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1 Introduction

The goal of this paper is to study the asymptotic development by Γ-convergence of order 2 of the
Modica–Mortola or Cahn–Hilliard functional (see [37, 49, 60])

Fε(u) :=

∫
Ω

W (u) + ε2|∇u|2 dx, u ∈ H1(Ω), (1.1)

subject to the mass constraint ∫
Ω

u dx = m. (1.2)

Here Ω ⊂ Rn is an open, bounded set and W is a double-well potential.
The notion of asymptotic development by Γ-convergence was introduced by Anzellotti and Baldo

[7]. To be precise, given a metric space X and a family of functions Fε : X → R, ε > 0, we say that
an asymptotic development of order k

Fε = F (0) + εF (1) + · · ·+ εkF (k) + o(εk)

holds if there exist functions F (i) : X → R, i = 0, 1, . . . , k, such that the functions

F (i)
ε :=

F (i−1)
ε − infX F (i−1)

ε
(1.3)

are well-defined and
F (i)
ε

Γ−→ F (i), (1.4)

where F (0)
ε := Fε and R is the extended real line. Let

Ui := {minimizers of F (i)}.

It can be shown that
F (i) ≡ ∞ in X\Ui−1, (1.5)
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and that
{limits of minimizers of Fεm} ⊂ Uk ⊂ · · · ⊂ U0, (1.6)

with
inf Fεm = inf F (0) + εm inf F (1) + · · ·+ εkm inf F (k) + o(εkm)

for every sequence εm → 0+, provided inf F (i) <∞ for all i = 0, . . . , k.
Simple examples show that each of the inclusions in (1.6) may be strict (see [7]). Thus asymptotic

development by Γ-convergence provides a selection criteria for minimizers of F (0). Some other works
that describe asymptotic development via Γ-convergence include [12], [29].

The first example of asymptotic development by Γ-convergence of order 2 for functionals of the
type (1.1) was studied by Anzellotti and Baldo in [7], who considered the case in which n = 1, the
wells of W are not points but non-degenerate intervals and the mass constraint (1.2) is replaced
by a Dirichlet condition. Subsequently Anzellotti, Baldo and Orlandi [8] studied (1.1) in arbitrary
dimension, in the case in which W has only one well (W (s) = s2) and again with Dirichlet boundary
conditions in place of (1.2).

The problem of the asymptotic development of order 2 for the Cahn–Hilliard functional (1.1)
with W a double-well potential has remained an open problem, except when n = 1. Indeed, in
the one-dimensional case and for sufficiently smooth W , one can show that F (2) = 0. This can be
deduced from the work of Carr, Gurtin and Slemrod [17], Theorem 8.1, and from the recent paper
[10] of Bellettini, Nayam and Novaga, who gave a very precise higher-order asymptotic estimate for
Fε(uε), where {uε} ⊂ H1(T) is any sequence converging to u ∈ BV (T; {−1, 1}) in L1(T), where T
is the one-dimensional torus and −1, 1 are the wells of W .

To our knowledge, the only result related to the second-order asymptotic development of (1.1)
in the case n ≥ 2 for (1.1), (1.2) has recently been obtained by the first author in collaboration with
Dal Maso and Fonseca in [27]. For a double-well potential satisfying

W (s) = W (−s)

for all s ∈ R and
W (s) = C|1− s|1+q (1.7)

near s = 1, for some q ∈ (0, 1), and under the additional assumption that

u = 1 on ∂Ω, (1.8)

in addition to (1.2), it was shown that F (2) = 0. More generally, this was proved in the case
in which ε2

∫
Ω
|∇u|2 dx is replaced by ε2

∫
Ω

Φ2(∇u) dx, with Φ : Rn → [0,∞) an arbitrary norm.
The Dirichlet condition (1.8) played a crucial role in the proof in [27] since it permitted the use
of classical symmetrization techniques (see [39], [40]) in H1

0 (Ω) to reduce the problem to the radial
case. Moreover, the behavior of W near the wells (see (1.7)) did not allow for C2 potentials W . The
work of [27] left open several important questions, namely the characterization of F (2) when

• the Dirichlet condition (1.8) is not imposed,

• W is of class C2,

• W is not even.

In this paper we address all of these questions. In particular, we show that in general F (2) 6= 0 if W
is even and of class C2, or if W is not even.

Here we take X := L1(Ω) and define

Fε(u) :=

{
Fε(u) if u ∈ H1(Ω) and (1.2) holds,

∞ otherwise in L1(Ω).
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The Γ-limit F (1) of order 1 (see (1.3) and (1.4)) has been established by Carr, Gurtin and Slemrod
[17] for n = 1 and by Modica [49] and Sternberg [60] for n ≥ 2 (see also [36], [50]), and is known to
be, under appropriate assumptions on Ω and W ,

F (1)(u) :=

{
2cW P({u = a}; Ω) if u ∈ BV (Ω; {a, b}) and (1.2) holds,

∞ otherwise in L1(Ω),
(1.9)

where P(·; Ω) is the perimeter in Ω (see [6, 28, 64]), a, b are the wells of W and the constant cW is
given by

cW :=

∫ b

a

W 1/2(s) ds. (1.10)

In view of (1.5), in order to characterize the Γ-limit of order 2, F (2) (see (1.3) (1.4)), it is
important to understand the family U1 of minimizers of the functional F (1) defined in (1.9). Observe
that u belongs to U1 if and only if u ∈ BV (Ω; {a, b}) and the set {u = a} is a solution of the classical
partition problem, namely, if it solves

min{P(E; Ω) : E ⊂ Ω Borel, Ln(E) = vm}, (1.11)

where

vm :=
bLn(Ω)−m

b− a . (1.12)

The properties of minimizers of (1.11) have been studied by Grüter [35] (see also [33, 47, 62]),
who showed that when Ω is bounded and of class C2, minimizers E of (1.11) exist, have constant
generalized mean curvature κE , intersect the boundary of Ω orthogonally, and their singular set is
empty if n ≤ 7, and has dimension of at most n − 8 if n ≥ 8. Here and in what follows we use the
convention that κE is the average of the principal curvatures taken with respect to the outward unit
normal to ∂E.

A crucial hypothesis in our results is that the isoperimetric function or isoperimetric profile
([57]), given by

IΩ(v) := inf{P(E; Ω) : E ⊂ Ω Borel, Ln(E) = v}, v ∈ [0,Ln(Ω)], (1.13)

admits a Taylor expansion of order 2 at the value vm in (1.12). In particular the differentiability of
IΩ at vm implies that (see [47])

I ′Ω(vm) = (n− 1)κE (1.14)

for every minimizer E of (1.13) at v = vm. Hence, differentiability of IΩ must fail whenever the mean
curvature of minimizers of the partition problem (1.11) is not uniquely determined. For example,
if Ω is a square in R2, it can be shown that there exists a value of vm for which there are two
minimizers of (1.11), one being a line segment and the other being an arc of a circle.

We observe that, as IΩ is semi-concave if Ω is sufficiently smooth [9] or convex [62], a Taylor
expansion of order 2 holds for L1 a.e. v, or equivalently for L1 a.e. mass m in (1.2). Under this
assumption on IΩ and under other technical hypotheses on Ω,m and W (see Section 2) we will show
that if W is quadratic near the wells a, b then the following theorem holds.

Theorem 1.1. Assume that Ω,m,W satisfy hypotheses (2.1)-(2.7) with q = 1. Then

F (2)(u) =
2c2W (n− 1)2

W ′′(a)(b− a)2
κ2
u + 2(csym + cW τu)(n− 1)κu P({u = a}; Ω) (1.15)

if u ∈ U1 and F (2)(u) =∞ otherwise in L1(Ω).
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Figure 1: IΩ for the domain Ω = Q2, the cube in R2. When IΩ is not differentiable there are two
competing sets minimizing the perimeter, as shown.

Here κu is the constant mean curvature of the set {u = a},

csym :=

∫
R
W (z(t))t dt, (1.16)

where z is the solution to the Cauchy problem{
z′(t) =

√
W (z(t)) for t ∈ R,

z(0) = c, z(t) ∈ [a, b],
(1.17)

with c being the central zero of W ′ (see (2.6)), and τu ∈ R is a constant such that

P({u = a}; Ω)

∫
R
z(t− τu)− sgna,b(t) dt =

2cW (n− 1)

W ′′(a)(b− a)
κu, (1.18)

where

sgna,b(t) :=

{
a if t ≤ 0,

b if t > 0.
(1.19)

We note that when W is quadratic near the wells, that is, when q = 1 in (2.10), then the solution
of the Cauchy problem (1.17) approaches a and b as t → −∞ and ∞ respectively, while when W
is subquadratic near the wells, that is, when q < 1 in (2.10), then the solution reaches a and b in
finite time. This property plays a crucial role in our results, and helps explain why the two cases are
different.

We observe that, in view of (1.14), the quantities P({u = a}; Ω), κu and τu are uniquely deter-
mined by vm, IΩ(vm) and I ′Ω(vm) for u ∈ U1.

Without assuming the differentiability of the isoperimetric function IΩ at vm one can only
conclude that (n − 1)κu ∈ [(IΩ)′−(vm), (IΩ)′+(vm)], where (IΩ)′−, (IΩ)′+ are the left and right
derivatives of IΩ, which must exist as IΩ is semi-concave [9]. We conjecture that (1.15) continues to
hold even in this case, but we have not been able to prove it. One potential avenue of investigation
involves studying L1 isolated families of perimeter minimizers where the mean curvature is unique.
While this could potentially remove the issue of differentiability it does not remove the technical
necessity of a higher-order Taylor expansion of IΩ at vm.
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If such a conjecture holds then (1.15) would provide an additional selection criterion among
minimizers of U1. In particular, when W is symmetric about a+b

2 then surfaces with larger magnitude
mean curvature are energetically favored (see Corollary 1.3 below).

We can offer a heuristic explanation for the terms in (1.15). Critical points uε of (1.1) subject
to (1.2) satisfy the Neumann problem{

2ε∆uε = 1
εW
′(uε) + Λε in Ω,

∂uε
∂ν = 0 on ∂Ω,

where ν is the outward unit normal to ∂Ω and Λε is a Lagrange multiplier that accounts for the
constraint (1.2). In [46], Luckhaus and Modica proved that if 0 < a < b and {uε} is a sequence of
non-negative minimizers of (1.1), (1.2), uniformly bounded in L∞(Ω) and converging in L1(Ω) to a
minimizer of F (1), then

Λε → Λu :=
2cW (n− 1)

b− a κu. (1.20)

Thus the first term in equation (1.15) can be written as
Λ2
u

2W ′′(a) . Our proofs suggest (see (4.23))

that minimizers uε of the energy Eε will in fact be of the form

uε(x) ≈ z
(
d(x, {u = a})− ετu

ε

)
− Λuε

W ′′(a)
. (1.21)

It turns out that the first term in equation (1.15) is linked to a small vertical shift in the bulk values
of minimizers, namely the second term in (1.21). The τu term in (1.15) is caused by the shift inside
z in the first term of (1.21), which essentially pushes the transition layer “outward” along curved
surfaces. We note that the horizontal shift caused by τu and the vertical shift in the bulk must be
in some sense balanced so that the mass constraint is satisfied.

The term involving csym may be thought of as a penalty for directional asymmetry. If the profiles
are symmetric this term disappears entirely. This term is of order ε for any q that we consider.

On the other hand, if W has subquadratic growth near the wells then the following theorem
holds:

Theorem 1.2. Assume that Ω,m,W satisfy hypotheses (2.1)-(2.7) with q ∈ (0, 1). Then

F (2)(u) =

{
2(csym + cW τu)(n− 1)κu P({u = a}; Ω) if u ∈ U1,

∞ otherwise in L1(Ω).
(1.22)

Here now τu is a constant such that∫
R
z(t− τu)− sgna,b(t) dt = 0. (1.23)

Note that (1.22) and (1.23) correspond to the case W ′′(a) =∞ in (1.15) and (1.18) respectively.
To prove (1.15) and (1.22) we follow the approach of [27], namely we use rearrangement to reduce

the problem to a one-dimensional one. However, since we are not imposing boundary conditions
(1.8) we cannot use standard symmetrization techniques in H1

0 (Ω) (see, e.g., [27, 39, 44]). Thus
we implement a different type of rearrangement technique [20, 24], which makes direct use of the
isoperimetric function (1.13).

In particular, if W is symmetric about (b+ a)/2, then the function z in (1.17) is symmetric, and
so the constants csym and τu simplify to give the following:

Corollary 1.3. Suppose that, additionally, W is symmetric about (b + a)/2. Then for u ∈ U1 we
have that

F (2)(u) =

{
− 2c2W (n−1)2

W ′′(a)(b−a)2κ
2
u if q = 1,

0 if q < 1.
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Thus in the case q ∈ (0, 1), and with isotropic energy, we recover the result of [27] without the
additional Dirichlet boundary condition (1.8).

We conjecture that in the case q ∈ (0, 1) with symmetric potential, to obtain a nonzero asymp-

totic development of order two, one should replace the functionals F (2)
ε in (1.3) with the family of

functionals

F (2)
ε,q :=

F (1)
ε −minF (1)

ε1/q
.

We have not been able to characterize the Γ-limit of F (2)
ε,q .

Remark 1.4. A straightforward calculation shows that in the case of the Cahn–Hilliard potential
W (s) = 1

2 (1− s2)2 the second-order Γ-limit takes the form

F (2)(u) = − (n− 1)2

9
κ2
u.

Besides their intrinsic interest, Theorems 1.1 and 1.2 have important applications in the study
of the speed of motion of the associated gradient flow in dimension n ≥ 2. Indeed the asymptotic
development of (1.1) in one dimension has been utilized by many authors to establish the slow motion
of solutions of the gradient flows associated with (1.1) in different function spaces. We recall that
the gradient flow associated with Fε in L2(Ω) without the mass constraint (1.2) is the Allen–Cahn
equation

∂tu = ε2∆u−W ′(u), (1.24)

while mass-constrained gradient flows in L2(Ω) and H−1(Ω) of Fε are, respectively, the non-local
Allen–Cahn equation

∂tu = ε2∆u−W ′(u) +
1

Ln(Ω)

∫
Ω

W ′(u) dx (1.25)

and the Cahn–Hilliard equation
∂tu = −∆(ε2∆u−W ′(u)), (1.26)

each taken with either Neumann or periodic boundary conditions. For background on these equations
and their applications see, e. g. [32]. The phenomenon of slow motion of solutions to (1.24) was
analyzed via variational methods first by Bronsard and Kohn [13] for n = 1. They demonstrate
that if uε(0) converges in L1(J) to v, with J ⊂ R an open bounded interval and v a local minimizer

of F (1), and if F
(1)
ε (uε(0)) ≤ F (1)(v) + Cεk for some k, then for any l > 0 we have the following

slow-motion inequality :

lim
ε→0+

sup
0≤t≤lε−k

∫
J

|uε(x, t)− v(x)| dx = 0. (1.27)

A crucial estimate in their analysis is the following higher-order asymptotic estimate: that if ‖vε −
v‖L1 < δ then

Fε(vε) ≥ F (1)(v)− Cεk (1.28)

for appropriately chosen C > 0.
Later similar results were established for the non-local Allen–Cahn equation (1.25), as well as the

Cahn–Hilliard equation (1.26) (see [14, 15, 34]). The strength of these results is that they prove this
slow motion using transparent variational methods, for initial data that are generic in the sense that
they only need have small initial energy. Even though the above-mentioned papers do not explicitly
use the setting of Γ-convergence, they all rely on asymptotic energy inequalities of the form (1.28),
which is precisely the lim inf part of the asymptotic development by Γ-convergence of order 2.

More recently, a tight, higher-order asymptotic expansion of the family Fε was given by Bellettini,
Nayam and Novaga [10]. In that paper they use their result to prove a type of slow motion bound.
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Their results match the well-known results of Carr and Pego [18], which state that phase boundaries

of the Allen–Cahn equation should move at speed e−Cε
−1

.
In the case n = 1 these slow dynamics are generally understood to be related to the existence

of slow manifolds, and many works focus on the existence of data that approximately moves along
a slow manifold. Some critical first works in this direction include [18, 31, 56], while a more recent
perspective can be found in [55] and the references therein. It can also be shown [19] that the time
it takes to approach the slow manifold from arbitrary initial data is generally very short.

The slow motion of phase boundaries in higher dimension has been studied by many authors
(see, e.g., [2, 3, 4, 5]). These works generally focus on the existence of solutions that move very
slowly, often along slow manifolds. Generally these results require some ansatz on the initial data,
such as radial data or data parametrized by the distance from a manifold. The requirement of such
an ansatz in higher dimensions is, in our opinion, due to the lack of higher-order asymptotics of the
functional (1.1) in dimension greater than one.

An immediate consequence of (1.3) and Theorems 1.1 and 1.2 is that when v is a global minimizer
of F (1) we then have, for any sequence vε converging to v,

F (1)
ε (vε) ≥ F (1)(v)− Cε,

for some C > 0. Using exactly the techniques from [13] it is possible to establish generic, slow motion
results similar to (1.27), for the non-local Allen–Cahn and Cahn–Hilliard equations in dimension
greater than one, for data that are close to global perimeter minimizers [51]. We are currently inves-
tigating extensions of this type of result in the more interesting case of local perimeter minimizers.

One other setting where a type of higher-order regularity has been studied for Γ-limits is in
the setting of limits of gradient flows [58]. Although the types of estimates we derive here are not
precisely the type that they use to study convergence of gradient flows, they are certainly related.

This paper is organized as follows. In Section 2 we state our technical assumptions. In Section
3 we develop our new rearrangement result. In Section 4 we analyze a weighted, one-dimensional
functional problem. In Section 5 we use the results in Sections 3 and 4 to prove Theorems 1.1 and
1.2.

2 Preliminaries and Main Assumptions

In this paper we consider the Cahn–Hilliard functional (1.1), where we assume that Ω ⊂ Rn, n ≤ 7,
is an open, connected, bounded set with

Ln(Ω) = 1 and ∂Ω is of class C2,α, α ∈ (0, 1]. (2.1)

We observe that the restriction to n ≤ 7 is necessary to guarantee regularity of minimizers of the
problem (1.11) [33, 35, 47, 62], while the assumption that Ln(Ω) = 1 is for simplicity (the general
case follows by a scaling argument). We assume that the mass m in (1.2) satisfies

a < m < b, (2.2)

where a, b are the wells of W , and that the isoperimetric function IΩ defined in (1.13) satisfies the
Taylor expansion

IΩ(v) = IΩ(vm) + I ′Ω(vm)(v− vm) +O(|v− vm|1+β) (2.3)

for all v close to vm = b−m
b−a (see (1.12)) and for some β ∈ (0, 1]. As remarked in the introduction,

for domains of class C2, IΩ is semi-concave (see [9]) and so (2.3) holds with β = 1 at L1 a.e. vm in
[0, 1] (see [38]), or equivalently for L1 a.e. m ∈ (a, b).
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We also make the following assumptions on the potential W : R→ [0,∞):

W is of class C2(R\{a, b}) and has precisely two zeros at a < b, (2.4)

lim
s→a

W ′′(s)

|s− a|q−1
= lim
s→b

W ′′(s)

|s− b|q−1
:= ` > 0, q ∈ (0, 1], (2.5)

W ′ has exactly 3 zeros at a < c < b, W ′′(c) < 0, (2.6)

lim inf
|s|→∞

|W ′(s)| > 0. (2.7)

Most of these assumptions are standard (see [37]). We note that in the case where q = 1 we have
that ` is simply W ′′(a). In particular we note that q = 1 when W (s) = 1

2 (s2 − 1)2, which is the
classical Cahn–Hilliard potential (see, e.g., [16]). While it is possible to deal with different limits at
a and b in (2.5), we do not handle those cases in our analysis for clarity of presentation.

Remark 2.1. In view of (2.4)-(2.7), we have that there exists an L̂ > 0 and T̂ > 0 so that

W (s) ≥ L̂|s| (2.8)

for all |s| > T̂ .

Remark 2.2. In view of (2.4) and (2.5) if follows from de l’Hôpital’s rule that

lim
s→a

W (s)

|s− a|1+q
= lim
s→b

W (s)

|s− b|1+q
=

`

q(1 + q)
, (2.9)

lim
s→a

W ′(s)

(s− a)|s− a|q−1
= lim
s→b

W ′(s)

(s− b)|s− b|q−1
=
`

q
. (2.10)

In turn, by (2.4), there exist c1, c2 > 0 such that c21(b − s)1+q ≤ W (s) ≤ c22(b − s)1+q for all
s ∈ [a+b

2 , b]. It follows that the solution z of the Cauchy problem (1.17) satisfies[
(b− z(t0))

1−q
2 − (1− q)c2

2
(t− t0)

] 2
1−q

+

≤ b− z(t)

≤
[
(b− z(t0))

1−q
2 − (1− q)c1

2
(t− t0)

] 2
1−q

+

for all t ≥ t0 ≥ 0 if 0 < q < 1 and

(b− z(t0))e−c2(t−t0) ≤ b− z(t) ≤ (b− z(t0))e−c1(t−t0) (2.11)

for all t ≥ t0 ≥ 0 for q = 1, where [·]+ denotes the positive part. In particular, in the case 0 < q < 1,
since z(0) = c, there exists a constant(

b− a
2

) 1−q
2 2

c2(1− q) ≤ tb ≤
(
b− a

2

) 1−q
2 2

c1(1− q)
such that

z(t) ≡ b for all t ≥ tb. (2.12)

Similar estimates hold near a, so that z(t) ≡ a for all t ≤ ta < 0 when 0 < q < 1.
In what follows, given a non-empty set E ⊂ Rm, we denote by E◦, Ē and Ec the interior, closure

and complement of E respectively. We let d(x,E) be the distance from x to E and we define dE to
be the signed distance function from the set E, namely

dE(x) :=

{
d(x, ∂E) if x ∈ Ec,
−d(x, ∂E) if x ∈ E. (2.13)

Also, Lm and Hm are the m-dimensional Lebesgue and Hausdorff measures, respectively.
In the remainder of the paper the constant C varies from line to line and is independent of ε,

without further mention.
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3 A Pólya–Szegő Type Inequality

The classical Pólya–Szegő inequality states that in Rn the decreasing spherical rearrangement u∗ of
a positive function u ∈W 1,p(Rn) will not increase the Lp norm of the gradient [39, 44]. This permits
complicated problems in arbitrary dimensions to be reduced to radial, one-dimensional problems.
For Dirichlet problems it is often possible to obtain similar inequalities for functions on a bounded
domain Ω. Specifically, if u ∈ H1

0 (Ω) is positive then we can use the Pólya–Szegő inequality in the
whole space (after extending the function u) to show that ‖∇u∗‖Lp(Ω∗) ≤ ‖∇u‖Lp(Ω). A classical
example where this technique is used is in the proof of Talenti’s inequality [63]. In this section we
study a type of rearrangement [20], which does not require extending functions to all of Rn, and is
thus better suited to analyzing certain Neumann problems. Although many of the techniques are
identical to those used in proving the standard Pólya–Szegő inequality, we include all the proofs for
the convenience of the reader.

In this section only we assume that Ω is bounded, connected, has measure Ln(Ω) = 1 and has
Lipschitz boundary. Then the isoperimetric function (see (1.13)) satisfies

IΩ(v) ≥ C1 min{v, 1− v}n−1
n for all v ∈ [0, 1]. (3.1)

Indeed, this bound follows from Corollary 3 in Section 5.2.1 of [48] (see also [1] and [23]). By
considering sets and their complements it is clear that IΩ(v) = IΩ(1 − v). We now prove an
elementary proposition.

Proposition 3.1. Suppose that IΩ satisfies (2.3) and (3.1). Then there exists a function I∗Ω ∈
C1,β

loc (0, 1) such that

I∗Ω(v) = I∗Ω(1− v) for all v ∈ (0, 1), (3.2)

IΩ ≥ I∗Ω > 0 in (0, 1), (3.3)

IΩ(vm) = I∗Ω(vm), I ′Ω(vm) = (I∗Ω)′(vm), (3.4)

I∗Ω(v) = C0v
n−1
n for all v ∈ (0, δ) (3.5)

for some C0 > 0 and 0 < δ < 1.

Proof. Assume first that vm ∈ (0, 1/2). By (2.3) there exists C0 > 0 so that

|IΩ(v)− IΩ(vm)− I ′Ω(vm)(v− vm)| ≤ C0|v− vm|1+β (3.6)

for all v ∈ (vm − δ, vm + δ), for all δ > 0 sufficiently small. Define

ÎΩ(v) := IΩ(vm) + I ′Ω(vm)(v− vm)− 2C0|v− vm|1+β (3.7)

for v ∈ (vm − δ, vm + δ) ∩ (0, 1/2). Then by (3.6), IΩ ≥ ÎΩ in (vm − δ, vm + δ) ∩ (0, 1/2) with strict
inequality for v 6= vm. Moreover

ÎΩ(v) ≥ IΩ(vm)/4 > 0

for v ∈ (vm − δ, vm + δ) ∩ (0, 1/2), for all δ sufficiently small. Since IΩ(v) > ÎΩ(v) for all V ∈
(vm − δ, vm + δ) ∩ (0, 1/2)\{vm}, and since IΩ(v) ≥ C1v

n−1 for v ∈ (0, 1/2) and IΩ is continuous

and positive in [0, 1], and is symmetric, we can extend ÎΩ to a function I∗Ω that satisfies (3.2)-(3.5).
If vm = 1/2 then I ′Ω(vm) = 0, by the symmetry of IΩ with respect to 1/2. In turn the function

ÎΩ in (3.7) is also symmetric with respect to 1/2, and so we can define ÎΩ as in (3.7) for all
r ∈ (1/2− δ, 1/2 + δ) and continue as before. The case vm ∈ (1/2, 1) follows by symmetry.
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Figure 2: VΩ and Ω∗ for the domain Ω = Q2, the cube in R2. In R2, the quantity r(t) is half the
height of Ω∗. In this case T = 1/2 + 1/π ≈ .82.

In subsequent sections it is more convenient to work with I∗Ω instead of IΩ. The results of this
section, however, hold when using IΩ instead of I∗Ω.

Our goal now is to construct a rearranged domain Ω∗ such that the perimeter of the set {xn > t}
inside Ω∗ matches the modified isoperimetric function I∗Ω of Ω when evaluated at the measure of
Ω∗ ∩ {xn > t}, in other words so that P (Ω∗ ∩ {xn > t}; Ω∗) = I∗Ω(Ln(Ω∗ ∩ {xn > t})) (see Lemma
3.2 below).

To this end we define a function VΩ as the solution to the following Cauchy problem:

d

dt
VΩ(t) = I∗Ω(VΩ(t)), VΩ(0) = 1/2. (3.8)

We can extend I∗Ω to be zero outside of [0, 1]. Since I∗Ω is bounded and continuous (see Proposition
3.1), the Cauchy problem (3.8) admits a global solution VΩ : R → [0, 1]. It follows from inequality
(3.1) that there is a T > 0 so that 0 < VΩ(t) for −T < t < 0 and VΩ(−T ) = 0. Moreover by equation
(3.2) we have that VΩ(T ) = 1 and VΩ(t) < 1 for all 0 < t < T . Define

I := (−T, T ). (3.9)

Observe that VΩ is uniquely defined because I∗Ω is locally Lipschitz on any compact subset of (0, 1),
and I∗Ω = 0 outside of (0, 1).

In what follows for y ∈ Rn we use the notation y = (y′, yn) ∈ Rn−1 × R. Next we define a set
Ω∗ ⊂ Rn, which will be a type of rearrangement of Ω. This set is defined by:

Ω∗ := {y : yn ∈ I, y′ ∈ Bn−1(0, r(yn))} , (3.10)

where for t ∈ I,

r(t) :=

(I∗Ω(VΩ(t))

αn−1

)1/(n−1)

and αn−1 := Ln−1(Bn−1(0, 1)).

Note that the definition of r(t) implies that

Ln−1(Bn−1(0, r(t))) = I∗Ω(VΩ(t)) (3.11)

for all t ∈ I.
The following lemma motivates our choice of the Cauchy problem (3.8).

Lemma 3.2. For any t ∈ I the following equalities hold:

VΩ(t) = Ln(Ω∗ ∩ {yn < t}), (3.12)

I∗Ω(VΩ(t)) = P({yn < t}; Ω∗). (3.13)
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Figure 3: A piecewise constant function, its decreasing rearrangement, and the corresponding gu

Proof. We prove equation (3.12) by using Fubini’s theorem, equation (3.11), the Cauchy problem
(3.8), the fundamental theorem of calculus, and the fact that VΩ(−T ) = 0, in that order:

Ln(Ω∗ ∩ {yn < t}) =

∫ t

−T
Hn−1(Ω∗ ∩ {yn = s}) ds

=

∫ t

−T
I∗Ω(VΩ(s)) ds

= VΩ(t)− VΩ(−T ) = VΩ(t).

Equality (3.13) follows immediately from equation (3.11) and definition (3.10).

Now given any measurable function u : Ω → R, we define the distribution function %u(s) :=
Ln({u > s}) and the following function:

gu(t) := sup{s ∈ R : %u(s) > VΩ(t)}. (3.14)

We then define a function u∗ : Ω∗ → R as follows:

u∗(y′, yn) := gu(yn). (3.15)

The first important property of our rearranged function can be summarized by the following
lemma:

Lemma 3.3. Let u : Ω → R be a measurable function. Then the functions u∗ and u are equimea-
surable, meaning that %u = %u∗ . This implies that for any Borel function ψ : R→ R,∫

Ω

ψ(u) dx =

∫
Ω∗
ψ(u∗) dy =

∫
I

ψ(gu)I∗Ω(VΩ) dt,

assuming that the previous integrals are well-defined. In particular the Lp norms of u and u∗ are
preserved, as well as the integral of W ◦ u.

Proof. First we note that, by standard arguments, %u is decreasing and right continuous and that
gu is decreasing and left continuous (see, e.g., [44], p. 478).

Let h(t) := sup{s : gu(s) > t}. Since gu is decreasing we have that

%u∗(t) = Ln({y ∈ Ω∗ : gu(yn) > t})
= Ln({y ∈ Ω∗ : yn < h(t)}) = VΩ(h(t)),

where in the last equality we have used Lemma 3.2.
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We then claim that VΩ(h(t)) = %u(t). To see this observe that since I∗Ω > 0 in (0, 1), by (3.8) we
have that VΩ is strictly increasing and of class C1 in I. Hence:

VΩ(h(t)) = VΩ(sup{s : gu(s) > t}) = sup{VΩ(s) : gu(s) > t}
= sup{VΩ(s) : sup{κ : %u(κ) > VΩ(s)} > t}
= sup{ρ : sup{κ : %u(κ) > ρ} > t}. (3.16)

For every ρ such that sup{κ : %u(κ) > ρ} > t, there exists κ > t such that %u(κ) > ρ. But since
%u is decreasing we have that %u(t) ≥ %u(κ) > ρ, which then shows that

VΩ(h(t)) = sup{ρ : sup{κ : %u(κ) > ρ} > t} ≤ %u(t).

Now if VΩ(h(t)) < %u(t), then VΩ(h(t)) < %u(t) − ε for some ε > 0. By equation (3.16) this
implies that

sup{κ : %u(κ) > %u(t)− ε} ≤ t.
By the right continuity of %u for some δ > 0 we have that %u(t+ δ) > %u(t)− ε, which violates the
previous inequality. This then implies that %u(t) = VΩ(h(t)) = %u∗(t) for all t, which is the desired
conclusion.

To see the integral equality stated, we note that (see, e.g., Theorem B.61 in [44]):∫
Ω

ψ(u(x)) dx =

∫
R
ψ(s) d%u(s) =

∫
R
ψ(s) d%u∗(s) =

∫
Ω∗
ψ(u∗(y)) dy.

This concludes the proof.

Next we prove that the operation of rearrangement is a contraction in L1. It should be possible
to prove a more general version of this proposition, but this suffices for our purposes.

Proposition 3.4. Suppose that u1, u2 ∈ L1(Ω). Then

‖u∗1 − u∗2‖L1(Ω∗) ≤ ‖u1 − u2‖L1(Ω). (3.17)

Proof. By the definition of u∗ (see (3.14) and (3.15)) we have that if u1 ≤ u2 then u∗1 ≤ u∗2. In light
of Lemma 3.3, we may apply Proposition 1 in [25], which states that a mapping from L1 to L1 that
preserves integrals and is order preserving must be a contraction in L1, to obtain (3.17).

Next we prove a lemma stating that truncation and rearrangement commute. This will later
allow us to establish that the rearrangement of a Sobolev function is still a Sobolev function.

Lemma 3.5. Let u : Ω → R be measurable. Given s1 < s2, let Trs1,s2(s) := (s ∨ s1) ∧ s2, s ∈ R.
Then the following equality holds:

Trs1,s2(u∗) = (Trs1,s2(u))∗.

Proof. Set v := Trs1,s2(u). By definition (3.15) it suffices to show that Trs1,s2 gu = gv. Let t1 :=
sup{t : gu(t) ≥ s2} and t2 := inf{t : gu(t) ≤ s1}.

Step 1: By Lemma 3.3 and the definition of truncation we can deduce the following:

Ln({Trs1,s2(u∗) = s2}) = Ln({u∗ ≥ s2}) = Ln({u ≥ s2})
= Ln({v = s2}) = Ln({v∗ = s2}).

As gu is decreasing we find that for t < t1, Trs1,s2 gu(t) = s2. Since gv is decreasing and is
bounded above by s2 the previous chain of equalities implies that for t < t1 we have that gv(t) = s2,
which then implies that gv(t) = Trs1,s2 gu(t) for such t.
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Using an identical argument we find that for t > t2 we have that Trs1,s2 gu(t) = gv(t).
Step 2: Next we consider t ∈ (t1, t2). First, for s ∈ (s1, s2) we have that %u(s) = %v(s). Next,

we note that for t ∈ (t1, t2) we have that gu(t) ∈ (s1, s2) and that gv(t) ∈ (s1, s2). Thus we can
write the following for t ∈ (t1, t2):

Trs1,s2(gu(t)) = gu(t) = sup{s ∈ R : %u(s) > VΩ(t)}
= sup{s ∈ (s1, s2) : %u(s) > VΩ(t)}
= sup{s ∈ (s1, s2) : %v(s) > VΩ(t)}
= sup{s ∈ R : %v(s) > VΩ(t)} = gv(t).

Step 3: As Trs1,s2(gu) and gv are both left continuous, we then have that Trs1,s2 gu = gv
everywhere, as desired.

Next we state a simple identity related to level sets of functions. This is well-known (see [21]),
but we include the proof for completeness.

Lemma 3.6. For u ∈ W 1,1(Ω) there exists a representative of u such that the following equality
holds for all s1 < s2:∫ s2

s1

∫
{u=s,∇u 6=0}

|∇u(x)|−1 dHn−1 ds = Ln({x ∈ Ω : u(x) ∈ (s1, s2),∇u(x) 6= 0}). (3.18)

Proof. Let Hε := (ε+ |∇u|)−1. By the coarea formula (see [28]) we find that:∫
{s1<u<s2, ∇u6=0}

Hε|∇u| dx =

∫
{s1<u<s2}

Hε|∇u| dx

=

∫ s2

s1

∫
u−1(s)

Hε dHn−1 ds.

By noting that Hε → |∇u|−1 monotonically in the set {∇u 6= 0}, we find that (3.18) holds.

Next we state and prove a simple lemma, which is essentially an isoperimetric inequality.

Lemma 3.7. Given u ∈ BV (Ω), for any t the following must hold:

P({u∗ > t}; Ω∗) ≤ P({u > t}; Ω).

Proof. As gu is a decreasing function (see (3.14)), we note that the set {u∗ > t} is actually a set of
the form {yn < s} or {yn ≤ s}. Since hyperplanes have Ln measure zero, by Lemma 3.2 we have
that

VΩ(s) = Ln(Ω∗ ∩ {yn < s}) = %u∗(t).

By then recalling that u and u∗ are equimeasurable (see Lemma 3.3) and by Lemma 3.2 we have
the following:

P({u∗ > t}; Ω∗) = I∗Ω(%u∗(t)) = I∗Ω(%u(t)) ≤ IΩ(%u(t))

≤ P({u > t}; Ω),

where we have used the fact that I∗Ω ≤ IΩ and (1.13). This concludes the proof.

Next we prove two lemmas that are preliminary to establishing our Pólya–Szegő type result.

Lemma 3.8. Given u ∈ BV (Ω), we have that u∗ ∈ BV (Ω∗) and that the following inequality holds:∫
I

I∗Ω(VΩ(s))d|Dgu|(s) = |Du∗|(Ω∗) ≤ |Du|(Ω).
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Proof. By Lemma 3.3 we have that u∗ ∈ L1(Ω∗). By (3.14) and by the fact that gu is decreasing, it
follows that gu ∈ BVloc(I) (see, e.g., Theorem 7.2 in [44]).

Moreover by our definition of u∗ (see (3.10), (3.11), (3.14), and Lemma 3.3) we can write the
following:

|Du∗|(Ω∗) = sup

{∫
Ω∗
φ(y′, yn) dy′ d(Dgu)(yn) : φ ∈ C0(Ω∗), ‖φ‖C0

≤ 1

}
= sup

{∫
I

(∫
Bn−1(0,r(yn))

φ(y′, yn) dy′

)
d(Dgu)(yn) : φ ∈ C0(Ω∗), ‖φ‖C0 ≤ 1

}

= sup

{∫
I

I∗Ω(VΩ(yn))ψ(yn) d(Dgu)(yn) : ψ ∈ C0(−T, T ), ‖ψ‖C0
≤ 1

}
=

∫
I

I∗Ω(VΩ(yn)) d|Dgu|(yn).

Next we utilize the coarea formula and Lemma 3.7 as follows:

|Du∗|(Ω∗) =

∫
R

P({u∗ > t}; Ω∗) dt ≤
∫
R

P({u > t}; Ω) dt = |Du|(Ω).

This proves the desired lemma.

Lemma 3.9. Given u ∈W 1,1(Ω), it follows that u∗ ∈W 1,1(Ω∗).

Proof. By (3.15) and Lemma 3.8 it suffices to show that gu is absolutely continuous on any sub-
interval [t0, t1] compactly contained in I, that is, that for any ε > 0 there exists δ0 > 0 such that for

any finite collection of non-overlapping subintervals (ak, bk) of [t0, t1] satisfying
∑N
k=1(bk − ak) ≤ δ0

we have
∑N
k=1 |gu(bk) − gu(ak)| ≤ ε. Fix ε > 0, and let δ be small enough such that for any

measurable E ⊂ Ω with Ln(E) ≤ δ the following holds (see (3.3)):∫
E

|∇u| dx ≤ ε min
t∈[t0,t1]

I∗Ω(VΩ(t)). (3.19)

Now consider any finite collection of non-overlapping subintervals (ak, bk) of [t0, t1], satisfying

N∑
k=1

(bk − ak) ≤ δ

maxt∈[t0,t1] I∗Ω(VΩ(t))
. (3.20)

The following estimate holds by (3.8), (3.12), (3.14), (3.15), Lemma 3.3 and (3.20):

Ln
(

N⋃
k=1

{x ∈ Ω : gu(bk) < u(x) < gu(ak)}
)

=

N∑
k=1

Ln({y ∈ Ω∗ : gu(bk) < u∗(y) < gu(ak)})

≤
N∑
k=1

(VΩ(bk)− VΩ(ak)) ≤ max
t∈[t0,t1]

I∗Ω(VΩ(t))

N∑
k=1

(bk − ak) ≤ δ. (3.21)

Next, set s1 := gu(bk) and s2 := gu(ak) and let v := Trs1,s2 u. As the pointwise variation and
the total variation of the decreasing and left continuous function gu on an interval coincide (see
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Theorem 7.2 in [44]), by applying Lemma 3.5, Lemma 3.8 above we obtain

min
t∈[t0,t1]

I∗Ω(VΩ(t))|gu(ak)− gu(bk)|

≤
∫ bk

ak

I∗Ω(VΩ(t)) d|Dgu|(t) =

∫
I

I∗Ω(VΩ(t)) d|D(Trs1,s2 gu)|(t)

= |Dv∗|(Ω∗) ≤ |Dv|(Ω) =

∫
{gu(bk)<u<gu(ak)}

|∇u| dx.

We then find the following:

min
t∈[t0,t1]

I∗Ω(VΩ(t))
∑
|gu(ak)− gu(bk)| ≤

∫
⋃
k{gu(bk)<u<gu(ak)}

|∇u| dx

≤ min
t∈[t0,t1]

(I∗Ω(VΩ(t)))ε,

where we have used (3.19) and (3.21). This implies that gu is absolutely continuous on [t0, t1], as
claimed.

Now we prove the main result of this section.

Theorem 3.10. If u ∈W 1,p(Ω) for 1 ≤ p ≤ ∞ then u∗ ∈W 1,p(Ω∗) and furthermore:∫
I

|g′u|pI∗Ω(VΩ) ds =

∫
Ω∗
|∇u∗|p dy ≤

∫
Ω

|∇u|p dx.

Proof. Lemmas 3.8 and 3.9 immediately give this inequality if p = 1. For p > 1 we can still apply
the previous lemmas to show that u∗ ∈W 1,1(Ω∗), because Ω has finite measure.

Next we note that the following equality holds (by using the coarea formula)

%u(t) = Ln({u > t} ∩ {∇u = 0}) +

∫ ∞
t

∫
{u=s,∇u 6=0}

|∇u|−1 dHn−1 ds =: fu1 (t) + fu2 (t). (3.22)

Clearly fu2 is absolutely continuous, and fu1 is decreasing. Thus by the Lebesgue differentiation
theorem (see Theorems 1.21 and 3.30 in [44]), %u is differentiable for a.e. t, with

%′u(t) ≤ −
∫
{u=t,∇u 6=0}

|∇u|−1 dHn−1. (3.23)

Next we claim that (following [21]) for a.e. t,

d

dt
fu
∗

1 (t) =
d

dt
Ln({u∗ > t, ∇u∗ = 0}) = 0. (3.24)

To establish this claim, we first note that for any open interval J we have the following

L1(gu(J)) ≤
∫
J

|g′u| ds.

By approximating measurable sets with disjoint open intervals we can then establish that

L1(gu({g′u = 0})) ≤
∫
{g′u=0}

|g′u| ds = 0.
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Following [22] we then find that

L1(u∗({∇u∗ = 0})) = L1(gu({g′u = 0})) = 0.

Thus there exists a Borel set F0 in R so that L1(F0) = 0 and so that u∗({∇u∗ = 0}) ⊂ F0.
We then claim that for any Borel set B in R we have that

|Dfu∗1 |(B) = Ln((u∗)−1(B) ∩ {∇u∗ = 0}).

To see this, we first note that fu
∗

1 is right continuous and decreasing. We then have that

|Dfu∗1 |((t1, t2)) = fu
∗

1 (t1)− lim
t→t−2

fu
∗

1 (t2)

= Ln({u∗ > t1, ∇u∗ = 0})− lim
t→t−2

Ln({u∗ > t, ∇u∗ = 0})

= Ln({u∗ > t1, ∇u∗ = 0})− Ln({u∗ ≥ t2, ∇u∗ = 0})
= Ln((u∗)−1((t1, t2)) ∩ {∇u∗ = 0}).

As both |Dfu∗1 | and Ln((u∗)−1(·) ∩ {∇u∗ = 0}) are Borel measures, and as they are equal on
open intervals, they must be equal on all Borel sets. This and the fact that u∗({∇u∗ = 0}) ⊂ F0

immediately give that

|Dfu∗1 |(R\F0) = Ln((u∗)−1(R\F0) ∩ {∇u∗ = 0}) = Ln(∅) = 0,

which proves (3.24). Utilizing (3.22) this then immediately implies that for a.e. t,

%′u∗(t) = −
∫
{u∗=t,∇u∗ 6=0}

|∇u∗|−1 dHn−1. (3.25)

By the coarea formula we can write the following:∫
Ω∗
|∇u∗|p dy =

∫
Ω∗∩{∇u∗ 6=0}

|∇u∗|p dy

=

∫
R

∫
{u∗=t,∇u∗ 6=0}

|∇u∗|p−1 dHn−1 dt.

By (3.15) we know that ∇u∗(y) = (0, g′u(yn)) ∈ Rn−1 × R. Since gu is decreasing we have that the
set {u∗ = t} is a set of the form {y : yn ∈ J, y′ ∈ Bn−1(0, r(yn))}, for some (possibly degenerate)
interval J , with endpoints t1 ≤ t2. If t1 = t2 then clearly ∇u∗ is constant on the set {u∗ = t}. If
t1 6= t2 then g′u is zero on the set (t1, t2), and is either zero at t1, t2 or is undefined. Since ∇u∗ is
constant on level sets of u∗ (where it’s defined) by Lemma 3.6, with u∗ in place of u, we can then
write ∫

Ω∗
|∇u∗|p dy =

∫
R

(
Hn−1({u∗ = t, ∇u∗ 6= 0})

)p
(
∫
{u∗=t,∇u∗ 6=0} |∇u∗|−1 dHn−1)p−1

dt.

By (3.25) we have that ∫
Ω∗
|∇u∗|p dy =

∫
R

P({u∗ > t}; Ω∗)p

(−%′u∗(t))p−1
dt.

Next we utilize Lemma 3.3 and Lemma 3.7 to find that∫
Ω∗
|∇u∗|p dy ≤

∫
R

P({u > t}; Ω)p

(−%′u(t))p−1
dt.
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Next (3.23) gives∫
Ω∗
|∇u∗|p dy ≤

∫
R

P({u > t}; Ω)p

(
∫
{u=t,∇u 6=0} |∇u|−1 dHn−1)p−1

dt

=

∫
R

P({u > t}; Ω)p

(Hn−1({u = t, ∇u 6= 0}))(p−1)

(∫
{u=t,∇u 6=0}

|∇u|−1 dµt

)−(p−1)

dt

≤
∫
R

P({u > t}; Ω)p

(Hn−1({u = t, ∇u 6= 0}))(p−1)

∫
{u=t,∇u6=0}

|∇u|(p−1) dµt dt

=

∫
R

∫
{u=t}

|∇u|p−1 dHn−1 dt,

where we use Jensen’s inequality with f(s) := s−(p−1) and the probability measure

µt :=
dHn−1

Hn−1({u = t, ∇u 6= 0}) .

The result then follows after applying the coarea formula.

Remark 3.11. In this section we have considered a rearrangement of the function u, via the decreas-
ing function gu : I → R. However, all of the arguments would hold for an increasing rearrangement.
Indeed, by utilizing (3.2) and by Lemma 3.3 for any Borel function ψ : R → [0,∞), the function
fu(t) := gu(−t) satisfies the following∫

I

ψ(fu(t))I∗Ω(VΩ(t)) dt =

∫
I

ψ(gu(t))I∗Ω(VΩ(t)) dt =

∫
Ω

ψ(u) dx,∫
I

|f ′u(t)|pI∗Ω(VΩ(t)) dt =

∫
I

|g′u(t)|pI∗Ω(VΩ(t)) dt ≤
∫

Ω

|∇u|p dx.

We chose to work with the decreasing rearrangement in this section because that is the standard
convention chosen in the literature involving rearrangement. However, we will work with the in-
creasing rearrangement fu of u in subsequent sections because we prefer to think of phase transitions
as increasing functions.

The following corollary is the motivation for our development of the rearrangement in this section
and is a simple application of Lemma 3.3 and Theorem 3.10.

Corollary 3.12. Let u ∈ H1(Ω). Then the following inequality holds:∫
Ω

W (u) + ε2|∇u|2 dx ≥
∫
I

(W (fu) + ε2(f ′u)2)I∗Ω(VΩ) dt. (3.26)

Moreover ∫
Ω

u dx =

∫
I

fuI∗Ω(VΩ) dt.

4 A 1D Functional Problem

In light of Corollary 3.12, one possible avenue for studying the Γ-lim inf of F (1)
ε is to study the

weighted, one-dimensional functional in (3.26). This was precisely the approach in [27], where the
radial case was studied. Because we do not have a specific form for I∗Ω(VΩ), it is necessary for us
to consider a much more general class of weights. The general weighted case, to our knowledge, has
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only been studied in [43]. They studied monotonicity properties of minimizers along curved strips
in R2. Our work focuses on an entirely different question and applies to a wider class of weights.

We recall (3.9), namely
I := (−T, T ).

In this section only T may be any positive number. We will assume that the weight η satisfies the
following:

η ∈ C1,β(I), η > 0 in I, (4.1)

d1(t+ T )n1−1 ≤ η(t) ≤ d2(t+ T )n1−1 for t ∈ (−T,−T + t∗], (4.2)

d3(T − t)n2−1 ≤ η(t) ≤ d4(T − t)n2−1 for t ∈ [T − t∗, T ), (4.3)

|η′(t)| ≤ d5η(t)

min{T − t, t+ T} for t ∈ I, (4.4)

for some constants β ∈ (0, 1], d1, . . . , d5 > 0, n1, n2 ∈ N and t∗ > 0. These assumptions are naturally
satisfied if η(t) = I∗Ω(VΩ(t)).

Remark 4.1. Two important weights are covered in our analysis. The unweighted case η ≡ 1 can be
recovered by taking n1 = n2 = 1 and di = 1 for i = 1, . . . , 4, while the radial weight η(t) = (T + t)n−1

can be obtained by taking n1 = n, n2 = 1, d1 = d2 = 1 and appropriate d3 and d4. Both of these
cases have been previously studied by various authors (see, e.g., [10, 53]).

By way of notation, we will write Lpη to be the space Lp(I;R, η), where p ≥ 1. We will also write
BVη to be the space BV (I;R, η) with weight η, meaning that

‖v‖BVη :=

∫
I

|v(t)|η(t) dt+

∫
I

η(t) d|Dv|(t).

For v ∈ BVη we will also write the weighted total variation of the derivative in the following manner

|Dv|η(E) =

∫
E

η(t) d|Dv|(t).

We will write H1
η to be the analogous weighted version of H1. We conduct our analysis in the

weighted spaces because it is the natural setting for this variational problem.
In this section we study the functional

Gε(v) :=

∫
I

(W (v) + ε2(v′)2)η dt, v ∈ H1
η , (4.5)

subject to the constraint that ∫
I

vη dt = m ∈
(
a

∫
I

η dt, b

∫
I

η dt

)
. (4.6)

We extend Gε to L1
η by setting Gε(v) :=∞ if v ∈ L1

η\H1
η or if (4.6) fails.

4.1 Zero and First-Order Γ-limit of Gε

We begin by establishing the zeroth-order Γ-limit of the functional Gε.

Theorem 4.2. Assume that W satisfies hypotheses (2.4)-(2.7) and that η satisfies hypotheses (4.1)-
(4.4). Then the family {Gε} Γ-converges to G(0) in L1

η, where

G(0)(v) :=

{∫
I
W (v)η dt if v ∈ L1

η and
∫
I
vη dt = m,

∞ otherwise in L1
η.
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Proof. For the lim inf inequality assume that vε → v in L1
η. By utilizing Fatou’s lemma along with

(2.4) we have that

lim inf
ε→0+

Gε(vε) ≥ lim inf
ε→0+

∫
I

W (vε)η dt ≥
∫
I

W (v)η dt.

For the lim sup inequality, we begin by assuming that v is bounded and satisfies (4.6) (the case
where v does not satisfy (4.6) is trivial). Let φδ be the standard mollifier, let ṽ be v extended to all
of R by zero and consider ṽε := φδε ∗ ṽ, where we select δε so that ‖v − ṽε‖L1

η
= o(1) and so that∫

I

(ṽ′ε)
2η dt ≤ Cε−1.

We then select dε ∈ R so that vε := ṽε + dε satisfies (4.6). It is evident that dε = o(1). Finally,
by the Lebesgue dominated convergence theorem we have that

lim
ε→0+

∫
I

W (vε)η dt =

∫
I

W (v)η dt,

which gives the desired result for v bounded. Now if v ∈ L1
η and

∫
I
vη dt = m we can construct a

sequence {vk} of truncations of v, so that W (vk) ≤ W (vk+1) (see (2.6)) and so that
∫
I
vkη dt = m.

Since the Γ-lim sup is lower semicontinuous (see Proposition 6.8 in [26]), by applying the Lebesgue
monotone convergence theorem we have that

Γ- lim supGε(v) ≤ lim inf
k→∞

Γ- lim supGε(vk) ≤ lim inf
k→∞

∫
I

W (vk)η dt =

∫
I

W (v)η dt, (4.7)

which concludes the proof.

Clearly we have that inf G(0) = 0, and thus

G(1)
ε (v) = ε−1Gε(v) =

∫
I

(
W (v)

ε
+ ε|v′|2

)
η dt (4.8)

for all v ∈ H1
η satisfying (4.6), and G

(1)
ε (v) = ∞ otherwise in L1

η. We now state a compactness
result, which utilizes arguments from [30].

Proposition 4.3. Let vε ∈ H1
η be such that supεG

(1)
ε (vε) < ∞. Then up to a subsequence vε →

v ∈ C in L1
η, where

C := {v ∈ BVη(I; {a, b}) : v satisfies (4.6)}. (4.9)

Proof. We first show that {vε} is uniformly bounded in L1
η and equi-integrable. This is since, by

applying (2.8), ∫
|vε|>T̂

|vε|η dt ≤ L̂−1

∫
I

W (vε)η dt ≤ CεG(1)
ε (vε) ≤ Cε,

which, in turn, implies that ∫
E

|vε|η dt ≤ T̂
∫
E

η dt+ Cε.

As
∫
I
η dt <∞ and using the fact that any finite collections of L1

η functions in L1
η is equi-integrable,

we obtain that the sequence {vε} is bounded in L1
η and equi-integrable.

Next, define

W1(s) := min{W (s),K}, Φ1(t) :=

∫ t

a

W
1/2
1 (s) ds, (4.10)
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where K := maxs∈[a,b]W (s). Using Young’s inequality, and the fact that 0 ≤W1 ≤W we have that

2

∫
I

W
1/2
1 (vε)|v′ε|η dt ≤ G(1)

ε (vε) ≤ C.

Utilizing the chain rule, we find that ∫
I

|(Φ1 ◦ vε)′|η dt ≤ C.

Furthermore, as Φ1 is Lipshitz and Φ1(a) = 0, we have that Φ1 ◦ vε is uniformly bounded in L1
η.

This then implies, by BV compactness, that, up to a subsequence, not relabeled,

Φ1 ◦ vε → ṽ in L1
η

for some function ṽ ∈ BVη. It is easy to show, using (2.6), that Φ1 has a continuous inverse. This
implies that, up to a subsequence, vε must converge pointwise to v := Φ−1

1 (ṽ). Thus, up to a

subsequence, the vε converge in L1
η to v. Using Fatou’s lemma and the fact that supεG

(1)
ε (vε) <∞,

it must be W (v(t)) = 0 for a.e. t ∈ I, or, in other words, that v ∈ L1
η(I; {a, b}) by (2.4). As ṽ ∈ BVη,

this implies that v ∈ BVη(I; {a, b}). The L1
η convergence of the vε then implies that v satisfies (4.6).

This concludes the proof.

We now state the first main theorem of this section, which characterizes the first-order Γ-limit
of Gε.

Theorem 4.4. Assume that W satisfies (2.4)-(2.7) and that η satisfies (4.1)-(4.4). Then the family

{G(1)
ε } Γ-converges to the functional

G(1)(v) =

{
2cW
b−a |Dv|η(I) if v ∈ C,
∞ otherwise in L1

η,
(4.11)

where cW is the constant given in (1.10) and C defined in (4.9).

We note that here
|Dv|η = (b− a)

∑
η(ti),

where ti are the locations of jumps of the function v. We also note that Proposition 4.3 and Theorem
4.4 are completely analogous to classical results (e. g. [49, 60]) in the unweighted, higher-dimensional
case.

Proof. We first characterize the Γ-lim sup. Specifically, given a v ∈ C, we construct a family of
functions vε that converge in L1

η to v satisfying

lim sup
ε→0+

G(1)
ε (vε) ≤ G(1)(v). (4.12)

To begin with, we assume that v is of the form

v(t) =

{
a if t ∈ [t2k, t2k+1),

b otherwise,
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where −T = t0 < t1 < · · · < t2N = T . Define

f(t) :=


t− t1 if t ∈ [t0, t1),

−min{t− t2k, t2k+1 − t} if t ∈ [t2k, t2k+1), and k ≥ 1,

min{t− t2k+1, t2k+2 − t} if t ∈ (t2k+1, t2k+2], and k < N − 1,

t− t2N−1 if t ∈ [t2N−1, t2N ).

Observe that f is the signed distance function (see (2.13)) of the set E := {t ∈ I : v(t) = a}, where
we naturally are considering ∂E relative to I, not R. We note that v(t) = sgna,b(f(t)), where sgna,b
is the function given in (1.19). Thus our goal is to construct smooth approximations of the function

sgna,b that make the energy G
(1)
ε small.

We will follow the construction of [49]. Although the argument is almost identical, we include it
for completeness. Consider the function

Ψε(s) :=

∫ s

a

(
ε2

ε+W (r)

)1/2

dr, (4.13)

and define the constant
ξε := Ψε(b).

We note that since W ≥ 0, equation (4.13) gives

0 ≤ ξε ≤ (b− a)ε1/2.

Note that Ψε is strictly increasing and differentiable. Now define φε : [0, ξε] → [a, b] to be the
inverse of Ψε on the interval [a, b]. By the fundamental theorem of calculus and the inverse function
theorem φε will satisfy the equation

εφ′ε(t) = (ε+W (φε(t)))
1/2.

Next, extend φε to be equal to a for t < 0 and b for t > ξε. Note that for all t ∈ R we have that
φε(t) ≤ sgna,b(t) and that φε(t+ ξε) ≥ sgna,b(t). Thus as v ∈ C we can find a τε ∈ (0, ξε) that gives∫

I

φε(f(t) + τε)η(t) dt = m.

Define vε(t) := φε(f(t)+τε). As {vε} converges to v pointwise and |vε| < C we have that vε → v
in L1

η. We then examine the energy associated with vε, when ε is sufficiently small that transition

layers do not overlap or leave I:

G(1)
ε (vε) =

2N−1∑
k=1

∫ ξε

0

(
ε(φ′ε(t))

2 + ε−1W (φε(t))
)
η(tk + (t− τε)(−1)k+1) dt

≤
2N−1∑
k=1

∫ ξε

0

2(ε+W (φε(t)))
1/2φ′ε(t)η(tk + (t− τε)(−1)k+1) dt

≤
2N−1∑
k=1

sup{η(tk + (s− τε)(−1)k+1) : s ∈ (0, ξε)}
∫ ξε

0

2(ε+W (φε(t)))
1/2φ′ε(t) dt

=

2N−1∑
k=1

sup{η(tk + (s− τε)(−1)k+1) : s ∈ (0, ξε)}
∫ b

a

2(ε+W (s))1/2 ds.
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Thus taking the limit as ε→ 0+ we find that

lim sup
ε→0+

G(1)
ε (vε) ≤ 2cW

2N−1∑
k=1

η(tk) = G(1)(v).

The cases where v has a finite number of jump points, but starting or ending at different values than
we assumed are analogous. Reasoning as in (4.7), by noting that functions with a finite number of
jumps are dense in C, and as the Γ-lim sup is lower semicontinuous, we then have (4.12).

Next we will establish our Γ-lim inf. Assume that vε → v in L1
η. By Proposition 4.3 if v /∈ C

then lim infε→0+ G
(1)
ε =∞, and there is nothing to prove. We claim that for any sequence {vε} that

converges in L1
η to some v ∈ C the following inequality holds:

lim inf
ε→0+

G(1)
ε (vε) ≥ G(1)(v). (4.14)

To establish this inequality we use Young’s inequality, the chain rule and lower semicontinuity of
‖ · ‖BVη (see, e.g., [59]) and the definition (4.10) as follows:

lim inf
ε→0+

G(1)
ε (vε) ≥ lim inf

ε→0+

∫
I

(ε−1W1(vε) + ε(v′ε)
2)η dt

≥ lim inf
ε→0+

2

∫
I

|(Φ1 ◦ vε)′|η dt ≥ 2

∫
I

η d|DΦ1(v)|

= 2

∫
I

η d|DΦ(v)| = 2cW
b− a

∫
I

η d|Dv| = G(1)(v0).

Here we have used the fact that Φ1 ◦ vε converges to Φ1 ◦ v in L1
η (because Φ1 is Lipschitz), and the

fact that Φ1 ◦ v = Φ ◦ v, where Φ :=
∫ t
a
W 1/2(s) ds. This proves the claim.

Properties of Γ-limits [26] along with Proposition 4.3 then establishes the following corollary.

Corollary 4.5. Under the hypotheses of Theorem 4.4 if vε are minimizers of G
(1)
ε then, up to a

subsequence, they converge in L1
η to v which is a minimizer of G(1). Furthermore the vε will satisfy

the following
lim
ε→0+

G(1)
ε (vε) = G(1)(v).

To conclude this subsection we prove two theorems that will be important later in our analysis.
We select t0 so that

v0(t) := sgna,b(t− t0)

satisfies (4.6). By (4.1) it is clear that t0 is uniquely determined. We note that in general, v0 is not
a global minimizer of G(1). However, we prove here that v0 is an isolated local minimizer of G(1) in
L1
η.

Theorem 4.6. Assume that W satisfies (2.4)-(2.7) and that η satisfies (4.1)-(4.4). Then there exists
δ > 0 such that v0 is an isolated δ-local minimizer of G(1) in L1

η, that is, there is no v1 ∈ C (see
(4.9)), with 0 < ‖v1 − v0‖L1

η
≤ δ such that

G(1)(v1) ≤ G(1)(v0).

Proof. Assume by contradiction that such v1 exists. By continuity of η, for every ε > 0 there is
rε > 0 such that

|η(t)− η(t0)| ≤ ε (4.15)
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for all t ∈ [t0 − rε, t0 + rε]. Let M0 := max |η′|+ 1 and fix

0 < r0 < min

{
1

2
t∗, T − t0, T + t0,

d1n1η(t0)

2d2M0
,
d3n2η(t0)

2d4M0

}
, (4.16)

where t∗, n1, n2 and the constants di, i = 1 . . . 4 are given in (4.2) and (4.3). Then define

I0 := [−T + r0, T − r0],

and fix
0 < ε1 < min{min

I0
η, η(t0)/2}

in (4.15) and let rε1 be the corresponding rε.
Step 1: We claim that v1 has a jump at some t1 ∈ B(t0, rε1). If not, then either v1 ≡ a in B(t0, rε1)
or v1 ≡ b in B(t0, rε1). Assume that v1 ≡ a in B(t0, rε1). Then by (4.15),

δ ≥
∫
B(t0,rε1 )

|v1 − v0|η dt ≥ (b− a)
η(t0)

2
rε1 ,

where we used the fact that 0 < ε1 < η(t0)/2. Since the case v1 ≡ b gives an identical estimate, the
claim follows provided

0 < δ < (b− a)
η(t0)

2
rε1 .

Step 2: We claim that v1 has no jump other than t1 in I0. Indeed, assume that there is a second
jump t2 6= t1 in I0. Then by (4.15) and Step 1,

G(1)(v1) ≥ 2cW (η(t1) + η(t2))

≥ 2cW (η(t0)− ε1 + min
I0

η) > 2cW η(t0) = G(1)(v0),

where in the last inequality we used the fact that 0 < ε1 < minI0 η. This is impossible since we are
assuming that G(1)(v1) ≤ G(1)(v0).
Step 3: We claim that v1 jumps from a to b at t1. Suppose not, and suppose that t1 ≤ t0. Then

δ ≥
∫
B(t0,rε1 )

|v1 − v0|η dt ≥ (b− a)
η(t0)

2
rε1 ,

which again leads to a contradiction if δ is chosen small enough. The case t1 > t0 is analogous.
Step 4: We claim that t1 = t0. Indeed, if t1 > t0, then

0 =

∫
I

(v1 − v0)η dt =

∫ −T+r0

−T
(v1 − a)η dt+

∫ t1

t0

(a− b)η dt+

∫ T

T−r0
(v1 − b)η dt,

which implies, as the last two terms are negative, that there must be a jump t3 that belongs to
(−T,−T + r0), with

0 <
η(t0)

2
(b− a)(t1 − t0) ≤

∫ t1

t0

(b− a)η dt ≤ (b− a)

∫ t3

−T
η dt ≤ d2(b− a)

(T + t3)n1

n1
, (4.17)

where in the last equality we used (4.2), in conjunction with (4.16). By the mean value theorem and
inequality (4.17), for some θ ∈ (t0, t1),

η(t1) = η(t0) + η′(θ)(t1 − t0) ≥ η(t0)−M0|t1 − t0|

≥ η(t0)− 2M0d2

n1η(t0)
(T + t3)n1 .
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Hence by (4.16),

G(1)(v1) ≥ 2cW (η(t1) + η(t3))

≥ 2cW η(t0)− 2cW
2M0d2

n1η(t0)
(T + t3)n1 + 2cW d1(T + t3)n1−1

> 2cW η(t0) = G(1)(v0),

which violates our assumption. The case t1 < t0 is analogous. This proves that t1 = t0, and so
G(1)(v1) ≥ 2cW η(t0) = G(1)(v0), which implies that G(1)(v1) = G(1)(v0). In particular, v1 has no
jumps in I\I0. But then v1 = v0, which is a contradiction. This completes the proof.

We have seen in Theorem 4.6 that v0 is a local minimizer for G(1). In general v0 will not
be a global minimizer without further assumptions on η (e.g., η ≡ constant). However, for the
applications in the n-dimensional case later on it will be important to study a type of second-order

asymptotic development of Gε where in the definition of G
(2)
ε (see (1.3)) in place of inf G(1) we take

G(1)(v0). We will see that this corresponds to studying the second-order asymptotic development of
the localized functional

Jε(v) :=

{
Gε(v) if ‖v − v0‖L1

η
≤ δ,

∞ otherwise.
(4.18)

When we apply the following theorem in n-dimensions we will need slightly weaker assumptions on
η, and thus this theorem differs in its assumptions.

Theorem 4.7. Assume that W satisfies (2.4)-(2.7), and that η : I → [0,∞) is measurable, bounded,
differentiable at t0, η(t0) > 0 and

|η(t)− η(t0)− η′(t0)(t− t0)| ≤ C|t− t0|1+β (4.19)

for some constant C > 0 and for all t in a neighborhood of t0. Then there exists a sequence {vε}
converging to v0 in L1

η so that

lim sup
ε→0+

G
(1)
ε (vε)− 2cW η(t0)

ε
≤ 2η′(t0)(τ0cW + csym)

+

{
λ2
0

2W ′′(a)

∫
I
η ds if q = 1,

0 if q < 1,

(4.20)

where cW and csym are given by (1.10), (1.16), τ0 is determined by the equation

η(t0)

∫
R

(z(s− τ0)− sgna,b) ds =

{
λ0

W ′′(a)

∫
I
η dt if q = 1,

0 if q < 1,
(4.21)

where z is the solution to (1.17) and λ0 is defined by

λ0 :=
2η′(t0)cW

(b− a)η(t0)
. (4.22)

Proof. Step 1: Assume q = 1. Define zε(t) := z( t−t0ε ) and then define

vε(t) := zε(t− ετε)−
λ0ε

W ′′(a)
, (4.23)

where τε is selected so that (4.6) is satisfied. We first claim that

lim
ε→0+

τε = τ0. (4.24)
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To this end, we can write, via (4.6), ∫
I

vεη dt =

∫
I

v0η dt = m.

In turn this implies that∫
I

(zε(t− ετε)− zε(t− ετ0))η dt =

∫
I

(sgna,b(t− t0)− zε(t− ετ0))η dt

+
ελ0

W ′′(a)

∫
I

η dt.

(4.25)

After the change of variables s = t−t0
ε we can write the right-hand side as

ε

∫ T−t0
ε

−T−t0
ε

(sgna,b(s)− z(s− τ0))η(εs+ t0) ds+
ελ0

W ′′(a)

∫
I

η dt. (4.26)

By our choice of τ0 (via (4.21)) and (1.19) this is equal to

ε

∫ T−t0
ε

−T−t0
ε

(sgna,b(s)− z(s− τ0))(η(εs+ t0)− η(t0)) ds

− εη(t0)

∫ −T−t0
ε

−∞
(a− z(s− τ0)) ds− εη(t0)

∫ ∞
T−t0
ε

(b− z(s− τ0)) ds.

(4.27)

By (4.19) there exists a R0 > 0 such that |η(t) − η(t0)| ≤ (|η′(t0)| + 1)|t − t0| for all t ∈ B(t0, R0).
Since η is bounded by assumption, we thus have for all t ∈ I\B(t0, R0),

|η(t)− η(t0)| ≤ 2‖η‖∞ ≤ 2
‖η‖∞
R0
|t− t0|.

Hence for all t ∈ I we have that |η(t)− η(t0)| ≤ Cη|t− t0| for some Cη > 0. Thus, using (2.11), the
first term in (4.27) can be bounded by

2(b− a)ε

∫ T−t0
ε

−T−t0
ε

e−c1|s||η(εs+ t0)− η(t0)| ds ≤ 2(b− a)Cηε
2

∫
R
e−c1|s||s| ds.

By (2.11) we know that the last two terms of (4.27) are bounded from above by (b−a)
c1
‖η‖∞ε2e−

c1T1
ε ,

where T1 := min(T − t0, T + t0) > 0. Hence, the right-hand side of (4.25) is bounded from above by
Cε2 for all ε > 0 sufficiently small.

Now assume that the τε do not converge to τ0. Assume without loss of generality that for some
subsequence (not relabeled) the τε ≤ τ0−k0 for some k0 > 0 (the case where τε ≥ τ0 +k0 is similar).
Since z is increasing (see (1.17)), by (4.25) and what we just proved,

Cε2 ≥
∫
I

(zε(t− ετε)− zε(t− ετ0))η(t) dt ≥ inf
B(t0+ετ0,k1ε)

η

∫
B(t0+ετ0,k1ε)

∫ t−ετε

t−ετ0
z′ε(s) ds dt

≥ inf
B(t0+ετ0,k1ε)

η

∫
B(t0+ετ0,k1ε)

∫ t−ε(τ0−k0)

t−ετ0
ε−1
√
W (z(ε−1(s− t0)) ds dt

≥ 2k1k0ε inf
t∈B(0,k1+k0)

√
W (z(t)) inf

B(t0+ετ0,k1ε)
η,

where 0 < k1 < 1 and where we have used the facts that η is continuous at t0 and that η(t0) > 0.
Since z(0) = c, by taking k0 and k1 sufficiently small we can assume that z(t) ∈ B(c,min{ c−a2 , b−c2 })
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for all t ∈ B(0, k0 + k1). In turn the right-hand side of the previous inequality is bounded from
below by C1ε for some C1 > 0. This is a contradiction, which proves our claim.

Next we prove (4.20). We will write Rε := Ckε| log ε|, with Ck > 0 to be chosen later. We then
write

G
(1)
ε (vε)− 2cW η(t0)

ε
= ε−1

(∫
B(t0,Rε)

(ε−1W (vε) + ε(v′ε)
2)η dt− 2cW η(t0)

)

+

∫
I\B(t0,Rε)

(ε−2W (vε) + (v′ε)
2)η dt.

(4.28)

First we examine the second term, namely the tail integral. We first note that by (2.11) and the
fact that the τε → τ0 we then have that

b− zε(t− ετε) ≤
b− a

2
ec1(1+|τ0|)εc1Ck ≤ εk

for t ∈ [t0 + Rε, T ] and for ε small, provided Ck ≥ 2 k
c1

. Similarly, zε(t − ετε) − a < εk for
t ∈ [−T, t0 −Rε]. Thus for t ∈ I\B(t0, Rε) we have that

|zε(t− ετε)− v0(t)| ≤ εk (4.29)

which in turn implies, after recalling (4.23), that, for k large,

(vε(t)− v0)2 ≤ λ2
0ε

2

W ′′(a)2
+ Cεk+1 (4.30)

for all t ∈ I\B(t0, Rε) and for some fixed C > 0.
We then fix γ > 0. By (2.9) there exists sγ such that

W (s) ≤
(
W ′′(a)

2
+ γ

)
(s− a)2 (4.31)

for all s with |s− a| ≤ sγ , and

W (s) ≤
(
W ′′(a)

2
+ γ

)
(s− b)2 (4.32)

for all s with |s− b| ≤ sγ . By (4.30), (4.31) and (4.32) we then have for ε sufficiently small that∫
I\B(t0,Rε)

W (vε)η dt ≤
(
W ′′(a)

2
+ γ

)
ε2λ2

0W
′′(a)−2

∫
I

η dt+O(εk+1).

On the other hand, using (1.17), (4.29), (4.31), and (4.32),

(v′ε(t))
2 =

1

ε2
W (zε(t+ ετε)) ≤

C

ε2
(zε(t+ ετε)− v0(t))2 ≤ Cε2k−2

for t ∈ I\B(t0, Rε). After taking limits (first as ε→ 0+ and then as γ → 0+) we thus find that

lim sup
ε→0+

∫
I\B(t0,Rε)

(ε−2W (vε) + (v′ε)
2)η dt ≤ λ2

0

2W ′′(a)

∫
I

η dt. (4.33)

Next we estimate the energy in the region B(t0, Rε). We will define sε1 := vε(t0 − Rε) and
sε2 := vε(t0 + Rε). Note that by (4.30), sε1 = a + O(ε) and sε2 = b + O(ε). Thus recalling the
definition of cW , (1.10), and (2.9), we find that

cW =

∫ sε2

sε1

W 1/2(s) ds+O(ε2) =

∫
B(t0,Rε)

W 1/2(vε)v
′
ε dt+O(ε2),
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where we have used the change of variables s = vε(t). Thus we have that∫
B(t0,Rε)

(ε−1W (vε) + ε(v′ε)
2)η dt− 2cW η(t0)

=

∫
B(t0,Rε)

(ε−1/2W 1/2(vε)− ε1/2v′ε)
2η +W 1/2(vε)v

′
ε(2η − 2η(t0)) dt+O(ε2).

(4.34)

We now estimate the terms on the right-hand side of (4.34). Recalling the fact that |W 1/2(s1) −
W 1/2(s2)| ≤ C|s1−s2| for all s1, s2 ∈ [a−1, b+1] (see (2.4) and (2.5)), it follows from (1.17), (4.23),
and the boundedness of η, that∫

B(t0,Rε)

(ε−1/2W 1/2(vε)− ε1/2v′ε)
2η dt ≤ ε−1

∫
B(t0,Rε)

(W 1/2(vε(t))−W 1/2(zε(t− ετε)))2η(t) dt

≤ Cε−1

∫
B(t0,Rε)

(
ελ0

W ′′(a)

)2

η dt ≤ Cε2| log ε|. (4.35)

Next we will use (1.17), (4.19) and (4.23) to obtain:

2

∫
B(t0,Rε)

W 1/2(vε)v
′
ε(η − η(t0)) dt

= 2

∫
B(t0,Rε)

W 1/2(vε(t))v
′
ε(t)(η

′(t0)(t− t0) +O(|t− t0|1+β)) dt

= 2η′(t0)

∫
B(t0,Rε)

W 1/2(vε(t))v
′
ε(t)(t− t0) dt+O(ε1+β | log ε|2+β).

Changing variables to s = t−t0−ετε
ε we can then write

2

∫
B(t0,Rε)

W 1/2(vε)v
′
ε(η − η(t0)) dt

= 2η′(t0)ε

∫
B(τε,Ck| log ε|)

W 1/2(z(s)− λ0W
′′(a)−1ε)z′(s)(τε + s) ds+O(ε1+β | log ε|2+β).(4.36)

We remark that, by (1.10) and (1.16) and (4.24), the integral on the right-hand side of the previous
equality converges to ∫

R
W 1/2(z(s))z′(s)(τ0 + s) ds = τ0cW + csym.

By then combining estimates (4.28), (4.33), (4.34), (4.35), (4.36), to find that

lim sup
ε→0+

G
(1)
ε (vε)− 2cW η(t0)

ε
≤ 2η′(t0) (τ0cW + csym) +

λ2
0

2W ′′(a)

∫
I

η dt,

which is the desired conclusion.
Step 2: The case q < 1 is simpler since by (2.12) the function z in (1.17) satisfies z(t) ≡ b

for t ≥ tb and z(t) ≡ a for t ≤ ta. We define vε(t) := zε(t − ετε). Then the second term in the
right-hand side of (4.25) should be replaced by 0, while (4.26) becomes

ε

∫ tb+τ0

ta+τ0

(sgna,b(s)− z(s− τ0))η(εs+ t0) ds.

In turn, in (4.27) the first integral is over [ta+τ0, tb+τ0], while the other two integrals vanish. Using
the regularity of η near t0 we can bound the integral in the new (4.27) by 2(b− a)Cηε

2(tb− ta). We
can continue as before to conclude that τε → τ0.
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By (1.10) and (1.17), in place of (4.28) we now have

G
(1)
ε (vε)− 2cW η(t0)

ε
= ε−1

∫ t0+ετε+εtb

t0+ετε+εta

W 1/2(vε(t))v
′
ε(t)(η(t)− η(t0)) dt.

Using (4.19) and the fact that τε → τ0, the right-hand side can be bounded from above by

≤ 2ε−1η′(t0)

∫ t0+ετε+εtb

t0+ετε+εta

W 1/2(vε(t))v
′
ε(t)(t− t0) dt+O(εβ)

= 2η′(t0)

∫ tb

ta

W 1/2(z(s))z′(s)(s+ τε) ds+O(εβ),

where we have used a change of variables s = t−t0−ετε
ε . It now suffices to let ε→ 0+.

4.2 Local Minimizers of Gε

In this subsection we prove the existence of certain types of local minimizers of Gε and study
their qualitative properties. In the next subsection these properties will enable us to characterize
the second-order asymptotic development of the family Jε defined in (4.18). We begin with the
following proposition, which is based on an argument from [41] (see also [11]). We include the proof
for completeness.

Proposition 4.8. Assume that W satisfies (2.4)-(2.7) and that η satisfies (4.1)-(4.4). Then for all
ε > 0 there exists a global minimizer vε of the functional Jε. Furthermore, the functions vε must
converge to v0 in L1

η, and thus for ε small enough vε is a local minimizer of Gε. Additionally, the
following equality holds:

lim
ε→0+

J (1)
ε (vε) = G(1)(v0). (4.37)

Proof. First we prove the existence of a global minimizer. Fix ε > 0 and suppose that {fk} is a
minimizing sequence in the sense that

lim
k→∞

Jε(fk) = inf
v
Jε(v) <∞.

In particular, ‖fk − v0‖L1
η
≤ δ for all k sufficiently large. By (4.8) and (4.18) it follows that {f ′k}

is bounded in L2
η. Since {fk} is bounded in L1

η, by (4.1) and a diagonal argument, we may find a
function vε ∈ H1

η,loc such that f ′k ⇀ v′ε in L2
η and fk → vε in L1

η,loc, and pointwise a.e.. By Fatou’s

lemma and the weak lower semi-continuity of the L2
η norm, we then have, provided that vε ∈ H1

η

(see (4.5)), that
Gε(vε) ≤ lim inf

k→∞
Gε(fk) = inf

v
Jε(v)

and that ‖vε − v0‖L1
η
≤ δ. Thus it remains to show that vε ∈ L2

η. Since vε is locally absolutely
continuous, by Hölder’s inequality, for −T < t < −T + t∗ we have

v2
ε(t)η(t) = η(t)

(
vε(−T + t∗)−

∫ −T+t∗

t

v′ε(s) ds

)2

≤ 2η(t)v2
ε(−T + t∗) + 2η(t)

(∫ −T+t∗

t

v′ε(s)
η1/2(s)

η1/2(s)
ds

)2

≤ 2η(t)v2
ε(−T + t∗) + 2η(t)

∫ −T+t∗

t

1

η(s)
ds

∫ −T+t∗

t

|v′ε(s)|2η(s) ds

≤ 2η(t)v2
ε(−T + t∗) + 2

d2

d1
t∗
∫
I

|v′ε(s)|2η(s) ds,
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where we have used the fact that if t < s < −T + t∗ then η(s) ≥ d1
d2
η(t) (see (4.2)). By integrating

in t over (−T,−T + t∗) we observe that vε ∈ L2
η((−T,−T + t∗)). A similar estimate can be obtained

on the interval (T − t∗, T ). On the other hand, by (4.1), we have that η ≥ η0 > 0 in [−T + t∗, T − t∗],
and thus vε ∈ L2((−T + t∗, T − t∗)), which then implies that vε ∈ L2

η, as desired. This establishes
the existence of a global minimizer, vε.

By Theorem 4.4 we know that there exists a sequence {ṽε} converging to v0 in L1
η with G

(1)
ε (ṽε)→

G(1)(v0). In particular ‖ṽε − v0‖L1
η
≤ δ for ε sufficiently small. Since vε is a global minimizer of Jε

we then know that Gε(vε) ≤ Gε(ṽε) for ε small. Thus

lim sup
ε→0+

G(1)
ε (vε) ≤ lim sup

ε→0+

G(1)
ε (ṽε) ≤ G(1)(v0).

By Proposition 4.3 we then have that (up to a subsequence, not relabeled), vε → ṽ in L1
η, with ṽ ∈ C

and with ‖ṽ − v0‖L1
η
≤ δ. By again applying Theorem 4.4 we find that

G(1)(ṽ) ≤ lim inf
ε→0+

G(1)
ε (vε) ≤ lim sup

ε→0+

G(1)
ε (vε) ≤ G(1)(v0). (4.38)

Theorem 4.6 then implies that ṽ = v0, which along with (4.38) implies (4.37). As vε → v0 in L1
η we

then have that the vε must be local minimizers of Gε, for ε sufficiently small. This completes the
proof.

In light of the fact that the global minimizers of Jε are local minimizers of Gε for ε sufficiently
small we can then establish the Euler–Lagrange equations.

Theorem 4.9. Under the hypotheses of Proposition 4.8 the sequence {vε} of global minimizers of
the functionals Jε will satisfy the following Euler–Lagrange equations (for ε sufficiently small):

2ε2(v′ε(t)η(t))′ −W ′(vε(t))η(t) = ελεη(t), (4.39)

where λε ∈ R. Moreover the Lagrange multipliers λε satisfy

lim
ε→0+

λε = λ0, (4.40)

where λ0 is the number given in (4.22).

Proof. Reasoning somewhat as in the proof of step 4 in [27] we have that vε ∈ C2(I) and satisfies
(4.39). Next, we will prove (4.40), namely the limit of the Lagrange multipliers λε. The argument
here follows [46], with the necessary adaptations to the weighted setting.

To prove (4.40), fix some ψ ∈ C∞c (I). We multiply the Euler–Lagrange equations (4.39) by ψv′ε
and integrate to obtain

ελε

∫
I

ψv′εη dt =

∫
I

(2ε2(v′′ε η + v′εη
′)−W ′(vε)η)ψv′ε dt.

Integrating by parts, we find that

ελε

∫
I

ψv′εη dt =

∫
I

(W (vε)− ε2v′2ε )(ηψ)′ + 2ε2(v′ε)
2η′ψ dt. (4.41)

By Theorem 4.4 and Proposition 4.8 we know that

lim
ε→0+

∫
I

(ε−1W (vε) + ε(v′ε)
2)η dt = 2cW η(t0).
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Furthermore, as in the proof of (4.14), by lower semicontinuity

lim inf
ε→0+

2

∫
I

W 1/2(vε)|v′ε|η dt = lim inf
ε→0+

2

∫
I

|(Φ(vε))
′|η dt ≥ 2cW η(t0), (4.42)

where we recall that Φ(t) :=
∫ t
a
W 1/2(s) ds. These together give the following:

0 ≤ lim sup
ε→0+

∫
I

(ε−1/2W 1/2(vε)− ε1/2(v′ε))
2η dt

= lim sup
ε→0+

∫
I

(ε−1W (vε) + ε(v′ε)
2 − 2W 1/2(vε)|v′ε|)η dt ≤ 0.

We thus have that ε−1/2W 1/2(vε) − ε1/2|v′ε| goes to zero in L2
η. Moreover, the liminf in (4.42) is

actually a limit and equality holds, so that

lim
ε→0+

∫
I

W 1/2(vε)|v′ε|η dt = cW η(t0). (4.43)

Additionally, we can write the following:

lim
ε→0+

∫
I

|ε−1W (vε)− ε(v′ε)2|η dt

= lim
ε→0+

∫
I

∣∣∣ε−1/2W 1/2(vε)− ε1/2|v′ε|
∣∣∣ ∣∣∣ε−1/2W 1/2(vε) + ε1/2|v′ε|

∣∣∣ η dt
≤ lim
ε→0+

(∫
I

(
ε−1/2W 1/2(vε)− ε1/2|v′ε|

)2

η dt

)1/2

×
(∫

I

(
ε−1/2W 1/2(vε) + ε1/2|v′ε|

)2

η dt

)1/2

≤ lim
ε→0+

C

(∫
I

(
ε−1/2W 1/2(vε)− ε1/2|v′ε|

)2

η dt

)1/2

= 0,

where we have used Hölder’s inequality in the first inequality, Young’s inequality and the bound-

edness of G
(1)
ε (vε) in the second. By (4.1) we can deduce that ε−1W (vε) − ε(v′ε)2 goes to zero in

L1
loc(I). Thus by dividing (4.41) by ε, and recalling that ψ is compactly supported in I, we obtain

lim
ε→0+

λε

∫
I

ψv′εη dt = lim
ε→0+

2

∫
I

ε(v′ε)
2η′ψ dt.

We then use the L2 convergence shown above to estimate the following

lim
ε→0+

∣∣∣∣∫
I

(ε(v′ε)
2 −W 1/2(vε)|v′ε|)η′ψ dt

∣∣∣∣
= lim
ε→0+

∣∣∣∣∫
I

ε1/2|v′ε|(ε1/2|v′ε| − ε−1/2W 1/2(vε))η
′ψ dt

∣∣∣∣
≤ lim
ε→0+

(∫
I

ε(v′ε)
2

(
η′ψ

η

)2

η dt

)1/2(∫
I

(ε1/2|v′ε| − ε−1/2W 1/2(vε))
2η dt

)1/2

= 0,

where we have used the fact that ψη′

η is uniformly bounded, since ψ has compact support in I.
Thus we can write the following:

lim
ε→0+

λε

∫
I

ψv′εη dt = lim
ε→0+

2

∫
I

W 1/2(vε)|v′ε|η′ψ dt. (4.44)
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We know that v′εL1bI ∗
⇀ Dv0 = (b − a)δt0 and W 1/2(vε)v

′
εL1bI ∗

⇀ D(Φ ◦ v0) = cW δt0 , both in

(C0(I))′. In turn, W 1/2(vε)v
′
εηL1bI ∗

⇀ cW η(t0)δt0 . In view of (4.43), it follows from Proposition

4.30 in [47] that W 1/2(vε)|v′ε|ηL1bI ∗⇀ cW η(t0)δt0 . Hence,

lim
ε→0+

∫
I

W 1/2(vε)|v′ε|η′ψ dt = lim
ε→0+

∫
I

W 1/2(vε)|v′ε|η
η′

η
ψ dt = cW η(t0)

η′(t0)

η(t0)
ψ(t0).

We thus take limits in (4.44) to find that

lim
ε→0+

λε(b− a)ψ(t0)η(t0) = 2η′(t0)cWψ(t0).

This then gives the desired conclusion, namely that (4.40) holds.

Next we establish tight bounds on the functions vε, as well as a Neumann condition.

Theorem 4.10. Under the hypotheses of Proposition 4.8, for all ε > 0 sufficiently small the mini-
mizers vε of Jε satisfy

aε ≤ vε(t) ≤ bε, t ∈ I, (4.45)

v′ε(−T ) = v′ε(T ) = 0, (4.46)

where aε < cε < bε are the only zeros of W ′ + λεε. Moreover

aε = a− λε|λε|1/q−1(q/`)1/qε1/q + o(ε1/q), (4.47)

cε = c− λεW ′′(c)−1ε+ o(ε), (4.48)

bε = b− λε|λε|1/q−1(q/`)1/qε1/q + o(ε1/q), (4.49)

where ` is given in (2.5).

Proof. By hypothesis (2.7), |W ′(s)| ≥ w0 > 0 for all |s| ≥ C. Since W ′ has only three zeros at a, b, c
and is strictly monotonic in a ball centered at each of these points with radius ζ0 > 0 (see (2.5) and
(2.6)), by taking w0 smaller we can assume that |W ′(s)| ≥ w0 for all s ∈ R \ (B(a, ζ0) ∪ B(c, ζ0) ∪
B(b, ζ0)). By (4.40), |ελε| ≤ w0/2 for all ε > 0 small. Hence W ′ + ελε has only three zeros

aε < bε < cε, (4.50)

for all ε > 0 small. Furthermore by (2.6) and (2.10) we can derive the explicit forms in (4.47)-(4.49).
Next, consider the open set Uε := {t ∈ I : vε(t) < aε}. We claim that Uε is empty. Indeed, if

not, let Iε be a maximal subinterval of Uε, and since W ′(vε) + ελε < 0 for all t ∈ Iε by (4.39) we
have that (v′ε(t)η(t))′ < 0 for all t ∈ Iε. Since η > 0 on I by (4.1), this implies that v′ε has at most
one zero in Iε. Hence there exist limt→t+ε vε(t) = `ε and limt→T−ε vε(t) = Lε, where tε, Tε are the
left and right endpoints of Iε, respectively. Note that `ε, Lε could be infinite if one of the endpoints
is −T or T . Consider infIε vε. If there exists sε ∈ I◦ε such that vε(sε) = infIε vε, then v′ε(sε) = 0
and v′′ε (sε) ≥ 0. This is impossible, as (v′εη)′ < 0 on Iε. Thus it follows that infIε vε is either `ε or
Lε. Assume first that infIε vε = `ε. By the definition of Iε it cannot be that `ε = aε, but then, by
the maximality of Iε, necessarily tε = −T . By (4.39) for all t1, t2 ∈ Iε, with t1 < t2:

2ε2v′ε(t2)η(t2)− 2ε2v′ε(t1)η(t1) =

∫ t2

t1

(W ′(vε(s)) + ελε)η(s) ds. (4.51)

Since W ′(vε(t)) + ελε < 0 for all t ∈ Iε, the integral
∫ t2
−T (W ′(vε(s)) + ελε)η(s) ds is well-defined in

R ∪ {−∞}. Hence, letting t1 → −T+ in (4.51), it follows that there exists

lim
t→−T+

v′ε(t)η(t) = Mε ∈ R ∪ {∞}. (4.52)
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Assume, for the sake of contradiction, that Mε 6= 0. Then by (4.2) and (4.52), |v′ε(t)| ≥ C0(T +
t)−n1+1 for all t ∈ (−T,−T + δε), for some δε > 0. It would then follow that∫ −T+δε

−T
|v′ε|2η dt ≥ d1

∫ −T+δε

−T
C2

0 (T + t)−n1+1 dt =∞

if n1 ≥ 2. On the other hand, if n1 = 1 then v′ε(−T ) = 0, since vε is a minimizer. Thus in both
cases we must have that Mε = 0. In turn, letting t1 → −T+ in (4.51) it follows that v′ε(t) < 0 for all
t ∈ Iε, which contradicts the fact that `ε = infIε vε. Using a similar argument we can exclude the
case that Lε = infIε vε. This proves that Iε, and in turn Uε, is empty. Thus vε ≥ aε in I. Similarly,
we can show that vε ≤ bε in I.

It remains to prove the Neumann boundary condition (4.46). If ni = 1 then this comes from
the minimality of vε. When ni ≥ 2, since vε is bounded by what we just proved, it follows that the
integral on the right-hand side of (4.51) is bounded for all t ∈ I. Hence as in the first part of the
proof we can conclude that the limit Mε in (4.52) exists and must be zero. Hence letting t1 → −T+

in (4.51) we obtain

2ε2v′ε(t)η(t) =

∫ t

−T
(W ′(vε) + λεε)η(s) ds.

Using again the fact that vε is bounded, along with (2.4) and (4.2), we have that

0 ≤ 2ε2|v′ε(t)| ≤
C

d1(T + t)n1−1

∫ t

−T
d2(T + s)n1−1 ds =

Cd2

d1n1
(T + t)→ 0

as t→ −T+. A similar estimate holds near T . This completes the proof.

In the following theorem we specify the qualitative behavior of vε, which are global minimizers
of Jε. Despite the fact that vε → v0 ∈ L1

η by Proposition 4.8, vε need not be increasing. Indeed in
the radial case η(t) ≡ (t+ T )n−1, on an unbounded domain and for n large, Ni [52] has shown that
all positive solutions of (4.39) approach bε as t→∞ in an oscillatory way. The presence of possible
oscillations makes the analysis significantly more involved. However, the overall idea of the proof is
the same as the proof of Theorem 4.6.

Fix

θi ∈
(

1

ni
,

1

ni − 1

)
, i = 1, 2, (4.53)

where ni are the exponents given in (4.2) and (4.3). Let k ∈ N and define

Oε := {t ∈ [−T + c(n1)εθ1 , T − c(n2)εθ2 ] : aε + εk ≤ vε(t) ≤ bε − εk}, (4.54)

with c(ni) := 0 if ni = 1 and 1 otherwise.

Theorem 4.11. Assume that W satisfies (2.4)-(2.7), and that η satisfies (4.1)-(4.4). Let vε be a
minimizer of Jε. Write I0 := [−T + r0, T − r0], with r0 > 0 a constant to be defined. Then for δ
sufficiently small in (4.18) and for all ε > 0 sufficiently small the following properties hold:

i) Γε := Oε ∩ I0 has exactly one component [T ε1 , T
ε
2 ], with vε(T

ε
1 ) = aε + εk and vε(T

ε
2 ) = bε− εk.

Moreover, there exists 0 < r1 < r0 so that Γε ⊂ B(t0, r1).

ii) For every fixed ε, the points in Γε where vε = cε are at most distance Cε apart, for some
C > 0 independent of ε.

iii) For t ∈ (−T, T ε1 ) we have that vε(t) ∈ [aε, aε + εk) except on a set of ηL1 measure o(ε).
Similarly for t ∈ (T ε2 , T ) we have that vε(t) ∈ (bε− εk, bε] except on a set of ηL1 measure o(ε).
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We delay the proof of this theorem until after we establish some preliminary results. Let r0 > 0 be
chosen as in (4.16). As vε → v0 in L1

η, by selecting a subsequence, we can assume that vε(t)→ v0(t)
for L1 a.e. t ∈ I. Hence, given

0 < ρ <
1

2
min{c− a, b− c}, (4.55)

there exists ερ > 0 such that

|vε(T1)− a| < ρ, |vε(T2)− a| < ρ, |vε(T3)− b| < ρ, |vε(T4)− b| < ρ (4.56)

for all 0 < ε ≤ ερ sufficiently small and some T1 ∈ (−T,−T + r0), T2 ∈ (−T + 2r0, t0 − r0),
T3 ∈ (t0 + r0, T − 2r0) and T4 ∈ (T − r0, T ). Fix ε > 0 sufficiently small so that (4.56) holds.

First, we prove adaptations of two lemmas from [61].

Lemma 4.12. Let s0, s1 > 0 be such that aε + s0 < cε < bε− s1 for all ε > 0 sufficiently small. Fix
any such ε. Let Iε ⊆ I be a non-empty maximal interval such that aε + s0 < vε(t) < bε − s1 for all
t ∈ Iε. Then there exists tε ∈ Iε such that vε(tε) = cε.

Proof. If not, then either aε + s0 ≤ vε(t) < cε for all t ∈ Iε or cε < vε(t) ≤ bε − s1 for all t ∈ Iε.
Consider the second case. Then W ′(vε(t)) + ελε < 0 for all t ∈ Iε, and so by (4.39) we have that
(v′ε(t)η(t))′ < 0 for all t ∈ Iε. Let t̃ ∈ Iε be the point of minimum of vε in Iε. Reasoning as in
the proof of (4.45), we have that t̃ cannot belong to Iε, and so t̃ ∈ ∂Iε. If t̃ ∈ I, then necessarily,
vε(t̃) = cε, which contradicts the fact that cε < vε(t) < bε − s1 for all t ∈ Iε. it follows that
t̃ ∈ {−T, T}. We can now continue as in the proof of (4.45) to exclude this possibility.

Lemma 4.13. Let ρ be as in (4.55) and suppose that Iε is a maximal subinterval of the set {t ∈
[−T + c(n1)εθ1 , T − c(n2)εθ2 ] : vε(t) ≥ c + ρ}. Then there exists a µ > 0 such that we have the
following estimate for all t ∈ Iε:

bε − vε(t) ≤ 2(bε − c− ρ)e−µd(t,Icε)ε−1

.

In addition an analogous bound holds for the set {t ∈ [−T + c(n1)εθ1 , T − c(n2)εθ2 ] : vε(t) ≤ c− ρ}.
We recall that d(t, E) is the distance from t to the set E and Ec is the complement of E (see

Section 2).

Proof. First, we claim that there exists a µ such that for any s ∈ [c+ ρ, bε] the following inequality
holds

−(W ′(s) + ελε) ≥ 2µ2(bε − s). (4.57)

If q = 1 in (2.5), then also by (2.4) we have that W ∈ C2(R). Since W ′′(b) > 0 by continuity we
have that W ′′(s) ≥ 2µ2 > 0 for all s ∈ B(b, R1), for some µ 6= 0, and R1 > 0. It follows from (4.50)
that

W ′(s) + ελε = −
∫ bε

s

W ′′(r) dr ≤ −2µ2(bε − s)

for all s ∈ B(b, R1), with s < bε. Using the fact that W ′ + ελε < 0 in (cε, bε) (see Theorem 4.10),
and by taking µ smaller, if necessary, we can assume that

W ′(s) + ελε ≤ −2µ2(bε − s)

for all s ∈ [c + ρ, bε]. Note that µ depends upon ρ but not on ε. On the other hand, if 0 < q < 1
then since lims→bW

′′(s) =∞ by (2.5), we can still assume that W ′′(s) ≥ µ2 > 0 near b. Hence we
can continue as before to conclude that (4.57) holds even in this case. This proves the claim.

Write Iε = [t1, t2] and define

φ(t) := (bε − vε(t1))e−µ(t−t1)ε−1

+ (bε − vε(t2))e−µ(t2−t)ε−1

(4.58)
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with µ fixed by (4.57). We note that φ satisfies the following differential inequality:

(φ′η)′ =
µ2

ε2
φη +

µ

ε
η′
(
−(bε − vε(t1))e−µ(t−t1)ε−1

+ (bε − vε(t2))e−µ(t2−t)ε−1
)

≤ 1

ε2

(
µ2 + ε

|η′|
η
µ

)
φη.

If n1 > 1 in (4.2), then c(n1) = 1 in (4.54) and so by (4.4),

ε
|η′(t)|
η(t)

≤ εd5

t+ T
≤ d5ε

1−θ1 ≤ µ

for all t ∈ [−T + εθ1 , 0] and all ε sufficiently small. On the other hand, if n1 = 1 in (4.2), then
c(n1) = 0 in (4.54) and so by (4.1) and (4.3), η(t) ≥ η0 > 0 for all t ∈ [−T, 0]. Thus,

ε
|η′(t)|
η(t)

≤ εmax |η′|
η0

≤ µ

for all t ∈ [−T, 0] and all ε sufficiently small. Similar inequalities hold in [0, T − c(n2)εθ2 ]. Thus in
Iε,

(φ′η)′ ≤ 2ε−2µ2φη. (4.59)

We then set g(t) := bε − vε(t) and using (4.39) and (4.57) we have that

(g′η)′ = −ε−2(W ′(vε) + ελε)η ≥ 2ε−2µ2gη. (4.60)

We define Ψ := g − φ. By (4.58), (4.59) and (4.60), for ε small we have the following:

(Ψ′η)′ ≥ 2ε−2µ2Ψη,

Ψ(t1) ≤ 0, Ψ(t2) ≤ 0.

The maximum principle implies that Ψ ≤ 0 for all t ∈ Iε. Thus

bε− vε(t) ≤ (bε− vε(t1))e−µ(t−t1)ε−1

+ (bε− vε(t2))e−µ(t2−t)ε−1 ≤ 2(bε− c− ρ))e−µε
−1d(t,Icε), (4.61)

which is the desired result.

Corollary 4.14. Let ρ be as in (4.55) and let

Aε := {t ∈ [−T + c(n1)εθ1 , T − c(n2)εθ2 ] : aε + εk ≤ vε(t) ≤ c− ρ},
Bε := {t ∈ [−T + c(n1)εθ1 , T − c(n2)εθ2 ] : c+ ρ ≤ vε(t) ≤ bε − εk}.

Then for any maximal interval Iε contained in Aε ∪Bε,

diam Iε ≤ Cε| log ε|

for all ε > 0 sufficiently small and for some constant C > 0 depending only on W , k, µ, ρ, where µ
is given in Lemma 4.13.

Proof. Assume (t1, t2) = I◦ε ⊂ Bε. By Lemma 4.13 we have that for t = t1+t2
2 :

εk ≤ bε − vε(t) ≤ 2(bε − c− ρ)e−µ2−1(t2−t1)ε−1

,

which implies that −µ2 (t2 − t1)ε−1 ≥ k log ε− log 2(bε − c− ρ), that is,

0 ≤ t2 − t1 ≤ 2µ−1kε| log ε|+ 2µ−1ε log 2(bε − c− ρ).

This shows that diam Iε ≤ Cε| log ε|. The proof for the case Iε ⊂ Aε is similar, and we omit it.
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Next we state a lemma from [61], which allows us to estimate the size of certain sets. In what
follows given a set E and s > 0 we define the set

Es := {x ∈ Rn : d(x,E) ≤ s} (4.62)

Lemma 4.15. Given a measurable set A ⊂ Rn, for all numbers 0 < s1 < s2 we have that

Ln(As2)

Ln(As1)
≤ Cn

(
s2

s1

)n
,

where we are using the notation (4.62).

Next we establish an estimate on the derivative of vε.

Lemma 4.16. There exists a constant C > 0 such that

|v′ε(t)| ≤ Cε−1

for all t ∈ I.

Proof. By (4.39) and the fact that v′ε(−T ) = 0,

2ε2v′ε(t)η(t) =

∫ t

−T
(W ′(vε(s)) + ελε)η(s) ds

for every t ∈ I. In light of (4.1)-(4.2) we know that that there exist constants c1, c2 > 0 so that
c1(T + t)n1−1 ≤ η(t) ≤ c2(T + t)n1−1 for all t ∈ [−T, T − t∗]. Since vε is bounded by (4.45), this
implies that

2ε2|v′ε(t)| ≤
C

η(t)

∫ t

−T
η(s) ds ≤ C

c1(T + t)n1−1

∫ t

−T
c2(T + s)n1−1 ds

=
Cc2
c1n1

(T + t)

for all t ∈ (−T, T − t∗). Using a similar argument in (−T + t∗, T ), we conclude that

ε2|v′ε(t)| ≤ C min{T + t, T − t}

for all t ∈ I. By (4.39), vε satisfies

2ε2v′′ε (t) + 2ε2 η
′(t)

η(t)
v′ε(t) = W ′(vε(t)) + ελε.

Using (4.4), (4.45) and the previous inequality we get

2ε2|v′′ε (t)| ≤
∣∣∣∣η′(t)η(t)

∣∣∣∣ 2ε2|v′ε(t)|+ C ≤ C.

Next we use a classical interpolation result. Let t ∈ I and consider t1 ∈ I with |t− t1| = ε. By the
mean value theorem vε(t)− vε(t1) = v′ε(θ)(t− t1) and so by the fundamental theorem of calculus

v′ε(t) = v′ε(θ) +

∫ t

θ

v′′ε (s) ds =
vε(t)− vε(t1)

t− t1
+

∫ t

θ

v′′ε (s) ds.

Again by (4.45) it follows that

|v′ε(t)| ≤
C

ε
+ sup |v′′ε ||t− θ| ≤

C

ε
+
C

ε2
ε.

This concludes the proof.
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Figure 4: Important intervals and points for the proof of Theorem 4.11

We are now prepared to prove Theorem 4.11. By way of notation, for every measurable subset
E ⊂ I and for every v ∈ H1

η satisfying ‖v − v0‖L1
η
≤ δ and (4.6) we define the localized energy

J (1)
ε (v;E) :=

∫
E

(
1

ε
W (v) + ε(v′)2

)
η dt. (4.63)

Figure 4 gives a visual representation of the notation used in the following proof.

Proof of Theorem 4.11. By Theorem 4.7 there exists ṽε converging to v0 in L1
η such that

G(1)
ε (vε) = J (1)

ε (vε) ≤ J (1)
ε (ṽε) ≤ G(1)

ε (ṽε) ≤ G(1)(v0) + Cε = 2cW η(t0) + Cε, (4.64)

where we have used the fact that vε is a minimizer of Jε. We fix

0 < ε1 < min

{
η(t0)

2
,
η(t0)

2cW

∫ c+ρ

c

W 1/2(s) ds,
min{c−, c+}

2cW
min
I0

η

}
, (4.65)

where

c− :=

∫ c

a

W 1/2(s) ds, c+ :=

∫ b

c

W 1/2(s) ds. (4.66)

By the continuity of η there exists rε1 > 0 so that

|η(t)− η(t0)| ≤ ε1 (4.67)

for all t ∈ [t0 − rε1 , t0 + rε1 ]. Pick r̂ > 0 so that

I1 := [t0 − r̂, t0 + r̂] ⊂ I, (4.68)
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Symbol Definition Characteristics
Oε (4.54) Step 1 proves that L1(Oε) = o(1).
I0 [−T + r0, T − r0] (see statement of

Theorem 4.11)
J0 [−T + 2r0, T − 2r0] (see Step 2)
I1 [t0 − r̂, t0 + r̂] (see (4.68))
Γε A maximal subinterval of Oε which

intersects B(t0, r1/2)
Existence proved in Step 3, uniqueness, end-
point values and width estimate in Step 4.

tε1, t
ε
2 (4.75)

tε3, t
ε
4 The first and last time in Γε where

vε = cε (see Step 3)
Step 3 proves that these are O(ε) distance
apart.

tε5 The last point to the left of Γε where
vε(t

ε
5) = c− ρ

Step 5 proves that tε5, if it exists, must be in
[−T,−T + c(n1)εθ1 ].

Figure 5: Explanations of some of the notation in the proof of Theorem 4.11.

and let
η1 := min

I1
η > 0. (4.69)

Choose r1 so that
0 < r1 < min{rε1 , r̂}. (4.70)

Fix δ so that

0 < δ < (c− a− ρ)
η(t0)

2
r1. (4.71)

Step 1: We claim that L1(Oε) = o(1) (see (4.54)). Define the set

Dε := Oε ∩ v−1
ε ([c− ρ, c+ ρ]}).

By Lemma 4.16, |v′ε| ≤ C0ε
−1, and so, using the notation in (4.62), (Dε)

lε ⊂ v−1
ε ([c − 2ρ, c + 2ρ]),

provided 0 < l ≤ ρC−1
0 . In turn

L1((Dε)
lε) ≤

∫
{c−2ρ≤vε≤c+2ρ}

1 dt

≤ εθ1 + εθ2 +

(
min

[c−2ρ,c+2ρ]
W

)−1 ∫ T−εθ2

−T+εθ1
W (vε) dt (4.72)

≤ εθ1 + εθ2 + C
(
ε−θ1(n1−1) + ε−θ2(n2−1)

)∫ T−εθ2

−T+εθ1
W (vε)η dt

≤ εθ1 + εθ2 + C
(
ε1−θ1(n1−1) + ε1−θ2(n2−1)

)
,

where we have used (2.4), (4.1)-(4.3), (4.55) and (4.64).
Next we claim that

Oε ⊂ (Dε)
Cε| log ε| ∪ [−T,−T + c(n1)εθ1 + Cε| log ε|] ∪ [T − c(n2)εθ2 − Cε| log ε|, T ]. (4.73)

Indeed, as Oε = Aε ∪ Bε ∪Dε, it suffices to consider t̃ ∈ Aε, as the case t̃ ∈ Bε is analogous. Let
Iε be the maximal subinterval of Aε containing t̃. By Corollary 4.14, diam Iε ≤ Cε| log ε|. If Iε
intersects Dε, then d(t̃, Dε) ≤ diam Iε ≤ Cε| log ε|. Otherwise, since reasoning as in the proof of
(4.45) and Lemma 4.12 it cannot happen that vε takes the value bε − εk at both endpoints of Iε, it
follows that one of the endpoints of Iε is −T + c(n1)εθ1 or T − c(n2)εθ2 , say, −T + c(n1)εθ1 . Thus

d(t̃, [−T,−T + c(n1)εθ1 ]) ≤ Cε| log ε|.
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This proves (4.73).
By Lemma 4.15 and (4.72) we have that

L1((Dε)
Cε| log ε|) ≤ C| log ε|L1((Dε)

lε) ≤ C| log ε|
(
εθ1 + εθ2 + ε1−θ1(n1−1) + ε1−θ2(n2−1)

)
.

Hence by (4.73) we have that

L1(Oε) ≤ εθ1 + εθ2 + Cε| log ε|+ L1((Dε)
Cε| log ε|)

≤ C1| log ε|
(
εθ1 + εθ2 + ε1−θ1(n1−1) + ε1−θ2(n2−1)

)
,

where C1 > 0 is independent of r0.
Step 2: We claim if Iε is a maximal subinterval of the set Oε (see (4.54)) that intersects the interval
J0 := [−T + 2r0, T − 2r0], then Iε is contained in I0 for all ε > 0 sufficiently small, with

L1(Iε) ≤ Cε| log ε|. (4.74)

The first part of the claim, namely, that Iε ⊂ I0, follows immediately from Step 1. Lemma 4.12 then
implies that Iε ∩Dε 6= ∅. Reasoning as in the proof of (4.72) but using the fact that η ≥ η0 > 0 in
I0 we find that L1((Iε ∩Dε)

Cε) < Cε. Again due to the fact that Iε ⊂ I0, reasoning as in the proof
of (4.73) we can show that Iε ⊂ (Iε ∩Dε)

Cε| log ε|. Using Lemma 4.15 once more gives (4.74).
Step 3: We claim that there exist tε1, tε2 ∈ B(t0, r1/2) such that

vε(t
ε
1) ≤ c− ρ, vε(t

ε
2) ≥ c+ ρ (4.75)

provided ε > 0 is sufficiently small. Indeed, if tε1 does not exist, then c− ρ < vε in B(t0, r1/2), and
so by (4.15),

δ ≥
∫
B(t0,r1/2)

|vε − v0|η dt ≥ (c− a− ρ)
η(t0)

2
r1,

where we used (4.65). This contradicts (4.71). Hence the tε1 in (4.75) exists, and with a similar
argument we can prove the existence of tε2.

Since vε is continuous, by the intermediate value theorem it will take all values between c − ρ
and c + ρ in B(t0, r1/2). Let Γ−ε be a maximal subinterval of Oε intersecting B(t0, r1/2) such that
vε(Γ

−
ε ) ⊃ [c − ρ, c] and let Γ+

ε be a maximal subinterval of Oε intersecting B(t0, r1/2) such that
vε(Γ

+
ε ) ⊃ [c, c + ρ]. By Step 1, for ε small enough, both intervals are contained in the interval I1

given by (4.68).
We claim that either vε(Γ

−
ε ) = [aε + εk, bε − εk] or vε(Γ

+
ε ) = [aε + εk, bε − εk]. Indeed, if this

is not the case, then by the maximality of Γ−ε and Γ+
ε , Lemma 4.12 and the definition of Oε (see

(4.54)) vε = aε + εk at both endpoints of Γ−ε and vε = bε− εk at both endpoints of Γ+
ε . Let tε ∈ Γ−ε

be such that vε(tε) = c. Hence, by (4.63), (4.69), Young’s inequality and a change of variables,

J (1)
ε (vε; Γ−ε ) ≥ 2η1

∫
Γ−ε

W 1/2(vε)|v′ε| dt

= 2η1

∫
Γ−ε ∩(−T,tε]

W 1/2(vε)|v′ε| dt+ 2η1

∫
Γ−ε ∩(tε,T )

W 1/2(vε)|v′ε| dt

≥ 4η1

∫ c

aε+εk
W 1/2(s) ds ≥ 4c−η1 − Cε(q+3)/2q, (4.76)

where we have used (4.66) and the fact that∫ aε+ε
k

a

W 1/2(s) ds ≤ C|a− aε − εk|(q+3)/2 ≤ Cε(q+3)/2q
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by (2.9) and (4.45) where here C is independent of r0. A similar inequality holds for J
(1)
ε (vε; Γ+

ε )
with the only difference that c− should be replaced by c+. Hence, also by (4.15) and (4.64),

2cW η(t0) + Cε ≥ J (1)
ε (vε; Γ−ε ) + J (1)

ε (vε; Γ+
ε ) ≥ 4cW (η(t0)− ε1)− Cε(q+3)/2q,

which gives
Cε ≥ 2(η(t0)− 2ε1)cW .

This contradicts (4.65) provided ε is sufficiently small. This proves the claim. We denote by Γε a
maximal subinterval of Oε intersecting B(t0, r1/2) such that vε(Γε) = [aε + εk, bε − εk].

First we claim that vε takes the values aε + εk and bε − εk on the endpoints of Γε. If not then
reasoning as in (4.76) we would have

J (1)
ε (vε; Γε) ≥ 4cW η1 − Cε(q+3)/2

which is a contradiction. Next let tε3 and tε4 be the first time and last time in Γε that vε equals cε.
We claim that

tε4 − tε3 ≤ C2ε, (4.77)

for some constant C2 > 0 independent of r0, for all ε sufficiently small. Indeed, if vε(t) ∈ [c−ρ, c+ρ]
for all t ∈ [tε3, t

ε
4], then by (4.15),

J (1)
ε (vε; [tε3, t

ε
4]) ≥ ε−1 η(t0)

2
(tε4 − tε3) min

[c−ρ,c+ρ]
W,

and so (4.77) follows from (4.64), where all the constants appearing are independent of r0. On the
other hand if there exists t̃ε ∈ [tε3, t

ε
4] such that |vε(t̃ε)− c| ≥ ρ, say, vε(t̃

ε) ≥ c+ ρ, then by Young’s
inequality, Step 1, (4.65), (4.67) and a change of variables we get

J (1)
ε (vε; [tε3, t

ε
4]) ≥ 2

η(t0)

2

∫ c+ρ

c

W 1/2(s) ds− Cε(q+3)/2q.

Furthermore, by again reasoning as in (4.76), and using the fact that vε takes the values aε+ εk and
bε − εk on the endpoints of Γε we have that

J (1)
ε (vε; Γε\[tε3, tε4]) ≥ 2η1

∫ bε−εk

aε+εk
W 1/2(s) ds ≥ 2cW η1 − Cε(q+3)/2q, (4.78)

with C independent of r0.
Hence, by (4.15), (4.64), and (4.78),

2cW η(t0) + Cε ≥ J (1)
ε (vε; Γε\[tε3, tε4]) + J (1)

ε (vε; [tε3, t
ε
4])

≥ 2cW (η(t0)− ε1) + η(t0)

∫ c+ρ

c

W 1/2(s) ds− Cε(q+3)/2q,

which gives

Cε ≥ η(t0)

∫ c+ρ

c

W 1/2(s) ds− 2cW ε1,

which contradicts (4.65), provided ε is sufficiently small. The case where vε(t̃
ε) ≤ c−ρ is analogous.

Step 4: We claim that for all ε > 0 sufficiently small, Γε is the only maximal subinterval of the
set Oε that intersects the interval J0 defined in Step 2. Indeed, assume that there exists another
maximal subinterval Iε of Oε that intersects J0. By Step 1, Iε ⊂ I0 and (4.74) holds. In view of
Lemma 4.12 there exists tε ∈ Iε such that vε(tε) = cε. Since Iε is a maximal interval of Oε at one of
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the endpoints it attains either the value aε + εk or bε − εk. In the first case, reasoning as in (4.76),
we get

J (1)
ε (vε; Iε) ≥ 2 min

Iε
η

∫
Iε

W 1/2(vε)|v′ε| dt ≥ 2 min
Iε

η

∫ cε

aε+εk
W 1/2(s) ds

≥ 2c−min
Iε

η − C|c− cε| − Cε(q+3)/2q.

A similar inequality holds in the second case, with c+ in place of c−. Hence, by (4.15), (4.64), and
by (4.78),

2cW η(t0) + Cε ≥ J (1)
ε (vε; Γε) + J (1)

ε (vε; Iε)

≥ 2cW min
Γε

η + 2 min{c−, c+}min
Iε

η − Cε

≥ 2cW (η(t0)− ε1) + 2 min{c−, c+}min
I0

η − Cε,

which gives
Cε ≥ 2 min{c−, c+}min

I0
η − 2cW ε1,

which contradicts (4.65) provided ε is sufficiently small.
This proves that Γε is the only maximal subinterval of Oε that intersects J0. In view of (4.56) it

follows that vε takes the value aε + εk on its left endpoint of Γε and bε − εk on the right endpoint.
Indeed, if vε takes the value bε − εk at the left endpoint of Γε then since vε(T2) < a + ρ by (4.56),
then Γε could not be the only maximal subinterval of Oε intersecting J0. At this point we have
established parts (i) and (ii) of our theorem.

Next we show that
L1(Γε) ≤ C3ε| log ε|, (4.79)

for some constant C3 > 0 independent of r0. By Step 1, and the fact that Γε intersects B(t0, r1/2),
we have that Γε ⊂ B(t0, r1) for ε sufficiently small, where r1 is given in (4.70). By (4.69) and (4.70),
we have that η ≥ η1 > 0 on Γε, with η1 independent of r0. The argument in Step 2 then implies
(4.79).
Step 5: We claim that vε < c − ρ in [−T + c(n1)εθ1 ,−T + 2r0]. We first consider the case where
n1 > 1 in (4.2). Suppose the claim does not hold. By (4.56), vε(T1) < a + ρ for ε sufficiently
small and where T1 ∈ (−T,−T + r0). By the intermediate value theorem there exists a point in
(T1,−T + 2r0) where vε takes the value c− ρ. Since −T + εθ1 < T1 for ε sufficiently small, we have
that vε takes the value c− ρ in [−T + εθ1 ,−T + 2r0]. Let tε5 be the last time in [−T + εθ1 ,−T + 2r0]
such that vε(t

ε
5) = c− ρ. We claim that

|tε3 − t0| ≤ C4(ε| log ε|+ (T + tε5)n1), (4.80)

for some C4 > 0 independent of r0, where we recall that tε3 and tε4 are the first time and last time in
Γε that vε equals cε. If tε3 ≤ t0 ≤ tε4, then this follows from (4.77). Assume next that t0 < tε3. Then
from (4.6),

0 =

∫
I

(vε − v0)η dt =

∫ t0

−T
(vε − a)η dt+

∫ tε3

t0

(vε − b)η dt+

∫ T

tε3

(vε − b)η dt. (4.81)

By (4.15),

0 <
η(t0)

2
(b− cε)(tε3 − t0) ≤

∫ tε3

t0

(b− vε)η dt (4.82)

=

∫ t0

−T
(vε − a)η dt+

∫ T

tε3

(vε − b)η dt.
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We now estimate the two terms on the right-hand side of (4.82). By (4.45) and (4.49),∫ T

tε3

(vε − b)η dt ≤ |bε − b|2T max η ≤ Cε1/q, (4.83)

where C is independent of r0. We decompose the interval [−T, t0] as follows

[−T, t0] = [−T, tε5] ∪ [tε5,−T + 2r0] ∪ ([−T + 2r0, t0] \ Γε) ∪ ([−T + 2r0, t0] ∩ Γε), (4.84)

and estimate the integrals over each of these subintervals. By (4.2), (4.45), and (4.49),∫ tε5

−T
(vε − a)η dt ≤ (bε − a)d2

∫ tε5

−T
(T + t)n1−1 dt ≤ 2(b− a)d2(T + tε5)n1 . (4.85)

Let Qε := [tε5,−T + 2r0]∩Oε. Since vε(t
ε
5) = c− ρ, we have that tε5 ∈ Qε. Since tε5 is the last time in

[−T + εθ1 ,−T + 2r0] such that vε takes the value c− ρ, and since, by Step 4, vε(−T + 2r0) ≤ aε + εk

for ε small, it must be that vε < c− ρ in (tε5,−T + 2r0]. By Corollary 4.14, we get that

L1(Qε) ≤ Cε| log ε|, (4.86)

with C independent of r0. Thus by (4.1) and (4.45),∫
Qε

(vε − a)η dt ≤ Cε| log ε| (4.87)

with C independent of r0. On the other hand, since vε ≤ aε + εk in [tε5,−T + 2r0] \ Qε, by (4.45)
and (4.47),∫

[tε5,−T+2r0]\Qε
(vε − a)η dt ≤ |aε + εk − a|d2

∫ −T+2r0

−T
(T + t)n1−1 dt ≤ Crn1

0 ε1/q, (4.88)

with C independent of r0. Since the set Oε intersects the interval J0 only in Γε by Step 3, and as
t0 < tε3, we have that vε ≤ aε + εk in [−T + 2r0, t0] \ Γε. Hence, by (4.45) and (4.47),∫

[−T+2r0,t0]\Γε
(vε − a)η dt ≤ |aε + εk − a|2T max η ≤ Cε1/q, (4.89)

with C again independent of r0. Again by Step 3, [−T + 2r0, t0] ∩ Γε = [t0 − r1, t0] ∩ Γε. Hence, by
(4.45) and (4.79), ∫

[t0−r1,t0]∩Γε

(vε − a)η dt ≤ Cε| log ε|, (4.90)

for C independent of r0. Combining the inequalities (4.82), (4.83), (4.84), (4.85), (4.86), (4.87),
(4.88), (4.89) and (4.90) gives

η(t0)

2
(b− cε)(tε3 − t0) ≤ Cε| log ε|+ 2(b− a)d2(T + tε5)n1 ,

with C independent of r0, which implies (4.80) in the case t0 < tε3.
It remains to prove (4.80) in the case tε4 < t0. Then (4.81) should be replaced by

0 =

∫ T

−T
(vε − v0)η dt =

∫ tε4

−T
(vε − a)η dt+

∫ t0

tε4

(vε − a)η dt+

∫ T

t0

(vε − b)η dt
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and (4.82) by

0 <
η(t0)

2
(cε − a)(t0 − tε4) ≤

∫ t0

tε4

(vε − a)η dt ≤
∫ T

t0

(b− vε)η dt+

∫ tε4

−T
(a− vε)η dt.

By (4.45) and (4.47), ∫ tε4

−T
(a− vε)η dt ≤ |a− aε|2T ≤ Cε1/q,

with C independent of r0. The integral
∫ T
t0

(b− vε)η dt can be estimated as in the case t0 < tε3. We

omit the details. Hence, we have shown that (4.80) holds in all cases.
Since tε3 ∈ Γε, by (4.79) and (4.80), it follows that for any t ∈ Γε,

|t− t0| ≤ |t− tε3|+ |tε3 − t0| ≤ C5(ε| log ε|+ (T + tε5)n1),

where C5 > 0 is independent of r0. In turn, by the mean value theorem

η(t) = η(t0) + η′(θ)(t− t0) ≥ η(t0)−M0|t− t0|
≥ η(t0)− C5M0(ε| log ε|+ (T + tε5)n1),

where we recall that M0 = max |η′|+ 1. Hence, also by (4.78) we get

J (1)
ε (vε; Γε) ≥ 2cW min

Γε
η − Cε(q+3)/2q ≥ 2cW η(t0)− C6(ε| log ε|+ (T + tε5)n1)

with C6 > 0 independent of r0. On the other hand, since vε(t
ε
5) = c − ρ, there exists a maximal

subinterval Sε of Qε that contains tε5. As argued just before (4.86), it must be that vε(Sε) ⊃
[aε + εk, c− ρ], and so reasoning as in (4.76), by (4.2), which can be applied since 2r0 < t∗ by (4.16)
and (4.86) holds,

J (1)
ε (vε;Sε) ≥ 2 min

Sε
η

∫ c−ρ

aε+εk
W 1/2(s) ds

≥ 2d1(T + tε5)n1−1

∫ c−ρ

a+ρ

W 1/2(s) ds,

for ε > 0 small enough. Combining these last two estimates, it follows from (4.64) that

2cW η(t0) + Cε ≥ J (1)
ε (vε; Γε) + J (1)

ε (vε;Sε) ≥ 2cW η(t0)− C6(ε| log ε|+ (T + tε5)n1)

+ 2d1(T + tε5)n1−1

∫ c−ρ

a+ρ

W 1/2(s) ds,

which gives

Cε| log ε| ≥ (T + tε5)n1−1

(
2d1

∫ c−ρ

a+ρ

W 1/2(s) ds− C6(T + tε5)

)
.

Since −T + εθ1 ≤ tε5 ≤ −T + 2r0, by taking

0 < r0 <
d1

C6

∫ c−ρ

a+ρ

W 1/2(s) ds,

we get a contradiction, since θ1(n1 − 1) < 1 by (4.53).
Finally we consider the case where n1 = 1. In this case we can use energy estimates, as in Step

4, the fact that η ≥ C > 0 on [−T,−T + 2r0], and Lemma 4.12 to show that vε(t) < aε + εk on the
interval [−T,−T + 2r0]. We omit the details.
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Step 6: Finally, we prove the last claim in our theorem. We write Γε = [T ε1 , T
ε
2 ]. By the remark

at the end of Step 5, in the case n1 = 1 we are already done, so we only need to consider the
case n1 > 1. In view of Step 5 we can use the barrier method in Lemma 4.13 to show that for
t ∈ [−T + εθ1 , T ε1 ]

|vε(t)− aε| ≤ Ce−µε
−1d(t,{−T+εθ1 ,T ε1 })

This clearly implies that vε(t) ∈ [aε, aε + εk) for all t ∈ (−T + εθ1 + 2kµ−1ε| log ε|, T ε1 ). Using (4.2)
we then estimate the η measure of the remaining set as follows:∫ −T+εθ1+2kµ−1ε| log ε|

−T
η dt ≤ d2

n1
(εθ1 + Cε| log ε|)n1 ≤ Cεn1θ1

Since n1θ1 > 1 by (4.53), then we have the desired estimate. Thus the result holds to the left of T ε1 .
We can use the same argument to the right of T ε2 to obtain the desired result.

4.3 Second-Order Γ-limit

In this subsection we prove the lim inf counterpart of Theorem 4.7.

Theorem 4.17. Assume that W satisfies (2.4)-(2.7) and that η satisfies (4.1)-(4.4) and let v0 and
vε be given in Theorems 4.6 and 4.8 respectively. Then

lim inf
ε→0+

G
(1)
ε (vε)− 2cW η(t0)

ε
≥ 2η′(t0)(τ0cW + csym)

+

{
λ2
0

2W ′′(a)

∫
I
η ds if q = 1,

0 if q < 1.

(4.91)

Note that Theorems 4.7 and 4.17 together provide a second-order asymptotic development by
Γ-convergence for the functionals Jε defined in (4.18). To prove Theorem 4.17 it is convenient to
rescale the functionals Gε. We define

Hε(w) :=

∫ Bε−1

Aε−1

(W (w(s)) + (w′(s))2)ηε(s) ds (4.92)

for all w ∈ H1
ηε((Aε

−1, Bε−1)) such that∫ Bε−1

Aε−1

|w(s)− sgna,b(s)|ηε(s) ds ≤
δ

ε
,

∫ Bε−1

Aε−1

(w(s)− sgna,b(s))ηε(s) ds = 0, (4.93)

where A = −T − t0, B = T − t0 and

ηε(s) := η(t0 + εs). (4.94)

Observe that we have shifted our variables so that t0 moves to zero and then scaled by ε−1,
which in view of (4.93) implies that minimizers of Hε are precisely rescaled versions of minimizers
of Jε. Here we study the behavior of minimizers wε of Hε. First we prove a bound on the locations
where wε = cε, in the region close to t = 0.

Lemma 4.18. Let wε be a minimizer of Hε, and let τε ∈ B(0, r1ε
−1) satisfy wε(τε) = cε, with r1

as in Theorem 4.11 (i). Then we have that

|τε| ≤ C

for all ε > 0 sufficiently small and for some constant C > 0 independent of ε.
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Proof. This proof essentially combines the mass constraint with the exponential decay to obtain the
desired bounds.

Let sε1 be the first time in [−r1ε−1, r1ε
−1] so that wε(s

ε
1) = c − ρ, and sε4 be the last time in

[−r1ε−1, r1ε
−1] so that wε(s

ε
4) = c+ρ. Then let sε2 and sε3 be the first and last times in [−r1ε−1, r1ε

−1]
where wε takes the value cε. We note that such points exist by Theorem 4.11 (i). Furthermore,
by Theorem 4.11 (ii) we know that sε3 − sε2 ≤ C and that −r1ε−1 < sε1 < sε2 ≤ sε3 < sε4 < r1ε

−1.
Furthermore, using the same argument from the proof of (4.45) we know that wε([s

ε
1, s

ε
2]) = [c−ρ, cε],

and that wε([s
ε
3, s

ε
4]) = [cε, c+ ρ]. We can then estimate the following:

(sε2 − sε1) inf
B(t0,r1)

η inf
(c−ρ,c+ρ)

W ≤
∫ sε2

sε1

W (wε)ηε ds ≤ C.

This, along with a similar estimate for sε4 − sε3, then implies that sε4 − sε1 ≤ C. Thus if we can prove
that the sε1 are bounded above and that the sε4 are bounded below then we are done.

Suppose, for the sake of contradiction that the sε1 are not bounded above. By taking a subse-
quence as necessary we may assume that sε1 →∞.

By (4.45) and Lemma 4.13 we have the following bounds

0 < wε(s)− aε ≤ 2(c− ρ− aε)e−µ|s−s
ε
1| for s ∈ [−r1ε−1, sε1], (4.95)

0 < bε − wε(s) ≤ 2(bε − c− ρ)e−µ(s−sε4) for s ∈ [sε4, r1ε
−1]. (4.96)

By our mass constraint (4.93) we can write:

0 =

∫ Bε−1

Aε−1

(wε − sgna,b)ηε ds =

∫ sε1

Aε−1

(wε − sgna,b)ηε ds (4.97)

+

∫ sε4

sε1

(wε − sgna,b)ηε ds+

∫ Bε−1

sε4

(wε − sgna,b)ηε ds.

We will estimate these terms to obtain a contradiction. By (4.45) and the fact that 0 < sε4− sε1 ≤ C
we have that ∣∣∣∣∣

∫ sε4

sε1

(wε − sgna,b)ηε ds

∣∣∣∣∣ ≤ C.
We can also calculate ∫ sε1

Aε−1

(wε − sgna,b)ηε ds

=

∫ sε1

Aε−1

(wε − aε)ηε ds+

∫ sε1

Aε−1

(aε − sgna,b)ηε ds.

By (4.95) we have that

0 ≤
∫ sε1

−r1ε−1

(wε − aε)ηε ds ≤ 2(c− ρ− aε) max η

∫ sε1

−r1ε−1

e−µ|s−s
ε
1| ds ≤ C,

whereas by Theorem 4.11 (iii) and (4.45) we know that∣∣∣∣∣
∫ −r1ε−1

Aε−1

(wε − aε)ηε ds
∣∣∣∣∣ ≤ Cεk−1 + o(1).

Furthermore as aε = a+O(ε1/q) by Theorem 4.10, we may estimate that∣∣∣∣∫ 0

Aε−1

(aε − sgna,b)ηε ds

∣∣∣∣ ≤ Cε 1−q
q .
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A similar argument, and the fact that 0 < sε1 < sε4 shows that∣∣∣∣∣
∫ Bε−1

sε4

(wε − sgna,b)ηε ds

∣∣∣∣∣ ≤ C.
Now as sε1 →∞ we then have that

lim
ε→0+

∣∣∣∣∣
∫ sε1

0

(aε − sgna,b)ηε ds

∣∣∣∣∣ ≥ lim
ε→0+

inf
B(t0,r1)

η

∣∣∣∣∣
∫ sε1

0

(aε − b) ds
∣∣∣∣∣ =∞. (4.98)

Combining (4.97)–(4.98) gives

lim
ε→0+

∣∣∣∣∣
∫ Bε−1

Aε−1

(wε − sgna,b)ηε ds

∣∣∣∣∣ =∞.

This violates the mass constraint. Thus we must have that the sε1 are bounded above.
A similar argument shows that sε4 is bounded below. As τε ∈ (sε1, s

ε
4) and sε4 − sε1 ≤ C, we then

have that |τε| ≤ C, which is the desired conclusion.

We then prove that the functions wε necessarily converge.

Lemma 4.19. Let wε be as in Lemma 4.18. Then (up to a subsequence, not relabeled) {wε}
converges weakly in H1((−l, l)) for every l ∈ N to the profile w0(s) := z(s − τ0), where τ0 is
determined by (4.21). Moreover, the family {w′ε} is bounded in L∞((Aε−1, Bε−1)).

Proof. Throughout this proof we let wε be associated with its extension by constants outside of
[Aε−1, Bε−1]. The fact that the family {w′ε} is uniformly bounded in L∞(R) follows immediately
from Lemma 4.16. Furthermore, we have that the wε are bounded in L∞(R) by (4.45). After a
diagonalization argument, this implies that for some w0 ∈ H1

loc(R),

wε ⇀ w0 in H1
loc(R). (4.99)

By (4.39) and (4.46) we have that{
2(w′εηε)

′ −W ′(wε)ηε = ελεηε on (Aε−1, Bε−1),

w′ε(Aε
−1) = w′ε(Bε

−1) = 0.

Hence for every φ ∈ C∞c (R) for ε small enough we find that∫ Bε−1

Aε−1

2w′εηεφ
′ +W ′(wε)ηεφds = −

∫ Bε−1

Aε−1

ελεηεφds.

Letting ε→ 0 and using (4.94) and (4.99) gives∫
R

2w′0η(t0)φ′ +W ′(w0)η(t0)φds = 0,

which then shows that w0 satisfies the differential equation

2w′′0 = W ′(w0). (4.100)

Furthermore, by (4.45) we know that a ≤ w0 ≤ b, which by (4.100) implies that |w′′0 | ≤ C. Also, by
(4.37) and the fact that Hε(wε) = Jε(vε), where vε is a minimizer of Jε,

η(t0)

∫ l

−l
(w′0)2 +W (w0) ds ≤ lim

ε→0

∫ l

−l
((w′ε)

2 +W (wε))ηε ds ≤ lim
ε→0+

Hε(wε) = 2cW η(t0)
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for every l ∈ N, and thus

η(t0)

∫
R
(w′0)2 +W (w0) ds ≤ 2cW η(t0). (4.101)

This combined with the fact that |w′′0 | ≤ C (by (4.100)) implies that lims→±∞ w′0(s) = 0. By
then using (4.95) and (4.96) along with Lemma 4.18 we have that lims→−∞ w0(s) = a, and that
lims→∞ w0(s) = b. Thus by integrating (4.100) we find that

(w′0)2 = W (w0). (4.102)

We next claim that w0 is increasing. Suppose not. Then by (4.102) there exists critical points
t1 < t2 of w0, with w0(t1) = b and w0(t2) = a. This then implies, by Young’s inequality, (4.101) and
a change of variables that

6cW η(t0) ≤ 2cW η(t0).

This is impossible and thus w0 is increasing. Moreover, by (4.48), (4.99), and Lemma 4.18, up to
a subsequence, τε → τ0 with w0(τ0) = c. This then implies that w0(s) = z(s − τ0), where z is the
solution of the Cauchy problem (1.17).

The only thing left to prove is that τ0 is determined by equation (4.21). To this end, fix l large
enough that (sε1, s

ε
4) ⊂ (−l, l) for all ε, where sε1 and sε4 are as in the proof of Lemma 4.18. Then by

the mass constraint (4.93) we have that

0 =

∫ Bε−1

Aε−1

(wε − sgna,b)ηε ds =

∫ l

−l
(wε − sgna,b)ηε ds

+

∫ −l
−r1ε−1

(wε − aε + aε − sgna,b)ηε ds+

∫ r1ε
−1

l

(wε − bε + bε − sgna,b)ηε ds

+

∫ −r1ε−1

Aε−1

(wε − aε + aε − sgna,b)ηε ds+

∫ Bε−1

r1ε−1

(wε − bε + bε − sgna,b)ηε ds.

By the definitions of sε1 and sε4 it must be that vε ≤ c− ρ in the interval [−r1ε−1,−l] and vε ≥ c+ ρ
in the interval [l, r1ε

−1]. Hence by (4.45) and (4.61) we have that

0 ≤
∫ r1ε

−1

l

(bε − wε)ηε ds ≤ 2
(
(bε − wε(l)) + (bε − wε(r1ε−1)

)
max η

∫ ∞
0

e−µs ds

≤ C(bε − wε(l) + εk),

where in the last inequality we have used (4.54) and Theorem 4.11. Similarly, we have

0 ≤
∫ −l
−r1ε−1

(wε − aε)ηε ds ≤ C(wε(−l)− aε + εk).

By (4.45) we can write:∫ −l
Aε−1

(aε − sgna,b)ηε ds = −λε|λε|1/q−1(q/`)1/qε1/q−1

∫ t0

−T
η dt + o(ε1/q−1),∫ Bε−1

l

(bε − sgna,b)ηε ds = −λε|λε|1/q−1(q/`)1/qε1/q−1

∫ T

t0

η dt+ o(ε1/q−1).

Furthermore by Theorem 4.11 along with (4.45) we have that∫ −r1ε−1

Aε−1

(wε − aε)ηε ds = o(1),∫ Bε−1

r1ε−1

(bε − wε)ηε ds = o(1).
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Utilizing these estimates, and taking ε→ 0 we find that

0 = η(t0)

∫ l

−l
w0 − sgna,b ds− λ0|λ0|1/q−1(q/`)1/q lim

ε→0+
ε1/q−1

∫
I

η dt

+O(|a− w0(−l)|) +O(|b− w0(l)|).
Taking l to infinity, and using (2.5) then implies that

η(t0)

∫
R
w0 − sgna,b ds =

{
λ0

W ′′(a)

∫
I
η ds if q = 1,

0 if q < 1,

which then implies that τ0 has the desired form. This completes the proof.

Next we will use the previous lemmas to derive a second-order liminf inequality, which immedi-
ately implies Theorem 4.17.

Lemma 4.20. Let {wε} be minimizers of the functionals {Hε}. Then we have the following:

lim inf
ε→0+

Hε(wε)− 2cW η(t0)

ε
≥ 2η′(t0)(τ0cW + csym) (4.103)

+

{
λ2
0

2W ′′(a)

∫
I
η(s) ds if q = 1,

0 if q < 1,

where cW , csym, τ0, λ0 are given by (1.10), (1.16), (4.21) and (4.40) respectively.

Proof. Fix k to be a large integer. By (4.95) and (4.96) and the fact that sε1 and sε4 are bounded
we can find lε ∈ (sε2, r1ε

−1) such that bε − wε(lε) < εk and wε(−lε) − aε < εk for ε > 0 sufficiently
small. Recall that by Corollary 4.14 we can take

lε < C| log ε|. (4.104)

By (4.92) we can compute

Hε(wε)− 2cW η(t0)

ε

= ε−1

∫ lε

−lε
(W 1/2(wε)− w′ε)2ηε ds+ 2ε−1

∫ lε

−lε
W 1/2(wε)w

′
ε(ηε − η(t0)) ds

+ ε−1

∫
[Aε−1,Bε−1]\(−lε,lε)

(
W (wε) + (w′ε)

2
)
ηε ds+ ε−12η(t0)

(∫ lε

−lε
W 1/2(wε)w

′
ε ds− cW

)

≥ 2ε−1

∫ lε

−lε
W 1/2(wε)w

′
ε(ηε − η(t0)) ds

+ ε−1

∫
[Aε−1,Bε−1]\(−lε,lε)

W (wε)ηε ds+ ε−12η(t0)

(∫ lε

−lε
W 1/2(wε)w

′
ε ds− cW

)
.

We will examine the individual terms. The last term goes to zero as

ε−1

∣∣∣∣∣
∫ lε

−lε
W 1/2(wε)w

′
ε ds− cW

∣∣∣∣∣ ≤ ε−1

∣∣∣∣∣
∫ wε(lε)

wε(−lε)
W 1/2(r) dr −

∫ b

a

W 1/2(r) dr

∣∣∣∣∣
≤ ε−1

∣∣∣∣∣
∫ bε

aε

W 1/2(r) dr −
∫ b

a

W 1/2(r) dr

∣∣∣∣∣+ Cεk−1

≤ Cε−1

∫ ε1/q

0

t
1+q
2 dt+ Cεk−1 = o(1), (4.105)
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where we have used (1.10), (2.9) and (4.45).
For s ∈ [lε, Bε

−1] ∩ {wε ≥ bε − εk} by the mean value theorem we can write

W (wε(s)) = W (bε) +W ′(ζε)(wε(s)− bε),
where ζε ∈ [wε(s), bε]. By (2.10) and (4.49) for such s we then have that

|W ′(ζε)|(bε − wε(s)) ≤ C|ζε − b|q(bε − wε(s))
≤ C(|ζε − bε|q + |bε − b|q)(bε − wε(s))
≤ C(εqk + ε)εk ≤ Cεk+1.

Thus we can write, after applying (2.9), part (iii) of Theorem 4.11, (4.49), and (4.104),

ε−1

∫ Bε−1

lε

W (wε)ηε ds ≥ ε−1W (bε)

∫ Bε−1

lε

ηε ds+O(εk−1)

= ε−1

(
`

q(1 + q)
|bε − b|1+q + o(|bε − b|1+q)

)(
ε−1

∫ T

t0

η dt+O(| log ε|)
)

+O(εk−1)

=

(
q1/q|λε|1+1/q

(1 + q)`1/q
+ o(1)

)(
ε1/q−1

∫ T

t0

η dt+O(ε1/q| log ε|)
)

+O(εk−1).

An analogous bound will hold on the interval [Aε−1,−lε]. Hence

lim
ε→0+

ε−1

∫
[Aε−1,Bε−1]\(−lε,lε)

W (wε)ηε ds =

{
λ2
0

2W ′′(a)

∫
I
η dt if q = 1,

0 if q < 1.
(4.106)

For the first term we use assumption (4.1) to estimate ηε(s)− η(t0) = εsη′(t0) +O(ε1+β |s|1+β).
Using (4.45), Lemma 4.19 and (4.104) we have that∣∣∣∣∣ε−1

∫ lε

−lε
W 1/2(wε)w

′
εO(ε1+β |s|1+β) ds

∣∣∣∣∣ ≤ Cεβ | log ε|2+β → 0.

Thus we find that:

lim
ε→0+

2ε−1

∫ lε

−lε
W 1/2(wε)w

′
ε(ηε − η(t0)) ds = 2η′(t0) lim

ε→0+

∫ lε

−lε
W 1/2(wε)w

′
εs ds.

Now for any fixed l by (4.99) and the fact that w0(s) = z(s− τ0), we can write

lim
ε→0+

∫ l

−l
W 1/2(wε)w

′
εs ds =

∫ l

−l
W 1/2(w0)w′0s ds

=

∫ l−τ0

−l−τ0
W 1/2(z(t))z′(t)(t+ τ0) dt

= τ0Φ(z(l − τ0))− τ0Φ(z(−l − τ0)) +

∫ l−τ0

−l−τ0
W 1/2(z(t))z′(t)t dt,

where we recall that Φ(s) =
∫ s
a
W 1/2(r) dr. Furthermore we can establish the following bound using

(2.9), (4.96) and Lemma 4.19:∣∣∣∣∣
∫ lε

l

W 1/2(wε)w
′
εs ds

∣∣∣∣∣ ≤ C
∫ lε

l

|b− wε|
1+q
2 s ds

≤ C(|bε − c− ρ|
1+q
2 + |bε − b|

1+q
2 )

∫ ∞
l

e−
1+q
2 µ(s−sε4)s ds,
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provided l > sε4. Thus we can write

lim
ε→0+

∫ lε

−lε
W 1/2(wε)w

′
εs ds = τ0Φ(z(l − τ0))− τ0Φ(z(−l − τ0))

+

∫ l−τ0

−l−τ0
W 1/2(z(s))z′(s)s ds+O(le−

1+q
2 µl).

Taking l to ∞, combined with (4.105) and (4.106) gives the desired claim, namely, (4.103).

We now give the proof of Theorem 4.17.

Proof of Theorem 4.17. By changing variables it is immediate that H(wε) = G
(1)
ε (vε). Lemma 4.20

then immediately implies (4.91). This concludes the proof.

5 Proofs of Main Theorems

With our tools in hand, we now can approach the problem of proving Theorems 1.1 and 1.2. We
begin by proving the Γ-lim inf inequalities from Theorems 1.1 and 1.2. Precisely, we prove the
following theorem:

Theorem 5.1. Assume that Ω satisfies (2.1), m satisfies (2.2), IΩ satisfies (2.3) and that W satisfies
(2.4)-(2.7). Let {un} ⊂ L1(Ω) converge to u in L1(Ω). Then

lim inf
ε→0+

F (2)
ε (uε) ≥ F (2)(u),

where F (2)
ε is defined by (1.3) and F (2)is defined in Theorems 1.1 and 1.2.

Proof. If lim infε→0+ F (2)
ε (uε) =∞ then there is nothing to prove. Thus, passing to a subsequence,

if necessary, we can assume that
sup
ε
F (2)
ε (uε) <∞. (5.1)

By standard results on compactness and lower semicontinuity for the Cahn–Hilliard functional F (1)
ε

(see, e.g., [45] and the references therein), it follows from (1.3), (1.4) and (5.1) that u must be a
minimizer of F (1). This implies that the set E := {u = a} is a minimizer of (1.11), and its mean
curvature is given by (1.14). Using I∗Ω from Proposition 3.1 as in Section 3, we then have that

Fε(uε) ≥
∫
I

(W (fuε) + ε2(f ′uε)
2)I∗Ω(VΩ) dt, m =

∫
Ω

uε dx =

∫
I

fuεI∗Ω(VΩ) dt,

where VΩ and fu are defined in Section 3 (see (3.8), (3.15) and Remark 3.11). We then set η :=
I∗Ω(VΩ). This η will satisfy all of the assumptions in Section 4. Indeed, since VΩ > 0 in (−T,∞)
and VΩ(−T ) = 0, by (3.5) and (3.8), VΩ(t) = [C0/n(t+ T )]n near −T , and so η = Cn0 [ 1

n (t+ T )]n−1,
which shows that (4.2) and (4.4) hold for t close to −T . On the other hand, since VΩ(t) = 1−VΩ(−t)
(by (3.2) and (3.8)), for t close to T we have that η(t) = Cn0 [ 1

n (T − t)]n−1 and thus (4.3) and (4.4)

hold close to T . Since I∗Ω ∈ C1,β
loc (0, 1), by (3.8) we have that VΩ ∈ C2,β

loc (I), and in turn η ∈ C1,β
loc (I).

Thus (4.1) is satisfied. Finally, since I∗Ω > 0 in (0, 1) we have by (3.3) that η > 0 in I, and thus
(4.4) holds on any compact subset of I by uniform continuity.

Next observe that since u ∈ BV (Ω, {a, b}) and (1.2) holds, by Lemma 3.3 we have that fu only
takes the values a and b and

∫
I
fuη dt =

∫
Ω
u dx = m. Since fu is increasing, this implies that

fu(t) = sgna,b(t − t0) for some t0 ∈ I and all t ∈ I. It follows from Theorem 4.6 that fu is a local

minimizer of the functional G(1) defined in (4.11). Moreover, by Lemma 3.4 we have that uε → u
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in L1(Ω) implies that fuε → fu in L1
η(I). Hence, ‖fuε − fu‖L1

η
≤ δ for all ε sufficiently small, where

δ > 0 is the number given in Theorem 4.6 (with v0 = fu). In turn choosing vε to be minimizers of
the function Jε defined in (4.18), by Corollary 3.12 we have that

Fε(uε) ≥ Gε(fuε) = Jε(fuε) ≥ Jε(vε). (5.2)

Since
∫
I
fuη dt = m, it follows from the fact that (see (2.1) and Lemma 3.3)

1 = Ln(Ω) =

∫
I

η dt (5.3)

and (3.8) that

vm =
b−m
b− a = Ln({u = a}) =

∫ t0

−T
η dt =

∫ t0

−T

d

dt
VΩ dt = VΩ(t0). (5.4)

In turn, by (3.4),
η(t0) = I∗Ω(vm) = IΩ(vm) = P({u = a}; Ω),

which shows that F (1)(u) = G(1)(fu). Hence by (5.2) we have that

F (2)
ε (uε) =

F (1)
ε (uε)−F (1)(u)

ε
≥ J

(1)
ε (vε)− J (1)(fu)

ε
= J (2)

ε (vε).

By applying Lemma 4.20 we thus have that

lim inf
ε→0+

F (2)
ε (uε) ≥ 2η′(t0)(τ0cW + csym) +

{
λ2
0

2W ′′(a) if q = 1,

0 if q < 1,
(5.5)

where we have used (5.3). By (3.8) we have that η′(t) = (I∗Ω)′(VΩ(t))η(t), and so by (1.14), (3.4)
and (5.4),

η′(t0) = I ′Ω(vm)IΩ(vm) = (n− 1)κu P({u = a}; Ω).

In turn by (1.20) and (4.22),

λ0 =
2(n− 1)cW

(b− a)
κu = Λu, (5.6)

and so by (4.21) the number τ0 coincides with the number τu in (1.18). Combining (5.5)-(5.6) gives

lim inf
ε→0+

F (2)
ε (uε) ≥ 2(τucW + csym)(n− 1)κu P({u = a}; Ω) +

{
Λ2
u

2W ′′(a) if q = 1,

0 if q < 1.

This completes the proof.

Remark 5.2. We note that the assumption that Ω is C2 is not truly necessary to prove the previous
theorem. A Lipschitz domain satisfying (2.3) would actually be sufficient. However, for a Lipschitz
domain it is not clear that (2.3) need hold, and furthermore for the Γ-lim sup inequality we directly
utilize the fact that Ω ∈ C2.

Now we prove the corresponding Γ-lim sup inequality.

Theorem 5.3. Assume that Ω satisfies (2.1), m satisfies (2.2) and that W satisfies (2.4)-(2.7). Let
u ∈ L1(Ω). Then there exists a sequence {un} ⊂ L1(Ω) that converges to u in L1(Ω) such that

lim sup
ε→0+

F (2)
ε (uε) ≤ F (2)(u),

where F (2)
ε is defined by (1.3) and F (2)is defined in Theorems 1.1 and 1.2.
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We note that Theorems 5.1 and 5.3 together establish Theorems 1.1 and 1.2. To prove this
theorem, we primarily utilize the approach from previous works (see [49, 60]), while leveraging the
insight regarding skew in transition layers that we have developed over the course of this work. We
begin with the following lemma:

Lemma 5.4. Suppose that E ⊂ Ω is a volume-constrained perimeter minimizer in Ω. Define the
function η(s) := Hn−1({dE(x) = s}), where dE is the signed distance function (see (2.13)). Then η
is twice differentiable at zero and satisfies

η(0) = P(E; Ω), (5.7)

η′(0) = (n− 1)κE P(E; Ω), (5.8)

where κE is the mean curvature of E. Furthermore, the function η is bounded.

Proof. By classical results (see [28]), we have that (5.7) holds. To prove that η is twice differentiable
at 0 and that (5.8) holds we are primarily concerned with possible interactions with ∂Ω. By [35]
we know that ∂E is a C2,α surface, that intersects ∂Ω orthogonally. By appropriately reflecting E
outside of Ω we may assume that E is a C2,α set in Rn. Since ∂E is of class C2,α for every x ∈ ∂E
there exist a ball B (x, rx), with local coordinates y = (y′, yn) ∈ Rn−1 × R such that x corresponds
to y = 0, and a function g of class C2,α(Rn−1) such that g(0) = 0, ∂g

∂yi
(0) = 0 for all i = 1, . . . , n−1,

and

E ∩B(x, rx) = {y ∈ B(0, rx) : yn < g(y′)},
∂E ∩B(x, rx) = {y ∈ B(0, rx) : yn = g(y′)}.

In what follows we use local coordinates and we set y′′ := (y2, . . . , yn−1). In particular, since ∂E
meets the boundary of Ω transversally, if x ∈ ∂E ∩ ∂Ω, by a rotation and by taking rx smaller, we
can assume that

Ω ∩B(x, rx) = {y ∈ B(0, rx) : y1 < f(y′′, yn)},
∂Ω ∩B(x, rx) = {y ∈ B(0, rx) : y1 = f(y′′, yn)}

for some function f ∈ C2,α(Rn−1). Setting F (y) := y1 − f(y′′, yn) and G(y) := yn − g(y1, y
′′), by

the transversality condition we have that

0 = ∇F (y) · ∇G(y) = − ∂g

∂y1
(y′) (5.9)

+

n−1∑
k=2

∂f

∂yk
(y′′, yn)

∂g

∂yk
(y′)− ∂f

∂yn
(y′′, yn)

for all y ∈ ∂E ∩ ∂Ω ∩B(0, rx). For |s| sufficiently small the set

Es := {ζ ∈ Rn : dE(ζ) = s}

in a neighborhood of x is given by an n− 1-dimensional manifold parametrized by

ϕi(y
′, s) = yi − s

∂g

∂yi
(y′)

(
1 + |∇g(y′)|2n−1

)−1/2

(5.10)

ϕn(y′, s) = g(y′) + s
(

1 + |∇g(y′)|2n−1

)−1/2

(5.11)

for all i = 1, . . . , n−1 and for y′ ∈ Qn−1(0, r′x), where 0 < r′x < rx and we are using local coordinates
(see [42]). Here Qn−1(0, r) denotes the cube (−r/2, r/2)n−1 and | · |n−1 denotes the norm in Rn−1.
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We are interested in in the surface area of Es contained in Ω, or in other words, the area of the
region characterized by

ϕ1(y′, s) > f(ϕ2(y′, s), . . . , ϕn(y′, s)). (5.12)

Consider the function

H(y′, s) := ϕ1(y′, s)− f(ϕ2(y′, s), . . . , ϕn(y′, s)). (5.13)

By (5.10) and (5.11) we have

∂H

∂y1
(y′, s) =

∂ϕ1

∂y1
(y′, s)−

n∑
k=2

∂f

∂yk
(ϕ2(y′, s), . . . , ϕn(y′, s))

∂ϕk
∂y1

(y′, s).

Taking y′ = 0 and recalling that ∂g
∂yi

(0) = 0 for all i = 1, . . . , n− 1 gives

∂H

∂y1
(0, s) = 1− s∂

2g

∂y2
1

(0) + s

n−1∑
k=2

∂f

∂yk
(0)

∂2g

∂y2
k

(0) > 0

provided we take
1 > s(1 + ‖∇f‖L∞(Qn−1(0,r′x)))

∥∥∇2g
∥∥
L∞(Qn−1(0,r′x))

.

By taking r′x > 0 smaller, it follows by the implicit function theorem that there exists a function
h(y′′, s) of class C1,α such that the condition (5.12) is equivalent to

y1 > h(y′′, s) (5.14)

for all for y′ = (y1, y
′′) ∈ Qn−1(0, r′x) and all s > 0 sufficiently small. Moreover, since f is of class

C2,α and the functions ϕi and ∂ϕi
∂yk

are infinitely differentiable in the variable s (by (5.10) and (5.11)),

we have that ∂2h
∂s2 and ∂2h

∂s∂yi
exist and are continuous. By (5.9), (5.10), (5.11), and (5.13),

∂H

∂s
(y′, 0) =

∂ϕ1

∂s
(y′, 0)−

n∑
k=2

∂f

∂yk
(ϕ2(y′, 0), . . . , ϕn(y′, 0))

∂ϕk
∂s

(y′, 0)

= −
(

1 + |∇g(y′)|2n−1

)−1/2 ∂g

∂y1
(y′)

+
(

1 + |∇g(y′)|2n−1

)−1/2 n−1∑
k=2

∂f

∂yk
(y′′, g(y′))

∂g

∂yk
(y′)

−
(

1 + |∇g(y′)|2n−1

)−1/2 ∂f

∂yn
(y′′, g(y′)) = 0.

It follows by the implicit function theorem that

∂h

∂s
(y′′, 0) = −∂H

∂s
(h(y′′, 0), y′′, 0)

(
∂H

∂y1
(h(y′′, 0), y′′, 0)

)−1

= 0. (5.15)

By (5.14), in a neighborhood of x the surface area of Es inside Ω is given by the surface integral

Ax(s) :=

∫
Qn−2(0,r′x)

∫ r′x/2

h(y′′,s)

√√√√∑
α∈Ξ

[
det

∂
(
ϕα1

, . . . , ϕαn−1

)
∂ (y1, . . . , yn−1)

(y′, s)

]2

dy1dy
′′,

where
Ξ :=

{
α ∈ Nn−1 : 1 ≤ α1 < α2 < · · · < αn−1 ≤ n

}
.
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By standard theorems of differentiation under the integral sign, we have that Ax is of class C2.
Moreover, by (5.15),

A′x(0) =

∫
Qn−1(0,r′x)

∂

∂s


√√√√∑
α∈Ξ

[
det

∂
(
ϕα1

, . . . , ϕαn−1

)
∂ (y1, . . . , yn−1)

(y′, s)

]2

s=0

dy′

− ∂h

∂s
(y′′, 0)

∫
Qn−2(0,r′x)

√√√√∑
α∈Ξ

[
det

∂
(
ϕα1

, . . . , ϕαn−1

)
∂ (y1, . . . , yn−1)

(h(y′′, 0, ), y′′, 0)

]2

dy′′

=

∫
Qn−1(0,r′x)

∂

∂s


√√√√∑
α∈Ξ

[
det

∂
(
ϕα1 , . . . , ϕαn−1

)
∂ (y1, . . . , yn−1)

(y′, s)

]2

s=0

dy′.

As the boundary term has dropped out we can then obtain (5.8) using a partition of unity and
classical formulas (see, e.g., [47]).

The fact that η is bounded follows from [54]. This completes the proof.

We then prove our Γ-lim sup inequality.

Proof of Theorem 5.3. If u /∈ U1 the inequality is trivial. Thus, let u ∈ U1. Then we have that u is
of the form aχE + bχEc . Define

η(t) := Hn−1({x : dE(x) = t}). (5.16)

By Lemma 5.4 we have that η satisfies the assumptions of Theorem 4.7. Let vε be the one-dimensional
function constructed in Theorem 4.7, using η chosen via (5.16). Define uε(x) := vε(dE(x)). By the
coarea formula for Lipschitz functions we have that

F (2)
ε (uε) =

1

ε

(∫
R

(ε−1W (vε(t)) + ε(v′ε)
2)Hn−1({x : dE(x) = t}) dt− 2cW η(0)

)
.

Applying Theorem 4.7 then gives the desired result.

Remark 5.5. We note that our recovery sequence construction does not require any smoothness
properties on IΩ, such as (2.3). The technique given in this section thus establishes the Γ-lim sup
inequality at any mass level. Although we do not currently have a liminf inequality to support it,
we suspect that the Γ-limit we establish in this paper should hold at all mass levels. When W is
symmetric with respect to a+b

2 this would imply that surfaces with higher magnitude mean curvature
are (slightly) energetically favored.

Next we prove Corollary 1.3.

Proof of Corollary 1.3. If W is symmetric about a+b
2 then W ◦z will be an even function. Thus (see

(1.16))

csym =

∫
R
W (z(t))t dt = 0.

Furthermore if W is symmetric then z will satisfy b − z(t) = z(−t) − a for all t > 0. In turn, this
implies that ∫

R
sgna,b(t)− z(t) dt = 0,

and hence ∫
R
z(t− τu)− sgna,b(t) dt =

∫
R
z(t− τu)− z(t) dt.
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Utilizing the fundamental theorem of calculus and Fubini’s theorem∫
R
z(t− τu)− z(t) dt = −

∫
R

∫ t

t−τu
z′(s) ds dt

= −
∫
R

(∫ s+τu

s

dt

)
z′(s) ds = −τu

∫
R
z′(s) ds = −τu(b− a).

Recalling (1.18), (1.20) and (1.23)we then find that

τu =

−
Λu

W ′′(a) P({u = a}; Ω)(b− a)
if q = 1,

0 if q < 1.

This then gives

F (2)(u) =

{
1

W ′′(a)

(
Λ2
u

2 − 2κu(n− 1)cW
Λu

(b−a)

)
if q = 1,

0 if q < 1.

Again recalling (1.20) we find that

F (2)(u) =

{
− Λ2

u

2W ′′(a) if q = 1,

0 if q < 1,

as desired.
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principle. J. Reine Angew. Math. 614 (2008), 153–189.

55



[22] Cianchi, A., and Fusco, N. Functions of bounded variation and rearrangements. Arch.
Ration. Mech. Anal. 165, 1 (2002), 1–40.

[23] Cianchi, A., and Maz’ya, V. Neumann problems and isocapacitary inequalities. J. Math.
Pures Appl. (9) 89, 1 (2008), 71–105.

[24] Cianchi, A., and Pick, L. Optimal gaussian sobolev embeddings. Journal of Functional
Analysis 256, 11 (2009), 3588–3642.

[25] Crandall, M., and Tartar, L. Some relations between nonexpansive and order preserving
mappings. Proc. Amer. Math. Soc. 78, 3 (1980), 385–390.

[26] Dal Maso, G. An introduction to Γ-convergence. Progress in Nonlinear Differential Equations
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