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Abstract. We propose and study two variants of the Ambrosio-Tortorelli functional where the first-
order penalization of the edge variable v is replaced by a second-order term depending on the Hessian
or on the Laplacian of v, respectively. We show that both the variants as above provide an elliptic
approximation of the Mumford-Shah functional in the sense of Γ-convergence.

In particular the variant with the Laplacian penalization can be implemented numerically without
any difficulties compared to the standard Ambrosio-Tortorelli functional. The computational results
indicate several advantages however. First of all, the diffuse approximation of the edge contours appears
smoother and clearer for the minimizers of the second-order functional. Moreover, the convergence

of alternating minimization algorithms seems improved for the new functional. We also illustrate the
findings with several computational results.
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1. Introduction

Image segmentation is a major step in the analysis of images and image sequences, which is becoming
a problem of high relevance in many branches of science and technology, e.g. in the tracking of motion
or the automated analysis of biomedical images. A key step is to obtain a suitable mathematical and
computationally feasible description of edges respectively object contours in an image. According to the
Mumford-Shah approach [31] and to its later development proposed by De Giorgi and Ambrosio [16], the
relevant contours of the objects in a picture are interpreted as the discontinuity set Sū of a function ū
approximating a given image datum g and minimizing the functional

MS(u) + γ

ˆ

Ω

|u− g|2, (1.1)

among all functions u belonging to the space of special functions of bounded variation SBV (Ω), where

MS(u) = α

ˆ

Ω

|∇u|2 dx+ βHn−1(Su). (1.2)

Here the constants α, β > 0 in (1.2) are tuning parameters expressing the relative weight of the local
image smoothness and the edge smoothness.

Segmentation via the Mumford-Shah functional is one of the most prominent and successful approaches
in mathematical image processing, which has received considerable attention from a practical (see e.g.
[5, 13, 33]), computational (see e.g. [20, 26, 33]), as well as theoretical point of view (see e.g. [27, 30] and
references therein). This approach led moreover to several fruitful variants of the original model such
as the Chan-Vese functional [11] or region-based variants with realistic noise modelling [32]. However,
the minimization of (1.2) leads to a so-called free-discontinuity problem and is notoriously difficult to be
solved numerically in a robust and efficient way. An approach frequently used to bypass these difficulties
is to relax the minimization problem as above replacing the Mumford-Shah functional by a sequence of
elliptic functionals which approximate MS in a suitable variational sense. The key idea is to introduce
a second variable v representing a weight for the gradient term in the Mumford-Shah functional; i.e.,
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v ≈ 1 away from the image edge set and v approaching zero in a small region around the image edge set.
The width of the latter region is defined by the approximation parameter ε, via solutions of ε-dependent
minimization problems of the form

min
(u,v)

(

Rε(u, v) + γ

ˆ

Ω

|u− g|2dx
)

. (1.3)

If (u, v) denotes a minimizing pair, then u represents a denoised version of the input image g while v
gives a segmentation of the image. The problem has then a natural multiscale structure: the macroscale
is defined by the image and its overall edge composition while the microscale, whose order is ε, is related
to the local behaviour of v close to the edge set.

A first approximation of (1.2) was studied by Ambrosio and Tortorelli [3, 4] who considered a sequence
of functionals reminiscent of the Cahn-Hilliard approximation of the perimeter [28, 29]. More precisely,
in [4] the authors introduced the family of elliptic functionals

ATε(u, v) = α

ˆ

Ω

(v2 + ηε)|∇u|2 dx+
β

2

ˆ

Ω

(

(v − 1)2

ε
+ ε|∇v|2

)

dx, (1.4)

with ε > 0 and 0 < ηε ≪ ε, defined on pair of functions u, v ∈ W 1,2(Ω), v∇u ∈ L2(Ω;Rn), where the
additional variable v encodes an approximation of the discontinuity set of ū. Indeed, loosely speaking,
due to the term of order 1/ε one expects that a minimizing vε is close to 1 in large regions of Ω and
it deviates from 1, being close to 0, only in an ε-neighbourhood of Sū (where ∇uε tends to be very
large) due to the lower order terms. In this way we get that vε approaches 1 − χSū

as ε → 0. This
heuristic argument is made rigorous in [3, 4] using the language of Γ-convergence and following earlier
ideas developed by Modica and Mortola in the seminal papers [28, 29].

Clearly the above approximation of the Mumford-Shah functional is not the only possible one and
in particular different variants of (1.4) can be considered in order to enhance the Ambrosio-Tortorelli
approximation scheme. In this perspective, a computational and practical improvement to the existing
scheme would be desirable in some cases, e.g. when it is difficult to compute global minimizers of the
original functional. These considerations also motivate the analysis carried out in the present paper.
More precisely we are interested in replacing the term ε|∇v|2 in (1.4) by a second-order term depending
on the Hessian or on the Laplacian of v. More precisely, assuming now that v ∈ W 2,2(Ω) we consider the
functionals

Fε(u, v) = α

ˆ

Ω

(v2 + ηε)|∇u|2 dx+
β

2
√
2

ˆ

Ω

(

(v − 1)2

ε
+ ε3|∇2v|2

)

dx,

as well as the functionals

Eε(u, v) = α

ˆ

Ω

(v2 + ηε)|∇u|2 dx +
β

2
√
2

ˆ

Ω

(

(v − 1)2

ε
+ ε3|∆v|2

)

dx,

for which we additionally assume (v − 1) ∈ W 1,2
0 (Ω). Correspondingly we study the minimization of

(1.3), where Rε can be either Eε or Fε. These second-order penalizations are strongly related to some
Cahn-Hilliard-type functionals (where second-order derivatives replace the gradient-penalization) used to
approximate the perimeter [18, 24] (see also the more recent [12, 14]).

We mention that in the last years variational problems involving higher-order derivatives have become
popular when dealing with several image analysis tasks, examples are in inpainting to propagate curvature
information [7], in denoising to improve staircasing phenomena of total variation methods [6], or in
image registration to obtain smooth deformations [25]. In our case a second-order approximation seems
counterintuitive at a first glance, since one expects convergence to the first-order perimeter term in the
limit. However, we shall observe in computational experiments that the second-order approximation may
have several advantages. First of all the stronger smoothing behaviour of the second-order term leads to
smoother approximations of v, which can lead to increased robustness in practice. In particular certain
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structures that are larger than typical noise but not yet of interest for the segmentation can be suppressed,
e.g. freckles in the segmentation of the face in a portrait as illustrated in Figure 1. Moreover an increase
in robustness is visible in the computation as well: standard alternating minimization algorithms appear
to converge faster for the second-order model and do not get stuck in undesired local minima, which is the
case for the first-order model in a significant number of cases. Another interesting aspect of our model is
that due to the missing maximum principle in higher-order equations, the optimal value of the variable
v is not bounded between zero and one anymore (see e.g. Figure 2 in Section 3). In particular locations
where v is larger than one can certainly be identified as edges and due to the specific shape of the optimal
profile one can build two-sided approximations of the edge set in several cases. The latter is again related
to the different behaviour of v at the microscale. Indeed while the Ambrosio-Tortorelli approximation
provides functions v which are monotone in the direction normal to the predicted edge-set, our analysis
predicts in most cases two local maxima in the normal direction, one on each side of the edge set and
still at microscopic distance from it. Hence, with the collection of the local maxima one can obtain an
approximation of the edge set from both sides, this kind of approximation might then be helpful to detect
interior and exterior regions in the segmentation of objects.

Figure 1. Sisse image, courtesy of Søren Udby (from left to right): Input image, re-
sulting v in the Ambrosio-Tortorelli model, resulting v in the second-order model.

The main result of this paper shows that when ε→ 0 both the families Fε and Eε approximateMS in
the sense of Γ-convergence (see Theorem 4.2 and Theorem 5.3 for the precise statements). In both cases
the most delicate part in the proof is in the so-called lower bound inequality. The one-dimensional case
is first considered and as for the Ambrosio-Tortorelli functional it turns out to contain the main features
of the problem. In dimension one Fε and Eε clearly coincide (if we ignore the boundary condition, which
in this case plays no role in the lower bound). When we estimate from below the energy contribution
of a sequence (uε, vε) with equibounded energy Fε (or Eε), we first appeal to the Gagliardo-Nirenberg
interpolation inequality to obtain the necessary a priori bound on the first derivative v′ε. In its turn,
this bound allows us to deduce that the limit u is a piecewise Sobolev function, which thus has a finite
number of discontinuities. Then the main difference with respect to the Ambrosio-Tortorelli analysis is
that now the so-called “Modica-Mortola trick” cannot be applied. Therefore to find the minimal cost of
a transition between 0 and 1, and occurring in an ε-layer around each discontinuity point of u, a careful
analysis is needed (see Theorem 3.1 and Theorem 4.1). Then, the upper bound inequality follows by an

explicit construction which yields a recovery sequence (uε, vε) satisfying (vε − 1) ∈W 1,2
0 (Ω).

In dimension n > 1 the two functionals Fε and Eε are in general different and the lower bound
inequality is established in the two cases by means of two different arguments. Specifically, the form of
the functionals Fε (and in particular the presence of the full Hessian) makes it possible to use a well-known
integral-geometric argument, the so-called slicing procedure, which allows us to reduce the n-dimensional
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problem to the one-dimensional case and hence to conclude. On the other hand, when we deal with Eε we
cannot exploit the one-dimensional reduction argument as above because of a symmetry breaking due to
the presence of the Laplacian. Therefore in this case a different procedure based on the blow-up method
of Fonseca and Müller [19] is employed. In Theorem 5.3 (see also Proposition 5.1) we show, however, that
the symmetry breaking at ε > 0 disappears in the limit. This is done again using Gagliardo-Nirenberg
interpolation inequality and then appealing to standard elliptic regularity (where the boundary condition
on v plays a role). Then in both cases the upper bound inequality follows by a standard density argument
and by explicit construction. Finally, the Γ-convergence results are complemented with the corresponding
results about the convergence of the associated minimization problems (Theorem 4.5 and Theorem 5.5).

The paper is organized as follows: in Section 2 we will introduce some basic notation, function spaces,
and preliminary estimates used in the subsequent analysis. Section 3 studies the optimal profile of
minimizers in normal direction; i.e., the microscopic behaviour at the ε-scale, which is indeed the same
for both functionals Eε and Fε. Sections 4 and 5 then provide detailed Γ-convergence results for each
of the two functionals. In Section 6 we briefly discuss the numerical minimization and then give an
extensive study of results on synthetic and real images, including a comparison with the results by the
Ambrosio-Tortorelli approach.

2. Notation and preliminaries

In this section we set a few notation and recall some preliminary results we employ in what follows.
Let n ≥ 1; if not otherwise specified, throughout the paper Ω ⊂ Rn denotes an open bounded set

with Lipschitz boundary. The Lebesgue measure and the k-dimensional Hausdorff measure on Rn are
denoted by Ln and Hk, respectively. The scalar product of x, y ∈ Rn is denoted by 〈x, y〉 and the
euclidean norm by |x|, whereas A · B denotes the product between two suitable matrices A,B. For each
ν ∈ Sn−1 := {x ∈ Rn : |x| = 1}, Qν denotes the open unit cube centered at the origin with one face
orthogonal to ν; if x0 ∈ Rn and ̺ > 0, then Qν

̺(x0) := x0 + ̺Qν . If ν belongs to the canonical basis of

Rn, we omit the dependence on ν and we simply write Q̺(x0) = x0 + ̺Q, with Q := (− 1
2 ,

1
2 )

n.
Let Mb(Ω) be the set of all bounded Radon measures on Ω; if µk, µ ∈ Mb(Ω), we say that µk ⇀

∗ µ
weakly∗ in Mb(Ω) if

ˆ

Ω

ϕdµk →
ˆ

Ω

ϕdµ for every ϕ ∈ C0
0 (Ω).

Let 1 ≤ p ≤ +∞ and k ∈ N, we use standard notation for the Lebesgue and Sobolev spaces Lp(Ω) and
W k,p(Ω). For the general theory of special functions of bounded variation we refer the reader to the
monograph [2]; here we only recall some useful notation and definitions. For every u ∈ SBV (Ω), ∇u
denotes the approximate gradient of u, Su the approximate discontinuity set of u, νu the generalized
normal to Su, and u+ and u− are the traces of u on Su. We also consider the larger space of the
generalized special functions of bounded variation on Ω, GSBV (Ω), which is made of all the functions
u ∈ L1(Ω) whose truncation uM := (u ∧M) ∨ (−M) belongs to SBV (Ω) for every M ∈ N. We also
consider the spaces

SBV 2(Ω) = {u ∈ SBV (Ω): ∇u ∈ L2(Ω) and Hn−1(Su) < +∞}
and

GSBV 2(Ω) = {u ∈ GSBV (Ω): ∇u ∈ L2(Ω) and Hn−1(Su) < +∞}.
We have

SBV 2(Ω) ∩ L∞(Ω) = GSBV 2(Ω) ∩ L∞(Ω).

Since we heavily use it in what follows, we recall here the Gagliardo-Nirenberg interpolation inequality
(see e.g. [1, Theorems 4.14 and 4.15]).
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Proposition 2.1. Let U be a bounded open subset of Rn with Lipschitz boundary and let ε0 > 0. Then
there exists a constant c0(ε0, U) > 0 such that

c0 ε

ˆ

U

|∇v|2 dx ≤ 1

ε

ˆ

U

v2 dx+ ε3
ˆ

U

|∇2v|2 dx,

for every ε ∈ (0, ε0] and for every v ∈W 2,2(U).

Moreover, we also recall two a priori estimates for the Laplace operator (see [17, Theorem 1, Section
6.3.1] and [22, Theorem 3.1.2.1 and Remark 3.1.2.2]) that we use in Section 5.

Proposition 2.2. Let U be a bounded open subset of Rn. Then

(i) for each open subset V ⊂⊂ U there exists a constant c(U, V ) > 0 such that

‖v‖W 2,2(V ) ≤ c(U, V )
(

‖∆v‖L2(U) + ‖v‖L2(U)

)

,

for all v ∈ W 2,2(U);
(ii) if in addition U has C2 boundary, then there exists a constant c(U) > 0 such that

‖v‖W 2,2(U) ≤ c(U)‖∆v‖L2(U), (2.1)

for all v ∈ W 2,2(U) ∩W 1,2
0 (U).

Throughout the paper the parameter ε varies in a strictly decreasing sequence of positive real numbers
converging to zero.

Let α, β > 0; we consider the functionals Fε, Eε : L1(Ω)× L1(Ω) −→ [0,+∞] defined as

Fε(u, v) :=



























α

ˆ

Ω

v2|∇u|2 dx+
β

2
√
2

ˆ

Ω

(

(v − 1)2

ε
+ ε3|∇2v|2

)

dx if (u, v) ∈W 1,2(Ω)×W 2,2(Ω)

and v∇u ∈ L2(Ω;Rn),

+∞ otherwise,

(2.2)
and

Eε(u, v) :=



























α

ˆ

Ω

v2|∇u|2 dx+
β

2
√
2

ˆ

Ω

(

(v − 1)2

ε
+ ε3|∆v|2

)

dx if (u, v) ∈W 1,2(Ω)×W 2,2(Ω)

and v∇u ∈ L2(Ω;Rn),

+∞ otherwise.

(2.3)
We also consider the Ambrosio-Tortorelli functionals AT ε : L

1(Ω)× L1(Ω) −→ [0,+∞]

AT ε(u, v) :=



























α

ˆ

Ω

v2|∇u|2 dx+
β

2

ˆ

Ω

(

(v − 1)2

ε
+ ε|∇v|2

)

dx if (u, v) ∈W 1,2(Ω)×W 1,2(Ω)

and v∇u ∈ L2(Ω;Rn),

+∞ otherwise,

(2.4)

and the Mumford-Shah functional MS : L1(Ω)× L1(Ω) −→ [0,+∞]

MS(u, v) :=







α

ˆ

Ω

|∇u|2 dx+ βHn−1(Su) if u ∈ GSBV 2(Ω) and v = 1 a.e.,

+∞ otherwise.
(2.5)
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3. The optimal profile problem

In this section we study the following minimization problem

m := inf

{
ˆ +∞

0

(

(f − 1)2 + (f ′′)2
)

dt : f ∈W 2,2
loc (0,+∞),

f(0) = f ′(0) = 0, f(t) = 1 if t > M for someM > 0

}

. (3.1)

The constant m represents the minimal cost, in terms of the unscaled, one-dimensional Modica-Mortola
contribution in (2.2) and (2.3), for a transition from the value 0 to the value 1 on the positive real half-
line. The minimization problem (3.1) (and its equivalent formulation as in (3.2)) is then referred to as
the optimal profile problem. Moreover, a solution f to (3.2), whose existence is proven in Theorem 3.1
below, is called an optimal profile. We will see that the optimal profile problem is the key to the proof of
Theorem 4.1 (and therefore to both the Γ-convergence results Theorem 4.2 and Theorem 5.3) and that

m =
√
2, which will also explain the presence of the coefficient β/2

√
2 in the definition of the functionals

Fε and Eε.
Theorem 3.1. Let m be as in (3.1); then

m = min

{
ˆ +∞

0

(

(f − 1)2 + (f ′′)2
)

dt : f ∈W 2,2
loc

(0,+∞), f(0) = f ′(0) = 0, lim
t→+∞

f(t) = 1

}

, (3.2)

moreover, m =
√
2.

Proof. Let

m̃ := inf

{
ˆ +∞

0

(

(f − 1)2 + (f ′′)2
)

dt : f ∈W 2,2
loc (0,+∞), f(0) = f ′(0) = 0, lim

t→+∞
f(t) = 1

}

.

By solving the associated Euler-Lagrange equation it is easily shown that m̃ is attained at

f(t) = 1 +
√
2e

− t√
2 cos

(

t√
2
+
π

4

)

(3.3)

(see Figure 2). Moreover a direct computation yields m̃ =
√
2.

We clearly have m̃ ≤ m , then to achieve (3.2) it only remains to show the opposite inequality; i.e.,
m̃ ≥ m. To this end, we suitably modify f so to obtain a test function for m . Let xi → +∞ as i→ +∞;
it is easy to check that

lim
i→+∞

f(xi) = 1, lim
i→+∞

f ′(xi) = 0, (3.4)

with f is as in (3.3).
We introduce the auxiliary function G : R2 −→ [0,+∞) given by

G(w, z) := inf

{
ˆ 1

0

(

(g − 1)2 + (g′′)2
)

dt : g ∈ C2([0, 1]), g(0) = w, g(1) = 1, g′(0) = z, g′(1) = 0

}

;

testing G with a third-degree polynomial satisfying the boundary conditions, one can easily show that

lim
(w,z)→(1,0)

G(w, z) = 0. (3.5)

Fix η > 0 and let g be a test function for G(f(xi), f ′(xi)) such that
ˆ 1

0

(

(g − 1)2 + (g′′)2
)

dt ≤ G(f(xi), f ′(xi)) + η.
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Set gi(t) := g(t− xi) and define

fi(t) :=











f(t) if 0 ≤ t ≤ xi,

gi(t) if xi ≤ t ≤ xi + 1,

1 if t ≥ xi + 1.

Then fi is admissible for m and we have

m̃ =

ˆ +∞

0

(

(f − 1)2 + (f ′′)2
)

dt ≥
ˆ xi

0

(

(f − 1)2 + (f ′′)2
)

dt

=

ˆ +∞

0

(

(fi − 1)2 + (f ′′
i )

2
)

dt−
ˆ xi+1

xi

(

(gi − 1)2 + (g′′i )
2
)

dt

≥ m− G(f(xi), f ′(xi)) − η.

Invoking (3.4) and (3.5), we conclude by first letting i→ +∞ and then η → 0+. �

Figure 2. The optimal profile f .

Remark 3.2. For d ∈ R, set

md := min

{
ˆ +∞

0

(

(f − 1)2 + (f ′′)2
)

dt : f ∈ W 2,2
loc (0,+∞), f(0) = d, f ′(0) = 0, lim

t→+∞
f(t) = 1

}

.

A direct computation gives

md =
√
2(d− 1)2, (3.6)

hence limd→0 md =
√
2.

4. The Hessian penalization

In this section we study the Γ-convergence of the functionals Fε defined in (2.2). The one-dimensional
case is considered first: this is the object of Subsection 4.1. Then, Subsection 4.2 is devoted to the
n-dimensional case, with n ≥ 2. Finally, in Subsection 4.3 we deal with the equicoercivity of a suitable
modification of Fε and with the convergence of the associated minimization problems.

In all that follows c denotes a generic positive constant which may vary from line to line within the
same formula.
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4.1. The one-dimensional case. Let −∞ < a < b < +∞ and let Fε : L
1(a, b) × L1(a, b) −→ [0,+∞]

be the one-dimensional version of the functional in (2.2); i.e.,

Fε(u, v) :=







α

ˆ b

a

v2(u′)2 dt+
β

2
√
2

ˆ b

a

(

(v − 1)2

ε
+ ε3(v′′)2

)

dt if (u, v) ∈ W 1,2(a, b)×W 2,2(a, b),

+∞ otherwise.

Notice that in this case the condition vu′ ∈ L2(a, b) is automatically satisfied for any pair (u, v) ∈
W 1,2(a, b)×W 2,2(a, b).

We have the following Γ-convergence result.

Theorem 4.1. The sequence (Fε) Γ-converges, with respect to the (L1(a, b)× L1(a, b)) -topology, to the
functional MS : L1(a, b)× L1(a, b) −→ [0,+∞] given by

MS(u, v) :=







α

ˆ b

a

(u′)2 dt+ β#(Su) if u ∈ SBV 2(a, b) and v = 1 a.e.,

+∞ otherwise,

where #(Su) denotes the number of discontinuity points of u in (a, b).

Proof. For the sake of notation, for any open set U ⊂ (a, b) we consider the localized functionals

Fε(u, v, U) :=







α

ˆ

U

v2(u′)2 dt+
β

2
√
2

ˆ

U

(

(v − 1)2

ε
+ ε3(v′′)2

)

dt if (u, v) ∈W 1,2(U)×W 2,2(U),

+∞ otherwise.

(4.1)
We divide the proof into two steps in which we analyze separately the liminf-inequality and the limsup-
inequality.

Step 1: liminf-inequality. Let (u, v) ∈ L1(a, b)×L1(a, b) and (uε, vε) ⊂ L1(a, b)×L1(a, b) be such that
(uε, vε) → (u, v) in L1(a, b)× L1(a, b). We want to prove that

lim inf
ε→0

Fε(uε, vε) ≥ MS(u, v). (4.2)

Clearly it is enough to consider the case

lim inf
ε→0

Fε(uε, vε) < +∞.

Then, up to subsequences, ‖vε − 1‖L2(a,b) ≤ c
√
ε, from which we immediately deduce that v = 1 a.e. in

(a, b).
According to Proposition 2.1 there exists a positive constant c0 > 0 such that for ε sufficiently small

we have

c0

ˆ b

a

ε(v′ε)
2 dt ≤

ˆ b

a

(vε − 1)2

ε
dt+

ˆ b

a

ε3(v′′ε )
2 dt.

Therefore
ˆ b

a

(

(vε − 1)2

ε
+ ε (v′ε)

2

)

dt ≤ c for ε > 0 sufficiently small;

hence we can apply [9, Lemma 6.2 and Remark 6.3], with Z = {1} and W (s) = (s− 1)2 to conclude that
there exists a finite set S such that, for every fixed open set U ⊂⊂ (a, b) \ S and for ε > 0 sufficiently
small, 1/2 < vε < 3/2 on U . For every such fixed U we have

α

4
sup
ε>0

ˆ

U

(u′ε)
2 dt ≤ α sup

ε>0

ˆ b

a

v2ε (u
′
ε)

2 dt < +∞;
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thus u ∈ W 1,2(U) and uε ⇀ u in W 1,2(U). Moreover, since vε → 1 in L2(U) and u′ε ⇀ u′ in L2(U), then
u′εvε ⇀ u′ in L1(U); hence we have

α

ˆ

U

(u′)2 dt ≤ α lim inf
ε→0

ˆ

U

v2ε(u
′
ε)

2 dt ≤ α lim inf
ε→0

ˆ b

a

v2ε (u
′
ε)

2 dt. (4.3)

By the arbitrariness of U , (4.3) can be rewritten as

α

ˆ

(a,b)\(S+[−η,η])

(u′)2 dt ≤ α lim inf
ε→0

ˆ

(a,b)\(S+[−η,η])

v2ε(u
′
ε)

2 dt ≤ α lim inf
ε→0

ˆ b

a

v2ε(u
′
ε)

2 dt, (4.4)

for every η > 0. This allows us to conclude that u ∈ SBV 2(a, b) and Su ⊂ S.
Let N := #(Su), Su := {t1, . . . , tN} with t1 < t2 < · · · < tN , and consider pairwise disjoint intervals

Ii = (ai, bi) ⊂ (a, b) with ti ∈ Ii; we want to show that, for every i ∈ {1, . . . , N},
lim inf
ε→0

Fε(uε, vε, Ii) ≥ β. (4.5)

To this end, fix i ∈ {1, . . . , N}. Let ti ∈ I ′i ⊂⊂ Ii and set mi := lim infε→0 inft∈I′
i
(vε(t))

2. Since I ′i
contains a discontinuity point of u, we want to show that it is convenient for vε to be “close” to zero in
I ′i; i.e., that mi = 0. We argue by contradiction assuming that mi > 0. Then for every t ∈ I ′i, we have

lim inf
ε→0

(vε(t))
2

mi
≥ 1,

therefore
ˆ

I′
i

(u′ε)
2 dt ≤ 1

mi

ˆ

I′
i

v2ε(u
′
ε)

2 dt ≤ Fε(uε, vε)

mi
≤ c ,

so that uε ⇀ u in W 1,2(I ′i) and Su ∩ I ′i = ∅ which contradicts the hypothesis ti ∈ I ′i. Hence, we must
have mi = 0. As a consequence there exists a sequence (siε) ⊂ I ′i such that

lim
ε→0

vε(s
i
ε) = 0. (4.6)

On the other hand, up to subsequences (not relabelled), vε → 1 a.e. in (a, b) as ε → 0. Therefore, there
exist r̃iε, r

i
ε ∈ Ii such that r̃iε < siε < riε and

lim
ε→0

vε(r̃
i
ε) = 1, lim

ε→0
vε(r

i
ε) = 1. (4.7)

Moreover, again appealing to the interpolation inequality Proposition 2.1 we may deduce that εv′ε → 0
in L1(a, b). Indeed

ˆ b

a

ε|v′ε| dt ≤ ε1/2(b− a)1/2

(

ˆ b

a

ε (v′ε)
2 dt

)1/2

≤ ε1/2(b− a)1/2

(

1

c0

ˆ b

a

(

(vε − 1)2

ε
+ ε3(v′′ε )

2

)

dt

)1/2

≤ c ε1/2 → 0 as ε→ 0.

Then up to subsequences (not relabelled) it is not restrictive to suppose that

lim
ε→0

ε v′ε(r̃
i
ε) = 0 and lim

ε→0
ε v′ε(r

i
ε) = 0.

Let s̃iε be a minimum point for vε in [r̃iε, r
i
ε]. In view of (4.6) and (4.7) we deduce that s̃iε ∈ (r̃iε, r

i
ε), for

ε sufficiently small. Then, since vε ∈ C1([r̃iε, r
i
ε]) we have v′ε(s̃

i
ε) = 0. Moreover vε(s̃

i
ε) ≤ vε(s

i
ε) < vε(r

i
ε),

hence (4.7) implies that vε(s̃
i
ε) < 1 for ε small.
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We have

Fε(uε, vε, Ii) ≥ β

2
√
2

ˆ

Ii

(

(vε − 1)2

ε
+ ε3(v′′ε )

2

)

dt

≥ β

2
√
2

(

ˆ s̃iε

r̃iε

(

(vε − 1)2

ε
+ ε3(v′′ε )

2

)

dt+

ˆ riε

s̃iε

(

(vε − 1)2

ε
+ ε3(v′′ε )

2

)

dt

)

. (4.8)

We now estimate from below the term

ˆ riε

s̃iε

(

(vε − 1)2

ε
+ ε3(v′′ε )

2

)

dt =

ˆ

riε−s̃iε
ε

0

(

(wε − 1)2 + (w′′
ε )

2
)

dz,

where z = (t− s̃iε)/ε and wε(z) := vε(εz + s̃iε). To this end let gε,i ∈ C2([0, 1]) be an admissible function
for G(vε(riε), ε v′ε(riε)); i.e., gε,i(0) = vε(r

i
ε), gε,i(1) = 1, g′ε,i(0) = ε v′ε(r

i
ε), g

′
ε,i(1) = 0. By construction

lim
ε→0

gε,i(0) = 1 and lim
ε→0

g′ε,i(0) = 0,

hence by (3.5) we infer

lim
ε→0

G(vε(riε), ε v′ε(riε)) = 0. (4.9)

Let (ṽε,i) be the sequence defined as

ṽε,i(z) :=



























wε(z) if 0 ≤ z ≤ riε − s̃iε
ε

,

gε,i

(

z − riε − s̃iε
ε

)

if
riε − s̃iε
ε

≤ z ≤ riε − s̃iε
ε

+ 1,

1 if z ≥ riε − s̃iε
ε

+ 1.

By definition of gε,i it follows that (ṽε,i) ⊂W 2,2
loc (0,+∞). Since (ṽε,i) is a test function for mvε(s̃iε)

(with

mvε(s̃iε)
as in (3.6) with d = vε(s̃

i
ε)), we have

ˆ

riε−s̃iε
ε

0

(

(wε − 1)2 + (w′′
ε )

2
)

dz =

ˆ +∞

0

(

(ṽε,i − 1)2 + (ṽ′′ε,i)
2
)

dz − G(vε(riε), ε v′ε(riε))

≥ mvε(s̃iε)
− G(vε(riε), ε v′ε(riε)).

A similar argument applies to the term
ˆ s̃iε

r̃iε

(

(vε − 1)2

ε
+ ε3(v′′ε )

2

)

dt

in (4.8). Since mvε(s̃iε)
=

√
2(vε(s̃

i
ε)− 1)2 and vε(s̃

i
ε) ≤ vε(s

i
ε) < 1, we have

Fε(uε, vε, Ii) ≥ β√
2
mvε(s̃iε)

− β√
2
G(vε(riε), ε v′ε(riε))) ≥

β√
2

min
d≤vε(siε)

md −
β√
2
G(vε(riε), ε v′ε(riε)))

=
β√
2
mvε(siε)

− β√
2
G(vε(riε), ε v′ε(riε))) = β (vε(s

i
ε)− 1)2 − β√

2
G(vε(riε), ε v′ε(riε)))

and (4.5) follows from (4.9) letting ε→ 0.
Since the intervals Ii are pairwise disjoint, gathering (4.4) and (4.5), we get

lim inf
ε→0

Fε(uε, vε) ≥ α lim inf
ε→0

ˆ b

a

v2ε (u
′
ε)

2 dt+
β

2
√
2
lim inf
ε→0

ˆ b

a

(

(vε − 1)2

ε
+ ε3(v′′ε )

2

)

dt

≥ α

ˆ

(a,b)\(S+[−η,η])

(u′)2 dt+ β#(Su).
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Hence the liminf-inequality (4.2) follows from the arbitrariness of η.

Step 2: limsup-inequality. Let u ∈ SBV 2(a, b), Su := {t1, . . . , tN} with t1 < t2 < · · · < tN , and set

t0 := a, tN+1 := b, δ0 := mini{ti+1 − ti : i = 0, . . . , N}. For i = 1, . . . , N , define Ii :=
[

ti−1+ti
2 , ti+ti+1

2

]

.

We now construct a recovery sequence for the Γ-limit.
Let η > 0; there exist a function fη ∈ W 2,2

loc (0,+∞) and a constantMη > 0 such that fη(0) = f ′
η(0) = 0,

fη(t) = 1 for all t > Mη, and

ˆ Mη

0

(

(fη − 1)2 + (f ′′
η )

2
)

dt ≤
√
2 + η. (4.10)

Let ξε > 0 be such that ξε/ε → 0 as ε → 0, then for ε sufficiently small ξε <
δ0
2 . For i = 1, . . . , N let

ϕi
ε be a cut-off function between

(

ti − ξε
2 , ti +

ξε
2

)

and (ti − ξε, ti + ξε); i.e., ϕ
i
ε ∈ C∞

c (ti − ξε, ti + ξε),

0 ≤ ϕi
ε ≤ 1 and ϕi

ε ≡ 1 on
(

ti − ξε
2 , ti +

ξε
2

)

. Define the sequence

uε(x) := u(x)

(

1−
N
∑

i=1

ϕi
ε(x)χIi (x)

)

;

then (uε) ⊂W 1,2(a, b) and uε → u in L1(a, b) by the dominated convergence Theorem.

Fix T > Mη; then
δ0−2ξε

2ε > T , for ε small. Define the sequence

vε(t) :=















0 if |t− ti| ≤ ξε,

fη

( |t− ti| − ξε
ε

)

if ξε ≤ |t− ti| ≤ ξε + εT,

1 if t ∈ ({|t− ti| ≥ ξε + εT } ∩ Ii) ∪
[

a, a+t1
2

]

∪
[

tN+b
2 , b

]

,

for i = 1, · · · , N , where fη is as in (4.10). It is immediate to check that (vε) ⊂ W 2,2(a, b) and vε → 1 in
L1(a, b). Moreover for every i = 1, . . . , N , we have

ˆ

Ii

v2ε (u
′
ε)

2 dt =

ˆ

Ii\[ti−ξε,ti+ξε]

v2ε(u
′)2 dt (4.11)

and

ˆ

Ii

(

(vε − 1)2

ε
+ ε3(v′′ε )

2

)

dt

=

ˆ ti−ξε

ti−ξε−εT

(

1

ε

(

fη

(

ti − t− ξε
ε

)

− 1

)2

+ ε3
(

f ′′
η

(

ti − t− ξε
ε

))2
)

dt

+

ˆ ti+ξε+εT

ti+ξε

(

1

ε

(

fη

(

t− ti − ξε
ε

)

− 1

)2

+ ε3
(

f ′′
η

(

t− ti − ξε
ε

))2
)

dt+

ˆ ti+ξε

ti−ξε

1

ε
dt

= 2

ˆ T

0

(

(fη(z)− 1)2 + (f ′′
η (z))

2
)

dz + 2
ξε
ε

≤ 2
√
2 + η + 2

ξε
ε
. (4.12)
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Therefore gathering (4.11) and (4.12) gives

Fε(uε, vε) = α

N
∑

i=1

ˆ

Ii

v2ε (u
′)2 dt+

β

2
√
2

N
∑

i=1

ˆ

Ii

(

(vε − 1)2

ε
+ ε3(v′′ε )

2

)

dt

≤ α

N
∑

i=1

ˆ

Ii\[ti−ξε,ti+ξε]

v2ε (u
′)2 dt+ βN + c

ξε
ε
+ η̃.

Finally, invoking the dominated convergence Theorem yields

lim sup
ε→0

Fε(uε, vε) ≤ α

ˆ b

a

(u′)2 dt+ β#(Su) + η̃

and thus the thesis. �

4.2. The n-dimensional case. Let n ≥ 2 and let Fε be the functional defined as in (2.2). The following
Γ-convergence result holds true.

Theorem 4.2. The sequence (Fε) Γ-converges, with respect to the (L1(Ω) × L1(Ω))-topology, to the
functional MS : L1(Ω)× L1(Ω) −→ [0,+∞] given by

MS(u, v) :=







α

ˆ

Ω

|∇u2| dx+ βHn−1(Su) if u ∈ GSBV 2(Ω) and v = 1 a.e.,

+∞ otherwise,

Proof. As for the one-dimensional case, if A is an open, A ⊂ Ω, we set

Fε(u, v, A) :=



























α

ˆ

A

v2|∇u|2 dx +
β

2
√
2

ˆ

A

(

(v − 1)2

ε
+ ε3|∇2v|2

)

dx if (u, v) ∈ W 1,2(A)×W 2,2(A)

and v∇u ∈ L2(A;Rn),

+∞ otherwise,

and

MS(u, v, A) :=















α

ˆ

A

|∇u|2 dx+ βHn−1(Su ∩ A) if u ∈ GSBV 2(A) and v = 1 a.e.,

+∞ otherwise.

We divide the proof into two steps in which we analyze separately the liminf-inequality and the limsup-
inequality.

Step 1: liminf-inequality. Let A be an open subset of Ω. We recover the lower bound

Γ- lim inf
ε→0

Fε(u, 1, A) ≥ MS(u, 1, A) (4.13)

from the one-dimensional case, by using the slicing method. To this end we start recalling some useful
notation. For each ξ ∈ S

n−1 we consider the hyperplane through the origin and orthogonal to ξ,

Πξ := {x ∈ R
n : 〈x, ξ〉 = 0},

and, for every y ∈ Πξ, we consider the one-dimensional set

Aξ,y := {t ∈ R : y + t ξ ∈ A}
and the one-dimensional functions uξ,y, vξ,y defined by

uξ,y(t) := u(y + t ξ), vξ,y(t) := v(y + t ξ).
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By Fubini’s Theorem we have

Fε(u, v, A)

=

ˆ

Πξ

ˆ

Aξ,y

(

α v2(y + tξ)|∇u(y + tξ)|2

+
β

2
√
2

(

(v(y + tξ)− 1)2

ε
+ ε3|∇2v(y + tξ)|2

))

dt dHn−1(y)

≥
ˆ

Πξ

ˆ

Aξ,y

(

α v2(y + tξ)|〈∇u(y + tξ), ξ〉|2

+
β

2
√
2

(

(v(y + tξ)− 1)2

ε
+ ε3|〈∇2v(y + tξ)ξ, ξ〉|2

))

dt dHn−1(y)

=

ˆ

Πξ

Fξ,y
ε (uξ,y, vξ,y, Aξ,y) dHn−1(y),

where for all ξ and y, Fξ,y
ε are the one-dimensional functionals defined as in (4.1).

Let (u, v) ∈ L1(Ω) × L1(Ω) and let (uε, vε) ⊂ L1(Ω) × L1(Ω) be such that (uε, vε) → (u, v) in
L1(Ω)× L1(Ω), and

lim inf
ε→0

Fε(u, v, A) < +∞, (4.14)

then, v = 1 a.e. in A. By Fubini’s Theorem and Fatou’s Lemma,

0 = lim
ε→0

ˆ

A

|uε − u| dx

= lim
ε→0

ˆ

Πξ

ˆ

Aξ,y

|(uε)ξ,y − uξ,y| dt dHn−1(y)

≥
ˆ

Πξ

lim inf
ε→0

‖(uε)ξ,y − uξ,y‖L1(Aξ,y) dHn−1(y);

hence (uε)ξ,y → uξ,y in L1(Aξ,y) for Hn−1-a.e. y ∈ Πξ and analogously (vε)ξ,y → 1 in L1(Aξ,y) for
Hn−1-a.e. y ∈ Πξ. Therefore, appealing to the one-dimensional result Theorem 4.1 we have that uξ,y ∈
SBV 2(Aξ,y), for Hn−1-a.e. y ∈ Πξ and

lim inf
ε→0

Fε(uε, vε, A) ≥ lim inf
ε→0

ˆ

Πξ

Fξ,y
ε ((uε)ξ,y, (vε)ξ,y, Aξ,y) dHn−1(y)

≥
ˆ

Πξ

lim inf
ε→0

Fξ,y
ε ((uε)ξ, y, (vε)ξ,y, Aξ,y) dHn−1(y)

≥
ˆ

Πξ

(

ˆ

Aξ,y

α |u′ξ,y|2 dt+ β#(Suξ,y
∩ Aξ,y)

)

dHn−1(y). (4.15)

Let M ∈ N and consider the truncated functions uM := (−M) ∨ (u ∧M); by (4.14) and (4.15) we have
ˆ

Πξ

|D(uM )ξ,y|(Aξ,y) dHn−1(y)

=

ˆ

Πξ

(

ˆ

Aξ,y

|(uM )′ξ,y| dt+ |(uM )+ξ,y − (uM )−ξ,y|#(S(uM )ξ,y)

)

dHn−1(y)

≤
ˆ

Πξ



c

(

ˆ

Aξ,y

|(uM )′ξ,y|2 dt
)1/2

+ 2M #(S(uT )ξ,y )



 dHn−1(y) < +∞.
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Thus, by virtue of [10, Theorem 4.1(b)] we conclude that uM ∈ SBV 2(A) for every M ∈ N, hence the
lower semicontinuity of the Mumford-Shah functional entails u ∈ GSBV 2(A). Moreover, by (4.15) and
[10, Theorem 4.1(a)], we infer

Γ- lim inf
ε→0

Fε(u, v, A) ≥ α

ˆ

A

|〈∇u, ξ〉|2 dx+ β

ˆ

A∩Su

|〈ξ, νu〉| dHn−1. (4.16)

In particular, since (4.16) holds for each ξ ∈ Sn−1, we have

Γ- lim inf
ε→0

Fε(u, v, A) ≥ sup
ξ∈Sn−1

{

α

ˆ

A

|〈∇u, ξ〉|2 dx+ β

ˆ

A∩Su

|〈ξ, νu〉| dHn−1

}

.

The previous estimate can be improved to (4.13) by means of a measure theory lemma. Observe that for
u ∈ GSBV 2(A) and v = 1 the set function µ(A) := Γ- lim infε→0 Fε(u, v, A) is superadditive on disjoint
open sets. Then, applying [9, Lemma 15.2] with

λ := Ln +Hn−1
xSu,

and

ψi(x) :=

{

α |〈∇u, ξi〉|2 if x /∈ Su,

β |〈ξi, νu〉| if x ∈ Su,

where (ξi) is a dense sequence in Sn−1, we obtain that

Γ- lim inf
ε→0

Fε(u, v, A) ≥
ˆ

A

sup
i
ψi dλ

= α

ˆ

A

|∇u|2 dx+ βHn−1(Su ∩ A)

= MS(u, v, A).
Finally the liminf-inequality follows taking A = Ω.

Step 2: limsup-inequality. We want to show that

Γ- lim sup
ε→0

Fε(u, v) ≤ MS(u, v), (4.17)

whenever u ∈ GSBV 2(Ω) and v = 1 a.e. in Ω. To this end it is useful to recall the density result [15,
Theorem 3.9 and Corollary 3.11]. Let u ∈ GSBV 2(Ω) then there exists a sequence (uj) ⊂ SBV 2(Ω)
satisfying the following properties:

(1) Suj
is essentially closed; i.e., Hn−1(Ω ∩ (Suj

\ Suj
)) = 0;

(2) Suj
is the intersection of Ω with a finite number of pairwise disjoint closed and convex sets, each

contained in a (n− 1)-dimensional hyperplane, and whose (relative) boundaries are C∞;
(3) uj ∈ W k,∞(Ω \ Suj

) for every k ∈ N;
(4) ‖uj − u‖L2(Ω) → 0 as j → +∞;
(5) ‖∇uj −∇u‖L2(Ω) → 0 as j → +∞;

(6) |Hn−1(Suj
)−Hn−1(Su)| → 0 as j → +∞.

Denote by W(Ω) the class of all functions for which conditions (1)-(3) hold. Then, by a standard density
argument it is enough to prove (4.17) when u belongs to W(Ω). Indeed assume (4.17) holds true in W(Ω).
If u ∈ GSBV 2(Ω) then there exists a sequence (uj) ⊂ W(Ω) satisfying (4)-(6). Hence it holds

Γ- lim sup
ε→0

Fε(u, v) ≤ lim inf
j→+∞

(

Γ- lim sup
ε→0

Fε(uj , v)

)

≤ lim
j→+∞

MS(uj , v) = MS(u, v),

where the first inequality is due to the lower semicontinuity of the Γ-limsup, whereas the last equality
follows from (5) and (6).
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We now prove (4.17) for a function u ∈ W(Ω). Assume first that Su = Ω ∩K where K is a closed
convex set contained in an (n − 1)-dimensional hyperplane Π with normal ν. Let p : Rn → Π be the
orthogonal projection on Π, d(x) := dist(x,Π), and for any δ > 0 set Kδ := {x ∈ Π: dist(x,K) ≤ δ}.

Let η > 0; then there exist a function fη ∈ W 2,2
loc (0,+∞) and a constant Mη > 0 such that fη(0) =

f ′
η(0) = 0, fη(t) = 1 ∀t > Mη and

ˆ Mη

0

(

(fη − 1)2 + (f ′′
η )

2
)

dt ≤
√
2 + η. (4.18)

Fix T > Mη and let ξε > 0 be such that ξε/ε→ 0 as ε→ 0; set

Aε := {x ∈ R
n : p(x) ∈ Kε, d(x) ≤ ξε}

Bε := {x ∈ R
n : p(x) ∈ K2ε, d(x) ≤ ξε + εT }

(see Figure 3). Consider moreover

ξε + εT

ξε

−ξε

−ξε − εT

ε ε Su

Aε

Bε

Π

ν

Figure 3. The sets Aε and Bε.

Cε := {x ∈ R
n : p(x) ∈ Kε/2, d(x) ≤ ξε/2}

and let ϕε be a cut-off function between Cε and Aε; i.e., ϕε ∈ C∞
c (Aε), 0 ≤ ϕε ≤ 1 and ϕε ≡ 1 on Cε.

Define the sequence
uε(x) := u(x)(1 − ϕε(x));

then (uε) ⊂W 1,2(Ω) and uε → u in L1(Ω), by the Lebesgue dominated convergence Theorem.
Let γε be a cut-off function between Kε and K2ε; i.e., γε ∈ C∞

c (K2ε), 0 ≤ γε ≤ 1, γε ≡ 1 on Kε with

‖∇γε‖L∞(Π) ≤
c

ε
, (4.19)

‖∇2γε‖L∞(Π) ≤
c

ε2
, (4.20)

for some c > 0. Let hε : R → R be the function defined by

hε(t) :=















0 if |t| ≤ ξε,

fη

( |t| − ξε
ε

)

if ξε ≤ |t| ≤ ξε + εT,

1 if |t| ≥ ξε + εT,

where fη is as in (4.18). Let

vε(x) := γε(p(x))hε(d(x)) + (1− γε(p(x))). (4.21)
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By construction (vε) ⊂W 2,2(Ω) ∩ L∞(Ω) so that vε∇uε ∈ L2(Ω;Rn); moreover vε → 1 in L1(Ω).
We have

lim sup
ε→0

Fε(uε, vε) = lim sup
ε→0

ˆ

Ω

(

αv2ε |∇uε|2 +
β

2
√
2

(

(vε − 1)2

ε
+ ε3|∇2vε|2

))

dx

≤ α lim sup
ε→0

ˆ

Ω

v2ε |∇uε|2 dx+
β

2
√
2
lim sup

ε→0

ˆ

Aε

(

(vε − 1)2

ε
+ ε3|∇2vε|2

)

dx

+
β

2
√
2
lim sup

ε→0

ˆ

Bε\Aε

(

(vε − 1)2

ε
+ ε3|∇2vε|2

)

dx

+
β

2
√
2
lim sup

ε→0

ˆ

Ω\Bε

(

(vε − 1)2

ε
+ ε3|∇2vε|2

)

dx

=: αI1 +
β

2
√
2
(I2 + I3 + I4). (4.22)

We now compute separately the four terms I1, I2, I3, and I4.
Since vε ≡ 0 on Aε and uε ≡ u on Ω \Aε, we immediately deduce

I1 = lim sup
ε→0

ˆ

Ω\Aε

v2ε |∇u|2 dx =

ˆ

Ω

|∇u|2 dx; (4.23)

moreover the term I2 gives no contribution to the computation, indeed

I2 = lim sup
ε→0

1

ε

ˆ

Aε

dx

= lim sup
ε→0

1

ε

ˆ ξε

−ξε

dt

ˆ

Kε

dHn−1(y)

= 2 lim sup
ε→0

ξε
ε
Hn−1(Kε) = 0, (4.24)

where we have used the fact that ξε ≪ ε and Hn−1(Kε) → Hn−1(K) < +∞ as ε→ 0.
Since vε ≡ 1 on Ω \ Bε, we also have I4 = 0. Then it only remains to compute I3. To this end it is

convenient to decompose Bε \Aε as the union of two sets, Dε and Eε, defined as follows

Dε := {x ∈ R
n : p(x) ∈ Kε, ξε ≤ d(x) ≤ ξε + εT }

Eε := {x ∈ R
n : p(x) ∈ K2ε \Kε, d(x) ≤ ξε + εT }

(see Figure 4).

On Dε the function vε = fη

(

d(x)−ξε
ε

)

, moreover ∇d(x) = ±ν hence we have

lim sup
ε→0

ˆ

Dε

(

(vε − 1)2

ε
+ ε3|∇2vε|2

)

dx

= lim sup
ε→0

ˆ

Dε

(

1

ε

(

fη

(

d(x) − ξε
ε

)

− 1

)2

+ ε3
∣

∣

∣

∣

f ′′
η

(

d(x) − ξε
ε

)

νT · ν
ε2

∣

∣

∣

∣

2
)

dx

≤ 2 lim sup
ε→0

ˆ

Kε

ˆ ξε+εT

ξε

(

1

ε

(

fη

(

t− ξε
ε

)

− 1

)2

+
1

ε

(

f ′′
η

(

t− ξε
ε

))2
)

dt dHn−1(y)

= 2 lim sup
ε→0

ˆ

Kε

ˆ T

0

((fη(t)− 1)2 + (f ′′
η (t))

2) dt dHn−1(y)

≤ (2
√
2 + η̃) lim sup

ε→0
Hn−1(Kε) = (2

√
2 + η̃)Hn−1(K). (4.25)
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ξε + εT

ξε

−ξε

−ξε − εT

ε ε

EεEε

Dε

Dε

Π

ν

Figure 4. The sets Dε and Eε.

Hence finally to achieve the limsup-inequality we have to show that

lim sup
ε→0

ˆ

Eε

(

(vε − 1)2

ε
+ ε3|∇2vε|2

)

dx = 0. (4.26)

To do this we consider the further decomposition of Eε as the union of two sets Vε and Wε defined by

Vε := {x ∈ R
n : p(x) ∈ K2ε \Kε, d(x) ≤ ξε}

Wε := {x ∈ R
n : p(x) ∈ K2ε \Kε, ξε ≤ d(x) ≤ ξε + εT }

(see Figure 5). Since hε(d(x)) ≡ 0 on Vε, we have vε(x) = 1− γε(p(x)) for x ∈ Vε. Then, if we denote by

ξε + εT

ξε

−ξε

−ξε − εT

εε

Wε

Wε

Wε

Wε

VεVε Π

ν

Figure 5. The sets Vε and Wε.



18 M. BURGER, T. ESPOSITO, AND C.I. ZEPPIERI

Dp(x) the Jacobian matrix of p evaluated at x, we get that ‖Dp(x)‖L∞(Rn;Rn×n) ≤ 1 and
ˆ

Vε

(

(vε − 1)2

ε
+ ε3|∇2vε|2

)

dx

=

ˆ

Vε

(

γ2ε (p(x))

ε
+ ε3

∣

∣−Dp(x)
T · ∇2γε(p(x)) ·Dp(x)

∣

∣

2
)

dx

≤
ˆ

K2ε\Kε

ˆ ξε

−ξε

(

γ2ε (y)

ε
+ ε3

∣

∣∇2γε(y)
∣

∣

2
)

dt dHn−1(y)

≤ c
ξε
ε
Hn−1(K2ε \Kε) → 0 as ε→ 0,

where in the last inequality we have used (4.20).
Also

lim sup
ε→0

ˆ

Wε

(

(vε − 1)

ε
+ ε3|∇2vε|2

)

dx = 0,

indeed vε(x) = γε(p(x))fη

(

d(x)−ξε
ε

)

+ (1− γε(p(x))) on Wε and we have

ˆ

Wε

(

(vε − 1)2

ε
+ ε3|∇2vε|2

)

dx

= 2

ˆ

K2ε\Kε

ˆ ξε+εT

ξε

(

1

ε

(

γε(y)fη

(

t− ξε
ε

)

− γε(y)

)2

+ε3
∣

∣

∣

∣

Dp(y + tν)T · ∇2γε(y) ·Dp(y + tν)

(

fη

(

t− ξε
ε

)

− 1

)

+
1

ε
f ′
η

(

t− ξε
ε

)

(

(∇γε(y) ·Dp(y + tν))T · ∇d(y + tν) +∇d(y + tν)T · ∇γε(y) ·Dp(y + tν)
)

+γε(y) f
′′
η

(

t− ξε
ε

)

νT · ν
ε2

∣

∣

∣

∣

2)

dt dHn−1(y)

≤ c

ε
εHn−1(K2ε \Kε) = cHn−1(K2ε \Kε) → 0 as ε→ 0,

where to establish the last inequality we have used (4.19) and (4.20).
Thus gathering (4.22)-(4.26) we finally deduce

lim sup
ε→0

Fε(uε, vε) ≤ α

ˆ

Ω

|∇u|2 dx+ (β + η̃)Hn−1(Su) ∀η̃ > 0,

and hence the limsup inequality.
We now consider the general case in which Su = Ω∩⊔r

i=1Ki, with Ki closed and convex set contained
in an (n− 1)-dimensional hyperplane Πi, with normal νi. Let pi : R

n → Πi be the orthogonal projection
on Πi, di(x) := dist(x,Πi), and for every δ > 0 set Kδ

i := {x ∈ Πi : dist(x,Ki) ≤ δ}.
Let fη be as in (4.18) and fix T > Mη; for 0 < ξε ≪ ε consider the sets

Ai
ε := {x ∈ R

n : pi(x) ∈ Kε
i , di(x) ≤ ξε}

Bi
ε := {x ∈ R

n : pi(x) ∈ K2ε
i , di(x) ≤ ξε + εT }.

Arguing as above we can construct a recovery sequence (uiε, v
i
ε) for Fε(u, v,Ki). Then, let ε0 > 0 be such

that

T <
δ0 − 2 ξε

2ε
, ∀ 0 < ε < ε0, (4.27)
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where δ0 := min{dist(Ki,Kj) : i, j = 1, . . . , r, i 6= j}; for ε ∈ (0, ε0) set

Âε :=

r
⋃

i=1

Ai
ε, B̂ε :=

r
⋃

i=1

Bi
ε

and consider the sequences (uε) ⊂W 1,2(Ω) and (vε) ⊂W 2,2(Ω) ∩ L∞(Ω) defined by

uε(x) :=

{

uiε if x ∈ Ai
ε,

u if x /∈ Âε,
(4.28)

and

vε(x) :=

{

viε if x ∈ Bi
ε,

1 if x /∈ B̂ε.
(4.29)

Condition (4.27) ensures that Bi
ε ∩ Bj

ε = ∅ for all i 6= j and consequently that the sequences in (4.28)
and (4.29) are well-defined. Moreover we have (uε, vε) → (u, 1) in L1(Ω)× L1(Ω) and

lim sup
ε→0

Fε(uε, vε)

≤ α lim sup
ε→0

ˆ

Ω

v2ε |∇uε|2 dx+
β

2
√
2

(

lim sup
ε→0

ˆ

Âε

(

(vε − 1)2

ε
+ ε3|∇2vε|2

)

dx

+ lim sup
ε→0

ˆ

B̂ε\Âε

(

(vε − 1)2

ε
+ ε3|∇2vε|2

)

dx+ lim sup
ε→0

ˆ

Ω\B̂ε

(

(vε − 1)

ε
+ ε3|∇2vε|2

)

dx

)

≤ α

ˆ

Ω

|∇u|2 dx+
β

2
√
2

r
∑

i=1

(

lim sup
ε→0

ˆ

Ai
ε

(

(vε − 1)2

ε
+ ε3|∇2vε|2

)

dx

+ lim sup
ε→0

ˆ

Bi
ε\A

i
ε

(

(vε − 1)2

ε
+ ε3|∇2vε|2

)

dx+ lim sup
ε→0

ˆ

Ω\Bi
ε

(

(vε − 1)2

ε
+ ε3|∇2vε|2

)

dx

)

= α

ˆ

Ω

|∇u|2 dx+ β

r
∑

i=1

Hn−1(Ki)

= α

ˆ

Ω

|∇u|2 dx+ βHn−1(Su) = MS(u, 1).

�

Remark 4.3. Let f ∈ W 2,2
0 (Ω) then it is immediate to show that

‖∆f‖L2(Ω) = ‖∇2f‖L2(Ω;Rn×n).

Therefore, if u ∈ W 1,2(Ω), (v − 1) ∈ W 2,2
0 (Ω) and v∇u ∈ L2(Ω;Rn) the functionals Fε can be rewritten

as

Fε(u, v) = α

ˆ

Ω

v2|∇u|2 dx+
β

2
√
2

ˆ

Ω

(

(v − 1)2

ε
+ ε3|∆v|2

)

dx.

Let F̃ε : L
1(Ω)× L1(Ω) −→ [0,+∞] denote the functionals

F̃ε(u, v) :=



























α

ˆ

Ω

v2|∇u|2 dx+
β

2
√
2

ˆ

Ω

(

(v − 1)2

ε
+ ε3|∆v|2

)

dx if (u, v − 1) ∈ W 1,2(Ω)×W 2,2
0 (Ω)

and v∇u ∈ L2(Ω;Rn),

+∞ otherwise,

then the following theorem is an immediate consequence of Remark 4.3 and Theorem 4.2.
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Theorem 4.4. The sequence (F̃ε) Γ-converges, with respect to the (L1(Ω) × L1(Ω))-topology, to the
functional MS, defined as in (2.5).

Proof. Since every sequence (vε) with equibounded energy strongly converges to 1 in L2(Ω), the liminf-
inequality is trivial. Hence, it only remains to prove the limsup inequality. To this end we notice that
the recovery sequence exhibited in Theorem 4.2 is also a recovery sequence for the functional F̃ε. Indeed
it is immediate to check that (vε) defined as in (4.29) (see also (4.21)) satisfies (vε − 1) ∈ W 2,2

0 (Ω). �

4.3. Convergence of minimization problems. Let ηε > 0 be such that ηε/ε→ 0 as ε→ 0. Let γ > 0
and g ∈ L2(Ω) be given and for every (u, v) ∈ W 1,2(Ω)×W 2,2(Ω) consider the functionals

Fε(u, v) + ηε

ˆ

Ω

|∇u|2 dx + γ

ˆ

Ω

|u − g|2 dx. (4.30)

The following result holds true.

Theorem 4.5. For every fixed ε > 0 there exists a minimizing pair (ũε, ṽε) for the problem

Mε := inf

{

Fε(u, v) + ηε

ˆ

Ω

|∇u|2 dx+ γ

ˆ

Ω

|u− g|2 dx : (u, v) ∈ W 1,2(Ω)×W 2,2(Ω)

}

.

Moreover, up to subsequences, (ũε, ṽε) → (u, 1) in L1(Ω)× L1(Ω) where u is a solution to

M := min

{

MS(u, 1) + γ

ˆ

Ω

|u− g|2 dx : u ∈ GSBV 2(Ω)

}

; (4.31)

if n = 1 then u ∈ SBV 2(Ω). Further, Mε →M as ε→ 0.

Proof. For fixed ε > 0 the perturbation term ηε
´

Ω
|∇u|2 makes the functionals in (4.30) coercive with

respect to the weak (W 1,2(Ω) ×W 2,2(Ω))-topology. Indeed, let (uk, vk) ⊂ W 1,2(Ω) ×W 2,2(Ω) be such
that

Fε(uk, vk) + ηε

ˆ

Ω

|∇uk|2 dx+ γ

ˆ

Ω

|uk − g|2 dx→Mε as k → +∞.

As a consequence we deduce

‖vk∇uk‖L2(Ω;Rn) ≤ c, ‖uk‖W 1,2(Ω) ≤ c

for some c > 0 independent of k; moreover, by the interpolation inequality Proposition 2.1 we also have
‖vk‖W 2,2(Ω) ≤ c. Then up to subsequences (not relabelled)











vk∇uk ⇀ w in L2(Ω;Rn),

uk ⇀ u in W 1,2(Ω),

vk ⇀ v in W 2,2(Ω) (⇒ vk → v in W 1,2(Ω)).

(4.32)

Therefore

vk∇uk ⇀ v∇u in L1(Ω;Rn),

hence by the uniqueness of the weak limit v∇u = w ∈ L2(Ω;Rn). Then, the existence of a minimizing
pair (ũε, ṽε) easily follows appealing to the weak lower semicontinuity of the L2 norm and to the direct
methods.

The requirement that ηε/ε→ 0 as ε→ 0 ensures that

Fε(u, v) + ηε

ˆ

Ω

|∇u|2 dx+ γ

ˆ

Ω

|u− g|2 dx Γ−→ MS(u, v) + γ

ˆ

Ω

|u− g|2 dx (4.33)

with respect to the strong (L1(Ω)×L1(Ω))-topology. This can be easily seen arguing as in Theorems 4.1
and 4.2 (now taking ξε =

√
ηε ε) and recalling that Γ-convergence is stable under continuous perturba-

tions.
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Moreover, if (uε, vε) ⊂W 1,2(Ω)×W 2,2(Ω) is any sequence such that

sup
ε

(

Fε(uε, vε) + ηε

ˆ

Ω

|∇uε|2 dx +

ˆ

Ω

|uε − g|2 dx
)

< +∞,

then the interpolation inequality Proposition 2.1 implies

sup
ε

(

AT ε(uε, vε) + ηε

ˆ b

a

(u′ε)
2 dt+

ˆ b

a

|uε − g|2 dt
)

< +∞,

where AT ε is as in (2.4). Thus [4, Theorem 1.2] immediately yields the equicoercivity of the functionals
as in (4.30). Finally, by virtue of (4.33), the convergence of the associated minimization problems is
ensured by the fundamental property of Γ-convergence. �

5. The Laplacian penalization

In this section we study the asymptotic behaviour of the energies Eε defined in (2.3). Specifically we
prove that, up to imposing suitable boundary conditions on v, the Γ-limit of Eε is again given by (2.5).

In what follows Ω will be an open bounded subset of Rn with C2 boundary.

Let Eε be as in (2.3); we have

Eε(u, v) ≤ α

ˆ

Ω

v2|∇u|2 dx+
β

2
√
2

ˆ

Ω

(

(v − 1)2

ε
+ 2 ε3|∇2v|2

)

dx, (5.1)

for all (u, v) ∈W 1,2(Ω)×W 2,2(Ω) such that v∇u ∈ L2(Ω;Rn).

It is convenient to introduce the following notation. Let E ′, E ′′ : L1(Ω) × L1(Ω) −→ [0,+∞] be the
functionals defined as

E ′(·, ·) := Γ- lim inf
ε→0

Eεj (·, ·), E ′′(·, ·) := Γ- lim sup
ε→0

Eεj (·, ·);

then, by virtue of Theorem 4.2, we get

E ′(u, v) ≤ E ′′(u, v) ≤ α

ˆ

Ω

|∇u|2 dx+ 2 βHn−1(Su)

for all u ∈ GSBV 2(Ω) and for v = 1 a.e. in Ω, hence

GSBV 2(Ω)× {v = 1 a.e. in Ω} ⊂ dom E ′′ ⊂ dom E ′.

We now apply the blow-up argument of Fonseca-Müller [19] (see also [8]) to obtain the following lower
bound inequality for the functionals Eε.

Proposition 5.1. For every u ∈ GSBV 2(Ω), we have

Γ- lim inf
ε→0

Eε(u, 1) ≥ MS(u, 1),

with MS defined as in (2.5).

Proof. Assume first that u belongs to SBV 2(Ω). Let (uε, vε) ⊂ L1(Ω) × L1(Ω) be such that (uε, vε) →
(u, 1) in L1(Ω)× L1(Ω) and supε Eε(uε, vε) < +∞.

For each ε > 0 consider the measures

µε :=

(

α v2ε |∇uε|2 +
β

2
√
2

(

(vε − 1)2

ε
+ ε3|∆vε|2

))

Ln
xΩ.
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By hypothesis µε(Ω) = Eε(uε, vε) is equibounded therefore, up to subsequences (not relabelled), µε ⇀
∗ µ

where µ is a non-negative finite Radon measure on Ω. Using the Radon-Nikodým Theorem we decompose
µ into the sum of three mutually orthogonal measures

µ = µaLn + µJHn−1
xSu + µs

and we claim that

µa(x0) ≥ α |∇u(x0)|2 for Ln-a.e. x0 ∈ Ω (5.2)

and

µJ(x0) ≥ β for Hn−1-a.e. x0 ∈ Su. (5.3)

Suppose for a moment that (5.2) and (5.3) hold true, then to conclude it is enough to consider an
increasing sequence of smooth cut-off functions (ϕk), such that 0 ≤ ϕk ≤ 1 and supk ϕk(x) = 1 on Ω,
and to note that for every k ∈ N

lim
ε→0

Eε(uε, vε) ≥ lim inf
ε→0

ˆ

Ω

(

αv2ε |∇uε|2 +
β

2
√
2

(

(vε − 1)2

ε
+ ε3|∆vε|2

))

ϕk dx

=

ˆ

Ω

ϕk dµ ≥
ˆ

Ω

µaϕk dx+

ˆ

Su

µJϕk dHn−1

≥ α

ˆ

Ω

|∇u|2ϕk dx+ β

ˆ

Su

ϕk dHn−1.

Hence, letting k → +∞ the thesis follows from the monotone convergence Theorem.
We now prove (5.2) and (5.3). We start proving (5.2). To this end let x0 ∈ Ω be a Lebesgue point for

µ with respect to Ln such that u is approximately differentiable at x0; i.e.,

µa(x0) = lim
̺→0

µ(Q̺(x0))

Ln(Q̺(x0))
= lim

̺→0

µ(Q̺(x0))

̺n
(5.4)

and

lim
̺→0

1

̺n+1

ˆ

Q̺(x0)

|u(x)− u(x0)− 〈∇u(x0), x− x0〉| dx = 0. (5.5)

The Besicovitch derivation Theorem together with the Calderón-Zygmund Lemma ensures that (5.4)-(5.5)
hold true for a.e. x0 ∈ Ω.

Notice that since µ is a finite Radon measure, we have µ(∂Q̺(x0)) = 0 for all ̺ > 0 except for a
countable set. Moreover, for ̺ small the upper semicontinuous function χQ̺(x0)

has compact support in

Ω, thus we can appeal to [2, Proposition 1.62(a)] and deduce that

µa(x0) = lim
̺→0

1

̺n

ˆ

Q̺(x0)

dµ ≥ lim
̺→0

lim sup
ε→0

1

̺n
µε(Q̺(x0))

= lim
̺→0

lim sup
ε→0

1

̺n

ˆ

Q̺(x0)

(

αv2ε (x)|∇uε(x)|2 +
β

2
√
2

(

(vε(x)− 1)2

ε
+ ε3|∆vε(x)|2

))

dx

= lim
̺→0

lim sup
ε→0

ˆ

Q

(

αv2ε (x0 + ̺y)|∇uε(x0 + ̺y)|2

+
β

2
√
2

(

(vε(x0 + ̺y)− 1)2

ε
+ ε3|∆vε(x0 + ̺y)|2

))

dy.

Now we suitably modify uε to obtain a sequence converging in L1(Q) to the linear function w0(y) =
〈∇u(x0), y〉. Set

wε,̺(y) :=
uε(x0 + ̺y)− u(x0)

̺
, vε,̺(y) := vε(x0 + ̺y);
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then, letting first ε → 0 and then ̺ → 0 we get (wε,̺, vε,̺) → (w0, 1) in L1(Q) × L1(Q). Moreover we
have

µa(x0) ≥ lim
̺→0

lim sup
ε→0

ˆ

Q

(

α v2ε,̺(y)|∇wε,̺(y)|2 +
β

2
√
2

(

(vε,̺(y)− 1)2

ε
+
ε3

̺4
|∆vε,̺(y)|2

))

dy

≥ lim
̺→0

lim sup
ε→0

Eε(wε,̺, vε,̺, Q),

where in the last inequality we have used that 1/̺ > 1 for ̺ small.
By a standard diagonalization argument we can find two positive vanishing sequences (εh), (̺h) such

that (wεh,̺h
, vεh,̺h

) → (w0, 1) in L
1(Q)× L1(Q) as h→ +∞, and

µa(x0) ≥ lim inf
h→+∞

Eεh(wεh,̺h
, vεh,̺h

, Q).

Let Q′ ⊂⊂ Q; then, gathering Proposition 2.2(i) and Theorem 4.2, we get

µa(x0) ≥ lim inf
h→+∞

ˆ

Q′

(

αv2εh,̺h
|∇wεh,̺h

|2 + β

2
√
2

(

(vεh,̺h
− 1)2

εh
+ c(Q,Q′)ε3h|∇2vεh,̺h

|2
))

dy

≥ α |∇u(x0)|2Ln(Q′),

and (5.2) follows letting Q′ ր Q.
We now prove (5.3). Let x0 ∈ Su be a Lebesgue point for µ with respect to Hn−1

xSu; i.e.,

µJ(x0) = lim
̺→0

µ(Qν
̺(x0))

Hn−1(Qν
̺(x0) ∩ Su)

= lim
̺→0

µ(Qν
̺(x0))

̺n−1
, (5.6)

where ν := νu(x0). The Besicovitch derivation Theorem ensures that (5.6) holds true for Hn−1-a.e.
x0 ∈ Su. By the definition of approximate discontinuity point, we can assume that in addition

lim
̺→0

1

̺n

ˆ

(Qν
̺(x0))±

|u(x)− u±(x0)| dx = 0, (5.7)

where (Qν
̺(x0))

± := {x ∈ (Qν
̺(x0)) : ± 〈x− x0, ν〉 > 0}.

By following the same argument as before, we get

µJ(x0) = lim
̺→0

1

̺n−1

ˆ

Qν
̺(x0)

dµ ≥ lim
̺→0

lim sup
ε→0

1

̺n−1
µε(Q

ν
̺(x0))

= lim
̺→0

lim sup
ε→0

1

̺n−1

ˆ

Qν
̺(x0)

(

αv2ε (x)|∇uε(x)|2 +
β

2
√
2

(

(vε(x)− 1)2

ε
+ ε3|∆vε(x)|2

))

dx

= lim
̺→0

lim sup
ε→0

̺

ˆ

Qν

(

αv2ε (x0 + ̺y)|∇uε(x0 + ̺y)|2

+
β

2
√
2

(

(vε(x0 + ̺y)− 1)2

ε
+ ε3|∆vε(x0 + ̺y)|2

))

dy

= lim
̺→0

lim sup
ε→0

ˆ

Qν

(

α

̺
v2ε,̺(y)|∇uε,̺(y)|2

+
β

2
√
2

(

̺

ε
(vε,̺(y)− 1)2 +

(

ε

̺

)3

|∆vε,̺(y)|2
))

dy

≥ lim
̺→0

lim sup
ε→0

Eε/̺(uε,̺, vε,̺, Qν),
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where we set uε,̺(y) := uε(x0 + ̺y), vε,̺(y) := vε(x0 + ̺y). Notice that in view of (5.7), letting first
ε→ 0 and then ̺→ 0, we get (uε,̺, vε,̺) → (u0, 1) in L

1(Qν)× L1(Qν) where

u0(x) :=

{

u+(x0) if 〈x− x0, ν〉 ≥ 0,

u−(x0) if 〈x− x0, ν〉 < 0.

Then, a diagonalization argument provides us with two positive vanishing sequences (εh), (̺h) such that
σh := εh

̺h
→ 0 as h→ +∞, (uεh,̺h

, vεh,̺h
) → (u0, 1) in L

1(Qν)× L1(Qν) as h→ +∞, and

µJ (x0) ≥ lim
h→+∞

Eσh
(uεh,̺h

, vεh,̺h
, Qν). (5.8)

Set uh := uεh,̺h
, vh := vεh,̺h

.
Since Eσh

is invariant under translations in u and under rotations in u and v, it is enough to bound
from below the right hand side in (5.8) when ν = en and uh → ut := tχ{xn≥0}, t := u+(x0)− u−(x0).

To this end let δ > 0 and Q(δ) := (−1/2 + δ, 1/2− δ)n; then,

µJ(x0) ≥ lim
h→+∞

Eσh
(uh, vh, Q) ≥ lim

h→+∞
Eσh

(uh, vh, Q(δ)), (5.9)

for every δ > 0 small. We now show that

lim
h→+∞

Eσh
(uh, vh, Q(δ)) ≥ β. (5.10)

The proof now follows the line of that of [24, Lemma 3.4] where the asymptotic behaviour of a variant of
the Modica-Mortola functional is investigated. The idea is to estimate from below the functionals Eσh

in
a way which allows us to reduce to the one-dimensional lower bound proved in Theorem 4.1.

In order to not overburden notation we now drop the index h for the sequences of functions as in
(5.9). We assume moreover that v ∈ C∞(Q(δ)) and we write

∆xv = vzz +∆yv, y ∈ Q′(δ), z ∈ (−1/2 + δ, 1/2− δ),

with Q′(δ) := (−1/2 + δ, 1/2− δ)n−1. Then, we have

Eσh
(u, v,Q(δ)) =

ˆ
1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)

(

αv2
(

u2z + |∇yu|2
)

+
β

2
√
2

(

(v − 1)2

σh
+ σ3

h |vzz +∆yv|2
))

dy dz.

(5.11)
We are going to estimate the right-hand side of (5.11) from below with a functional that no longer contains
partial derivatives with respect to y. Since the term involving ∇yu is non-negative the only term that we
have to estimate is the one containing ∆yv. For η ∈ C∞

0 (Q(δ)), we write
ˆ 1

2
−δ

− 1
2
+δ

ˆ

Q′(δ)
|vzz +∆yv|2η2 dy dz

=

ˆ
1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)
v2zz η

2 dy dz +

ˆ
1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)

(

|∆yv|2 η2 + 2 vzz η
2 ∆yv

)

dy dz. (5.12)

We first estimate the last term in (5.12) from below. We have
ˆ

1
2
−δ

− 1
2
+δ

(

ˆ

Q′(δ)
vzz η

2 ∆yv dy

)

dz

= −
ˆ 1

2
−δ

− 1
2
+δ

ˆ

Q′(δ)
vz η

2 ∆yvz dy dz − 2

ˆ 1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)
vz η ηz ∆yv dy dz

=

ˆ
1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)

(

|∇yvz|2 η2 + 2 vz η 〈∇yvz ,∇yη〉
)

dy dz − 2

ˆ
1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)
vz η ηz ∆yv dy dz.



SECOND-ORDER AMBROSIO-TORTORELLI FUNCTIONAL 25

By Young’s inequality we get

2

ˆ
1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)
vz η 〈∇yvz,∇yη〉 dy dz ≤

ˆ
1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)
|∇yvz |2 η2 dy dz +

ˆ
1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)
v2z |∇yη|2 dy dz

and

2

ˆ 1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)
vz η ηz ∆yv dy dz ≤ 1

2

ˆ 1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)
|∆yv|2 η2 dy dz + 2

ˆ 1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)
v2z η

2
z dy dz.

Using in (5.12) the two bounds as above we obtain
ˆ

1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)

(

|∆yv|2 + 2 vzz ∆yv
)

η2 dy dz ≥ −
ˆ

1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)
v2z
(

4 η2z + 2 |∇yη|2
)

dy dz. (5.13)

Thus, by (5.11)-(5.13), we get

σ3
h

ˆ
1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)
|vzz +∆yv|2 η2 dy dz ≥ σ3

h

ˆ
1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)
v2zzη

2 dy dz − c(η)σ3
h

ˆ

Q(δ)

v2z dx.

Hence, if we assume in addition that ‖η‖∞ ≤ 1, we can conclude that

Eσh
(u, v,Q(δ)) ≥

ˆ 1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)

(

α v2|uz|2 +
β

2
√
2

(

(v − 1)2

σh
+ σ3

h v
2
zz

))

η2 dy dz

− β

2
√
2
c(η)σ3

h

ˆ

Q(δ)

v2z dx,

which holds also true for v ∈ W 2,2(Ω), by virtue of the density of C∞(Q) ∩W 2,2(Ω) in W 2,2(Ω).
Appealing to Proposition 2.1 and Proposition 2.2(i) we have

β

2
√
2
σ3
h

ˆ

Q(δ)

(v)2z dx ≤ c σ2
h

β

2
√
2

(

ˆ

Q(δ)

(v − 1)2

σh
+ σ3

h|∇2v|2 dx
)

≤ σ2
h c(Q,Q(δ)) Eσh

(u, v,Q);

therefore

lim
h→+∞

Eσh
(uh, vh, Q(δ))

≥ lim inf
h→+∞

ˆ
1
2
−δ

− 1
2
+δ

ˆ

Q′(δ)

(

αv2h(uh)
2
z +

β

2
√
2

(

(vh − 1)2

σh
+ σ3

h(vh)
2
zz

))

η2 dy dz,

for every η ∈ C∞
0 (Q(δ)). Hence if we choose δ̂ > δ and η ∈ C∞

0 (Q(δ)) such that η = 1 in Q(δ̂) ⊂⊂ Q(δ),
invoking Fatou’s Lemma and Theorem 4.1 we get

µJ(x0) ≥ lim
h→+∞

Eσh
(uh, vh, Q(δ̂))

≥ lim inf
h→+∞

ˆ

Q′(δ̂)

ˆ
1
2
−δ̂

− 1
2
+δ̂

(

α v2h(uh)
2
z +

β

2
√
2

(

(vh − 1)2

σh
+ σ3

h(vh)
2
zz

))

dz dy

≥
ˆ

Q′(δ̂)
lim inf
h→+∞

ˆ
1
2
−δ̂

− 1
2
+δ̂

(

α v2h(uh)
2
z +

β

2
√
2

(

(vh − 1)2

σh
+ σ3

h(vh)
2
zz

))

dz dy

≥ βHn−1(Q′(δ̂)).

Then, (5.3) follows by letting δ̂ → 0.
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If u ∈ GSBV 2(Ω) the thesis follows by a standard truncation argument. In fact if uM := (u ∧M) ∨
(−M), then uM ∈ SBV 2(Ω) for all M ∈ N. Then, appealing to the lower semicontinuity of MS and
noticing that Eε(·, v) (and hence E ′(·, v)) decreases by truncation, we immediately get

E ′(u, 1) ≥ lim inf
M→+∞

MS(uM , 1) ≥ MS(u, 1).

�

The following result holds true.

Proposition 5.2. We have

Γ- lim
ε→0

Eε(u, 1) = MS(u, 1) (5.14)

for every u ∈ GSBV 2(Ω).

Proof. The lower bound inequality is a consequence of Proposition 5.1 while the upper bound can be
proved by taking the same recovery sequence as in Theorem 4.2. �

Now define

Ẽε(u, v) :=



















Eε(u, v) if u ∈W 1,2(Ω), (v − 1) ∈W 1,2
0 (Ω) ∩W 2,2(Ω)

and v∇u ∈ L2(Ω;Rn),

+∞ otherwise in L1(Ω)× L1(Ω),

then we can prove the following Γ-convergence result.

Theorem 5.3. The sequence (Ẽε) Γ-converges, with respect to the (L1(Ω) × L1(Ω))-topology, to the
functional MS as in (2.5).

Proof. The Γ-convergence result is a straightforward consequence of Proposition 5.14 once we notice that
thanks to the boundary conditions satisfied by v, we can now invoke Proposition 2.2(ii) to get

Ẽε(u, v) ≥
ˆ

Ω

(

αv2|∇u|2 + β

2
√
2

(

(v − 1)2

ε
+ c(Ω)ε3|∇2v|2

))

dx, (5.15)

which together with (5.1) allow us to conclude that the domain of the Γ-limit is GSBV 2(Ω) × {v =
1 a.e. in Ω}. �

Remark 5.4. The C2-regularity of ∂Ω is only used to invoke Proposition 2.2(ii) in order to obtain the
estimate from below (5.15). We notice however that for n = 2, which is the interesting case in numerical
simulations, Proposition 2.2(ii) holds also true in bounded polygonal open sets (see e.g. [23, Theorem
2.2.3]).

5.1. Convergence of minimization problems. For every (u, v) ∈ W 1,2(Ω) ×W 2,2(Ω) consider the
functionals

Ẽε(u, v) + ηε

ˆ

Ω

|∇u|2 dx + γ

ˆ

Ω

|u− g|2 dx. (5.16)

Appealing to Theorem 5.3 and to the fundamental property of Γ-convergence, also in this case we can
prove a result on the convergence of associated minimization problems.

Theorem 5.5. For every fixed ε > 0 there exists a minimizing pair (ũε, ṽε) for the problem

Mε := inf

{

Ẽε(u, v) + ηε

ˆ

Ω

|∇u|2 dx+ γ

ˆ

Ω

|u− g|2 dx : (u, v) ∈W 1,2(Ω)×W 2,2(Ω)

}

.
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Moreover, up to subsequences, (ũε, ṽε) → (u, 1) in L1(Ω)× L1(Ω) where u is a solution to

M := min

{

MS(u, 1) + γ

ˆ

Ω

|u− g|2 dx : u ∈ GSBV 2(Ω)

}

; (5.17)

if n = 1 then u ∈ SBV 2(Ω). Further, Mε →M as ε→ 0.

Proof. The proof follows the line of that of Theorem 4.5 once we notice that the convergence (4.32) is
now ensured by Proposition 2.2(ii). �

6. Numerical Results

In this section we discuss some numerical results for the second-order approximation (5.16) for reasons
of practicability. Indeed the discretization of the Laplacian is more straightforward and leads to more
compact schemes compared to the discretization of the Hessian involving mixed derivatives. As we have
noticed in Remark 4.3 also the Hessian penalization can be rewritten into a Laplacian one under certain
conditions, which are however not suitable for a numerical implementation since we need to enforce a
solution inW 2,2

0 . The latter means we have to implement simultaneous Dirichlet and Neumann boundary
conditions, which is not feasible in finite difference or finite element discretizations without enforcing
additional constraints. A second argument comes from the comparison with the first-order Ambrosio-
Tortorelli functional, which already includes a Laplacian in the optimality condition, while the optimality
condition for (5.16) changes only to a concatenation of two Laplacians. Hence, the modification of a code
for the Ambrosio-Tortorelli functional to the second-order version (5.16) is straightforward and allows for
a comparison of computational efficiency.

We shall report on several computational experiments, starting with simple synthetic images that
allow for a detailed study of fine properties such as the realization of the optimal profile already for a
rather low number of pixels. Subsequently we investigate the behaviour on a set of natural and biomedical
images, highlighting several differences of the second-order approach to the classical Ambrosio-Tortorelli
functional. All experiments are carried out in two spatial dimensions, but we mention that extensions to
volume data sets are obvious. Since a combination of the parameters α, β and γ is redundant, we choose
β = 0.3 in all experiments.

6.1. Numerical Solution. In order to minimize the functional in (5.16) we follow the common strategy
of iterative minimization; i.e., given an iterate (uk, vk) we compute

vk+1 ∈ argmin
v

Ẽε(uk, v)

uk+1 ∈ argmin
u

Ẽε(u, vk+1) + ηε

ˆ

Ω

|∇u|2 dx+ γ

ˆ

Ω

|u− g|2 dx.

This yields a descent method for the overall functional, which is based on solving two quadratic minimiza-
tion problems, respectively the corresponding linear optimality systems in each case. The same method
is used to minimize the original Ambrosio-Tortorelli functional

AT ε(u, v) + ηε

ˆ

Ω

|∇u|2 dx+ γ

ˆ

Ω

|u− g|2 dx, (6.1)

where AT ε is defined as in (1.4).
The linear equation to be solved for uk+1 is in both cases

−2α∇ · ((vk+1)2∇uk+1)− ηε∆u
k+1 + γuk+1 = γg.

The linear equation for vk+1 is given by

2α|∇uk|2vk+1 +
β√
2ε
vk+1 +

βε3√
2
∆∆vk+1 =

β√
2ε
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in the case of the new second-order functional, respectively by

2α|∇uk|2vk+1 +
β

ε
vk+1 − βε∆vk+1 =

β

ε

in the case of the Ambrosio-Tortorelli functional.
We discretize the functionals in (5.16) and (6.1) by standard finite differences on a rectangular grid,

using one-sided (forward) differencing for the gradient and the adjoint one-sided differences for the diver-
gence, hence the usual central differencing for the Laplacian. For the discretized linear systems we use a
direct solver. Convergence diagnostics and stopping rules are based on the relative size of the change in
the images; i.e.,

ek = max

{‖uk+1 − uk‖∞
‖uk+1‖∞

,
‖vk+1 − vk‖∞

‖vk+1‖∞

}

.

6.2. Simple Test Examples. We start with a simple image showing a one-dimensional structure in the
vertical direction. Figure 6 illustrates the results for the parameter settings α = 10−2, γ = 10−3, ε =
3 ∗ 10−2, which yield a visually optimal result at the given image resolution. The segmentations obtained
from the two models (see images of v in the middle) are not distinguishable by eye, a fine difference can
be seen however when exploring the level sets where v is slightly larger than one in the second-order
model. Note that due to a maximum principle respectively the monotone shape of the optimal profile
in the Ambrosio-Tortorelli model the variable v is always less or equal one, while the optimal profile in
the second-order model exceeds one, hence the corresponding level set shall provide further information
about edge location. This is illustrated in the right-most plot in Figure 6, from which one observes that
v in the second-order model can provide an approximation of the edge set from both sides - an accurate
reconstruction can be obtained as the midpoints between the local maxima. This behaviour is also present
for larger values of ε as illustrated in the supplementary material.

Figure 6. One-dimensional structure (from left to right): Image g, resulting v in the
Ambrosio-Tortorelli model, resulting v in the second-order model, binary plot of the level
set {v > 1.005} in the second-order model.

With the same set of parameters we also compute minimizers for images of an ellipse with large ratio
between the main directions, illustrated in Figure 7 and two overlapping circles, illustrated in Figure 8.
Both images are perturbed by additive Gaussian noise to test also the effect of noise on the results. We
again plot the resulting minimizers v for both models and the level set for the second-order models. The
clean images u yield no visible differences and are shown in the supplementary material for completeness.
Overall we observe analogous behaviour as for the one-dimensional example, a remarkable fact is that the
level sets of v in the second-order model are able to provide a well separated segmentation of the overlap
region.
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Figure 7. Ellipse (from left to right): Image g, resulting v in the Ambrosio-Tortorelli
model, resulting v in the second-order model, binary plot of the level set {v > 1.005} in
the second-order model.

Figure 8. Two circles (from left to right): Image g, resulting v in the Ambrosio-
Tortorelli model, resulting v in the second-order model, binary plot of the level set
{v > 1.005} in the second-order model.

6.3. Natural and Biomedical Images. In the following we report on the results of the second-order
model for few examples of natural images as well as different kinds of microscopy images. A general
observation on all those images is that at the given resolution (rather small compared to the size of the
structures) and the hence possible choices of ε, the convergence to the optimal profile is far less pronounced
than for the simple images above. Consequently the level set plot does not show an approximation of
edges from both sides, for this reason we do not display the plots here. On the other hand we observe
more interesting behaviour in the clean images u, which we also provide in the supplementary material.
Let us mention that the Γ-convergence to the same minimizer does not mean that the original Ambrosio-
Tortorelli functional and the second-order approach yield the same or very similar results on real images,
which is due to many effects such as the given finite resolution of the image and choice of ε, the details
of convergence in ε, as well as the level of convergence in the numerical minimization.

The algorithm was tested on various natural images such as the Kodak image test set (see also
the supplementary material). The most pronounced difference between the original Ambrosio-Tortorelli
model and the novel second-order version concerns structures at a small scale, which is however still larger
than the typical scale of noise. This is well illustrated in a portrait photograph of a person containing
freckles (see Figure 1, for parameters α = 3 ∗ 10−2, γ = 3 ∗ 10−3, ε = 7 ∗ 10−2) or in Kodak image 7 (see
Figure 9, for parameters α = 10−2, γ = 7 ∗ 10−3, ε = 7 ∗ 10−2).

Such a behaviour is observed also for a wider range of parameters and seems clearly related to the
stronger smoothing of the second-order model in higher frequencies. Another - at least visual - impression
confirmed also in other results is that the contours being present in the results of both models appear
smoother in the second-order model, which may be advantageous in many cases.

We also report on an effect we obtain for rather large choice of ε, i.e. rather far from convergence.
This is illustrated in a phase-contrast microscopy image of a mitotic cell (cf. [21]). Such images are
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Figure 9. Kodak image 7 (from left to right): Image g, resulting v in the Ambrosio-
Tortorelli model, resulting v in the second-order model.

challenging for segmentation algorithms due to halo effects at the border of the cell, while the interior
has similar grey value as the surrounding medium. Choosing ε much larger than in the examples before
(α = 3 ∗ 10−2, γ = 3 ∗ 10−3, ε = 5 ∗ 10−1) we obtain a contour v that actually fills the whole interior. This
effect is clearly beneficial for the second-order model, whose result allows a simple tracking of the cell.

Figure 10. Mitotic cell, from [21] (from left to right): Image g, resulting v in the
Ambrosio-Tortorelli model, resulting v in the second-order model.

6.4. Convergence Behaviour of Alternating Minimization Algorithms. We finally comment on
the convergence behaviour of alternating minimization algorithms routinely used for approximating min-
imizers of the Ambrosio-Tortorelli functional. The observation made in the majority of our numerical
experiments is that the number of iterations needed for fixed accuracy in the second-order model is at
least comparable to those for the standard first-order version, in many cases the number of iterations is
significantly reduced for the second-order model in particular for real images. In some parameter cases
a visual comparison of results indicates that one obtains a global minimizer for the second-order model,
while the iteration for the first-order model is stuck in a suboptimal local minimum, which is however
difficult to verify. We refer to the supplementary material to a collection of computational investigations
of convergence.
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