MINIMAL SURFACES AND HARMONIC FUNCTIONS IN THE HEISENBERG GROUP

ROBERTO MONTI

Abstract

We study the blow-up of H-perimeter minimizing sets in the Heisenberg group $\mathbb{H}^{n}, n \geq 2$. We show that the Lipschitz approximations rescaled by the square root of excess converge to a limit function. Assuming a stronger notion of local minimality, we prove that this limit function is harmonic for the Kohn Laplacian in a lower dimensional Heisenberg group.

Contents

1. Introduction 1
2. Blow-up at the reduced boundary of minimizers 5
2.1. Small excess at the reduced boundary 5
2.2. Lipschitz approximation and intrinsic gradient 6
2.3. Blow-up of H-minimal boundaries 8
3. H-harmoncity of the limit function 12
3.1. First variation formula 12
3.2. H-harmonicity of φ 13
References 19

1. Introduction

One of the central facts in the regularity theory of minimal currents and of minimal boundaries in \mathbb{R}^{n} is the existence of a harmonic function in the blow-up of the Lipschitz approximation of the current rescaled by excess. The heuristic idea behind this phenomenon is the fact that if a function $f: D \rightarrow \mathbb{R}$, with $D \subset \mathbb{R}^{n-1}$, is a local minimizer of the area functional

$$
A(f)=\int_{D} \sqrt{1+|\nabla f(x)|^{2}} d x
$$

2010 Mathematics Subject Classification. 49Q05.
Key words and phrases. Heisenberg group, regularity of H-minimal surfaces, H-harmonic functions.
and f is almost flat, i.e., $|\nabla f(x)|$ is almost 0 , then f is almost a minimizer of the Dirichlet functional

$$
D(f)=\frac{1}{2} \int_{D}|\nabla f(x)|^{2} d x
$$

that is the first order term in the Taylor development of the area functional. For this reason, a function f in the blow-up of a minimal boundary is harmonic

$$
\Delta f(x)=0, \quad x \in D \subset \mathbb{R}^{n-1}
$$

The L^{2} estimates on the derivatives of harmonic functions give the decay estimate of excess, that in turn implies the $C^{1, \alpha}$ regularity of the minimal boundary.

In this paper, we investigate the existence of a similar phenomenon in the case of a nonelliptic perimeter, as the horizontal perimeter in the Heisenberg group. Our results are not satisfactory because they hold for sets that are H-perimeter minimizing in a stronger sense, that is not the natural one. However, they are the first example of "harmonic approximation" of minimal boundaries for a nonelliptic perimeter and they suggest an interesting research direction in the regularity theory. So far, the regularity theory for H-minimal surfaces always starts from some initial regularity (see [4], [5], [6], [7], [18]). See, however, the Lipschitz approximation [14] and the height estimate proved in [17].

The $2 n+1$-dimensional Heisenberg group is the manifold $\mathbb{H}^{n}=\mathbb{C}^{n} \times \mathbb{R}, n \in \mathbb{N}$, endowed with the group product

$$
\begin{equation*}
(z, t) *(\zeta, \tau)=(z+\zeta, t+\tau+2 \operatorname{Im}\langle z, \bar{\zeta}\rangle) \tag{1.1}
\end{equation*}
$$

where $t, \tau \in \mathbb{R}, z, \zeta \in \mathbb{C}^{n}$ and $\langle z, \bar{\zeta}\rangle=z_{1} \bar{\zeta}_{1}+\ldots+z_{n} \bar{\zeta}_{n}$. The Lie algebra of left-invariant vector fields in \mathbb{H}^{n} is spanned by the vector fields

$$
\begin{equation*}
X_{j}=\frac{\partial}{\partial x_{j}}+2 y_{j} \frac{\partial}{\partial t}, \quad Y_{j}=\frac{\partial}{\partial y_{j}}-2 x_{j} \frac{\partial}{\partial t}, \quad \text { and } \quad T=\frac{\partial}{\partial t}, \tag{1.2}
\end{equation*}
$$

with $z_{j}=x_{j}+i y_{j}$ and $j=1, \ldots, n$. We denote by H the horizontal subbundle of $T \mathbb{H}^{n}$. Namely, for any $p=(z, t) \in \mathbb{H}^{n}$ we let

$$
H_{p}=\operatorname{span}\left\{X_{1}(p), \ldots, X_{n}(p), Y_{1}(p), \ldots, Y_{n}(p)\right\} .
$$

The H-perimeter of a $\mathscr{L}^{2 n+1}$-measurable set $E \subset \mathbb{H}^{n}$ in an open set $\Omega \subset \mathbb{H}^{n}$ is

$$
P_{H}(E ; \Omega)=\sup \left\{\int_{E} \operatorname{div}_{H} V d z d t: V \in C_{c}^{1}\left(\Omega ; \mathbb{R}^{2 n}\right),\|V\|_{\infty} \leq 1\right\}
$$

where $V: \Omega \rightarrow \mathbb{R}^{2 n}$ is naturally identified with the horizontal vector field $V=$ $\sum_{j=1}^{n} V_{j} X_{j}+V_{n+j} Y_{j}$ and the horizontal divergence of V is

$$
\operatorname{div}_{H} V=\sum_{j=1}^{n} X_{j} V_{j}+Y_{j} V_{n+j}
$$

We use the notation $\mu_{E}(\Omega)=P_{H}(E ; \Omega)$. If $\mu_{E}(\Omega)<\infty$ we say that E has finite H-perimeter in Ω. If $\mu_{E}(A)<\infty$ for any open set $A \subset \subset \Omega$, we say that E has locally finite H-perimeter in Ω. In this case, the open sets mapping $A \mapsto \mu_{E}(A)$ extends to a Radon measure μ_{E} on Ω that is called H-perimeter measure induced by E. Moreover, there exists a μ_{E}-measurable function $\nu_{E}: \Omega \rightarrow H$ such that $\left|\nu_{E}\right|=1 \mu_{E}$-a.e. and the Gauss-Green integration by parts formula

$$
\int_{\Omega}\left\langle V, \nu_{E}\right\rangle d \mu_{E}=-\int_{\Omega} \operatorname{div}_{H} V d z d t
$$

holds for any $V \in C_{c}^{1}\left(\Omega ; \mathbb{R}^{2 n}\right)$. Here and hereafter, $\langle\cdot, \cdot\rangle$ denotes the standard scalar product in $\mathbb{R}^{2 n}$. The vector ν_{E} is called horizontal inner normal of E in Ω.

We consider a set $E \subset \mathbb{H}^{n}$ with $0 \in \partial^{*} E$, the H-reduced boundary of E, that is a local minimizer of H-perimeter in a neighborhood of 0 and we rescale E to a unitary scale to have infinitesimal excess. In this way, we have a sequence of sets E_{h} that are H-perimeter minimizing and have infinitesimal excess $\eta_{h}, h \in \mathbb{N}$.

In Section 2, we use the Lipschitz approximation proved in [14] to obtain a sequence of instrinsic Lipschitz functions $\left(\varphi_{h}\right)_{h \in \mathbb{N}}$ whose graphs cover in measure a large part of the boundary of the rescaled sets E_{h}. By the Poincaré inequality recently proved in [8], we can show that there is subsequence of $\left(\varphi_{h} / \eta_{h}\right)_{h \in \mathbb{N}}$ converging to a function φ in a suitable Sobolev space. To have this limit function, only the density estimates for minimal boundaries are in fact used and so the result extends to Λ-minima. The Poincaré inequality mentioned above is for functions in domains of $\mathbb{R} \times \mathbb{H}^{n-1}$ and it holds only when $n \geq 2$. This is one of the reasons why our discussion is limited to dimensions $n \geq 2$.

The area functional of an intrinsic Lipschitz function $\varphi: D \rightarrow \mathbb{R}$, where now $D \subset \mathbb{R} \times \mathbb{H}^{n-1}$, is of the form

$$
\begin{equation*}
A(\varphi)=\int_{D} \sqrt{1+\left|\nabla^{\varphi} \varphi\right|^{2}} d w \tag{1.3}
\end{equation*}
$$

where $d w$ is the Lebesgue measure on $W=\mathbb{R} \times \mathbb{H}^{n-1}$ and $\nabla^{\varphi} \varphi$ is a nonlinear gradient that is defined in the sense of distributions, known as "intrinsic gradient", see Definition 2.3. The area formula (1.3) is obtained in [9] Theorem 6.5 part (vi) and in [2] Proposition 2.22. However, the Dirichlet functional

$$
D(\varphi)=\frac{1}{2} \int_{D}\left|\nabla^{\varphi} \varphi\right|^{2} d w
$$

does not catch the correct regularity of the limit function, because in the blow-up there is a linearization of the nonlinear gradient $\nabla^{\varphi} \varphi$, see Theorem 2.5. After this linearization, the relevant Dirichlet functional turns out to be

$$
\begin{equation*}
D_{H}(\varphi)=\frac{1}{2} \int_{D}\left\{\left(\frac{\partial \varphi}{\partial y_{1}}\right)^{2}+\sum_{j=2}^{n}\left(X_{j} \varphi\right)^{2}+\left(Y_{j} \varphi\right)^{2}\right\} d w \tag{1.4}
\end{equation*}
$$

where $y_{1} \in \mathbb{R}$ is the variable of the factor \mathbb{R} in the Cartesian product $\mathbb{R} \times \mathbb{H}^{n-1}$. The Dirichlet form (1.4) identifies the differentiability class where the limit of the (sub)sequence $\left(\varphi_{h} / \eta_{h}\right)_{h \in \mathbb{N}}$ lies.

In Section 3, we deduce from the minimality of E further properties of the limit function φ. We use the first order Taylor expansion of H-perimeter (3.41), that holds for any set with finite H-perimeter (these sets may be unrectifiable in the standard sense). We obtain two results. First, we prove that if E is a set that locally minimizes H-perimeter then the function $\varphi: D \subset \mathbb{R} \times \mathbb{H}^{n-1} \rightarrow \mathbb{R}$ is independent of the variable y_{1} of the factor \mathbb{R}, see the first claim of Theorem 3.2. This fact seems to have no counterpart in the classical theory.

The second result holds for a stronger notion of minimality. The homogeneous cube centered at $0 \in \mathbb{H}^{n}$ and with radius $r>0$ is

$$
\begin{equation*}
Q_{r}=\left\{(z, t) \in \mathbb{H}^{n}:\left|x_{i}\right|<r,\left|y_{i}\right|<r,|t|<r^{2}, i=1, \ldots, n\right\} . \tag{1.5}
\end{equation*}
$$

Definition 1.1. We say that a set $E \subset \mathbb{H}^{n}$ is H-perimeter minimizing in Q_{r} if

$$
P_{H}\left(E ; Q_{r}\right) \leq P_{H}\left(F, Q_{r}\right)
$$

for any set $F \subset \mathbb{H}^{n}$ such that $E \Delta F$ is a compact subset of Q_{r}.
Let $E \subset \mathbb{H}^{n}$ be a set with $0 \in \partial^{*} E$ and $\nu_{E}(0)=X_{1}$. Let $J: H \rightarrow H$ be the complex structure and consider $Y_{1}=J\left(X_{1}\right)$. We define the lateral closure of Q_{r} relative to the positive direction Y_{1} as:

$$
\bar{Q}_{r}^{Y_{1},+}=\left\{(z, t) \in \mathbb{H}^{n}:-r<y_{1} \leq r,\left|x_{1}\right|,\left|x_{i}\right|,\left|y_{i}\right|<r,|t|<r^{2}, i=2, \ldots, n\right\}
$$

We are adding to Q_{r} the open face of the boundary where $y_{1}=r$.
Definition 1.2. We say that a set $E \subset \mathbb{H}^{n}$ with $0 \in \partial^{*} E$ and $\nu_{E}(0)=X_{1}$ is strongly H-perimeter minimizing in Q_{r} if for any $0<s \leq r$ we have

$$
P_{H}\left(E ; Q_{s}\right) \leq P_{H}\left(F, Q_{s}\right)
$$

for any set $F \subset \mathbb{H}^{n}$ such that $E \Delta F \cap \bar{Q}_{s}$ is a compact subset of $\bar{Q}_{s}^{Y_{1},+}$.
Here and hereafter, $E \Delta F=E \backslash F \cup F \backslash E$ denotes the symmetric difference.
In the second claim of Theorem 3.2, we show that if E is strongly H-perimeter minimizing then the function $\varphi: D \rightarrow \mathbb{R}$, where now D is a subset of \mathbb{H}^{n-1}, is H-harmonic, i.e., it solves the partial differential equation

$$
\Delta_{H} \varphi=0, \quad \text { in } D \subset \mathbb{H}^{n-1}
$$

where Δ_{H} is the Kohn Laplacian in the lower dimensional Heisenberg group \mathbb{H}^{n-1}

$$
\begin{equation*}
\Delta_{H}=\sum_{j=2}^{n} X_{j}^{2}+Y_{j}^{2} \tag{1.6}
\end{equation*}
$$

It is not clear whether the strong H-perimeter minimality can be relaxed to the natural local minimality. The problem is related to the construction of suitable contact vector fields in \mathbb{H}^{n} with compact support. This problem is explained in Section 3, along the proof of Theorem 3.2.

The ideas presented in this paper are part of a joint research project with D. Vittone.

2. Blow-up at the reduced boundary of minimizers

In this section, we show that in the blow-up of an H-perimeter minimizing set at a point of the reduced boundary there is a function belonging to a suitable Sobolev space.

We use the box-norm $\|p\|_{\infty}=\max \left\{|z|,|t|^{1 / 2}\right\}$ for $p=(z, t) \in \mathbb{H}^{n}$, and the homogeneous balls

$$
B_{r}=\left\{p \in \mathbb{H}^{n}:\|p\|_{\infty}<r\right\} \quad \text { and } \quad B_{r}(p)=p * B_{r}, \quad r>0 .
$$

The balls B_{r} are equivalent to the cubes Q_{r}.
2.1. Small excess at the reduced boundary. Let $E \subset \mathbb{H}^{n}$ be a set with locally finite H-perimeter in \mathbb{H}^{n}. We say that $0 \in \mathbb{H}^{n}$ is a point of the H-reduced boundary of $E, 0 \in \partial^{*} E$, if the following three conditions hold: $\mu_{E}\left(B_{r}\right)>0$ for all $r>0$, we have

$$
\lim _{r \rightarrow 0} \frac{1}{\mu_{E}\left(B_{r}\right)} \int_{B_{r}} \nu_{E} d \mu_{E}=\nu_{E}(0)
$$

and $\left|\nu_{E}(0)\right|=1$. This definition is introduced and studied in [9]. The horizontal excess of E in $B_{r}, r>0$, is

$$
\operatorname{Exc}\left(E, B_{r}\right)=\min _{\nu \in \mathbb{S}^{2 n}} \frac{1}{r^{Q-1}} \int_{B_{r}}\left|\nu_{E}(p)-\nu\right|^{2} d \mu_{E}
$$

We refer the reader to [13] for an account on excess in the Euclidean setting. Notice that $r^{1-Q} C_{1} \leq \mu_{E}\left(B_{r}\right) \leq r^{1-Q} C_{2}$ for constants $0<C_{1}<C_{2}<\infty$ and $Q=2 n+2$. For minimizers, the constants are independent of the point in the reduced boundary. Thus, if $0 \in \partial^{*} E$ is a point in the H-reduced boundary of E then there exists a sequence $r_{h} \rightarrow 0^{+}$such that

$$
\frac{1}{\mu_{E}\left(B_{r_{h}}\right)} \int_{B_{r_{h}}}\left|\nu_{E}-\nu_{E}(0)\right|^{2} d \mu_{E}<\frac{1}{h},
$$

and so we have $\operatorname{Exc}\left(E, B_{r_{h}}\right)<1 / h$.
We consider the anisotropic dilations $(z, t) \mapsto\left(\lambda z, \lambda^{2} t\right)=\delta_{\lambda}(z, t), \lambda>0$. The rescaled sets $E_{h}=\delta_{1 / r_{h}} E, h \in \mathbb{N}$, satisfy $\sup _{h \in \mathbb{N}} P_{H}\left(E_{h} ; B_{1}\right)<\infty$. Moreover, we have:
i) If E is H-perimeter minimizing near $0 \in \partial E^{*}$, then each set E_{h} is H-perimeter minimizing in B_{1};
ii) Since excess is scale invariant, there holds $\operatorname{Exc}\left(E_{h}, B_{1}\right)<1 / h$;
iii) $0 \in \partial^{*} E_{h}$.

Rotating each set E_{h} by an isometry fixing the t-axis, we may assume that

$$
\begin{equation*}
\operatorname{Exc}\left(E_{h}, B_{1}\right)=\int_{B_{1}}\left|\nu_{E_{h}}-\nu\right|^{2} d \mu_{E_{h}}<\frac{1}{h}, \tag{2.7}
\end{equation*}
$$

where $\nu \in \mathbb{S}^{2 n}$ is a vector independent of h. In fact, we may assume that $\nu=\nu_{E}(0)$. Possibly taking a subsequence, by the compactness theorem for sets with finite H perimeter, there exists a set $F \subset \mathbb{H}^{n}$ such that

$$
\lim _{h \rightarrow \infty} \chi_{E_{h}}=\chi_{F}, \quad \text { in } L^{1}\left(B_{1}\right)
$$

Moreover, by the lower semicontinuity of excess we have $\operatorname{Exc}\left(F, B_{1}\right)=0$. Since $0 \in \partial F$, when $n \geq 2$ this implies that

$$
F \cap B_{1}=\left\{(z, t) \in B_{1}:\langle z, \nu\rangle \geq 0\right\}
$$

see [9]. When $n=1$, this fact does no longer hold, i.e., ∂F needs not be flat in any neighborhood of 0 , see [14].
2.2. Lipschitz approximation and intrinsic gradient. We identify the vertical hyperplane $W=\mathbb{R} \times \mathbb{H}^{n-1}=\left\{(z, t) \in \mathbb{H}^{n}: x_{1}=0\right\}$ with $\mathbb{R}^{2 n}$ via the coordinates $w=\left(x_{2}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, t\right)$. The line flow of the vector field X_{1} starting from the point $(z, t) \in W$ is

$$
\exp \left(s X_{1}\right)(z, t)=\left(z+s \mathrm{e}_{1}, t+2 y_{1} s\right), \quad s \in \mathbb{R}
$$

where $\mathrm{e}_{1}=(1,0, \ldots, 0) \in \mathbb{R}^{2 n}$ and $z=(x, y) \in \mathbb{C}^{n}=\mathbb{R}^{2 n}$, with $x=\left(x_{1}, \ldots, x_{n}\right)$, $x_{1}=0$, and $y=\left(y_{1}, \ldots, y_{n}\right)$.

Let $D \subset W$ be a set and let $\varphi: D \rightarrow \mathbb{R}$ be a function. The set

$$
\begin{equation*}
E_{\varphi}=\left\{\exp \left(s X_{1}\right)(w) \in \mathbb{H}^{n}: s>\varphi(w), w \in D\right\} \tag{2.8}
\end{equation*}
$$

is called intrinsic epigraph of φ along X_{1}. The set

$$
\begin{equation*}
\operatorname{gr}(\varphi)=\left\{\exp \left(\varphi(w) X_{1}\right)(w) \in \mathbb{H}^{n}: w \in D\right\} \tag{2.9}
\end{equation*}
$$

is called intrinsic graph of φ along X_{1}.
We identify $\nu=(1,0, \ldots, 0) \in \mathbb{R}^{2 n}$ with $(\nu, 0) \in \mathbb{H}^{n}$. For any $p \in \mathbb{H}^{n}$, we let $\nu(p)=\langle p, \nu\rangle \nu \in \mathbb{H}^{n}$ and we define $\nu^{\perp}(p) \in W \subset \mathbb{H}^{n}$ as the unique point such that

$$
\begin{equation*}
p=\nu^{\perp}(p) * \nu(p) . \tag{2.10}
\end{equation*}
$$

The (open) cone with vertex $0 \in \mathbb{H}^{n}$, axis $\nu \in \mathbb{R}^{2 n},|\nu|=1$, and aperture $\alpha \in(0, \infty]$ is the set

$$
\begin{equation*}
C(0, \nu, \alpha)=\left\{p \in \mathbb{H}^{n}:\left\|\nu^{\perp}(p)\right\|_{\infty}<\alpha\|\nu(p)\|_{\infty}\right\} \tag{2.11}
\end{equation*}
$$

The cone with vertex $p \in \mathbb{H}^{n}$, axis $\nu \in \mathbb{R}^{2 n}$, and aperture $\alpha \in(0, \infty]$ is the set $C(p, \nu, \alpha)=p * C(0, \nu, \alpha)$.

Definition 2.1 (Intrinsic Lipschitz graphs). Let $D \subset W$ be a set and let $\varphi: D \rightarrow \mathbb{R}$ be a function. The function φ is L-intrinsic Lipschitz with $0<L<\infty$ if for any $p \in \operatorname{gr}(\varphi)$ there holds

$$
\begin{equation*}
\operatorname{gr}(\varphi) \cap C(p, \nu, 1 / L)=\emptyset \tag{2.12}
\end{equation*}
$$

The starting point of our argument is the following result of [14] on the Lipschitz approximation of H-minimal boundaries. We denote by \mathscr{S}^{Q-1} the $(2 n+1)$-dimensional spherical Hausdorff measure constructed using any homogeneous left invariant metric on \mathbb{H}^{n}. We shall use freely the identity

$$
\begin{equation*}
\mathscr{S}^{Q-1}\left\llcorner\partial^{*} E=\mu_{E}\right. \tag{2.13}
\end{equation*}
$$

Recall that for an H-perimeter minimizing set E, the reduced boundary $\partial^{*} E$ coincides with the essential boundary, that is denoted by ∂E.

Theorem 2.2. Let $n \geq 2$. For any $L>0$ there are constants $k>1$ and $c(L, n)>0$ such that for any H-perimeter minimizing set E in $B_{k r}$, with $0 \in \partial E$ and $\nu_{E}(0)=$ $\nu=X_{1}$, there exists an L-intrinsic Lipschitz function $\varphi: W \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\mathscr{S}^{Q-1}\left((\operatorname{gr}(\varphi) \Delta \partial E) \cap B_{r}\right) \leq c(L, n)(k r)^{Q-1} \operatorname{Exc}\left(E, B_{k r}\right), \quad r>0 \tag{2.14}
\end{equation*}
$$

Theorem 2.2 holds also for $n=1$. In this case, the Lipschitz constant L has to be suitably large.

We introduce a nonlinear gradient for functions $\varphi: D \rightarrow \mathbb{R}$ with $D \subset W$ open set. The Burgers' operator $\mathscr{B}: \operatorname{Lip}_{\text {loc }}(D) \rightarrow L_{\text {loc }}^{\infty}(D)$ is

$$
\begin{equation*}
\mathscr{B} \varphi=\frac{\partial \varphi}{\partial y_{1}}-4 \varphi \frac{\partial \varphi}{\partial t} . \tag{2.15}
\end{equation*}
$$

When $\varphi \in C(D)$ is only continuous, we say that $\mathscr{B} \varphi$ exists in the sense of distributions and is represented by a locally bounded function, if there exists a function $\vartheta \in L_{\text {loc }}^{\infty}(D)$ such that for all $\psi \in C_{c}^{1}(D)$ there holds

$$
\begin{equation*}
\int_{D} \vartheta \psi d w=-\int_{D}\left\{\varphi \frac{\partial \psi}{\partial y_{1}}-2 \varphi^{2} \frac{\partial \psi}{\partial t}\right\} d w \tag{2.16}
\end{equation*}
$$

In this case, we let $\mathscr{B} \varphi=\vartheta$.
Next, notice that the vector fields $X_{2}, \ldots, X_{n}, Y_{2}, \ldots, Y_{n}$ can be naturally restricted to W and that they are self-adjoint.

Definition 2.3 (Intrinsic gradient). Let $D \subset W=\mathbb{R}^{2 n}$ be an open set and let $\varphi \in C(D)$ be a continuous function. We say that the intrinsic gradient $\nabla^{\varphi} \varphi \in$ $L_{\text {loc }}^{\infty}\left(D ; \mathbb{R}^{2 n-1}\right)$ exists in the sense of distributions if the distributional derivatives
$X_{i} \varphi, \mathscr{B} \varphi, Y_{i} \varphi, i=2, \ldots, n$, are represented by locally bounded functions in D. In this case, we let

$$
\begin{equation*}
\nabla^{\varphi} \varphi=\left(X_{2} \varphi, \ldots, X_{n} \varphi, \mathscr{B} \varphi, Y_{2} \varphi, \ldots, Y_{n} \varphi\right) \tag{2.17}
\end{equation*}
$$

and we call $\nabla^{\varphi} \varphi$ the intrinsic gradient of φ.
When $n=1$, the intrinsic gradient reduces to $\nabla^{\varphi} \varphi=\mathscr{B} \varphi$.
Theorem 2.4. Let $D \subset W$ be an open set and $\varphi: D \rightarrow \mathbb{R}$ be a continuous function. The following statements are equivalent:
A) We have $\nabla^{\varphi} \varphi \in L_{\text {loc }}^{\infty}\left(D ; \mathbb{R}^{2 n-1}\right)$.
B) For any $D^{\prime} \subset \subset D$, the function $\varphi: D^{\prime} \rightarrow \mathbb{R}$ is intrinsic Lipschitz.

Moreover, if A) or B) holds then the intrinsic epigraph $E_{\varphi} \subset \mathbb{H}^{n}$ has locally finite H-perimeter in the cylinder $D * \mathbb{R}=\left\{w *\left(s \mathrm{e}_{1}\right) \in \mathbb{H}^{n}: w \in D, s \in \mathbb{R}\right\}$, for $\mathscr{L}^{2 n}$ a.e. $w \in D$ the inner horizontal normal to ∂E_{φ} is

$$
\begin{equation*}
\nu_{E_{\varphi}}(w * \varphi(w))=\left(\frac{1}{\sqrt{1+\left|\nabla^{\varphi} \varphi(w)\right|^{2}}}, \frac{-\nabla^{\varphi} \varphi(w)}{\sqrt{1+\left|\nabla^{\varphi} \varphi(w)\right|^{2}}}\right), \tag{2.18}
\end{equation*}
$$

and, for any $D^{\prime} \subset D$, we have the area formula

$$
\begin{equation*}
P_{H}\left(E_{\varphi} ; D^{\prime} * \mathbb{R}\right)=\int_{D^{\prime}} \sqrt{1+\left|\nabla^{\varphi} \varphi\right|^{2}} d w \tag{2.19}
\end{equation*}
$$

The equivalence between A) and B) is a deep result that is proved in [3], Theorem 1.1. Formula (2.18) for the normal and the area formula (2.20) are proved in [8] Corollary 4.2 and Corollary 4.3, respectively. Part of these results is the fact that $\left\|\nabla^{\varphi} \varphi\right\|_{\infty}$ is equivalent to the Lipschitz constant. The area formula (2.19) can be improved in the following way

$$
\begin{equation*}
\int_{\partial E_{\varphi} \cap\left(D^{\prime} * \mathbb{R}\right)} g(p) d \mu_{E_{\varphi}}=\int_{D^{\prime}} g(w * \varphi(w)) \sqrt{1+\left|\nabla^{\varphi} \varphi(w)\right|^{2}} d w \tag{2.20}
\end{equation*}
$$

where $g: \partial E_{\varphi} \rightarrow \mathbb{R}$ is a Borel function.
A result related to Theorem 2.4 can be found in [16], where it is proved that if $E \subset$ \mathbb{H}^{n} is a set with finite H-perimeter having controlled normal ν_{E}, say $\left\langle\nu_{E}, \mathrm{e}_{1}\right\rangle \geq k>0$ $\mu_{E^{-}}$a.e., then the reduced boundary $\partial^{*} E$ is an intrinsic Lipschitz graph along X_{1}.
2.3. Blow-up of H-minimal boundaries. Let $E \subset \mathbb{H}^{n}$ be an H-perimeter minimizing set in a neighborhood of $0 \in \mathbb{H}^{n}$, with $0 \in \partial E$ and $\nu_{E}(0)=X_{1}$. Let E_{h} be the rescaled sets of E introduced before equation (2.7). The square root of excess

$$
\begin{equation*}
\eta_{h}=\sqrt{\operatorname{Exc}\left(E_{h}, B_{1}\right)} \tag{2.21}
\end{equation*}
$$

is infinitesimal, and we may assume that $\eta_{h}>0$.
Let $\sigma>0$ be a small number, e.g., $0<\sigma \leq 1 / k$ where $k>1$ is the geometric constant given by Theorem 2.2, and let $0<L \leq 1$ be a Lipschitz constant. Since
each set E_{h} is H-perimeter minimizing in the ball B_{1}, by Theorem 2.2 there exist L-intrinsic Lipschitz functions $\varphi_{h}: W \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\mathscr{S}^{Q-1}\left(\left(\operatorname{gr}\left(\varphi_{h}\right) \Delta \partial E_{h}\right) \cap B_{\sigma}\right) \leq c(L, n, \sigma) \operatorname{Exc}\left(E_{h}, B_{1}\right)=c_{0} \eta_{h}^{2} \tag{2.22}
\end{equation*}
$$

where $c_{0}=c(L, n, \sigma)$.
In this section we prove the following theorem. Recall that the Sobolev space $W_{H}^{1,2}(D)$ is the set of all $\varphi \in L^{2}(D)$ such that the distributional derivatives

$$
X_{2} \varphi, \ldots, X_{n} \varphi, \frac{\partial \varphi}{\partial y_{1}}, Y_{2} \varphi, \ldots, Y_{n} \varphi \in L^{2}(D)
$$

are squared integrable. In this case, we let

$$
\nabla_{H} \varphi=\left(X_{2} \varphi, \ldots, X_{n} \varphi, \frac{\partial \varphi}{\partial y_{1}}, Y_{2} \varphi, \ldots, Y_{n} \varphi\right)
$$

Theorem 2.5. Let $n \geq 2$. Under the assumptions made at the beginning of this section, there exist an open neighborhood $D \subset W$ of $0 \in W$, constants $\bar{\varphi}_{h} \in \mathbb{R}$, a function $\varphi \in W_{H}^{1,2}(D)$, and a selection of indices $k \mapsto h_{k}$ such that, for $k \rightarrow \infty$ we have

$$
\begin{array}{ll}
\frac{\varphi_{h_{k}}-\bar{\varphi}_{h_{k}}}{\eta_{h_{k}}} \rightharpoonup \varphi & \text { weakly in } L^{2}(D) \\
\frac{\nabla^{\varphi_{h_{k}}} \varphi_{h_{k}}}{\eta_{h_{k}}} \rightharpoonup \nabla_{H} \varphi & \text { weakly in } L^{2}\left(D ; \mathbb{R}^{2 n-1}\right)
\end{array}
$$

In the proof of Theorem 2.5, we use the Poincaré inequality of [8]. As in Section 2.1 of [8] (but with our normalization (1.2) of the vector fields), for $w=(z, t) \in W$ and $\varphi: W \rightarrow \mathbb{R}$ we let

$$
\begin{equation*}
d_{\varphi}(w, 0)=\frac{1}{2} \max \left\{|z|,\left|t+4 \varphi(w) y_{1}\right|^{1 / 2}\right\}+\frac{1}{2} \max \left\{|z|,\left|t+4 \varphi(0) y_{1}\right|^{1 / 2}\right\} \tag{2.23}
\end{equation*}
$$

and, for $r>0$,

$$
\begin{equation*}
U_{\varphi}(r)=\left\{w \in W: d_{\varphi}(w, 0)<r\right\} \tag{2.24}
\end{equation*}
$$

Theorem 2.6. Let $n \geq 2$ and let $\varphi: W \rightarrow \mathbb{R}$ be an L-intrinsic Lipschitz function. There exist constants $C_{1}, C_{2}>0$ depending on L and n such that

$$
\begin{equation*}
\int_{U_{\varphi}(r)}\left|\varphi(w)-\varphi_{U_{\varphi}(r)}\right|^{2} d w \leq C_{1} r^{2} \int_{U_{\varphi}\left(C_{2} r\right)}\left|\nabla^{\varphi} \varphi(w)\right|^{2} d w, \quad r>0 \tag{2.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{U_{\varphi}(r)}=\frac{1}{\mathscr{L}^{2 n}\left(U_{\varphi}(r)\right)} \int_{U_{\varphi}(r)} \varphi(w) d w \tag{2.26}
\end{equation*}
$$

See Corollary 4.5 in [8].

Proof of Theorem 2.5. By the lower density estimate $P_{H}\left(E_{h} ; B_{\sigma / 2}\right) \geq C \sigma^{Q-1}$ with a constant $C>0$ independent of h and, from (2.22), we deduce that $\operatorname{gr}\left(\varphi_{h}\right) \cap B_{\sigma / 2} \neq \emptyset$ for all $h \in \mathbb{N}$ large enough. It follows that (details are omitted) there exists $\varepsilon_{1}>0$ such that

$$
\begin{equation*}
\operatorname{gr}\left(\varphi_{h}\right) \cap\left\{w \in W:|w|<\varepsilon_{1}\right\} * \mathbb{R} \subset B_{\sigma} . \tag{2.27}
\end{equation*}
$$

Without loss of generality we can assume that $\left\|\varphi_{h}\right\|_{\infty} \leq 1$ for all $h \in \mathbb{N}$. Thus, from (2.23) and (2.24), it follows that there exist $\varepsilon_{0}>0$ and $r>0$ such that

$$
\begin{equation*}
D:=\left\{w \in W:|w|<\varepsilon_{0}\right\} \subset U_{\varphi_{h}}(r) \subset U_{\varphi_{h}}\left(C_{2} r\right) \subset\left\{w \in W:|w|<\varepsilon_{1}\right\}=: D^{\prime} \tag{2.28}
\end{equation*}
$$

Then, by (2.22), we deduce the estimate

$$
\begin{equation*}
\mathscr{S}^{Q-1}\left(\left(\operatorname{gr}\left(\varphi_{h}\right) \backslash \partial E_{h}\right) \cap D^{\prime} * \mathbb{R}\right) \leq c_{0} \eta_{h}^{2} . \tag{2.29}
\end{equation*}
$$

Let $D_{h} \subset D^{\prime}$ be the set of the points $w \in D^{\prime}$ such that

$$
\begin{equation*}
\nu_{E_{\varphi_{h}}}\left(w * \varphi_{h}(w)\right)=\left(\frac{1}{\sqrt{1+\left|\nabla^{\varphi_{h}} \varphi_{h}(w)\right|^{2}}}, \frac{-\nabla^{\varphi_{h}} \varphi_{h}(w)}{\sqrt{1+\left|\nabla^{\varphi_{h}} \varphi_{h}(w)\right|^{2}}}\right) \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{E_{\varphi_{h}}}\left(w * \varphi_{h}(w)\right)=\nu_{E_{h}}\left(w * \varphi_{h}(w)\right) . \tag{2.31}
\end{equation*}
$$

By Theorem 2.4, see formula (2.18), identity (2.30) holds for $\mathscr{L}^{2 n}$-a.e. $w \in D^{\prime}$. By the locality of H-perimeter (see Corollary 2.5 in [1]) and by the area formula (2.19), identity (2.31) holds for $\mathscr{L}^{2 n}$-a.e. $w \in \pi\left(\operatorname{gr}\left(\varphi_{h}\right) \cap \partial E_{h}\right)$, where $\pi: \mathbb{H}^{n} \rightarrow W$ is the projection along X_{1}.

Since each function φ_{h} is L-intrinsic Lipschitz with $0<L \leq 1$, we can assume $\left\|\nabla^{\varphi_{h}} \varphi_{h}\right\|_{\infty} \leq 1$. Then for any point $w \in D_{h}$ we have:

$$
\left|\nu_{E_{h}}\left(w * \varphi_{h}(w)\right)-\nu\right|^{2}=\left|\nu_{E_{\varphi_{h}}}(w)-\nu\right|^{2} \geq \frac{1}{2}\left|\nabla^{\varphi_{h}} \varphi_{h}(w)\right|^{2},
$$

where $\nu=(1,0, \ldots, 0) \in \mathbb{S}^{2 n}$. By the area formula (2.20) for intrinsic Lipschitz functions and by (2.7), we obtain the estimate

$$
\begin{equation*}
\int_{D_{h}}\left|\nabla^{\varphi_{h}} \varphi_{h}(w)\right|^{2} d w \leq 2 \int_{B_{1}}\left|\nu_{E_{h}}-\nu\right|^{2} d \mu_{E_{h}} \leq 2 \eta_{h}^{2} \tag{2.32}
\end{equation*}
$$

Again by $\left\|\nabla^{\varphi_{h}} \varphi_{h}\right\|_{\infty} \leq 1$, by the area formula, and by (2.22), we obtain

$$
\begin{align*}
\int_{D^{\prime} \backslash D_{h}}\left|\nabla^{\varphi_{h}} \varphi_{h}(w)\right|^{2} d w & \leq \mathscr{L}^{2 n}\left(D^{\prime} \backslash D_{h}\right) \tag{2.33}\\
& \leq \mathscr{S}^{Q-1}\left(\left(\operatorname{gr}\left(\varphi_{h}\right) \backslash \partial E_{h}\right) \cap B_{\sigma}\right) \leq c_{0} \eta_{h}^{2} .
\end{align*}
$$

It follows that the sequence of functions $\left|\nabla^{\varphi_{h}} \varphi_{h}\right| / \eta_{h}, h \in \mathbb{N}$, is uniformly bounded in $L^{2}\left(D^{\prime}\right)$. Then there exists a function $\Phi \in L^{2}\left(D^{\prime} ; \mathbb{R}^{2 n-1}\right)$ such that, possibly taking
a subsequence, we have as $h \rightarrow \infty$

$$
\begin{equation*}
\frac{\nabla^{\varphi_{h}} \varphi_{h}}{\eta_{h}} \rightharpoonup \Phi \quad \text { weakly in } L^{2}\left(D^{\prime} ; \mathbb{R}^{2 n-1}\right) \tag{2.34}
\end{equation*}
$$

After a relabeling, we assume here and hereafter that the full sequence is converging.
We denote by $\bar{\varphi}_{h}$ the mean of φ_{h} defined in (2.26), namely,

$$
\begin{equation*}
\bar{\varphi}_{h}=\frac{1}{\mathscr{L}^{2 n}\left(U_{\varphi_{h}}(r)\right)} \int_{U_{\varphi_{h}}(r)} \varphi_{h}(w) d w \tag{2.35}
\end{equation*}
$$

where $r>0$ is such that the inclusions in (2.28) hold. By the Poincare inequality (2.25), by the inclusions in (2.28), (2.32), and (2.33) we have

$$
\begin{aligned}
\int_{D}\left|\varphi_{h}(w)-\bar{\varphi}_{h}\right|^{2} d w & \leq \int_{U_{\varphi_{h}}(r)}\left|\varphi_{h}(w)-\bar{\varphi}_{h}\right|^{2} d w \\
& \leq C_{1} r^{2} \int_{U_{\varphi_{h}}\left(C_{2} r\right)}\left|\nabla^{\varphi_{h}} \varphi_{h}(w)\right|^{2} d w \\
& \leq C_{1} r^{2} \int_{D^{\prime}}\left|\nabla^{\varphi_{h}} \varphi_{h}(w)\right|^{2} d w \\
& \leq C_{1} r^{2}\left(2+c_{0}\right) \eta_{h}^{2}
\end{aligned}
$$

Then, the sequence $\left(\varphi_{h}-\bar{\varphi}_{h}\right) / \eta_{h}$ is uniformly bounded in $L^{2}(D)$. It follows that we have $\varphi_{h}-\bar{\varphi}_{h} \rightarrow 0$ in $L^{2}(D)$. As the sequence of sets $\left(E_{h}\right)_{h \in \mathbb{N}}$ is converging to a half-plane inside the ball B_{1}, we deduce that $\bar{\varphi}_{h} \rightarrow 0$ as $h \rightarrow \infty$. Finally, by weak compactness there exists a function $\varphi \in L^{2}(D)$ such that, possibly taking a further subsequence, we have

$$
\begin{equation*}
\frac{\varphi_{h}-\bar{\varphi}_{h}}{\eta_{h}} \rightharpoonup \varphi \text { weakly in } L^{2}(D) \tag{2.36}
\end{equation*}
$$

We claim that $\varphi \in W_{H}^{1,2}(D)$ and that

$$
\begin{equation*}
\Phi=\nabla_{H} \varphi=\left(X_{2} \varphi, \ldots, X_{n} \varphi, \frac{\partial \varphi}{\partial y_{1}}, Y_{2} \varphi, \ldots, Y_{n} \varphi\right) \tag{2.37}
\end{equation*}
$$

in the sense of weak derivatives in $L^{2}(D)$. Notice that the nonlinear derivative $\mathscr{B} \varphi_{h} / \eta_{h}$ is converging to the linear derivative $\partial_{y_{1}} \varphi$.

By (2.36), for any test function $\psi \in C_{c}^{1}(D)$ we have

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \int_{D} \frac{\varphi_{h}-\bar{\varphi}_{h}}{\eta_{h}} \psi d w=\int_{D} \varphi \psi d w \tag{2.38}
\end{equation*}
$$

On the other hand, by the distributional definition (2.16) of the derivative $\mathscr{B} \varphi_{h}$ we have

$$
\begin{aligned}
\frac{1}{\eta_{h}} \int_{D} \psi \mathscr{B} \varphi_{h} d w & =-\frac{1}{\eta_{h}} \int_{D}\left\{\varphi_{h} \psi_{y_{1}}-2 \varphi_{h}^{2} \psi_{t}\right\} d w \\
& =-\frac{1}{\eta_{h}} \int_{D}\left\{\left(\varphi_{h}-\bar{\varphi}_{h}\right) \psi_{y_{1}}-2\left(\varphi_{h}^{2}-\bar{\varphi}_{h}^{2}\right) \psi_{t}\right\} d w \\
& =-\int_{D}\left\{\frac{\varphi_{h}-\bar{\varphi}_{h}}{\eta_{h}} \psi_{y_{1}}-2 \frac{\varphi_{h}-\bar{\varphi}_{h}}{\eta_{h}}\left(\varphi_{h}+\bar{\varphi}_{h}\right) \psi_{t}\right\} d w
\end{aligned}
$$

Since $\varphi_{h}+\bar{\varphi}_{h}$ is converging to zero strongly in $L^{2}(D)$ and $\left(\varphi_{h}-\bar{\varphi}_{h}\right) / \eta_{h}$ is uniformly bounded in $L^{2}(D)$, we obtain

$$
\lim _{h \rightarrow \infty} \frac{1}{\eta_{h}} \int_{D} \psi \mathscr{B} \varphi_{h} d w=-\int_{D} \varphi \psi_{y_{1}} d w
$$

A similar argument shows that for any $Z \in\{X, Y\}$ and $j=2, \ldots, n$ we have

$$
\lim _{h \rightarrow \infty} \frac{1}{\eta_{h}} \int_{D} \psi Z_{j} \varphi_{h} d w=-\int_{D} \varphi Z_{j} \psi d w
$$

This finishes the proof of (2.37).

3. H-harmoncity of the limit function

In this section, we prove that the limit function φ given by Theorem 2.5 is independent of the variable y_{1} dual in the complex sense to the graph direction x_{1}. If the set E is a strong minimizer in the sense of Definition 1.2, we show that the function φ is H-harmonic in \mathbb{H}^{n-1}, the lower dimensional Heisenberg group.
3.1. First variation formula. We recall the first variation formula for H-perimeter of sets in \mathbb{H}^{n} that are deformed along a contact flow. A diffeomorphism $\Psi: \Omega \rightarrow \Psi(\Omega)$, with $\Omega \subset \mathbb{H}^{n}$ open set, is a contact map if for any $p \in \Omega$ the differential Ψ_{*} maps the horizontal space H_{p} into $H_{\Psi(p)}$. A one-parameter flow $\left(\Psi_{s}\right)_{s \in \mathbb{R}}$ of diffeomorphisms in \mathbb{H}^{n} is a contact flow if each Ψ_{s} is a contact map. Contact flows are generated by contact vector fields (see [12]). A contact vector field in \mathbb{H}^{n} is a vector field of the form

$$
\begin{equation*}
V_{\psi}=\sum_{j=1}^{n}\left(Y_{j} \psi\right) X_{j}-\left(X_{j} \psi\right) Y_{j}-4 \psi T \tag{3.39}
\end{equation*}
$$

where $\psi \in C^{\infty}\left(\mathbb{H}^{n}\right)$ is the generating function. For any compact set $K \subset \mathbb{H}^{n}$ we have the flow $\Psi:[-\delta, \delta] \times K \rightarrow \mathbb{H}^{n}$ that is defined by $\dot{\Psi}(s, p)=V_{\psi}(\Psi(s, p))$ and $\Psi(0, p)=p$ for any $s \in[-\delta, \delta]$ and $p \in K$, for some $\delta=\delta(\psi, K)>0$. We call Ψ the flow generated by ψ. We also let $\Psi_{s}=\Psi(s, \cdot)$.

Related to the generating function ψ, we have, at any point $p \in \mathbb{H}^{n}$, the real quadratic form $\mathscr{Q}_{\psi}: H_{p} \rightarrow \mathbb{R}$

$$
\begin{equation*}
\mathscr{Q}_{\psi}\left(\sum_{j=1}^{n} x_{j} X_{j}+y_{j} Y_{j}\right)=\sum_{i, j=1}^{n} x_{i} x_{j} X_{j} Y_{i} \psi+x_{j} y_{i}\left(Y_{i} Y_{j} \psi-X_{j} X_{i} \psi\right)-y_{i} y_{j} Y_{j} X_{i} \psi \tag{3.40}
\end{equation*}
$$

where $x_{j}, y_{j} \in \mathbb{R}$, and ψ with its derivatives are evaluated at p. The quadratic form \mathscr{Q}_{ψ} appears in the first variation of H-perimeter along the flow generated by ψ. In the following, we identify H_{p} with $\mathbb{R}^{2 n}$ by declaring $X_{1}, \ldots, X_{n}, Y_{n}, \ldots, Y_{n}$ an orthonormal basis.

Theorem 3.1. Let $\Omega \subset \mathbb{H}^{n}$ be a bounded open set and let $\Psi:[-\delta, \delta] \times \Omega \rightarrow \mathbb{H}^{n}$ be the flow generated by $\psi \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Then there exists $C=C(\psi, \Omega)>0$ such that for any set $E \subset \mathbb{H}^{n}$ with finite H-perimeter in Ω we have
$\left|P_{H}\left(\Psi_{s}(E), \Psi_{s}(\Omega)\right)-P_{H}(E, \Omega)+s \int_{\Omega}\left\{4(n+1) T \psi+\mathscr{Q}_{\psi}\left(\nu_{E}\right)\right\} d \mu_{E}\right| \leq C P_{H}(E, \Omega) s^{2}$
for any $s \in[-\delta, \delta]$.
The proof of Theorem 3.1 when $\partial E \cap \Omega$ is a C^{∞}-smooth hypersurface can be found in [15]. The proof for a set with finite H-perimeter will appear elsewhere.
3.2. H-harmonicity of φ. Let $E \subset \mathbb{H}^{n}$ be a set with locally finite H-perimeter in \mathbb{H}^{n}. Assume that $0 \in \mathbb{H}^{n}$ is a point of the H-reduced boundary of $E, 0 \in \partial^{*} E$, with $\nu_{E}(0)=(1,0, \ldots, 0) \in \mathbb{R}^{2 n}$, and that E is H-perimeter minimizing in a neighborhood of 0 , in the sense of Definition 1.1.

Let $\left(E_{h}\right)_{h \in \mathbb{N}}$ be the sequence of rescaled sets introduced in Section 2.1. We can assume that each set E_{h} is H-perimeter minimizing in the cube

$$
Q_{R}=\left\{(z, t) \in \mathbb{H}^{n}:\left|x_{i}\right|,\left|y_{i}\right|,|t|^{2}<R, i=1, \ldots, n\right\}
$$

for some large $R>0$. Let $\left(\varphi_{h}\right)_{h \in \mathbb{N}}$ be the sequence of L-intrinsic Lipschitz functions satisfying (2.22), with $0<L \leq 1$. We can assume that each φ_{h} is defined on $D_{1}=\left\{(z, t) \in Q_{1}: x_{1}=0\right\}$. Finally, let $\varphi \in W_{H}^{1,2}\left(D_{1}\right)$ be the limit function of a subsequence of $\left(\varphi_{h}\right)_{h \in \mathbb{N}}$, as in Theorem 2.5. Without loss of generality, we can assume that φ is defined on the whole D_{1}. Let $D_{1 / 4}=\left\{(z, t) \in Q_{1 / 4}: x_{1}=0\right\}$.

Theorem 3.2. Let $n \geq 2$ and let E be a set with locally finite H-perimeter, as above. Then:
i) If E is H-perimeter minimizing in a neighborhood of $0 \in \mathbb{H}^{n}$, then the function $\varphi: D_{1 / 4} \subset \mathbb{R} \times \mathbb{H}^{n-1} \rightarrow \mathbb{R}$ is independent of the variable y_{1} of the factor \mathbb{R}.
ii) If E is strongly H-perimeter minimizing in a neighborhood of $0 \in \mathbb{H}^{n}$, then the function φ is H-harmonic, i.e., it is of class C^{∞} and it solves the partial differential equation

$$
\begin{equation*}
\Delta_{H} \varphi=0 \quad \text { in } \quad D_{1 / 4} \cap\left\{y_{1}=0\right\} \tag{3.42}
\end{equation*}
$$

where Δ_{H} is the Kohn Laplacian (1.6) in \mathbb{H}^{n-1}.
Proof. Let $\psi \in C^{\infty}\left(\mathbb{H}^{n}\right)$ be the generating function of a contact vector field V_{ψ}. We assume that ψ has the following structure. First we assume that we have

$$
\psi=\alpha+x_{1} \beta+\frac{1}{2} x_{1}^{2} \gamma
$$

where $\alpha, \beta, \gamma \in C^{\infty}\left(\mathbb{H}^{n}\right)$ are smooth functions such that

$$
\begin{equation*}
X_{1} \alpha=X_{1} \beta=X_{1} \gamma=0 \text { in the stripe }\left\{(z, t) \in \mathbb{H}^{n}:\left|x_{1}\right|<1 / 4\right\} \tag{3.43}
\end{equation*}
$$

After a Taylor development in the variable x_{1} along the flow of X_{1}, the function ψ has this structure plus a remainder. The functions β, γ are always assumed to satisfy

$$
\begin{equation*}
\beta, \gamma \in C_{c}^{\infty}\left(Q_{1 / 2}\right) \tag{3.44}
\end{equation*}
$$

As far as the function α is concerned, we distinguish two cases, according to the claims i) and ii):
i) In this case, we assume also that

$$
\begin{equation*}
\alpha \in C_{c}^{\infty}\left(Q_{1 / 2}\right) . \tag{3.45}
\end{equation*}
$$

ii) In this case, we let

$$
\begin{equation*}
\alpha\left(x_{1}, y_{1}, z_{2}, \ldots, z_{n}, t\right)=\int_{0}^{y_{1}} \vartheta\left(x_{1}, s, z_{2}, \ldots, z_{n}, t\right) d s, \quad x_{1} \in \mathbb{R}, \tag{3.46}
\end{equation*}
$$

where $\vartheta \in C_{c}^{\infty}\left(Q_{1 / 2}\right)$ is an arbitrary smooth compactly supported function such that $X_{1} \vartheta=0$ in $\left\{\left|x_{1}\right|<1 / 4\right\}$.

We consider the sets $E_{h}^{\prime}=\Phi_{s_{h}}\left(E_{h}\right)$, where $s_{h}>0$ are small numbers that will be fixed later. We can assume that $\partial E_{h} \subset\left\{\left|x_{1}\right|<1 / 4\right\}$ for all $h \in \mathbb{N}$. In the stripe (3.43), the vector field V_{ψ} has the form

$$
\begin{equation*}
V_{\psi}=\left(Y_{1} \psi\right) X_{1}-\left(\beta+x_{1} \gamma\right) Y_{1}+\sum_{j=2}^{n}\left(Y_{j} \psi\right) X_{j}-\left(X_{j} \psi\right) Y_{j}-4 \psi T \tag{3.47}
\end{equation*}
$$

It follows that $P_{H}\left(\Psi_{s_{h}}\left(E_{h}\right), \Psi\left(Q_{1}\right)\right)=P_{H}\left(E_{h}^{\prime}, Q_{1}\right)$ for all large $h \in \mathbb{N}$.
In case i), each E_{h} is H-perimeter minimizing in the cube Q_{1}; in fact we have $E_{h}^{\prime} \Delta E_{h} \subset \subset Q_{1}$. In case ii), each E_{h} is strongly H-perimeter minimizing in the cube
Q_{1}; in fact, we have $E_{h}^{\prime} \Delta E_{h} \cap \bar{Q}_{1} \subset \bar{Q}_{1}^{Y_{1},+}$. In both cases, by Theorem 3.1 the minimality condition $P_{H}\left(E_{h}, Q_{1}\right) \leq P_{H}\left(E_{h}^{\prime}, Q_{1}\right)$ gives

$$
0 \leq P_{H}\left(E_{h}^{\prime}, Q_{1}\right)-P_{H}\left(E_{h}, Q_{1}\right)=-s_{h} \int_{Q_{1}}\left\{4(n+1) T \psi+\mathscr{Q}_{\psi}\left(\nu_{E_{h}}\right)\right\} d \mu_{E_{h}}+O\left(s_{h}^{2}\right)
$$

where $O\left(s_{h}^{2}\right) / s_{h}^{2}$ is bounded by a constant independent of h. We fix $s_{h}>0$ such that $s_{h}=o\left(\eta_{h}\right)$ as $h \rightarrow \infty$, where $\eta_{h}>0$ is the excess (2.21), and we obtain

$$
0 \leq-\frac{1}{\eta_{h}} \int_{Q}\left\{4(n+1) T \psi+\mathscr{Q}_{\psi}\left(\nu_{E_{h}}\right)\right\} d \mu_{E_{h}}+o(1)
$$

where $o(1)$ is infinitesimal as $h \rightarrow \infty$. Replacing ψ with $-\psi$ and using the identity $\mathscr{Q}_{-\psi}\left(\nu_{E_{h}}\right)=-\mathscr{Q}_{\psi}\left(\nu_{E_{h}}\right)$, we also have the opposite inequality. We therefore deduce that

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \frac{1}{\eta_{h}} \int_{Q_{1}}\left\{4(n+1) T \psi+\mathscr{Q}_{\psi}\left(\nu_{E_{h}}\right)\right\} d \mu_{E_{h}}=0 \tag{3.48}
\end{equation*}
$$

Notice that the excess η_{h} in (2.21) can be equivalently defined using homogeneous cubes in place of balls.

From now on, we let $D=D_{1}$. Let $E_{\varphi_{h}} \subset \mathbb{H}^{n}$ be the intrinsic epigraph of φ_{h}, as in (2.8). Let $\operatorname{gr}\left(\varphi_{h}\right)$ be the intrinsic graph of φ_{h} over D, as in (2.9). With a slightly abuse of notation, for any $h \in \mathbb{N}$ let $D_{h} \subset D$ be the set of points $w \in D$ such that (2.30) and (2.31) hold. By (2.22), (2.31), and (2.20) we have

$$
\begin{aligned}
\int_{Q_{1}}\{4(n+1) T \psi+ & \left.\mathscr{Q}_{\psi}\left(\nu_{E_{h}}\right)\right\} d \mu_{E_{h}}=\int_{Q_{1} \cap \operatorname{gr}\left(\varphi_{h}\right)}\left\{4(n+1) T \psi+\mathscr{Q}_{\psi}\left(\nu_{E_{h}}\right)\right\} d \mu_{E_{h}}+O\left(\eta_{h}^{2}\right) \\
& =\int_{Q_{1} \cap \operatorname{gr}\left(\varphi_{h}\right)}\left\{4(n+1) T \psi+\mathscr{Q}_{\psi}\left(\nu_{E_{\varphi_{h}}}\right)\right\} d \mu_{E_{\varphi_{h}}}+O\left(\eta_{h}^{2}\right) \\
& =\int_{D_{h}}\left\{4(n+1) T \psi+\mathscr{Q}_{\psi}\left(\nu_{E_{\varphi_{h}}}\right)\right\} \sqrt{1+\left|\nabla^{\varphi_{h}} \varphi_{h}(w)\right|^{2}} d w+O\left(\eta_{h}^{2}\right)
\end{aligned}
$$

where $\nu_{E_{\varphi_{h}}}$ is the vector in (2.30) and the bracket $\{\ldots\}$ in the last line is evaluated at $w * \varphi_{h}(w)$. By (2.22), we have $\mathscr{L}^{2 n}\left(D \backslash D_{h}\right)=O\left(\eta_{h}^{2}\right)$, and so we deduce that

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \frac{1}{\eta_{h}} \int_{D}\left\{4(n+1) T \psi\left(w * \varphi_{h}(w)\right)+\mathscr{Q}_{\psi}\left(\nu_{E_{\varphi_{h}}}\left(w * \varphi_{h}(w)\right)\right)\right\} d w=0 \tag{3.49}
\end{equation*}
$$

We compute the limit in (3.49). We start from the integral of $T \psi\left(w * \varphi_{h}(w)\right)$. The sequence $\left(\varphi_{h}\right)_{h \in \mathbb{N}}$ is converging to 0 uniformly. We omit details of the proof of this fact. Then we can assume that $\left\|\varphi_{h}\right\|_{\infty}<1 / 4$ and thus, by (3.43), we have $X_{1} T \alpha=T X_{1} \alpha=0$. This implies that $T \alpha\left(w * \varphi_{h}(w)\right)=T \alpha(w)=\alpha_{t}(w)$, where we are using the notation $\alpha_{t}=\partial \alpha / \partial t$. The same holds for β and γ. Thus we have, for any $w \in D$,

$$
T \psi\left(w * \varphi_{h}(w)\right)=\alpha_{t}+\varphi_{h} \beta_{t}+\frac{1}{2} \varphi_{h}^{2} \gamma_{t}
$$

where the right hand-side is evaluated at w. With abuse of notation, here and in the following we denote by $\psi, \alpha, \beta, \gamma, \vartheta$ also the restriction of the functions to $\left\{x_{1}=0\right\}$.

Since we have

$$
\begin{equation*}
\operatorname{supp}(\alpha), \operatorname{supp}(\beta), \operatorname{supp}(\gamma) \subset\left\{(z, t) \in \mathbb{H}^{n}:|t|^{2}<1 / 2\right\}, \tag{3.50}
\end{equation*}
$$

then there holds

$$
\int_{D} \alpha_{t} d w=\int_{D} \beta_{t} d w=\int_{D} \gamma_{t} d w=0 .
$$

Let $\bar{\varphi}_{h} \in \mathbb{R}$ be the numbers given by Theorem 2.5. By (2.38), we have

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \frac{1}{\eta_{h}} \int_{D} \varphi_{h} \beta_{t} d w=\lim _{h \rightarrow \infty} \int_{D} \frac{\varphi_{h}-\bar{\varphi}_{h}}{\eta_{h}} \beta_{t} d w=\int_{D} \varphi \beta_{t} d w \tag{3.51}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \frac{1}{\eta_{h}} \int_{D} \varphi_{h}^{2} \gamma_{t} d w=\lim _{h \rightarrow \infty} \int_{D} \frac{\varphi_{h}-\bar{\varphi}_{h}}{\eta_{h}}\left(\varphi_{h}+\bar{\varphi}_{h}\right) \gamma_{t} d w=0 \tag{3.52}
\end{equation*}
$$

because $\varphi_{h}+\bar{\varphi}_{h}$ is converging to 0 strongly in L^{2}. From (3.51) and (3.52), we deduce that

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \frac{1}{\eta_{h}} \int_{D} 4(n+1) T \psi\left(w * \varphi_{h}(w)\right) d w=4(n+1) \int_{D} \varphi \beta_{t} d w \tag{3.53}
\end{equation*}
$$

We compute the limit of the integral of $\mathscr{Q}_{\psi}\left(\nu_{E_{\varphi_{h}}}\right)$ in (3.49). Letting

$$
\nu_{E_{\varphi_{h}}}=\left(\nu_{X_{1}}, \ldots, \nu_{X_{n}}, \nu_{Y_{1}}, \ldots, \nu_{Y_{n}}\right) \in \mathbb{S}^{2 n}
$$

we isolate in (3.40) the terms containing $\nu_{X_{1}}$. Namely, we have

$$
\begin{align*}
\mathscr{Q}_{\psi}\left(\nu_{E_{\varphi_{h}}}\right)=\left(X_{1} Y_{1} \psi\right) \nu_{X_{1}}^{2} & +\sum_{j=2}^{n}\left(X_{j} Y_{1} \psi+X_{1} Y_{j} \psi\right) \nu_{X_{1}} \nu_{X_{j}} \\
& +\sum_{j=1}^{n}\left(Y_{j} Y_{1} \psi-X_{1} X_{j} \psi\right) \nu_{X_{1}} \nu_{Y_{j}} \tag{3.54}\\
& +\mathscr{E}_{\psi}\left(\nu_{E_{\varphi_{h}}}\right)
\end{align*}
$$

where $\mathscr{E}_{\psi}\left(\nu_{E_{\varphi_{h}}}\right)$ is a quadratic form that does not contain $\nu_{X_{1}}$.
Inserting into formula (3.54) the derivatives

$$
\begin{align*}
X_{1} Y_{1} \psi & =Y_{1} X_{1} \psi-4 T \psi & & \\
& =Y_{1} \beta+x_{1} Y_{1} \gamma-4\left(\alpha_{t}+x_{1} \beta_{t}+\frac{1}{2} x_{1}^{2} \gamma_{t}\right), & & \\
X_{j} Y_{1} \psi & =Y_{1} X_{j} \alpha+x_{1} Y_{1} X_{j} \beta+\frac{1}{2} x_{1}^{2} Y_{1} X_{j} \gamma, & & j \geq 2, \tag{3.55}\\
X_{1} Y_{j} \psi & =Y_{j} \beta+x_{1} Y_{j} \gamma, & & j \geq 2, \\
Y_{j} Y_{1} \psi & =Y_{j} Y_{1} \alpha+x_{1} Y_{j} Y_{1} \beta+\frac{1}{2} x_{1}^{2} Y_{j} Y_{1} \gamma, & & j \geq 1,
\end{align*}
$$

we obtain

$$
\begin{align*}
& \mathscr{Q}_{\psi}\left(\nu_{E_{\varphi_{h}}}\right)=\left\{Y_{1} \beta+x_{1} Y_{1} \gamma-4\left(\alpha_{t}+x_{1} \beta_{t}+\frac{1}{2} x_{1}^{2} \gamma_{t}\right)\right\} \nu_{X_{1}}^{2} \\
& \quad+\sum_{j=2}^{n}\left\{Y_{1} X_{j} \alpha+x_{1} Y_{1} X_{j} \beta+\frac{1}{2} x_{1}^{2} Y_{1} X_{j} \gamma+Y_{j} \beta+x_{1} Y_{j} \gamma\right\} \nu_{X_{1}} \nu_{X_{j}} \tag{3.56}\\
& \quad+\sum_{j=1}^{n}\left\{Y_{j} Y_{1} \alpha+x_{1} Y_{j} Y_{1} \beta+\frac{1}{2} x_{1}^{2} Y_{j} Y_{1} \gamma-X_{j} \beta-x_{1} X_{j} \gamma\right\} \nu_{X_{1}} \nu_{Y_{j}} \\
& \quad+\mathscr{E}_{\psi}\left(\nu_{E_{\varphi_{h}}}\right)
\end{align*}
$$

where, by (2.18) and (2.17), we have

$$
\begin{align*}
& \nu_{X_{1}}=\frac{1}{\sqrt{1+\left|\nabla^{\varphi_{h}} \varphi_{h}\right|^{2}}}, \quad \nu_{Y_{1}}=-\frac{\mathscr{B} \varphi_{h}}{\sqrt{1+\left|\nabla^{\varphi_{h}} \varphi_{h}\right|^{2}}} \tag{3.57}\\
& \nu_{Z_{j}}=-\frac{Z_{j} \varphi_{h}}{\sqrt{1+\left|\nabla^{\varphi_{h}} \varphi_{h}\right|^{2}}}, \quad Z \in\{X, Y\}, \quad j \geq 2
\end{align*}
$$

Above, $\mathscr{B} \varphi_{h}$ is the Burgers' operator. In particular, since each φ_{h} is intrinsic L Lipschitz with $0<L \leq 1$ we can assume that $\sup _{h \in \mathbb{N}}\left\|\nabla^{\varphi_{h}} \varphi_{h}\right\|_{\infty}<\infty$ and thus there exists an absolute constant $C>0$ such that

$$
\begin{equation*}
\left|\mathscr{E}_{\psi}\left(\nu_{E_{\varphi_{h}}}\right)\right| \leq C\left|\nabla^{\varphi_{h}} \varphi_{h}\right|^{2} \tag{3.58}
\end{equation*}
$$

So, from (2.32) and (2.33) we have

$$
\left.\lim _{h \rightarrow \infty} \frac{1}{\eta_{h}} \int_{D} \right\rvert\, \mathscr{E}_{\psi}\left(\nu_{E_{\varphi_{h}}}\left(w * \varphi_{h}(w)\right) \mid d w=0 .\right.
$$

In other words, the limit (3.49) of the integral of \mathscr{E}_{ψ} in (3.49) vanishes.
We compute the limit of the integral of the first three lines in (3.56), separately. By (3.43), we have $X_{1} Y_{1} \beta=Y_{1} X_{1} \beta-4 T \beta=-4 T \beta$ and thus

$$
Y_{1} \beta\left(w * \varphi_{h}(w)\right)=\beta_{y_{1}}(w)-4 \varphi_{h}(w) \beta_{t}(w)
$$

Similarly, there holds

$$
Y_{1} \gamma\left(w * \varphi_{h}(w)\right)=\gamma_{y_{1}}(w)-4 \varphi_{h}(w) \gamma_{t}(w)
$$

The limit of the integral of terms in the first line of (3.56) containing x_{1}^{2} vanishes, by a computation analogous to (3.52). Moreover, by (2.32), (2.33), and (3.57) the function $\nu_{X_{1}}^{2}$ may be replaced by 1 . Thus, the limit of the integral of the first line in
(3.56) is

$$
\begin{align*}
\lim _{h \rightarrow \infty} \frac{1}{\eta_{h}} & \int_{B}\left\{\beta_{y_{1}}-4 \varphi_{h} \beta_{t}+\varphi_{h}\left(\gamma_{y_{1}}-4 \varphi_{h} \gamma_{t}\right)-4\left(\alpha_{t}+\varphi_{h} \beta_{t}+\frac{1}{2} \varphi_{h}^{2} \gamma_{t}\right)\right\} \nu_{X_{1}}^{2} d w= \\
& =\lim _{h \rightarrow \infty} \int_{D}\left(\gamma_{y_{1}}-8 \beta_{t}\right) \frac{\varphi_{h}-\bar{\varphi}_{h}}{\eta_{h}} d w \\
& =\int_{D}\left(\gamma_{y_{1}}-8 \beta_{t}\right) \varphi d w . \tag{3.59}
\end{align*}
$$

We used Theorem 2.5.
We compute the limit of the integral of the second line in (3.56). In this case, the limit of the integral of terms containing x_{1} or x_{1}^{2} vanishes. So we have:

$$
\begin{align*}
\lim _{h \rightarrow \infty} & \frac{1}{\eta_{h}} \int_{D} \sum_{j=2}^{n}\left\{Y_{1} X_{j} \alpha+\varphi_{h} Y_{1} X_{j} \beta+\frac{1}{2} \varphi_{h}^{2} Y_{1} X_{j} \gamma+Y_{j} \beta+\varphi_{h} Y_{j} \gamma\right\} \nu_{X_{1}} \nu_{X_{j}} d w= \\
& =-\lim _{h \rightarrow \infty} \int_{D} \sum_{j=2}^{n}\left(Y_{1} X_{j} \alpha+Y_{j} \beta\right) \frac{X_{j} \varphi_{h}}{\eta_{h}} d w \\
& =-\int_{D} \sum_{j=2}^{n}\left(\frac{\partial}{\partial y_{1}} X_{j} \alpha+Y_{j} \beta\right) X_{j} \varphi d w \tag{3.60}
\end{align*}
$$

We used Theorem 2.5.
Finally, we compute the limit of the integral of the third line in (3.56):

$$
\begin{align*}
\lim _{h \rightarrow \infty} & \frac{1}{\eta_{h}} \int_{D} \sum_{j=1}^{n}\left\{Y_{j} Y_{1} \alpha+\varphi_{h} Y_{j} Y_{1} \beta+\frac{1}{2} \varphi_{h}^{2} Y_{j} Y_{1} \gamma-X_{j} \beta-\varphi_{h} X_{j} \gamma\right\} \nu_{X_{1}} \nu_{Y_{j}} d w= \\
& =-\lim _{h \rightarrow \infty} \int_{D}\left\{\frac{\mathscr{B} \varphi_{h}}{\eta_{h}} Y_{1}^{2} \alpha+\sum_{j=2}^{n}\left\{Y_{j} Y_{1} \alpha-X_{j} \beta\right\} \frac{Y_{j} \varphi_{h}}{\eta_{h}}\right\} d w \tag{3.61}\\
& =-\int_{D}\left\{\partial_{y_{1}} \varphi Y_{1}^{2} \alpha+\sum_{j=2}^{n}\left(Y_{j} Y_{1} \alpha-X_{j} \beta\right) Y_{j} \varphi\right\} d w
\end{align*}
$$

We used Theorem 2.5.
Putting together (3.53), (3.59), (3.60), and (3.61), we obtain:

$$
\begin{align*}
\int_{D}\left\{\left(4(n+1) \beta_{t}\right.\right. & \left.+\gamma_{y_{1}}-8 \beta_{t}\right) \varphi-\partial_{y_{1}} \varphi Y_{1}^{2} \alpha- \\
& \left.-\sum_{j=2}^{n}\left(\frac{\partial}{\partial y_{1}} X_{j} \alpha+Y_{j} \beta\right) X_{j} \varphi-\left(Y_{j} Y_{1} \alpha-X_{j} \beta\right) Y_{j} \varphi\right\} d w=0 \tag{3.62}
\end{align*}
$$

When $\alpha=\beta=0$, this equation reads

$$
0=\int_{D} \gamma_{y_{1}} \varphi d w=-\int_{D} \gamma \varphi_{y_{1}} d w
$$

for any test function $\gamma \in C_{c}^{\infty}\left(D_{1 / 2}\right)$. This implies that φ is independent of y_{1}. This proves claim i) of the theorem.

When $\alpha=\gamma=0$, equation (3.62) reads

$$
\begin{aligned}
0 & =\int_{D}\left\{4(n-1) \beta_{t} \varphi+\sum_{j=2}^{n} X_{j} \beta Y_{j} \varphi-Y_{j} \beta X_{j} \varphi\right\} d w \\
& =\int_{D}\left\{4(n-1) \beta_{t}-\sum_{j=2}^{n} Y_{j} X_{j} \beta-X_{j} Y_{j} \beta\right\} \varphi d w
\end{aligned}
$$

for any $\beta \in C_{c}^{\infty}\left(D_{1 / 2}\right)$. This information is empty. In fact, the equation is satisfied for any test function because $Y_{j} X_{j}-X_{j} Y_{j}=\left[Y_{j}, X_{j}\right]=4 T$.

When $\beta=\gamma=0$, by $Y_{1} \varphi=0$ and (3.46) equation (3.62) reads

$$
\begin{aligned}
0 & =\int_{D}\left\{Y_{1}^{2} \alpha Y_{1} \varphi+\sum_{j=2}^{n} Y_{1} X_{j} \alpha X_{j} \varphi+Y_{j} Y_{1} \alpha Y_{j} \varphi\right\} d w \\
& =-\int_{D} \frac{\partial \alpha}{\partial y_{1}} \sum_{j=2}^{n}\left(X_{j}^{2} \varphi+Y_{j}^{2} \varphi\right) d w \\
& =-\int_{D} \vartheta \Delta_{H} \varphi d w
\end{aligned}
$$

for any test function $\vartheta \in C_{c}^{\infty}\left(D_{1 / 2}\right)$. Then the function $\varphi \in W_{H}^{1,2}(D)$ solves the partial differential equation $\Delta_{H} \varphi=0$ in the weak sense in $D_{1 / 4} \cap\left\{y_{1}=0\right\}$. It follows that φ is smooth, by hypoellipticity, and φ is a classical solution. This proves claim ii).

References

[1] L. Ambrosio, M. Scienza, Locality of the perimeter in Carnot groups and chain rule. Ann. Mat. Pura Appl. (4) 189 (2010), no. 4, 661-678.
[2] L. Ambrosio, F. Serra Cassano \& D. Vittone, Intrinsic regular hypersurfaces in Heisenberg groups. J. Geom. Anal., 16 (2006), no. 2, 187-232.
[3] F. Bigolin, L. Caravenna \& F. Serra Cassano, Intrinsic Lipschitz graphs in the Heisenberg group and continuous solutions of a balance equation. Preprint 2013.
[4] L. Capogna, G. Citti, M. Manfredini, Regularity of non-characteristic minimal graphs in the Heisenberg group \mathbb{H}^{1}. Indiana Univ. Math. J. 58 (2009), no. 5, 2115-2160.
[5] , Smoothness of Lipschitz minimal intrinsic graphs in Heisenberg groups $\mathbb{H}^{n}, n>1$. J. Reine Angew. Math. 648 (2010), 75-110.
[6] J.-H. Cheng, J.-F. Hwang, P. Yang, Regularity of C^{1} smooth surfaces with prescribed p-mean curvature in the Heisenberg group. Math. Ann. 344 (2009), no. 1, 1-35.
[7] J.-H. Cheng, J.-F. Hwang, A. Malchiodi, P. Yang, Minimal surfaces in pseudohermitian geometry. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), 129-177.
[8] G. Citti, M. Manfredini, A. Pinamonti, F. Serra Cassano, Poincaré type inequality for intrinsic Lipschitz continuous vector fields in the Heisenberg group, preprint 2013.
[9] B. Franchi, R. Serapioni, F. Serra Cassano, Rectifiability and perimeter in the Heisenberg group. Math. Ann. 321 (2001), 479-531.
[10] B. Franchi, R. Serapioni \& F. Serra Cassano, Regular submanifolds, graphs and area formula in Heisenberg groups, Adv. Math. 211 (2007), no. 1, 152-203.
[11] N. Garofalo, D.-M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math. 49 (1996), 1081-1144.
[12] A. Korányi, H. M. Reimann. Foundations for the theory of quasiconformal mappings on the Heisenberg group. Adv. Math. 111 (1995), no. 1, 1-87.
[13] F. Maggi, Sets of finite perimeter and geometric variational problems. An introduction to geometric measure theory. Cambridge Studies in Advanced Mathematics, 135. Cambridge University Press, Cambridge, 2012. xx +454 pp.
[14] R. Monti, Lipschitz approximation of H-perimeter minimizing boundaries, Calc. Var. Partial Differential Equations 50 (2014), no. 1-2, 171-198.
[15] R. Monti, Isoperimetric problem and minimal surfaces in the Heisenberg group, Lecture notes of the ERC School Geometric Measure Theory and Real Analysis, 57-130, Edizioni SNS Pisa, 2014-2015.
[16] R. Monti, D. Vittone, Sets with finite H-perimeter and controlled normal. Math. Z. 270 (2012), no. 1-2, 351-367.
[17] R. Monti, D. Vittone, Height estimate and slicing formulas in the Heisenberg group. Preprint 2014.
[18] F. Serra Cassano, D. Vittone, Graphs of bounded variation, existence and local boundedness of non-parametric minimal surfaces in the Heisenberg group, Adv. Calc. Var. 7 (2014), no. 4, 409-492.
E-mail address: monti@math.unipd.it
(Monti) Università di Padova, Dipartimento di Matematica, via Trieste 63, 35121 Padova, Italy

