + 1
)⌋

. For this reason, one can
restrict to integers j ≤ J ≤ C(1 + | lnw|): we will assume that dj ≤ diam(Q). Moreover,
(4.2) immediately gives the estimate∑

j

djθj ≤W , where θj = Π(Xj). (4.3)
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Next, for each integer j ∈ [1, J ], consider a uniform partition of Q into cubes Qjk,
k = 1, . . . ,Kj , with side length dj+1. It is easy to estimate Kj by

Kj ≤ Cd−dj+1. (4.4)

For j ≥ 0, set

Πj = Π|Xj ; θj = Π(Xj); f
±
j = P±# Πj and fj = f+

j − f
−
j ,

Clearly, one has
Π =

∑
j

Πj and f± =
∑
j

f±j .

In the same way, for j ≥ 0 and 1 ≤ k ≤ Kj , set

Πjk = Π|Xj ∩ (Qjk×Q) ; θjk = Πjk(Q
2) and f±jk = P±# Πjk

so that
Πj =

∑
k

Πjk; θj =
∑
k

θjk and f±j =
∑
k

f±jk.

Πjk represents the part of the transport plan Π corresponding to points in Qjk which are
sent at a distance comparable to dj+1. In particular, f+

jk is supported on Qjk and f−jk is
supported on the cube Q̃jk with the same center but twice the side length of Qjk. As we
did in (3.3), let us define ρjk the kernel associated to Qjk by

ρjk(x) =

{
(Rjk)

−dρ(Rjk(x− cjk)) if θjk 6= 0,
0 otherwise,

where ρ ∈ C1
c (Rd,R+), Rjk = εγθ

1−γ
d−1

jk and cjk is the center of Qjk. For the sake of
simplicity, let us assume that supp ρ is the unit ball centered at the origin. Let Bjk :=

B(cjk, rjk) be the smallest ball containing Q̃jk and supp ρjk = B(cjk, Rjk): i.e. rjk =
max{Rjk,diam(Qjk)}. Thanks to Theorem 3.2, it is possible to find a vector field ujk ∈
H1

0 (Bjk) satisfying ∇ · ujk = fjk := f+
jk − f

−
jk , ‖ujk‖L1(Bjk) ≤ Cθjk and

Mjk := Mα
ε (ujk) ≤ C {θαjkdj+1 + εγ2‖fjk‖2L2(Bjk)}. (4.5)

Moreover, if Rjk ≥ dj+1/2, the first term in the right-hand side of (4.5) can be omitted
since one has

θαjkdj+1 ≤ Cεγ2‖fjk‖2L2 . (4.6)

Indeed, in this case, writing θ := θjk and R := Rjk, one has θαdj+1 ≤ 2θαR and, using
2 − α = (1−γ)(d+1)

d−1 , we get θαR = [θα−2R1+d][θ2R−d] = εγ2R−dθ2. Then, (4.6) follows
from the fact that, by the Cauchy-Schwarz inequality, we have

R−dθ2 ≤ R−d|Bjk|
ˆ
Bjk

(fjk)
2 ≤ C

ˆ
Bjk

(fjk)
2.

Now, let us define the vector field u =
∑
j,k

ujk, which satisfies

∇ · u =
∑
j,k

∇ · ujk =
∑
j,k

fjk = f := f+ − f−.
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First note that

‖u‖L1(Q) ≤ C
∑
‖ujk‖L1(Bjk) ≤ 2C

∑
θjk = 2C.

In order estimate the energy of u, a similar development of |
∑
∇ujk|2 as in (3.14) and

the Cauchy-Schwarz inequality give

Mα
ε (u) ≤ J

J∑
j=1

Mα
ε

 Kj∑
k=1

ujk

 ≤ C J
∑
j

∑
k

Mjk +
∑

(k,l)∈Ij

√
Mjk

√
Mjl

 , (4.7)

where Ij stands for the set of pairs (k, l) satisfying k 6= l, θjk ≥ θjl and Bjk ∩ Bjl 6= ∅.
We have to estimate the two terms in the right-hand side of (4.7).

Estimate of the first term in (4.7) We recall that Mjk ≤ θαjkdj+1 + εγ2‖fjk‖2L2(Bjk).
For the second term, note that ∑

j,k ‖fjk‖2L2 ≤ ‖f‖2L2 . (4.8)

Indeed, since f+ ∧ f− = 0, for all j, k, one has f+
jk ∧ f

−
jk = 0 as well. In particular,

‖fjk‖2L2(Bjk) = ‖f+
jk‖

2
L2(Bjk) +‖f−jk‖

2
L2(Bjk) , ‖f‖

2
L2(Q) = ‖f+‖2L2(Q) +‖f−‖2L2(Q) and (4.8)

follows from the super-additivity of the power function x → |x|p for p ≥ 1: |x + y|p ≥
|x|p + |y|p for x, y ∈ R whenever xy ≥ 0.

For the first term, applying successively the Jensen inequality with power α ∈ (0, 1),
the Hölder inequality, (4.3) and the fact that Kjdj+1 = Cd1−d

j+1 (see (4.4)), one gets∑
j,k

θαjkdj+1 ≤
∑
j

dj+1Kj [θj/Kj ]
α =

∑
j

[dj+1θj ]
α[dj+1Kj ]

1−α

≤

∑
j

θj dj+1

α∑
j

dj+1Kj

1−α

≤ C(w +W )α

∑
j

[w(2j+1 − 1)]1−d

1−α

≤ C ′(wα +Wα)w(1−d)(1−α)

since θ0d1 ≤ d1 = w (we cannot estimate this term by W because d0 = 0) and, because
of (4.3),

∑
j≥1 θj dj+1 ≤ 3

∑
j≥1 θj dj ≤ 3W . Finally, we get∑

j,kMjk ≤ C
{
w1−d(1−α) +Wαw−(d−1)(1−α) + εγ2‖f‖2L2

}
. (4.9)

Estimate of the second term in (4.7) Before following these computations, we need
to understand what the condition “Bjk ∩ Bjl 6= ∅ ” is meaning. Assume that (k, l) ∈ Ij .
From Qjk ∩Qjl = ∅, we see that either supp ρjk or supp ρjl is not included in Qjk (resp.
Qjl). Since, by definition of Ij , we have θjk ≥ θjl, this implies that Rjk ≥ dj+1/2.
Therefore, as we noticed after formula (4.5),

Mjk ≤ εγ2‖fjk‖2L2(Bjk)

and (4.6) also implies that

θαjldj+1 ≤ θαjkdj+1 ≤ Cεγ2‖fjk‖2L2(Bjk).
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Now, (4.5), the subadditivity of the square root function, the preceding inequality, (4.8)
and Cauchy-Schwarz inequality give in turn∑

(k,l)∈Ij

√
Mjk

√
Mjl ≤ C

∑
(k,l)∈Ij

√
εγ2‖fjk‖22

(√
εγ2‖fjl‖22 +

√
θαjldj+1

)
≤ Cεγ2

∑
(k,l)∈Ij

‖fjk‖22 + ‖fjk‖2‖fjl‖2

≤ Cεγ2

Kj‖fj‖2L2(Q) +

√∑
k,l

‖fjk‖22
√∑

k,l

‖fjk‖22


≤ 2Cεγ2Kj‖fj‖2L2(Q).

From Kj ≤ d−dj+1 ≤ 2−djw−d and ‖fj‖2L2(Q) ≤ ‖f‖
2
L2(Q), we obtain in the end that∑

j

∑
(k,l)∈Ij

√
Mjk

√
Mjl ≤ Cw−dεγ2‖f‖2L2 . (4.10)

End of the proof Let F = εγ2‖f‖2L2 . We remind the definition of W = W1(f+, f−).
One can assume that f− 6= f+ so that F,W > 0. Now, (4.7), (4.9), (4.10) and the fact
that J ≤ C(1 + lnw) yield

Mα
ε (u) ≤ C(1 + | lnw|)

{
wν +Wαwν−α + w−dF

}
,

where ν := 1 − d(1 − α) ∈ (0, 1) and so α − ν = −(d − 1)(1 − α) < 0. Let us fix some
δ ∈ (0, 1) small enough so that 0 < ν ± δ < 1 and ν − α ± δ < 0. For some constant c
depending on δ, one has 1 + | lnw| ≤ c(wδ + w−δ) and so

Mα
ε (u) ≤ C

{
wν±δ +Wαwν−α±δ + w−d±δF

}
,

where the sum is taken over the values of ±1 (+1 or −1) in the right-hand side. Then,
we make the choice w = W + F λ > 0 for some λ = λ(α, d) > 0 which will be fixed later.
Note that all the estimates above are valid only if w < 1. However, if W + F λ ≥ 1 then
the right-hand side of (4.1) is greater than some positive constant and (4.1) easily follows
from Theorem 3.2 since H(x) ≥ x. Thus, one can assume that w ∈ (0, 1).

Since 0 < ν ± δ < 1, we get wν±δ ≤ W ν±δ + F λ(ν±δ) and, because −d ± δ < 0,
ν − α± δ < 0, we have wν−α±δ ≤W ν−α±δ and w−d±δ ≤ F λ(−d±δ) which gives

Mα
ε (u) ≤ C

{
W ν±δ + F λ(ν±δ) +W ν±δ + F 1+λ(−d±δ)

}
.

We fix λ > 0 small enough so that 1 + λ(−d± δ) > 0: in this way, all the exponents in
the preceding formula are positive. Finally, (4.1) follows from the fact that we have W ,
F ≤ 1 as a consequence of W , F ≤W 1−d(1−α) + F .

Remark 4.4. Since min{wν + w−dF : w ∈ (0, 1)} = cF
1

d+ν and 1
d+ν < 1, one cannot

obtain an estimate of the form Mα
ε (u) ≤ C(W + F ) as expected. However, one could

improve a bit (4.1) by a better estimate of the number of indices l such that (k, l) ∈ Ij .
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5 A Γ-convergence result

Let Ω ⊂ R2 be a bounded open set and µ = µ+ − µ− be a finite measure, where µ± are
two probability measures compactly supported on Ω. We recall the definition of the set

Mdiv(Ω) = {u : Ω→ R2 : u and ∇ · u are finite measures on Ω}

which is endowed with the topology of weak star convergence on vector measures and their
divergence. As weak star topology is never metrizable in infinite dimensional Banach
spaces, the space Mdiv(Ω) is not metrizable. Indeed, assume that X is some infinite
dimensional Banach space such thatX ′ is metrizable. In particularX ′ admits a countable
neighborhood basis (Vn)n≥1 which one can assume to be of the form

Vn = {ϕ : |〈ϕ ;xi〉| < εn for i = 1, . . . , n}

for some linearly independent family of vectors (xi)i≥1 ⊂ X and εn > 0. Then the
Hahn-Banach Theorem easily provides a sequence (ϕn)n≥1 satisfying ϕn(xi) = 0 for all
i ≤ n ∈ N∗ and ‖ϕn‖X′ = n. In particular the sequence (ϕn)n weakly converges to 0 as
n→∞ which is a contradiction with the fact that (ϕn)n is norm unbounded.

However, every bounded subsets of the dual space of a separable Banach space are
metrizable for the weak star topology. In particular, for the natural norm ‖u‖Mdiv(Ω) =
|∇ · u|(Ω) + |u|(Ω) given by the total variation of u and its divergence, we know that all
bounded subsets ofMdiv(Ω) are metrizable: for all M > 0, there exists a metric dM for
the weak star convergence of u and ∇ · u on the set

MM (Ω) = {u ∈Mdiv(Ω) : |u|(Ω) + |∇ · u|(Ω) ≤M}.

In [18] the Γ-convergence of the functional sequence Mα
ε to Mα was proved. Our aim is

to prove that this property remains true when adding a divergence constraint. Since, for
u ∈ H1(Ω), one has ∇ · u ∈ L2, one cannot prescribe ∇ · u = µ if µ is not in L2. For this
reason, we first have to define a regularization of µ. Let (fε)ε>0 ⊂ L2 be a sequence of
L2 functions weakly converging to µ as measures and satisfyingˆ

Ω
fε(x) dx = 0 and εγ2‖fε‖2L2 −→

ε→0
0 . (5.1)

This choice is going to be useful for the proof of Theorem 1.1. For example, we can define
fε as

fε := ρε ∗ µ,

where ρε(x) = ε−2γρ(ε−γx) for some compactly supported ρ ∈ C1(Rd,R+) such that´
Ω ρ = 1 and γ is still defined as γ = γ2

d+1 = α+1
3 . Now, let us define the functionals Mα

ε

(resp Mα) adding a divergence constraint on u ∈Mdiv(Ω):

M
α
(u) =

{
Mα(u) if ∇ · u = µ,

+∞ otherwise,

M
α
ε (u) =

{
Mα
ε (u) if ∇ · u = fε,

+∞ otherwise.

The main result of this section is Theorem 1.1:

Theorem. There exists a constant c0 such that the functional sequence (M
α
ε )ε>0 Γ-

converges to c0M
α as ε → 0. Moreover c0 is given by the minimum value for the mini-

mization problem (5.2).

21



We first remind how to build a recovery sequence in the case of a mass θ flowing on
a single segment S, i.e. u = θH1

|S . To this aim, we need to find a structure close to u
which is almost optimal for Mα

ε . We proceed by a slicing argument:
Let u be any vector measure inMdiv(Ω). Take some ν ∈ S1 := {x ∈ R2 : |x| = 1}

which has to be thought as the tangent vector to S in the case where u = θH1
|S . Let

us consider v = [(u · ν)+]|ν⊥ (restriction on ν⊥ of the positive part of u · ν) the flux of
u across the hyperplane ν⊥ = {x ∈ R2 : x · ν = 0} and assume that

´
v = θ. Then

Mα
ε (u) can be controlled from below by integrals on subintervals of Rν of the following

Cahn-Hilliard type energy (see [10] for physical motivations):

F βε (v) = ε−γ1
ˆ
R
vβ + εγ2

ˆ
R
|∇v|2.

This kind of models for droplets equilibrium was studied by G. Bouchitté, C. Dubs and
P. Seppecher in [5] for instance (see also [6]). F βε (v) can be renormalized through the
formula: v(x) = θR−dθ,εw(R−1

θ,εx), where Rθ,ε = εγθ
1−γ
d−1 . Then, the constraint

´
v = θ

turns into
´
w = 1 and F βε (v) = θαF β(w), where

F β(w) =

{ˆ
R
wβ +

ˆ
R
|∇w|2

}
.

Then, the existence of an optimal profile w is given by

Lemma 5.1. There exists a profile w ∈ H1
loc(R,R+) solution of the minimization problem

min

{ˆ
R
wβ +

ˆ
R
|w′|2 : w ∈ H1

loc(R,R+) and
ˆ
R
w = 1

}
. (5.2)

Moreover, w is compactly supported, Lipschitz continuous on R and C∞ inside its support,
i.e. on the open set {w > 0}. Last of all, it is possible to choose w such that it is even
and non-increasing on R+.

Remark 5.2. Although we restrict to the two dimensional case, some works by G. Bou-
chitté, C. Dubs and P. Seppecher (see [13]) suggest that Lemma 5.1 and Theorem 1.1
could be generalized in every dimension as well. However, the aim of this paper is to use
the tools of section 4 so as to establish the Γ− lim sup property for functionals Mα

ε (with
divergence constraint) and, from the point of view of the complexity of the proof, this
is independent of the dimension. Since the Γ − lim inf property was only established in
the 2D case in [18], we prefer to stay in this framework. Actually, the difficulty to prove
a Γ-convergence result of Mα

ε (resp. Mα
ε ) to M

α (resp. Mα) in every dimension would
concern the Γ− lim inf part and this is not the purpose of this paper.

Remark 5.3. Note that the minimum value in (5.2) is related to the best constant in the

one-dimensional Gagliardo-Nirenberg inequality
´
R |u| ≤ C

(´
R |u

′|2
) 1−β

2+β
(´

R |u|
β
) 3

2+β :

1

C
= inf

{(ˆ
R
|u′|2

) 1−β
2+β

(ˆ
R
uβ
) 3

2+β

: u ∈ H1
loc(R,R+) and

ˆ
R
u = 1

}
.

Proof. First notice that there exists a finite energy configuration, i.e. w ∈ H1(R,R) such
that F β(w) < +∞. Indeed, every compactly supported and nonnegative C1 function has
finite energy. Let take a minimizing sequence, i.e. (wn)n ⊂ H1(R) ⊂ C0(R) such that
F β(wn)→ cβ . One can assume that wn is even and non-increasing on R+. Indeed if w∗
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stands for the spherical rearrangement of some w ∈ H1(R,R+), then one has
´
R |w

∗|β =´
R |w|

β and the classical Polya-Szego Theorem states that the spherical rearrangement
reduces the Dirichlet energy of w:ˆ

R
|(w∗)′|2 ≤

ˆ
R
|w′|2 .

In particular F β(w∗) ≤ F β(w) as announced. Since (w′n)n is bounded in L2(R), one can
assume that it weakly converges in L2(R). Moreover, as wn ≥ 0 a.e. and

´
Rwn = 1,

(wn)n is bounded in L1(R). Thanks to the Poincaré-Wirtinger inequality, one deduces
that (wn)n is bounded in H1

loc(R). Up to extraction, one can assume that (wn)n weakly
converges in H1

loc(R). Let call w ∈ H1
loc(R) the limit. In particular, (wn)n strongly

converges to w in L1
loc(R) and so w is even, nonnegative and non-increasing on R+.

Moreover, the Fatou lemma and the weak convergence of w′n yields

F β(w) ≤ lim inf
n→∞

F β(wn) = cβ .

In order to prove that w is a global minimizer it remains to prove that w satisfies the
constraint

´
w = 1. Indeed, from the Fatou Lemma we can only deduce that

´
w ≤ 1.

One has to prove the strong convergence of wn in L1(R). Since wn converges in L1
loc, it

is enough to prove that the sequence (wn) is tight. Let R > 0. For all n ≥ 1, since wn
is non increasing on [0, R], one has ‖wn‖L∞({x : |x|>R) = wn(R) and Markov’s inequality
yields wn(R) ≤ 1

2R

´
Rwn = 1

2R . Henceˆ
|x|>R

wn(x) dx ≤ wn(R)1−β
ˆ
R
wβn(x) dx ≤ (2R)β−1F β(wn) ≤ C

R1−β

for some constant C > 0 non depending on n which implies that (wn)n is tight since
1−β > 0. Now, let check the regularity of w: Lipschitz continuous and smooth inside its
support. Note that we already know that w ∈ C0,1/2(R) thanks to the Sobolev embedding
H1
loc(R) ⊂ C0,1/2(R). Let check the regularity of w inside its support. Since w is even and

non-increasing on R+, the set {x : w(x) > 0} is an interval (−R,R) for some R > 0.
Since w is a minimizer of the minimizing problem (5.2), w also satisfies the following
Euler-Lagrange equation

∀x ∈ (−R,R), −w′′(x) + βw(x)β−1 = λ , (5.3)

where λ ∈ R is the Lagrange multiplier associated to the volume constraint
´
w = 1.

Note that λ = −w′′(0) + βw(0)β−1 > 0. Indeed, since x = 0 is a global maximum of w,
w′(0) = 0 and w′′(0) ≤ 0. From (5.3), one deduces that w is smooth on (−R,R). Now,
multiplying (5.3) by w′ and integrating it on [0, x] or [x, 0] yields

∀x ∈ (−R,R),
w′(x)2

2
= w(x)β − λw(x) + λw(0)− w(0)β .

Since w is bounded on R, we deduce that w is Lipschitz continuous on R. Last of all,
we prove that w is compactly supported, i.e. R < ∞. Assume by contradiction that
R =∞. Then f ∈ C∞(R), f > 0 on R and integrating (5.3) yields

∀x ∈ R, w′(x) =

ˆ x

0
(βw(y)β−1 − λ) dy .

Since w(x) −→
x→∞

0 and β − 1 < 0, w(x)β−1 −→
x→∞

+∞ and the right hand side of the
preceding equation goes to +∞ as well. Thus w′(x) −→

x→∞
+∞ which is a contradiction.
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Now let wθ,ε be defined by wθ,ε(x) = θR−dθ,εw(R−1
θ,εx) where w is the optimal profile

of Lemma 5.1 (satisfying all claimed regularity and symmetry properties) and let us
introduce the kernel ρθ,ε associated to wθ,ε, given by the following lemma

Lemma 5.4. There exists a bounded and compactly supported radial kernel ρθ,ε ∈ L∞c (R2,R+)
such that wθ,ε is the projection of ρθ,ε on the axis (x1 = 0):

Π2
]ρθ,ε(x) dx = wθ,ε(x2) dx2,

where Π2 stands for the projection on the second variable, dx (resp. dx2) is the Lebesgue
measure on R2 (resp. R) and Π]µ stands for the pushforward of some measure µ by
Π : R2 → R. Moreover, one can choose ρθ,ε of the form ρθ,ε(x) = R−2

θ,ερ(R−1
θ,εx) for some

ρ ∈ L∞c (R,R+).

Proof. After the renormalization ρθ,ε(x) = R−2
θ,ερ(R−1

θ,εx), it remains to find ρ satisfying
Π1
]ρ(x)dx = w(x2) dx2. It is not very difficult to see that a radial solution is given by

the formula
ρ(x) =

ˆ ∞
|x|

−w′(s)
π
√
s2 − |x|2

ds. (5.4)

Details are left to the reader. Let justify how (5.4) implies that ρ is bounded. Since w is
compactly supported, there exists R > 0 such that w(x) = 0 for |x| > R. In particular,
ρ is compactly supported on B(0, R). Then, since w′(0) = 0 and since w′ is bounded on
R and smooth around 0, one has |w′(x)| ≤ C|x| for all x ∈ R and some C > 0. Hence,
there exists a constant C > 0 such that for all x ∈ R2 such that |x| =: r ∈ [0, R),

ρ(x) =

ˆ R

1

−w′(rs) ds

π
√
s2 − 1

≤ C
ˆ R/r

1

rsds√
s2 − 1

≤ C

{
R

ˆ 2

1

sds√
s2 − 1

+ r

ˆ R/r

2

sds√
s2 − 1

}

which is bounded since s→ s√
s2−1

is integrable on [1, 2] and bounded on [2,+∞).

As a consequence, in the case where u = θH1
|S , a recovery sequence, i.e. a sequence

(uε) such that uε → u inMdiv(Ω) and Mα
ε (uε)→Mα(u) as ε→ 0, is obtained as

uε = ρθ,ε ∗ u.

In the case of a finite energy configuration, i.e. u ∈ Mdiv(Ω) such that Mα(u) < ∞,
thanks to classical properties in the theory of Γ-convergence, it is enough to find a
recovery sequence for u belonging to a class of measures which are dense in energy.
Thanks to the work of Q. Xia in [23] (see also [18]), we know that the class of vector
measures concentrated on finite graphs is dense in energy so that one can restrict to this
case. In [23], the branched transportation energy was in fact defined by relaxation of its
restriction to the set of vector measures concentrated on a graph. The rectifiability of
finite energy configurations and the Eulerian representation (2.1) was discovered later in
[24] (see also [3]). This density property was used in [18] to prove the Γ-convergence of
Mα
ε toward Mα. In the setting of functionals with divergence constraint, we need the

following lemma:

Lemma 5.5. Let u ∈ Mdiv(Ω) be such that Mα(u) < ∞. For all λ > γ, there exists a
sequence (uε) ⊂ H1

0 (Ω) converging to u inMdiv(Ω) such that

Mα
ε (uε) −→

ε→0
c0M

α(u) and ελ‖∇ · uε‖L2 is bounded.
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Before proving this statement, we are going to investigate the case where u is concen-
trated on a finite graph. First of all, let us give some details on what “a vector measure
concentrated on a finite graph G” is. Let G = (V (G), E(G), θ) be a weighted directed
graph: V (G) ⊂ Ω is a finite set of vertices, E(G) is the finite set of oriented edges
e = (e, τe), where e = [ae, be] ⊂ Ω and τe is a unit vector representing the direction of e,
and θ : E(G)→ (0,+∞) is the weight function. Then the “vector measure associated to
G” is given by

uG =
∑

e=(e,τe)∈E(g)

θ(e)τe dH1
|e .

These measures uG belong to Mdiv(Ω), i.e. ∇ · uG is a measure, and they are called
“transport paths” (see Definition 2.1 in [23]). When u is a transport path, we have the
following lemma:

Lemma 5.6. Let u = uG ∈ Mdiv(Ω) for some weighted directed graph G. Then, there
exists a sequence (uε)ε>0 converging to u in Mdiv(Ω) and a constant C depending on u
such that, for ε small enough, uε ∈ H1

0 (Ω) and

1.
´

Ω |uε| ≤ |u|(Ω) + C εγ,

2.
´

Ω |∇ · uε| ≤ |∇ · u|(Ω),

3. εγ ‖∇ · uε‖L2 ≤ C,

4. |Mα
ε (uε)− c0M

α(u)| ≤ Cεγ.

Proof. By definition, such a vector measure u can be written as a finite sum of measures
ui = θi τiH1

|Si concentrated on a segment Si ⊂ Ω directed by τi with multiplicity θi
for i = 1, . . . , I. We first define a regularized vector fied vε by vε :=

∑
i vi, where

vi = ρθi,ε ∗ ui. Then, for ε small enough, vε is compactly supported on Ω and satisfies{ ´
Ω |vε| ≤ |u|(Ω),

|Mα
ε (vε)− c0M

α(u)| ≤ Cεγ .

The first statement is a consequence of the fact that
´
ρθi,ε = 1 and the inequality

‖f ∗ µ‖L1 ≤ ‖f‖L1 |µ|(Ω) for f ∈ Cc(Ω) and for a finite measure µ on Ω. For the
second statement, by definition of the kernel ρθ,ε we know that, out of the nodes set
N =

⋃
i supp(∇ · vi),

Mα
ε (vε, N

c) = c0M
α(v,N c).

As a result, we just have to estimate these energies on N which is a finite union of balls:
the supports of ρθi,ε recentered at each end-point of the segment Si. Since the radius of
these balls is of the order of εγ , this immediately gives the fact that Mα(u,N) ≤ Cεγ

for some constant C > 0 depending on u. For the sake of simplicity, in the rest of this
proof, C > 0 will denote some constant depending on u which is large enough so that all
the inequalities below are true. We are going to prove that

Mα(u,N) +Mα
ε (vε, N) ≤ Cεγ .

It remains to estimate Mα
ε (vε, N). Since Mα

ε (vε, N) ≤ I
∑

iM
α
ε (vi, N), it is enough to

estimate Mα
ε (vi, N). But ‖vi‖L∞(N) = ‖ρθi,ε ∗ ui‖L∞(N) ≤ Cε−2γ‖ρ‖L∞ |ui|(Ni), where

Ni := N + supp ρθi,ε := {x + y : x ∈ N, y ∈ supp ρθi,ε}. Note that supp ρθi,ε is a ball
centered at the origin with radius smaller than Cεγ so that Ni is a finite union of balls
with radii smaller than Cεγ as well. In particular, using the fact that ui = θi τiH1

|Si ,
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we get |ui|(Ni) ≤ Cεγ and so ‖vi‖L∞(N) ≤ Cε−γ . Similarly, one has ‖∇vi‖L∞(N) =
‖∇ρθi,ε ∗ ui‖L∞(N) ≤ Cε−3γ‖∇ρ‖L∞ |ui|(Ni) ≤ Cε−2γ . Now, the definition (2.5) gives

Mα
ε (vε, N) = εα+1

ˆ
N
|∇vε|2 + εα−1

ˆ
N
|vε|β ≤ |N |{εα+1‖∇vε‖2L∞ + εα−1‖vε‖βL∞}.

From the inequality |N | ≤ Cε2γ and the equalities α = 3γ − 1, βγ = (4α−2)γ
α+1 = 4γ − 2,

we deduce
Mα
ε (vε, N) ≤ Cε2γ{ε3γ−4γ + ε3γ−2−βγ} ≤ 2Cεγ

as required. In order to construct an approximating vector field with controlled diver-
gence, we need to consider uε := vε − wε where wε ∈ H1

0 (N) is constructed as follows:
The node set N , defined above, is a finite union N =

⋃n
j=1Bj , where each node Bj

is a ball centered at the end-point ai of some segment Si = [ai, bi]. Let assume that ε is
small enough so that these balls are non-overlapping. Then, on each node Bj , gj := ∇·vε
is a finite superposition of kernels like ρθ,ε recentered at cj , the center of Bj . In particular
‖gj‖L2(Bj) ≤ Cε−γ and

´
Bj
gj =

´
Bj
∇ · vε = (∇ · u)(Bj) =: θj . If θj = 0, then Theorem

3.4 allows to find wj ∈ H1
0 (Bj) satisfying ∇·wj = gj and ‖wj‖H1(Bj) ≤ C ε

−γ . If θj 6= 0,
let say θj > 0, we rewrite gj as gj = g+−g− = λg+ +(1−λ)g+−g− where g+ (resp. g−)
stands for the positive part (resp. negative part) of g and λ ∈ (0, 1] is chosen such that
(1 − λ)

´
B g

+ =
´
B g
−, i.e. θj = λ

´
Bj
g+. Applying Theorem 3.4, we get wj ∈ H1

0 (Bj)

satisfying ∇ · wj = (1 − λ)g+ − g− and ‖wj‖H1(N) ≤ C ε−γ . Let us define wε =
∑

j wj
and uε := vε−wε. Since

´
Bj
|∇ ·uε| =

´
Bj
|gj −∇·wj | = λ

´
Bj
g+ = θj for all j, we have

ˆ
Ω
|∇ · uε| =

ˆ
N
|∇ · uε| ≤

∑
j

θj = |∇ · u|(Ω).

Moreover, to estimate ‖∇ · uε‖L2 , note that ‖∇ · wε‖L2 ≤ ‖wε‖H1 ≤ Cε−γ and, because
∇·vε is only composed of a finite sum of translated kernels of the form ρθi,ε, ‖∇·vε‖L2 ≤
Cε−γ as well. In particular εγ‖∇·uε‖L2 is bounded. Then, the Poincaré inequality yields

‖wε‖L2 =
∑
j

‖wj‖L2(Bj) ≤ C
∑
j

εγ‖∇wj‖L2(Bj) ≤ C
′

since Bj is a ball of radius Cεγ . Consequently, by the Cauchy-Schwarz inequality, we get
ˆ

Ω
|uε| ≤

ˆ
Ω
|vε|+

ˆ
N
|wε| ≤ |u|(Ω) + |N |1/2‖wε‖L2 ≤ |u|(Ω) + Cεγ .

Similarly, by a Hölder inequality, we have
ˆ
N
|wε|β ≤ |N |

2−β
2 ‖wε‖βL2 ≤ (nε2γ)|

2−β
2 ‖wε‖βL2 ≤ Cεγ(2−β).

Once again, since α = 3γ − 1 and βγ = 4γ − 2, we deduce

Mα
ε (wε) = εα+1

ˆ
N
|∇wε|2 + εα−1

ˆ
N
|wε|β ≤ C{εα+1−2γ + εα−1+γ(2−β)} = 2Cεγ .

Since Mα(u,N) ≤ Cεγ , we get Mα
ε (uε, N) ≤ 2[Mα

ε (vε, N) + Mα
ε (wε, N)] ≤ Cεγ which

finally gives

|Mα
ε (uε)− c0M

α(u)| = |Mα
ε (uε, N)− c0M

α(u,N)| ≤ Cεγ .
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Proof of Lemma 5.5. First fix u ∈Mdiv(Ω) and construct a sequence (un)n≥1 converging
to u such that un = uGn is a vector measure associated to some weighted directed graph
Gn ⊂ Ω and Mα(un) converges to Mα(u). Since (un) weakly converges inMdiv(Ω), the
total variations of both measures un and ∇ · un are bounded by some constant M > 0.
In the following, we use a metric d on the spaceMM+1(Ω). Extracting a subsequence if
necessary, one can suppose that the two following estimates hold

d(un, u) ≤ 2−n−1 and |Mα(un)−Mα(u)| ≤ 2−n−1.

For each n ≥ 1, let uε,n be a sequence converging to un as ε → 0 and satisfying all
properties in Lemma 5.6 for some constant C = Cn. Then, one can construct by induction
a decreasing sequence (εn)n≥1 → 0 such that for all n ≥ 1 and ε ≤ εn, uε,n ∈ H1

0 (Ω) and

1. uε,n ∈MM+1(Ω),

2. d(uε,n, un) ≤ 2−n−1,

3. |Mα
ε (uε,n)− c0M

α(un)| ≤ 2−n−1,

4. ελ−γCn ≤ 1 so that ελ ‖∇ · uε,n‖L2 ≤ 1.

Indeed, assume that εn > 0 satisfies all the asked properties. Then, one can find εn+1 ∈
(0, εn) small enough so that

∗ Cn+1 ε
γ
n+1 < 2−n−2 thus implying the first and third properties (see properties 1.,

2. and 4. in Lemma 5.6),

∗ Cn+1 ε
λ−γ
n+1 < 1 which is possible since λ > γ

∗ and d(uε,n+1, un+1) ≤ 2−n−2 for all ε ∈ (0, εn+1) which is possible since uε,n+1

converges to un+1 in (MM+1(Ω), d) as ε→ 0.

Now it is quite straightforward that the sequence (uε)ε>0 defined by

uε =

{
uε,1 if ε > ε1,
uε,n if εn+1 < ε ≤ εn for some n ≥ 1,

satisfies all the properties of Lemma 5.5.

Proof of Theorem 1.1. It is already shown in [18] that Mα
ε

Γ−→ c0M
α. We just have to

prove that the Γ− lim sup property still holds when we add the divergence constraint. In
other words, it remains to prove that for all u ∈Mdiv(Ω) such that ∇·u = µ, there exists
a sequence (vε)ε>0 ⊂Mdiv(Ω) weakly converging to u as measures, satisfying ∇· vε = fε
(so that (vε) also converges inMdiv(Ω)) and Mα

ε (vε) −→
ε→0

c0M
α(u).

First of all, take a sequence (uε)ε>0 ⊂ H1
0 (Ω) converging to u given by Lemma 5.5

for λ = 5γ
4 : Mα

ε (uε)→Mα(u) with ελ‖∇ · uε‖L2 bounded. Then define gε := fε−∇ · uε
the residual divergence. Note that

´
Ω gε = 0. Indeed

´
Ω fε = 0 by assumption (see (5.1))

and
´

Ω∇·uε = 0 since uε ∈ H1
0 (Ω). Moreover, our assumptions on the sequences (uε)ε>0

and (fε)ε>0 yield
εγ2‖gε‖2L2 −→

ε→0
0 .

Indeed, we know that the same estimate is satisfied by (fε)ε>0 thanks to (5.1). Moreover,
since 3γ = γ2 and λ = 5γ

2 , one has εγ2‖∇·uε‖L2 = ε
γ
2 ε

5γ
2 ‖∇·uε‖L2 ≤ Cε

γ
2 → 0. Moreover,
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since fε and ∇·uε weakly converge to µ as ε goes to 0, we know that gε weakly converges
to 0. Let g+

ε (resp. g−ε ) denote the positive (resp. negative) part of gε. In order to satisfy
the divergence constraint, we may correct uε with a vector field wε, given by Theorem
4.1 (together with Remark 4.2), such that ∇ · wε = gε,

Mα
ε (wε) ≤ H

(
W1(g+

ε , g
−
ε )1−d(1−α) + εγ2‖gε‖2L2

)
−→
ε→0

0 (5.5)

and ‖wε‖Mdiv(Ω) is bounded, where H(x) = C(x + xδ) for some C > 0 and δ ∈ (0, 1).
We deduce that (wε) is relatively compact in Mdiv(Ω). From (5.5) and the Γ − lim inf
property, this implies that wε converges to 0 in Mdiv(Ω). Now, by construction, vε =
uε +wε satisfies ∇ · vε = fε, vε → u inMdiv(Ω) and Mα

ε (vε) −→
ε→0

c0M
α(u). Indeed, this

last limit is a consequence of

Lemma 5.7. Let Ω be some bounded open set in Rd, d ≥ 1. Let (uε), (vε) ⊂ H1(Ω) be
two sequences such that Mα

ε (uε − vε) −→
ε→0

0 and assume that Mα
ε (vε) is bounded. Then,

|Mα
ε (uε)−Mα

ε (vε)| −→
ε→0

0.

Proof. Let ν > 0 be some constant. For all real matrices A and B of size d × d, by the
Young inequality, we have

|A+B|2 = |A|2 + |B|2 + 2A : B ≤ (1 + ν)|A|2 + (1 + 1/ν)|B|2.

Writing uε = vε + uε − vε, we use the preceding inequality for A = ∇vε, B = ∇(uε − vε)
and the subadditivity of x→ |x|β to get

Mα
ε (uε) = ε−γ1

ˆ
Ω
|uε|β + εγ2

ˆ
Ω
|∇uε|2 ≤ (1 + ν)Mα

ε (vε) + (1 + 1/ν)Mα
ε (uε − vε).

Since Mα
ε (vε) < C for some constant C < +∞, we deduce that

Mα
ε (uε)−Mα

ε (vε) ≤ Cν + (1 + 1/ν)Mα
ε (uε − vε).

For any value of ε such that uε 6= vε, let take ν =
√
Mα
ε (uε − vε) > 0. Hence, taking the

lim sup when ε→ 0, one gets

lim sup
ε→0

{Mα
ε (uε)−Mα

ε (vε)} ≤ C ′ lim sup
ε→0

√
Mα
ε (uε − vε) = 0.

SinceMα
ε (vε) ≤ 2[Mα

ε (uε)+M
α
ε (vε−uε)] andMα

ε (vε) is bounded, we deduce thatMα
ε (uε)

is bounded as well. Then we can apply all the preceding computations exchanging uε
and vε to get lim sup

ε→0
{Mα

ε (vε)−Mα
ε (uε)} ≤ 0 which concludes the proof.
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