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ROBERTO MONTI

Abstract. We study the blow-up of H-perimeter minimizing sets in the Heisen-

berg group Hn, n ≥ 2. We show that the Lipschitz approximations rescaled by the

square root of excess converge to a limit function. Assuming a stronger notion of lo-

cal minimality, we prove that this limit function is harmonic for the Kohn Laplacian

in a lower dimensional Heisenberg group.
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1. Introduction

One of the central facts in the regularity theory of minimal currents and of mini-

mal boundaries in Rn is the existence of a harmonic function in the blow-up of the

Lipschitz approximation of the current rescaled by excess. The heuristic idea behind

this phenomenon is the fact that if a function f : D → R, with D ⊂ Rn−1, is a local

minimizer of the area functional

A(f) =

∫
D

√
1 + |∇f(x)|2dx
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and f is almost flat, i.e., |∇f(x)| is almost 0, then f is almost a minimizer of the

Dirichlet functional

D(f) =
1

2

∫
D

|∇f(x)|2dx,

that is the first order term in the Taylor development of the area functional. For this

reason, a function f in the blow-up of a minimal boundary is harmonic

∆f(x) = 0, x ∈ D ⊂ Rn−1.

The L2 estimates on the derivatives of harmonic functions give the decay estimate of

excess, that in turn implies the C1,α regularity of the minimal boundary.

In this paper, we investigate the existence of a similar phenomenon in the case

of a nonelliptic perimeter, as the horizontal perimeter in the Heisenberg group. Our

results are not satisfactory because they hold for sets that are H-perimeter minimizing

in a stronger sense, that is not the natural one. However, they are the first example

of “harmonic approximation” of minimal boundaries for a nonelliptic perimeter and

they suggest an interesting research direction in the regularity theory. So far, the

regularity theory for H-minimal surfaces always starts from some initial regularity

(see [4], [5], [6], [7], [18]). See, however, the Lipschitz approximation [14] and the

height estimate proved in [17].

The 2n + 1-dimensional Heisenberg group is the manifold Hn = Cn × R, n ∈ N,

endowed with the group product

(z, t) ∗ (ζ, τ) =
(
z + ζ, t+ τ + 2 Im〈z, ζ̄〉

)
, (1.1)

where t, τ ∈ R, z, ζ ∈ Cn and 〈z, ζ̄〉 = z1ζ̄1+. . .+znζ̄n. The Lie algebra of left-invariant

vector fields in Hn is spanned by the vector fields

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, and T =

∂

∂t
, (1.2)

with zj = xj + iyj and j = 1, . . . , n. We denote by H the horizontal subbundle of

THn. Namely, for any p = (z, t) ∈ Hn we let

Hp = span
{
X1(p), . . . , Xn(p), Y1(p), . . . , Yn(p)

}
.

The H-perimeter of a L 2n+1-measurable set E ⊂ Hn in an open set Ω ⊂ Hn is

PH(E; Ω) = sup

{∫
E

divHV dzdt : V ∈ C1
c (Ω;R2n), ‖V ‖∞ ≤ 1

}
,

where V : Ω → R2n is naturally identified with the horizontal vector field V =∑n
j=1 VjXj + Vn+jYj and the horizontal divergence of V is

divHV =
n∑
j=1

XjVj + YjVn+j.
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We use the notation µE(Ω) = PH(E; Ω). If µE(Ω) < ∞ we say that E has finite

H-perimeter in Ω. If µE(A) <∞ for any open set A ⊂⊂ Ω, we say that E has locally

finite H-perimeter in Ω. In this case, the open sets mapping A 7→ µE(A) extends to a

Radon measure µE on Ω that is called H-perimeter measure induced by E. Moreover,

there exists a µE-measurable function νE : Ω→ H such that |νE| = 1 µE-a.e. and the

Gauss-Green integration by parts formula∫
Ω

〈V, νE〉 dµE = −
∫

Ω

divHV dzdt

holds for any V ∈ C1
c (Ω;R2n). Here and hereafter, 〈·, ·〉 denotes the standard scalar

product in R2n. The vector νE is called horizontal inner normal of E in Ω.

We consider a set E ⊂ Hn with 0 ∈ ∂∗E, the H-reduced boundary of E, that is a

local minimizer of H-perimeter in a neighborhood of 0 and we rescale E to a unitary

scale to have infinitesimal excess. In this way, we have a sequence of sets Eh that are

H-perimeter minimizing and have infinitesimal excess ηh, h ∈ N.

In Section 2, we use the Lipschitz approximation proved in [14] to obtain a sequence

of instrinsic Lipschitz functions (ϕh)h∈N whose graphs cover in measure a large part

of the boundary of the rescaled sets Eh. By the Poincaré inequality recently proved

in [8], we can show that there is subsequence of (ϕh/ηh)h∈N converging to a function

ϕ in a suitable Sobolev space. To have this limit function, only the density estimates

for minimal boundaries are in fact used and so the result extends to Λ-minima. The

Poincaré inequality mentioned above is for functions in domains of R × Hn−1 and it

holds only when n ≥ 2. This is one of the reasons why our discussion is limited to

dimensions n ≥ 2.

The area functional of an intrinsic Lipschitz function ϕ : D → R, where now

D ⊂ R×Hn−1, is of the form

A(ϕ) =

∫
D

√
1 + |∇ϕϕ|2dw, (1.3)

where dw is the Lebesgue measure on W = R × Hn−1 and ∇ϕϕ is a nonlinear gra-

dient that is defined in the sense of distributions, known as “intrinsic gradient”, see

Definition 2.3. The area formula (1.3) is obtained in [9] Theorem 6.5 part (vi) and in

[2] Proposition 2.22. However, the Dirichlet functional

D(ϕ) =
1

2

∫
D

|∇ϕϕ|2dw

does not catch the correct regularity of the limit function, because in the blow-up

there is a linearization of the nonlinear gradient ∇ϕϕ, see Theorem 2.5. After this

linearization, the relevant Dirichlet functional turns out to be

DH(ϕ) =
1

2

∫
D

{( ∂ϕ
∂y1

)2

+
n∑
j=2

(Xjϕ)2 + (Yjϕ)2
}
dw, (1.4)
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where y1 ∈ R is the variable of the factor R in the Cartesian product R × Hn−1.

The Dirichlet form (1.4) identifies the differentiability class where the limit of the

(sub)sequence (ϕh/ηh)h∈N lies.

In Section 3, we deduce from the minimality of E further properties of the limit

function ϕ. We use the first order Taylor expansion of H-perimeter (3.41), that holds

for any set with finite H-perimeter (these sets may be unrectifiable in the standard

sense). We obtain two results. First, we prove that if E is a set that locally minimizes

H-perimeter then the function ϕ : D ⊂ R×Hn−1 → R is independent of the variable

y1 of the factor R, see the first claim of Theorem 3.2. This fact seems to have no

counterpart in the classical theory.

The second result holds for a stronger notion of minimality. The homogeneous cube

centered at 0 ∈ Hn and with radius r > 0 is

Qr =
{

(z, t) ∈ Hn : |xi| < r, |yi| < r, |t| < r2, i = 1, . . . , n
}
. (1.5)

Definition 1.1. We say that a set E ⊂ Hn is H-perimeter minimizing in Qr if

PH(E;Qr) ≤ PH(F,Qr)

for any set F ⊂ Hn such that E∆F is a compact subset of Qr.

Let E ⊂ Hn be a set with 0 ∈ ∂∗E and νE(0) = X1. Let J : H → H be the complex

structure and consider Y1 = J(X1). We define the lateral closure of Qr relative to the

positive direction Y1 as:

Q̄Y1,+
r =

{
(z, t) ∈ Hn : −r < y1 ≤ r, |x1|, |xi|, |yi| < r, |t| < r2, i = 2, . . . , n

}
.

We are adding to Qr the open face of the boundary where y1 = r.

Definition 1.2. We say that a set E ⊂ Hn with 0 ∈ ∂∗E and νE(0) = X1 is strongly

H-perimeter minimizing in Qr if for any 0 < s ≤ r we have

PH(E;Qs) ≤ PH(F,Qs)

for any set F ⊂ Hn such that E∆F ∩ Q̄s is a compact subset of Q̄Y1,+
s .

Here and hereafter, E∆F = E \ F ∪ F \ E denotes the symmetric difference.

In the second claim of Theorem 3.2, we show that if E is strongly H-perimeter

minimizing then the function ϕ : D → R, where now D is a subset of Hn−1, is

H-harmonic, i.e., it solves the partial differential equation

∆Hϕ = 0, in D ⊂ Hn−1,

where ∆H is the Kohn Laplacian in the lower dimensional Heisenberg group Hn−1

∆H =
n∑
j=2

X2
j + Y 2

j . (1.6)
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It is not clear whether the strong H-perimeter minimality can be relaxed to the nat-

ural local minimality. The problem is related to the construction of suitable contact

vector fields in Hn with compact support. This problem is explained in Section 3,

along the proof of Theorem 3.2.

The ideas presented in this paper are part of a joint research project with D. Vit-

tone.

2. Blow-up at the reduced boundary of minimizers

In this section, we show that in the blow-up of an H-perimeter minimizing set at

a point of the reduced boundary there is a function belonging to a suitable Sobolev

space.

We use the box-norm ‖p‖∞ = max{|z|, |t|1/2} for p = (z, t) ∈ Hn, and the homoge-

neous balls

Br = {p ∈ Hn : ‖p‖∞ < r} and Br(p) = p ∗Br, r > 0.

The balls Br are equivalent to the cubes Qr.

2.1. Small excess at the reduced boundary. Let E ⊂ Hn be a set with locally

finite H-perimeter in Hn. We say that 0 ∈ Hn is a point of the H-reduced boundary

of E, 0 ∈ ∂∗E, if the following three conditions hold: µE(Br) > 0 for all r > 0, we

have

lim
r→0

1

µE(Br)

∫
Br

νE dµE = νE(0),

and |νE(0)| = 1. This definition is introduced and studied in [9]. The horizontal

excess of E in Br, r > 0, is

Exc(E,Br) = min
ν∈S2n

1

rQ−1

∫
Br

|νE(p)− ν|2dµE.

We refer the reader to [13] for an account on excess in the Euclidean setting. Notice

that r1−QC1 ≤ µE(Br) ≤ r1−QC2 for constants 0 < C1 < C2 < ∞ and Q = 2n + 2.

For minimizers, the constants are independent of the point in the reduced boundary.

Thus, if 0 ∈ ∂∗E is a point in the H-reduced boundary of E then there exists a

sequence rh → 0+ such that

1

µE(Brh)

∫
Brh

|νE − νE(0)|2dµE <
1

h
,

and so we have Exc(E,Brh) < 1/h.

We consider the anisotropic dilations (z, t) 7→ (λz, λ2t) = δλ(z, t), λ > 0. The

rescaled sets Eh = δ1/rhE, h ∈ N, satisfy suph∈N PH(Eh;B1) < ∞. Moreover, we

have:
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i) If E is H-perimeter minimizing near 0 ∈ ∂E∗, then each set Eh is H-perimeter

minimizing in B1;

ii) Since excess is scale invariant, there holds Exc(Eh, B1) < 1/h;

iii) 0 ∈ ∂∗Eh.
Rotating each set Eh by an isometry fixing the t-axis, we may assume that

Exc(Eh, B1) =

∫
B1

|νEh
− ν|2dµEh

<
1

h
, (2.7)

where ν ∈ S2n is a vector independent of h. In fact, we may assume that ν = νE(0).

Possibly taking a subsequence, by the compactness theorem for sets with finite H-

perimeter, there exists a set F ⊂ Hn such that

lim
h→∞

χEh
= χF , in L1(B1).

Moreover, by the lower semicontinuity of excess we have Exc(F,B1) = 0. Since

0 ∈ ∂F , when n ≥ 2 this implies that

F ∩B1 = {(z, t) ∈ B1 : 〈z, ν〉 ≥ 0},

see [9]. When n = 1, this fact does no longer hold, i.e., ∂F needs not be flat in any

neighborhood of 0, see [14].

2.2. Lipschitz approximation and intrinsic gradient. We identify the vertical

hyperplane W = R × Hn−1 =
{

(z, t) ∈ Hn : x1 = 0
}

with R2n via the coordinates

w = (x2, . . . , xn, y1, . . . , yn, t). The line flow of the vector field X1 starting from the

point (z, t) ∈ W is

exp(sX1)(z, t) = (z + se1, t+ 2y1s), s ∈ R,

where e1 = (1, 0, . . . , 0) ∈ R2n and z = (x, y) ∈ Cn = R2n, with x = (x1, . . . , xn),

x1 = 0, and y = (y1, . . . , yn).

Let D ⊂ W be a set and let ϕ : D → R be a function. The set

Eϕ =
{

exp(sX1)(w) ∈ Hn : s > ϕ(w), w ∈ D
}

(2.8)

is called intrinsic epigraph of ϕ along X1. The set

gr(ϕ) =
{

exp(ϕ(w)X1)(w) ∈ Hn : w ∈ D
}

(2.9)

is called intrinsic graph of ϕ along X1.

We identify ν = (1, 0, . . . , 0) ∈ R2n with (ν, 0) ∈ Hn. For any p ∈ Hn, we let

ν(p) = 〈p, ν〉ν ∈ Hn and we define ν⊥(p) ∈ W ⊂ Hn as the unique point such that

p = ν⊥(p) ∗ ν(p). (2.10)

The (open) cone with vertex 0 ∈ Hn, axis ν ∈ R2n, |ν| = 1, and aperture α ∈ (0,∞]

is the set

C(0, ν, α) =
{
p ∈ Hn : ‖ν⊥(p)‖∞ < α‖ν(p)‖∞

}
. (2.11)
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The cone with vertex p ∈ Hn, axis ν ∈ R2n, and aperture α ∈ (0,∞] is the set

C(p, ν, α) = p ∗ C(0, ν, α).

Definition 2.1 (Intrinsic Lipschitz graphs). Let D ⊂ W be a set and let ϕ : D → R
be a function. The function ϕ is L-intrinsic Lipschitz with 0 < L < ∞ if for any

p ∈ gr(ϕ) there holds

gr(ϕ) ∩ C(p, ν, 1/L) = ∅. (2.12)

The starting point of our argument is the following result of [14] on the Lipschitz ap-

proximation of H-minimal boundaries. We denote by S Q−1 the (2n+1)-dimensional

spherical Hausdorff measure constructed using any homogeneous left invariant metric

on Hn. We shall use freely the identity

S Q−1 ∂∗E = µE. (2.13)

Recall that for an H-perimeter minimizing set E, the reduced boundary ∂∗E coincides

with the essential boundary, that is denoted by ∂E.

Theorem 2.2. Let n ≥ 2. For any L > 0 there are constants k > 1 and c(L, n) > 0

such that for any H-perimeter minimizing set E in Bkr, with 0 ∈ ∂E and νE(0) =

ν = X1, there exists an L-intrinsic Lipschitz function ϕ : W → R such that

S Q−1
(
(gr(ϕ)∆∂E) ∩Br

)
≤ c(L, n)(kr)Q−1Exc(E,Bkr), r > 0. (2.14)

Theorem 2.2 holds also for n = 1. In this case, the Lipschitz constant L has to be

suitably large.

We introduce a nonlinear gradient for functions ϕ : D → R with D ⊂ W open set.

The Burgers’ operator B : Liploc(D)→ L∞loc(D) is

Bϕ =
∂ϕ

∂y1

− 4ϕ
∂ϕ

∂t
. (2.15)

When ϕ ∈ C(D) is only continuous, we say that Bϕ exists in the sense of distributions

and is represented by a locally bounded function, if there exists a function ϑ ∈ L∞loc(D)

such that for all ψ ∈ C1
c (D) there holds∫
D

ϑψ dw = −
∫
D

{
ϕ
∂ψ

∂y1

− 2ϕ2∂ψ

∂t

}
dw. (2.16)

In this case, we let Bϕ = ϑ.

Next, notice that the vector fields X2, . . . , Xn, Y2, . . . , Yn can be naturally restricted

to W and that they are self-adjoint.

Definition 2.3 (Intrinsic gradient). Let D ⊂ W = R2n be an open set and let

ϕ ∈ C(D) be a continuous function. We say that the intrinsic gradient ∇ϕϕ ∈
L∞loc(D;R2n−1) exists in the sense of distributions if the distributional derivatives
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Xiϕ,Bϕ, Yiϕ, i = 2, . . . , n, are represented by locally bounded functions in D. In

this case, we let

∇ϕϕ =
(
X2ϕ, . . . , Xnϕ,Bϕ, Y2ϕ, . . . , Ynϕ), (2.17)

and we call ∇ϕϕ the intrinsic gradient of ϕ.

When n = 1, the intrinsic gradient reduces to ∇ϕϕ = Bϕ.

Theorem 2.4. Let D ⊂ W be an open set and ϕ : D → R be a continuous function.

The following statements are equivalent:

A) We have ∇ϕϕ ∈ L∞loc(D;R2n−1).

B) For any D′ ⊂⊂ D, the function ϕ : D′ → R is intrinsic Lipschitz.

Moreover, if A) or B) holds then the intrinsic epigraph Eϕ ⊂ Hn has locally finite

H-perimeter in the cylinder D ∗ R = {w ∗ (se1) ∈ Hn : w ∈ D, s ∈ R}, for L 2n-

a.e. w ∈ D the inner horizontal normal to ∂Eϕ is

νEϕ(w ∗ ϕ(w)) =
( 1√

1 + |∇ϕϕ(w)|2
,
−∇ϕϕ(w)√

1 + |∇ϕϕ(w)|2
)
, (2.18)

and, for any D′ ⊂ D, we have the area formula

PH(Eϕ;D′ ∗ R) =

∫
D′

√
1 + |∇ϕϕ|2dw. (2.19)

The equivalence between A) and B) is a deep result that is proved in [3], Theorem

1.1. Formula (2.18) for the normal and the area formula (2.20) are proved in [8]

Corollary 4.2 and Corollary 4.3, respectively. Part of these results is the fact that

‖∇ϕϕ‖∞ is equivalent to the Lipschitz constant. The area formula (2.19) can be

improved in the following way∫
∂Eϕ∩(D′∗R)

g(p) dµEϕ =

∫
D′
g(w ∗ ϕ(w))

√
1 + |∇ϕϕ(w)|2dw, (2.20)

where g : ∂Eϕ → R is a Borel function.

A result related to Theorem 2.4 can be found in [16], where it is proved that if E ⊂
Hn is a set with finite H-perimeter having controlled normal νE, say 〈νE, e1〉 ≥ k > 0

µE-a.e., then the reduced boundary ∂∗E is an intrinsic Lipschitz graph along X1.

2.3. Blow-up of H-minimal boundaries. Let E ⊂ Hn be an H-perimeter mini-

mizing set in a neighborhood of 0 ∈ Hn, with 0 ∈ ∂E and νE(0) = X1. Let Eh be the

rescaled sets of E introduced before equation (2.7). The square root of excess

ηh =
√

Exc(Eh, B1) (2.21)

is infinitesimal, and we may assume that ηh > 0.

Let σ > 0 be a small number, e.g., 0 < σ ≤ 1/k where k > 1 is the geometric

constant given by Theorem 2.2, and let 0 < L ≤ 1 be a Lipschitz constant. Since
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each set Eh is H-perimeter minimizing in the ball B1, by Theorem 2.2 there exist

L-intrinsic Lipschitz functions ϕh : W → R such that

S Q−1
(
(gr(ϕh)∆∂Eh) ∩Bσ

)
≤ c(L, n, σ)Exc(Eh, B1) = c0η

2
h, (2.22)

where c0 = c(L, n, σ).

In this section we prove the following theorem. Recall that the Sobolev space

W 1,2
H (D) is the set of all ϕ ∈ L2(D) such that the distributional derivatives

X2ϕ, . . . , Xnϕ,
∂ϕ

∂y1

, Y2ϕ, . . . , Ynϕ ∈ L2(D)

are squared integrable. In this case, we let

∇Hϕ =
(
X2ϕ, . . . , Xnϕ,

∂ϕ

∂y1

, Y2ϕ, . . . , Ynϕ
)
.

Theorem 2.5. Let n ≥ 2. Under the assumptions made at the beginning of this

section, there exist an open neighborhood D ⊂ W of 0 ∈ W , constants ϕ̄h ∈ R, a

function ϕ ∈ W 1,2
H (D), and a selection of indices k 7→ hk such that, for k → ∞ we

have

ϕhk − ϕ̄hk
ηhk

⇀ ϕ weakly in L2(D),

∇ϕhkϕhk
ηhk

⇀ ∇Hϕ weakly in L2(D;R2n−1).

In the proof of Theorem 2.5, we use the Poincaré inequality of [8]. As in Section

2.1 of [8] (but with our normalization (1.2) of the vector fields), for w = (z, t) ∈ W
and ϕ : W → R we let

dϕ(w, 0) =
1

2
max

{
|z|, |t+ 4ϕ(w)y1|1/2

}
+

1

2
max

{
|z|, |t+ 4ϕ(0)y1|1/2

}
, (2.23)

and, for r > 0,

Uϕ(r) =
{
w ∈ W : dϕ(w, 0) < r

}
. (2.24)

Theorem 2.6. Let n ≥ 2 and let ϕ : W → R be an L-intrinsic Lipschitz function.

There exist constants C1, C2 > 0 depending on L and n such that∫
Uϕ(r)

|ϕ(w)− ϕUϕ(r)|2dw ≤ C1r
2

∫
Uϕ(C2r)

|∇ϕϕ(w)|2dw, r > 0, (2.25)

where

ϕUϕ(r) =
1

L 2n(Uϕ(r))

∫
Uϕ(r)

ϕ(w)dw. (2.26)

See Corollary 4.5 in [8].
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Proof of Theorem 2.5. By the lower density estimate PH(Eh;Bσ/2) ≥ CσQ−1 with a

constant C > 0 independent of h and, from (2.22), we deduce that gr(ϕh)∩Bσ/2 6= ∅
for all h ∈ N large enough. It follows that (details are omitted) there exists ε1 > 0

such that

gr(ϕh) ∩ {w ∈ W : |w| < ε1} ∗ R ⊂ Bσ. (2.27)

Without loss of generality we can assume that ‖ϕh‖∞ ≤ 1 for all h ∈ N. Thus, from

(2.23) and (2.24), it follows that there exist ε0 > 0 and r > 0 such that

D :=
{
w ∈ W : |w| < ε0

}
⊂ Uϕh

(r) ⊂ Uϕh
(C2r) ⊂

{
w ∈ W : |w| < ε1

}
=: D′.

(2.28)

Then, by (2.22), we deduce the estimate

S Q−1
(
(gr(ϕh) \ ∂Eh) ∩D′ ∗ R

)
≤ c0η

2
h. (2.29)

Let Dh ⊂ D′ be the set of the points w ∈ D′ such that

νEϕh
(w ∗ ϕh(w)) =

( 1√
1 + |∇ϕhϕh(w)|2

,
−∇ϕhϕh(w)√

1 + |∇ϕhϕh(w)|2
)
, (2.30)

and

νEϕh
(w ∗ ϕh(w)) = νEh

(w ∗ ϕh(w)). (2.31)

By Theorem 2.4, see formula (2.18), identity (2.30) holds for L 2n-a.e. w ∈ D′. By

the locality of H-perimeter (see Corollary 2.5 in [1]) and by the area formula (2.19),

identity (2.31) holds for L 2n-a.e. w ∈ π(gr(ϕh) ∩ ∂Eh), where π : Hn → W is the

projection along X1.

Since each function ϕh is L-intrinsic Lipschitz with 0 < L ≤ 1, we can assume

‖∇ϕhϕh‖∞ ≤ 1. Then for any point w ∈ Dh we have:

|νEh
(w ∗ ϕh(w))− ν|2 = |νEϕh

(w)− ν|2 ≥ 1

2
|∇ϕhϕh(w)|2,

where ν = (1, 0, . . . , 0) ∈ S2n. By the area formula (2.20) for intrinsic Lipschitz

functions and by (2.7), we obtain the estimate∫
Dh

|∇ϕhϕh(w)|2dw ≤ 2

∫
B1

|νEh
− ν|2dµEh

≤ 2η2
h. (2.32)

Again by ‖∇ϕhϕh‖∞ ≤ 1, by the area formula, and by (2.22), we obtain∫
D′\Dh

|∇ϕhϕh(w)|2dw ≤ L 2n(D′ \Dh)

≤ S Q−1((gr(ϕh) \ ∂Eh) ∩Bσ) ≤ c0η
2
h.

(2.33)

It follows that the sequence of functions |∇ϕhϕh|/ηh, h ∈ N, is uniformly bounded

in L2(D′). Then there exists a function Φ ∈ L2(D′;R2n−1) such that, possibly taking
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a subsequence, we have as h→∞

∇ϕhϕh
ηh

⇀ Φ weakly in L2(D′;R2n−1). (2.34)

After a relabeling, we assume here and hereafter that the full sequence is converging.

We denote by ϕ̄h the mean of ϕh defined in (2.26), namely,

ϕ̄h =
1

L 2n(Uϕh
(r))

∫
Uϕh

(r)

ϕh(w)dw, (2.35)

where r > 0 is such that the inclusions in (2.28) hold. By the Poincaré inequality

(2.25), by the inclusions in (2.28), (2.32), and (2.33) we have∫
D

|ϕh(w)− ϕ̄h|2dw ≤
∫
Uϕh

(r)

|ϕh(w)− ϕ̄h|2dw

≤ C1r
2

∫
Uϕh

(C2r)

|∇ϕhϕh(w)|2dw

≤ C1r
2

∫
D′
|∇ϕhϕh(w)|2dw

≤ C1r
2(2 + c0)η2

h.

Then, the sequence (ϕh − ϕ̄h)/ηh is uniformly bounded in L2(D). It follows that we

have ϕh − ϕ̄h → 0 in L2(D). As the sequence of sets (Eh)h∈N is converging to a

half-plane inside the ball B1, we deduce that ϕ̄h → 0 as h → ∞. Finally, by weak

compactness there exists a function ϕ ∈ L2(D) such that, possibly taking a further

subsequence, we have

ϕh − ϕ̄h
ηh

⇀ ϕ weakly in L2(D). (2.36)

We claim that ϕ ∈ W1,2
H (D) and that

Φ = ∇Hϕ =
(
X2ϕ, . . . , Xnϕ,

∂ϕ

∂y1

, Y2ϕ, . . . , Ynϕ
)
, (2.37)

in the sense of weak derivatives in L2(D). Notice that the nonlinear derivative Bϕh/ηh
is converging to the linear derivative ∂y1ϕ.

By (2.36), for any test function ψ ∈ C1
c (D) we have

lim
h→∞

∫
D

ϕh − ϕ̄h
ηh

ψdw =

∫
D

ϕψ dw. (2.38)
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On the other hand, by the distributional definition (2.16) of the derivative Bϕh we

have

1

ηh

∫
D

ψBϕh dw = − 1

ηh

∫
D

{
ϕhψy1 − 2ϕ2

hψt
}
dw

= − 1

ηh

∫
D

{
(ϕh − ϕ̄h)ψy1 − 2(ϕ2

h − ϕ̄2
h)ψt

}
dw

= −
∫
D

{ϕh − ϕ̄h
ηh

ψy1 − 2
ϕh − ϕ̄h
ηh

(ϕh + ϕ̄h)ψt

}
dw.

Since ϕh + ϕ̄h is converging to zero strongly in L2(D) and (ϕh − ϕ̄h)/ηh is uniformly

bounded in L2(D), we obtain

lim
h→∞

1

ηh

∫
D

ψBϕh dw = −
∫
D

ϕψy1dw.

A similar argument shows that for any Z ∈ {X, Y } and j = 2, . . . , n we have

lim
h→∞

1

ηh

∫
D

ψ Zjϕh dw = −
∫
D

ϕZjψdw.

This finishes the proof of (2.37). �

3. H-harmoncity of the limit function

In this section, we prove that the limit function ϕ given by Theorem 2.5 is inde-

pendent of the variable y1 dual in the complex sense to the graph direction x1. If the

set E is a strong minimizer in the sense of Definition 1.2, we show that the function

ϕ is H-harmonic in Hn−1, the lower dimensional Heisenberg group.

3.1. First variation formula. We recall the first variation formula for H-perimeter

of sets in Hn that are deformed along a contact flow. A diffeomorphism Ψ : Ω→ Ψ(Ω),

with Ω ⊂ Hn open set, is a contact map if for any p ∈ Ω the differential Ψ∗ maps

the horizontal space Hp into HΨ(p). A one-parameter flow (Ψs)s∈R of diffeomorphisms

in Hn is a contact flow if each Ψs is a contact map. Contact flows are generated by

contact vector fields (see [12]). A contact vector field in Hn is a vector field of the

form

Vψ =
n∑
j=1

(Yjψ)Xj − (Xjψ)Yj − 4ψT, (3.39)

where ψ ∈ C∞(Hn) is the generating function. For any compact set K ⊂ Hn we

have the flow Ψ : [−δ, δ] × K → Hn that is defined by Ψ̇(s, p) = Vψ(Ψ(s, p)) and

Ψ(0, p) = p for any s ∈ [−δ, δ] and p ∈ K, for some δ = δ(ψ,K) > 0. We call Ψ the

flow generated by ψ. We also let Ψs = Ψ(s, ·).
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Related to the generating function ψ, we have, at any point p ∈ Hn, the real

quadratic form Qψ : Hp → R

Qψ

( n∑
j=1

xjXj+yjYj

)
=

n∑
i,j=1

xixj XjYiψ+xjyi (YiYjψ−XjXiψ)−yiyj YjXiψ, (3.40)

where xj, yj ∈ R, and ψ with its derivatives are evaluated at p. The quadratic form

Qψ appears in the first variation of H-perimeter along the flow generated by ψ. In the

following, we identify Hp with R2n by declaring X1, . . . , Xn, Yn, . . . , Yn an orthonormal

basis.

Theorem 3.1. Let Ω ⊂ Hn be a bounded open set and let Ψ : [−δ, δ] × Ω → Hn be

the flow generated by ψ ∈ C∞(Hn). Then there exists C = C(ψ,Ω) > 0 such that for

any set E ⊂ Hn with finite H-perimeter in Ω we have∣∣∣∣PH(Ψs(E),Ψs(Ω))− PH(E,Ω) + s

∫
Ω

{
4(n+ 1)Tψ + Qψ(νE)

}
dµE

∣∣∣∣ ≤ C PH(E,Ω) s2

(3.41)

for any s ∈ [−δ, δ].

The proof of Theorem 3.1 when ∂E∩Ω is a C∞-smooth hypersurface can be found

in [15]. The proof for a set with finite H-perimeter will appear elsewhere.

3.2. H-harmonicity of ϕ. Let E ⊂ Hn be a set with locally finite H-perimeter in

Hn. Assume that 0 ∈ Hn is a point of the H-reduced boundary of E, 0 ∈ ∂∗E, with

νE(0) = (1, 0, . . . , 0) ∈ R2n, and that E is H-perimeter minimizing in a neighborhood

of 0, in the sense of Definition 1.1.

Let (Eh)h∈N be the sequence of rescaled sets introduced in Section 2.1. We can

assume that each set Eh is H-perimeter minimizing in the cube

QR = {(z, t) ∈ Hn : |xi|, |yi|, |t|2 < R, i = 1, . . . , n},

for some large R > 0. Let (ϕh)h∈N be the sequence of L-intrinsic Lipschitz functions

satisfying (2.22), with 0 < L ≤ 1. We can assume that each ϕh is defined on

D1 = {(z, t) ∈ Q1 : x1 = 0}. Finally, let ϕ ∈ W 1,2
H (D1) be the limit function of a

subsequence of (ϕh)h∈N, as in Theorem 2.5. Without loss of generality, we can assume

that ϕ is defined on the whole D1. Let D1/4 = {(z, t) ∈ Q1/4 : x1 = 0}.

Theorem 3.2. Let n ≥ 2 and let E be a set with locally finite H-perimeter, as above.

Then:

i) If E is H-perimeter minimizing in a neighborhood of 0 ∈ Hn, then the function

ϕ : D1/4 ⊂ R×Hn−1 → R is independent of the variable y1 of the factor R.
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ii) If E is strongly H-perimeter minimizing in a neighborhood of 0 ∈ Hn, then

the function ϕ is H-harmonic, i.e., it is of class C∞ and it solves the partial

differential equation

∆Hϕ = 0 in D1/4 ∩ {y1 = 0}, (3.42)

where ∆H is the Kohn Laplacian (1.6) in Hn−1.

Proof. Let ψ ∈ C∞(Hn) be the generating function of a contact vector field Vψ. We

assume that ψ has the following structure. First we assume that we have

ψ = α + x1β +
1

2
x2

1γ,

where α, β, γ ∈ C∞(Hn) are smooth functions such that

X1α = X1β = X1γ = 0 in the stripe {(z, t) ∈ Hn : |x1| < 1/4}. (3.43)

After a Taylor development in the variable x1 along the flow of X1, the function ψ

has this structure plus a remainder. The functions β, γ are always assumed to satisfy

β, γ ∈ C∞c (Q1/2). (3.44)

As far as the function α is concerned, we distinguish two cases, according to the

claims i) and ii):

i) In this case, we assume also that

α ∈ C∞c (Q1/2). (3.45)

ii) In this case, we let

α(x1, y1, z2, . . . , zn, t) =

∫ y1

0

ϑ(x1, s, z2, . . . , zn, t)ds, x1 ∈ R, (3.46)

where ϑ ∈ C∞c (Q1/2) is an arbitrary smooth compactly supported function

such that X1ϑ = 0 in {|x1| < 1/4}.

We consider the sets E ′h = Φsh(Eh), where sh > 0 are small numbers that will be

fixed later. We can assume that ∂Eh ⊂ {|x1| < 1/4} for all h ∈ N. In the stripe

(3.43), the vector field Vψ has the form

Vψ = (Y1ψ)X1 − (β + x1γ)Y1 +
n∑
j=2

(Yjψ)Xj − (Xjψ)Yj − 4ψT. (3.47)

It follows that PH(Ψsh(Eh),Ψ(Q1)) = PH(E ′h, Q1) for all large h ∈ N.

In case i), each Eh is H-perimeter minimizing in the cube Q1; in fact we have

E ′h∆Eh ⊂⊂ Q1. In case ii), each Eh is strongly H-perimeter minimizing in the cube
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Q1; in fact, we have E ′h∆Eh ∩ Q̄1 ⊂ Q̄Y1,+
1 . In both cases, by Theorem 3.1 the

minimality condition PH(Eh, Q1) ≤ PH(E ′h, Q1) gives

0 ≤ PH(E ′h, Q1)− PH(Eh, Q1) = −sh
∫
Q1

{
4(n+ 1)Tψ + Qψ(νEh

)
}
dµEh

+O(s2
h),

where O(s2
h)/s

2
h is bounded by a constant independent of h. We fix sh > 0 such that

sh = o(ηh) as h→∞, where ηh > 0 is the excess (2.21), and we obtain

0 ≤ − 1

ηh

∫
Q

{
4(n+ 1)Tψ + Qψ(νEh

)
}
dµEh

+ o(1),

where o(1) is infinitesimal as h → ∞. Replacing ψ with −ψ and using the identity

Q−ψ(νEh
) = −Qψ(νEh

), we also have the opposite inequality. We therefore deduce

that

lim
h→∞

1

ηh

∫
Q1

{
4(n+ 1)Tψ + Qψ(νEh

)
}
dµEh

= 0. (3.48)

Notice that the excess ηh in (2.21) can be equivalently defined using homogeneous

cubes in place of balls.

From now on, we let D = D1. Let Eϕh
⊂ Hn be the intrinsic epigraph of ϕh, as

in (2.8). Let gr(ϕh) be the intrinsic graph of ϕh over D, as in (2.9). With a slightly

abuse of notation, for any h ∈ N let Dh ⊂ D be the set of points w ∈ D such that

(2.30) and (2.31) hold. By (2.22), (2.31), and (2.20) we have∫
Q1

{
4(n+ 1)Tψ+Qψ(νEh

)
}
dµEh

=

∫
Q1∩gr(ϕh)

{
4(n+ 1)Tψ + Qψ(νEh

)
}
dµEh

+O(η2
h)

=

∫
Q1∩gr(ϕh)

{
4(n+ 1)Tψ + Qψ(νEϕh

)
}
dµEϕh

+O(η2
h)

=

∫
Dh

{
4(n+ 1)Tψ + Qψ(νEϕh

)
}√

1 + |∇ϕhϕh(w)|2dw +O(η2
h),

where νEϕh
is the vector in (2.30) and the bracket {. . .} in the last line is evaluated

at w ∗ ϕh(w). By (2.22), we have L 2n(D \Dh) = O(η2
h), and so we deduce that

lim
h→∞

1

ηh

∫
D

{
4(n+ 1)Tψ(w ∗ ϕh(w)) + Qψ(νEϕh

(w ∗ ϕh(w)))
}
dw = 0. (3.49)

We compute the limit in (3.49). We start from the integral of Tψ(w ∗ ϕh(w)).

The sequence (ϕh)h∈N is converging to 0 uniformly. We omit details of the proof

of this fact. Then we can assume that ‖ϕh‖∞ < 1/4 and thus, by (3.43), we have

X1Tα = TX1α = 0. This implies that Tα(w ∗ ϕh(w)) = Tα(w) = αt(w), where we

are using the notation αt = ∂α/∂t. The same holds for β and γ. Thus we have, for

any w ∈ D,

Tψ(w ∗ ϕh(w)) = αt + ϕhβt +
1

2
ϕ2
hγt,

where the right hand-side is evaluated at w. With abuse of notation, here and in the

following we denote by ψ, α, β, γ, ϑ also the restriction of the functions to {x1 = 0}.
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Since we have

supp(α), supp(β), supp(γ) ⊂
{

(z, t) ∈ Hn : |t|2 < 1/2
}
, (3.50)

then there holds ∫
D

αt dw =

∫
D

βt dw =

∫
D

γt dw = 0.

Let ϕ̄h ∈ R be the numbers given by Theorem 2.5. By (2.38), we have

lim
h→∞

1

ηh

∫
D

ϕh βt dw = lim
h→∞

∫
D

ϕh − ϕ̄h
ηh

βt dw =

∫
D

ϕβtdw, (3.51)

and

lim
h→∞

1

ηh

∫
D

ϕ2
hγt dw = lim

h→∞

∫
D

ϕh − ϕ̄h
ηh

(ϕh + ϕ̄h)γt dw = 0, (3.52)

because ϕh + ϕ̄h is converging to 0 strongly in L2. From (3.51) and (3.52), we deduce

that

lim
h→∞

1

ηh

∫
D

4(n+ 1)Tψ(w ∗ ϕh(w))dw = 4(n+ 1)

∫
D

ϕβt dw. (3.53)

We compute the limit of the integral of Qψ(νEϕh
) in (3.49). Letting

νEϕh
= (νX1 , . . . , νXn , νY1 , . . . , νYn) ∈ S2n,

we isolate in (3.40) the terms containing νX1 . Namely, we have

Qψ(νEϕh
) = (X1Y1ψ)ν2

X1
+

n∑
j=2

(XjY1ψ +X1Yjψ)νX1νXj

+
n∑
j=1

(YjY1ψ −X1Xjψ)νX1νYj

+ Eψ(νEϕh
),

(3.54)

where Eψ(νEϕh
) is a quadratic form that does not contain νX1 .

Inserting into formula (3.54) the derivatives

X1Y1ψ = Y1X1ψ − 4Tψ

= Y1β + x1Y1γ − 4
(
αt + x1βt +

1

2
x2

1γt

)
,

XjY1ψ = Y1Xjα + x1Y1Xjβ +
1

2
x2

1Y1Xjγ, j ≥ 2,

X1Yjψ = Yjβ + x1Yjγ, j ≥ 2,

YjY1ψ = YjY1α + x1YjY1β +
1

2
x2

1YjY1γ, j ≥ 1,

(3.55)
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we obtain

Qψ(νEϕh
) =

{
Y1β + x1Y1γ − 4

(
αt + x1βt +

1

2
x2

1γt

)}
ν2
X1

+
n∑
j=2

{
Y1Xjα + x1Y1Xjβ +

1

2
x2

1Y1Xjγ + Yjβ + x1Yjγ
}
νX1νXj

+
n∑
j=1

{
YjY1α + x1YjY1β +

1

2
x2

1YjY1γ −Xjβ − x1Xjγ
}
νX1νYj

+ Eψ(νEϕh
),

(3.56)

where, by (2.18) and (2.17), we have

νX1 =
1√

1 + |∇ϕhϕh|2
, νY1 = − Bϕh√

1 + |∇ϕhϕh|2
,

νZj
= − Zjϕh√

1 + |∇ϕhϕh|2
, Z ∈ {X, Y }, j ≥ 2.

(3.57)

Above, Bϕh is the Burgers’ operator. In particular, since each ϕh is intrinsic L-

Lipschitz with 0 < L ≤ 1 we can assume that suph∈N ‖∇ϕhϕh‖∞ <∞ and thus there

exists an absolute constant C > 0 such that

|Eψ(νEϕh
)| ≤ C|∇ϕhϕh|2. (3.58)

So, from (2.32) and (2.33) we have

lim
h→∞

1

ηh

∫
D

|Eψ(νEϕh
(w ∗ ϕh(w))|dw = 0.

In other words, the limit (3.49) of the integral of Eψ in (3.49) vanishes.

We compute the limit of the integral of the first three lines in (3.56), separately.

By (3.43), we have X1Y1β = Y1X1β − 4Tβ = −4Tβ and thus

Y1β(w ∗ ϕh(w)) = βy1(w)− 4ϕh(w)βt(w).

Similarly, there holds

Y1γ(w ∗ ϕh(w)) = γy1(w)− 4ϕh(w)γt(w).

The limit of the integral of terms in the first line of (3.56) containing x2
1 vanishes,

by a computation analogous to (3.52). Moreover, by (2.32), (2.33), and (3.57) the

function ν2
X1

may be replaced by 1. Thus, the limit of the integral of the first line in
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(3.56) is

lim
h→∞

1

ηh

∫
B

{
βy1 − 4ϕhβt + ϕh(γy1 − 4ϕhγt)− 4

(
αt + ϕhβt +

1

2
ϕ2
hγt

)}
ν2
X1
dw =

= lim
h→∞

∫
D

(γy1 − 8βt)
ϕh − ϕ̄h
ηh

dw

=

∫
D

(γy1 − 8βt)ϕdw.

(3.59)

We used Theorem 2.5.

We compute the limit of the integral of the second line in (3.56). In this case, the

limit of the integral of terms containing x1 or x2
1 vanishes. So we have:

lim
h→∞

1

ηh

∫
D

n∑
j=2

{
Y1Xjα + ϕhY1Xjβ +

1

2
ϕ2
hY1Xjγ + Yjβ + ϕhYjγ

}
νX1νXj

dw =

= − lim
h→∞

∫
D

n∑
j=2

(Y1Xjα + Yjβ)
Xjϕh
ηh

dw

= −
∫
D

n∑
j=2

( ∂

∂y1

Xjα + Yjβ
)
Xjϕdw.

(3.60)

We used Theorem 2.5.

Finally, we compute the limit of the integral of the third line in (3.56):

lim
h→∞

1

ηh

∫
D

n∑
j=1

{
YjY1α + ϕhYjY1β +

1

2
ϕ2
hYjY1γ −Xjβ − ϕhXjγ

}
νX1νYjdw =

= − lim
h→∞

∫
D

{Bϕh
ηh

Y 2
1 α +

n∑
j=2

{
YjY1α−Xjβ

}Yjϕh
ηh

}
dw

= −
∫
D

{
∂y1ϕY

2
1 α +

n∑
j=2

(
YjY1α−Xjβ

)
Yjϕ
}
dw.

(3.61)

We used Theorem 2.5.

Putting together (3.53), (3.59), (3.60), and (3.61), we obtain:∫
D

{(
4(n+ 1)βt + γy1 − 8βt

)
ϕ− ∂y1ϕY 2

1 α−

−
n∑
j=2

( ∂

∂y1

Xjα + Yjβ
)
Xjϕ−

(
YjY1α−Xjβ

)
Yjϕ
}
dw = 0.

(3.62)

When α = β = 0, this equation reads

0 =

∫
D

γy1ϕdw = −
∫
D

γϕy1dw,
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for any test function γ ∈ C∞c (D1/2). This implies that ϕ is independent of y1. This

proves claim i) of the theorem.

When α = γ = 0, equation (3.62) reads

0 =

∫
D

{
4(n− 1)βtϕ+

n∑
j=2

XjβYjϕ− YjβXjϕ
}
dw

=

∫
D

{
4(n− 1)βt −

n∑
j=2

YjXjβ −XjYjβ
}
ϕdw,

for any β ∈ C∞c (D1/2). This information is empty. In fact, the equation is satisfied

for any test function because YjXj −XjYj = [Yj, Xj] = 4T .

When β = γ = 0, by Y1ϕ = 0 and (3.46) equation (3.62) reads

0 =

∫
D

{
Y 2

1 αY1ϕ+
n∑
j=2

Y1XjαXjϕ+ YjY1αYjϕ
}
dw

= −
∫
D

∂α

∂y1

n∑
j=2

(X2
jϕ+ Y 2

j ϕ)dw

= −
∫
D

ϑ∆Hϕdw,

for any test function ϑ ∈ C∞c (D1/2). Then the function ϕ ∈ W 1,2
H (D) solves the partial

differential equation ∆Hϕ = 0 in the weak sense in D1/4 ∩{y1 = 0}. It follows that ϕ

is smooth, by hypoellipticity, and ϕ is a classical solution. This proves claim ii). �
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