MINIMAL SURFACES AND HARMONIC FUNCTIONS IN THE HEISENBERG GROUP

ROBERTO MONTI

ABSTRACT. We study the blow-up of *H*-perimeter minimizing sets in the Heisenberg group \mathbb{H}^n , $n \geq 2$. We show that the Lipschitz approximations rescaled by the square root of excess converge to a limit function. Assuming a stronger notion of local minimality, we prove that this limit function is harmonic for the Kohn Laplacian in a lower dimensional Heisenberg group.

Contents

1. Introduction	1
2. Blow-up at the reduced boundary of minimizers	5
2.1. Small excess at the reduced boundary	5
2.2. Lipschitz approximation and intrinsic gradient	6
2.3. Blow-up of H -minimal boundaries	8
3. <i>H</i> -harmoncity of the limit function	12
3.1. First variation formula	12
3.2. <i>H</i> -harmonicity of φ	13
References	19

1. INTRODUCTION

One of the central facts in the regularity theory of minimal currents and of minimal boundaries in \mathbb{R}^n is the existence of a harmonic function in the blow-up of the Lipschitz approximation of the current rescaled by excess. The heuristic idea behind this phenomenon is the fact that if a function $f: D \to \mathbb{R}$, with $D \subset \mathbb{R}^{n-1}$, is a local minimizer of the area functional

$$A(f) = \int_D \sqrt{1 + |\nabla f(x)|^2} dx$$

²⁰¹⁰ Mathematics Subject Classification. 49Q05.

Key words and phrases. Heisenberg group, regularity of *H*-minimal surfaces, *H*-harmonic functions.

and f is almost flat, i.e., $|\nabla f(x)|$ is almost 0, then f is almost a minimizer of the Dirichlet functional

$$D(f) = \frac{1}{2} \int_D |\nabla f(x)|^2 dx,$$

that is the first order term in the Taylor development of the area functional. For this reason, a function f in the blow-up of a minimal boundary is harmonic

$$\Delta f(x) = 0, \quad x \in D \subset \mathbb{R}^{n-1}.$$

The L^2 estimates on the derivatives of harmonic functions give the decay estimate of excess, that in turn implies the $C^{1,\alpha}$ regularity of the minimal boundary.

In this paper, we investigate the existence of a similar phenomenon in the case of a nonelliptic perimeter, as the horizontal perimeter in the Heisenberg group. Our results are not satisfactory because they hold for sets that are H-perimeter minimizing in a stronger sense, that is not the natural one. However, they are the first example of "harmonic approximation" of minimal boundaries for a nonelliptic perimeter and they suggest an interesting research direction in the regularity theory. So far, the regularity theory for H-minimal surfaces always starts from some initial regularity (see [4], [5], [6], [7], [18]). See, however, the Lipschitz approximation [14] and the height estimate proved in [17].

The 2n + 1-dimensional Heisenberg group is the manifold $\mathbb{H}^n = \mathbb{C}^n \times \mathbb{R}, n \in \mathbb{N}$, endowed with the group product

$$(z,t)*(\zeta,\tau) = \left(z+\zeta,t+\tau+2\operatorname{Im}\langle z,\bar{\zeta}\rangle\right),\tag{1.1}$$

where $t, \tau \in \mathbb{R}, z, \zeta \in \mathbb{C}^n$ and $\langle z, \overline{\zeta} \rangle = z_1 \overline{\zeta}_1 + \ldots + z_n \overline{\zeta}_n$. The Lie algebra of left-invariant vector fields in \mathbb{H}^n is spanned by the vector fields

$$X_j = \frac{\partial}{\partial x_j} + 2y_j \frac{\partial}{\partial t}, \quad Y_j = \frac{\partial}{\partial y_j} - 2x_j \frac{\partial}{\partial t}, \quad \text{and} \quad T = \frac{\partial}{\partial t},$$
 (1.2)

with $z_j = x_j + iy_j$ and j = 1, ..., n. We denote by H the horizontal subbundle of $T\mathbb{H}^n$. Namely, for any $p = (z, t) \in \mathbb{H}^n$ we let

$$H_p = \operatorname{span} \left\{ X_1(p), \dots, X_n(p), Y_1(p), \dots, Y_n(p) \right\}$$

The *H*-perimeter of a \mathscr{L}^{2n+1} -measurable set $E \subset \mathbb{H}^n$ in an open set $\Omega \subset \mathbb{H}^n$ is

$$P_H(E;\Omega) = \sup\left\{\int_E \operatorname{div}_H V dz dt : V \in C_c^1(\Omega; \mathbb{R}^{2n}), \|V\|_{\infty} \le 1\right\},$$

where $V : \Omega \to \mathbb{R}^{2n}$ is naturally identified with the horizontal vector field $V = \sum_{j=1}^{n} V_j X_j + V_{n+j} Y_j$ and the horizontal divergence of V is

$$\operatorname{div}_{H} V = \sum_{j=1}^{n} X_{j} V_{j} + Y_{j} V_{n+j}.$$

We use the notation $\mu_E(\Omega) = P_H(E;\Omega)$. If $\mu_E(\Omega) < \infty$ we say that E has finite H-perimeter in Ω . If $\mu_E(A) < \infty$ for any open set $A \subset \subset \Omega$, we say that E has locally finite H-perimeter in Ω . In this case, the open sets mapping $A \mapsto \mu_E(A)$ extends to a Radon measure μ_E on Ω that is called H-perimeter measure induced by E. Moreover, there exists a μ_E -measurable function $\nu_E : \Omega \to H$ such that $|\nu_E| = 1 \ \mu_E$ -a.e. and the Gauss-Green integration by parts formula

$$\int_{\Omega} \langle V, \nu_E \rangle \, d\mu_E = -\int_{\Omega} \operatorname{div}_H V \, dz dt$$

holds for any $V \in C_c^1(\Omega; \mathbb{R}^{2n})$. Here and hereafter, $\langle \cdot, \cdot \rangle$ denotes the standard scalar product in \mathbb{R}^{2n} . The vector ν_E is called *horizontal inner normal* of E in Ω .

We consider a set $E \subset \mathbb{H}^n$ with $0 \in \partial^* E$, the *H*-reduced boundary of *E*, that is a local minimizer of *H*-perimeter in a neighborhood of 0 and we rescale *E* to a unitary scale to have infinitesimal excess. In this way, we have a sequence of sets E_h that are *H*-perimeter minimizing and have infinitesimal excess η_h , $h \in \mathbb{N}$.

In Section 2, we use the Lipschitz approximation proved in [14] to obtain a sequence of instrinsic Lipschitz functions $(\varphi_h)_{h\in\mathbb{N}}$ whose graphs cover in measure a large part of the boundary of the rescaled sets E_h . By the Poincaré inequality recently proved in [8], we can show that there is subsequence of $(\varphi_h/\eta_h)_{h\in\mathbb{N}}$ converging to a function φ in a suitable Sobolev space. To have this limit function, only the density estimates for minimal boundaries are in fact used and so the result extends to Λ -minima. The Poincaré inequality mentioned above is for functions in domains of $\mathbb{R} \times \mathbb{H}^{n-1}$ and it holds only when $n \geq 2$. This is one of the reasons why our discussion is limited to dimensions $n \geq 2$.

The area functional of an intrinsic Lipschitz function $\varphi : D \to \mathbb{R}$, where now $D \subset \mathbb{R} \times \mathbb{H}^{n-1}$, is of the form

$$A(\varphi) = \int_D \sqrt{1 + |\nabla^{\varphi} \varphi|^2} dw, \qquad (1.3)$$

where dw is the Lebesgue measure on $W = \mathbb{R} \times \mathbb{H}^{n-1}$ and $\nabla^{\varphi} \varphi$ is a nonlinear gradient that is defined in the sense of distributions, known as "intrinsic gradient", see Definition 2.3. The area formula (1.3) is obtained in [9] Theorem 6.5 part (vi) and in [2] Proposition 2.22. However, the Dirichlet functional

$$D(\varphi) = \frac{1}{2} \int_D |\nabla^{\varphi} \varphi|^2 dw$$

does not catch the correct regularity of the limit function, because in the blow-up there is a linearization of the nonlinear gradient $\nabla^{\varphi}\varphi$, see Theorem 2.5. After this linearization, the relevant Dirichlet functional turns out to be

$$D_H(\varphi) = \frac{1}{2} \int_D \left\{ \left(\frac{\partial \varphi}{\partial y_1} \right)^2 + \sum_{j=2}^n (X_j \varphi)^2 + (Y_j \varphi)^2 \right\} dw,$$
(1.4)

where $y_1 \in \mathbb{R}$ is the variable of the factor \mathbb{R} in the Cartesian product $\mathbb{R} \times \mathbb{H}^{n-1}$. The Dirichlet form (1.4) identifies the differentiability class where the limit of the (sub)sequence $(\varphi_h/\eta_h)_{h\in\mathbb{N}}$ lies.

In Section 3, we deduce from the minimality of E further properties of the limit function φ . We use the first order Taylor expansion of H-perimeter (3.41), that holds for any set with finite H-perimeter (these sets may be unrectifiable in the standard sense). We obtain two results. First, we prove that if E is a set that locally minimizes H-perimeter then the function $\varphi : D \subset \mathbb{R} \times \mathbb{H}^{n-1} \to \mathbb{R}$ is independent of the variable y_1 of the factor \mathbb{R} , see the first claim of Theorem 3.2. This fact seems to have no counterpart in the classical theory.

The second result holds for a stronger notion of minimality. The homogeneous cube centered at $0 \in \mathbb{H}^n$ and with radius r > 0 is

$$Q_r = \{(z,t) \in \mathbb{H}^n : |x_i| < r, |y_i| < r, |t| < r^2, i = 1, \dots, n\}.$$
(1.5)

Definition 1.1. We say that a set $E \subset \mathbb{H}^n$ is *H*-perimeter minimizing in Q_r if

$$P_H(E;Q_r) \le P_H(F,Q_r)$$

for any set $F \subset \mathbb{H}^n$ such that $E\Delta F$ is a compact subset of Q_r .

Let $E \subset \mathbb{H}^n$ be a set with $0 \in \partial^* E$ and $\nu_E(0) = X_1$. Let $J : H \to H$ be the complex structure and consider $Y_1 = J(X_1)$. We define the lateral closure of Q_r relative to the positive direction Y_1 as:

$$\bar{Q}_r^{Y_{1,+}} = \{(z,t) \in \mathbb{H}^n : -r < y_1 \le r, |x_1|, |x_i|, |y_i| < r, |t| < r^2, i = 2, \dots, n\}.$$

We are adding to Q_r the open face of the boundary where $y_1 = r$.

Definition 1.2. We say that a set $E \subset \mathbb{H}^n$ with $0 \in \partial^* E$ and $\nu_E(0) = X_1$ is strongly *H*-perimeter minimizing in Q_r if for any $0 < s \leq r$ we have

$$P_H(E;Q_s) \le P_H(F,Q_s)$$

for any set $F \subset \mathbb{H}^n$ such that $E\Delta F \cap \bar{Q}_s$ is a compact subset of $\bar{Q}_s^{Y_{1,+}}$.

Here and hereafter, $E\Delta F = E \setminus F \cup F \setminus E$ denotes the symmetric difference.

In the second claim of Theorem 3.2, we show that if E is strongly H-perimeter minimizing then the function $\varphi : D \to \mathbb{R}$, where now D is a subset of \mathbb{H}^{n-1} , is H-harmonic, i.e., it solves the partial differential equation

$$\Delta_H \varphi = 0, \quad \text{in } D \subset \mathbb{H}^{n-1},$$

where Δ_H is the Kohn Laplacian in the lower dimensional Heisenberg group \mathbb{H}^{n-1}

$$\Delta_H = \sum_{j=2}^n X_j^2 + Y_j^2.$$
(1.6)

It is not clear whether the strong *H*-perimeter minimality can be relaxed to the natural local minimality. The problem is related to the construction of suitable contact vector fields in \mathbb{H}^n with compact support. This problem is explained in Section 3, along the proof of Theorem 3.2.

The ideas presented in this paper are part of a joint research project with D. Vittone.

2. Blow-up at the reduced boundary of minimizers

In this section, we show that in the blow-up of an *H*-perimeter minimizing set at a point of the reduced boundary there is a function belonging to a suitable Sobolev space.

We use the box-norm $||p||_{\infty} = \max\{|z|, |t|^{1/2}\}$ for $p = (z, t) \in \mathbb{H}^n$, and the homogeneous balls

$$B_r = \{ p \in \mathbb{H}^n : ||p||_{\infty} < r \}$$
 and $B_r(p) = p * B_r, r > 0.$

The balls B_r are equivalent to the cubes Q_r .

2.1. Small excess at the reduced boundary. Let $E \subset \mathbb{H}^n$ be a set with locally finite *H*-perimeter in \mathbb{H}^n . We say that $0 \in \mathbb{H}^n$ is a point of the *H*-reduced boundary of E, $0 \in \partial^* E$, if the following three conditions hold: $\mu_E(B_r) > 0$ for all r > 0, we have

$$\lim_{r \to 0} \frac{1}{\mu_E(B_r)} \int_{B_r} \nu_E \, d\mu_E = \nu_E(0),$$

and $|\nu_E(0)| = 1$. This definition is introduced and studied in [9]. The horizontal excess of E in B_r , r > 0, is

$$\operatorname{Exc}(E, B_r) = \min_{\nu \in \mathbb{S}^{2n}} \frac{1}{r^{Q-1}} \int_{B_r} |\nu_E(p) - \nu|^2 d\mu_E.$$

We refer the reader to [13] for an account on excess in the Euclidean setting. Notice that $r^{1-Q}C_1 \leq \mu_E(B_r) \leq r^{1-Q}C_2$ for constants $0 < C_1 < C_2 < \infty$ and Q = 2n + 2. For minimizers, the constants are independent of the point in the reduced boundary. Thus, if $0 \in \partial^* E$ is a point in the *H*-reduced boundary of *E* then there exists a sequence $r_h \to 0^+$ such that

$$\frac{1}{\mu_E(B_{r_h})} \int_{B_{r_h}} |\nu_E - \nu_E(0)|^2 d\mu_E < \frac{1}{h},$$

and so we have $\operatorname{Exc}(E, B_{r_h}) < 1/h$.

We consider the anisotropic dilations $(z,t) \mapsto (\lambda z, \lambda^2 t) = \delta_{\lambda}(z,t), \lambda > 0$. The rescaled sets $E_h = \delta_{1/r_h} E$, $h \in \mathbb{N}$, satisfy $\sup_{h \in \mathbb{N}} P_H(E_h; B_1) < \infty$. Moreover, we have:

- i) If E is H-perimeter minimizing near $0 \in \partial E^*$, then each set E_h is H-perimeter minimizing in B_1 ;
- ii) Since excess is scale invariant, there holds $\text{Exc}(E_h, B_1) < 1/h$;
- iii) $0 \in \partial^* E_h$.

Rotating each set E_h by an isometry fixing the *t*-axis, we may assume that

$$\operatorname{Exc}(E_h, B_1) = \int_{B_1} |\nu_{E_h} - \nu|^2 d\mu_{E_h} < \frac{1}{h}, \qquad (2.7)$$

where $\nu \in \mathbb{S}^{2n}$ is a vector independent of h. In fact, we may assume that $\nu = \nu_E(0)$. Possibly taking a subsequence, by the compactness theorem for sets with finite H-perimeter, there exists a set $F \subset \mathbb{H}^n$ such that

$$\lim_{h \to \infty} \chi_{E_h} = \chi_F, \quad \text{in } L^1(B_1).$$

Moreover, by the lower semicontinuity of excess we have $\text{Exc}(F, B_1) = 0$. Since $0 \in \partial F$, when $n \ge 2$ this implies that

$$F \cap B_1 = \{(z,t) \in B_1 : \langle z, \nu \rangle \ge 0\},\$$

see [9]. When n = 1, this fact does no longer hold, i.e., ∂F needs not be flat in any neighborhood of 0, see [14].

2.2. Lipschitz approximation and intrinsic gradient. We identify the vertical hyperplane $W = \mathbb{R} \times \mathbb{H}^{n-1} = \{(z,t) \in \mathbb{H}^n : x_1 = 0\}$ with \mathbb{R}^{2n} via the coordinates $w = (x_2, \ldots, x_n, y_1, \ldots, y_n, t)$. The line flow of the vector field X_1 starting from the point $(z,t) \in W$ is

$$\exp(sX_1)(z,t) = (z + s\mathbf{e}_1, t + 2y_1s), \quad s \in \mathbb{R},$$

where $e_1 = (1, 0, ..., 0) \in \mathbb{R}^{2n}$ and $z = (x, y) \in \mathbb{C}^n = \mathbb{R}^{2n}$, with $x = (x_1, ..., x_n)$, $x_1 = 0$, and $y = (y_1, ..., y_n)$.

Let $D \subset W$ be a set and let $\varphi : D \to \mathbb{R}$ be a function. The set

$$E_{\varphi} = \left\{ \exp(sX_1)(w) \in \mathbb{H}^n : s > \varphi(w), w \in D \right\}$$
(2.8)

is called *intrinsic epigraph* of φ along X_1 . The set

$$\operatorname{gr}(\varphi) = \left\{ \exp(\varphi(w)X_1)(w) \in \mathbb{H}^n : w \in D \right\}$$
(2.9)

is called *intrinsic graph* of φ along X_1 .

We identify $\nu = (1, 0, ..., 0) \in \mathbb{R}^{2n}$ with $(\nu, 0) \in \mathbb{H}^n$. For any $p \in \mathbb{H}^n$, we let $\nu(p) = \langle p, \nu \rangle \nu \in \mathbb{H}^n$ and we define $\nu^{\perp}(p) \in W \subset \mathbb{H}^n$ as the unique point such that

$$p = \nu^{\perp}(p) * \nu(p).$$
 (2.10)

The (open) cone with vertex $0 \in \mathbb{H}^n$, axis $\nu \in \mathbb{R}^{2n}$, $|\nu| = 1$, and aperture $\alpha \in (0, \infty]$ is the set

$$C(0,\nu,\alpha) = \left\{ p \in \mathbb{H}^n : \|\nu^{\perp}(p)\|_{\infty} < \alpha \|\nu(p)\|_{\infty} \right\}.$$
 (2.11)

The cone with vertex $p \in \mathbb{H}^n$, axis $\nu \in \mathbb{R}^{2n}$, and aperture $\alpha \in (0, \infty]$ is the set $C(p, \nu, \alpha) = p * C(0, \nu, \alpha)$.

Definition 2.1 (Intrinsic Lipschitz graphs). Let $D \subset W$ be a set and let $\varphi : D \to \mathbb{R}$ be a function. The function φ is *L*-intrinsic Lipschitz with $0 < L < \infty$ if for any $p \in \operatorname{gr}(\varphi)$ there holds

$$\operatorname{gr}(\varphi) \cap C(p,\nu,1/L) = \emptyset.$$
(2.12)

The starting point of our argument is the following result of [14] on the Lipschitz approximation of *H*-minimal boundaries. We denote by \mathscr{S}^{Q-1} the (2n+1)-dimensional spherical Hausdorff measure constructed using any homogeneous left invariant metric on \mathbb{H}^n . We shall use freely the identity

$$\mathscr{S}^{Q-1} \sqcup \partial^* E = \mu_E. \tag{2.13}$$

Recall that for an *H*-perimeter minimizing set *E*, the reduced boundary $\partial^* E$ coincides with the essential boundary, that is denoted by ∂E .

Theorem 2.2. Let $n \ge 2$. For any L > 0 there are constants k > 1 and c(L, n) > 0such that for any *H*-perimeter minimizing set *E* in B_{kr} , with $0 \in \partial E$ and $\nu_E(0) = \nu = X_1$, there exists an *L*-intrinsic Lipschitz function $\varphi : W \to \mathbb{R}$ such that

$$\mathscr{S}^{Q-1}\big((\operatorname{gr}(\varphi)\Delta\partial E)\cap B_r\big) \le c(L,n)(kr)^{Q-1}\operatorname{Exc}(E,B_{kr}), \quad r>0.$$
(2.14)

Theorem 2.2 holds also for n = 1. In this case, the Lipschitz constant L has to be suitably large.

We introduce a nonlinear gradient for functions $\varphi: D \to \mathbb{R}$ with $D \subset W$ open set. The Burgers' operator $\mathscr{B}: \operatorname{Lip}_{\operatorname{loc}}(D) \to L^{\infty}_{\operatorname{loc}}(D)$ is

$$\mathscr{B}\varphi = \frac{\partial\varphi}{\partial y_1} - 4\varphi \frac{\partial\varphi}{\partial t}.$$
(2.15)

When $\varphi \in C(D)$ is only continuous, we say that $\mathscr{B}\varphi$ exists in the sense of distributions and is represented by a locally bounded function, if there exists a function $\vartheta \in L^{\infty}_{loc}(D)$ such that for all $\psi \in C^{1}_{c}(D)$ there holds

$$\int_{D} \vartheta \psi \, dw = -\int_{D} \left\{ \varphi \frac{\partial \psi}{\partial y_1} - 2\varphi^2 \frac{\partial \psi}{\partial t} \right\} dw.$$
(2.16)

In this case, we let $\mathscr{B}\varphi = \vartheta$.

Next, notice that the vector fields $X_2, \ldots, X_n, Y_2, \ldots, Y_n$ can be naturally restricted to W and that they are self-adjoint.

Definition 2.3 (Intrinsic gradient). Let $D \subset W = \mathbb{R}^{2n}$ be an open set and let $\varphi \in C(D)$ be a continuous function. We say that the intrinsic gradient $\nabla^{\varphi}\varphi \in L^{\infty}_{\text{loc}}(D; \mathbb{R}^{2n-1})$ exists in the sense of distributions if the distributional derivatives

 $X_i\varphi, \mathscr{B}\varphi, Y_i\varphi, i = 2, \ldots, n$, are represented by locally bounded functions in D. In this case, we let

$$\nabla^{\varphi}\varphi = (X_2\varphi, \dots, X_n\varphi, \mathscr{B}\varphi, Y_2\varphi, \dots, Y_n\varphi), \qquad (2.17)$$

and we call $\nabla^{\varphi} \varphi$ the intrinsic gradient of φ .

When n = 1, the intrinsic gradient reduces to $\nabla^{\varphi} \varphi = \mathscr{B} \varphi$.

Theorem 2.4. Let $D \subset W$ be an open set and $\varphi : D \to \mathbb{R}$ be a continuous function. The following statements are equivalent:

- A) We have $\nabla^{\varphi} \varphi \in L^{\infty}_{\text{loc}}(D; \mathbb{R}^{2n-1}).$
- B) For any $D' \subset \subset D$, the function $\varphi : D' \to \mathbb{R}$ is intrinsic Lipschitz.

Moreover, if A) or B) holds then the intrinsic epigraph $E_{\varphi} \subset \mathbb{H}^n$ has locally finite H-perimeter in the cylinder $D * \mathbb{R} = \{w * (se_1) \in \mathbb{H}^n : w \in D, s \in \mathbb{R}\}, \text{ for } \mathscr{L}^{2n}$ a.e. $w \in D$ the inner horizontal normal to ∂E_{φ} is

$$\nu_{E_{\varphi}}(w * \varphi(w)) = \left(\frac{1}{\sqrt{1 + |\nabla^{\varphi}\varphi(w)|^2}}, \frac{-\nabla^{\varphi}\varphi(w)}{\sqrt{1 + |\nabla^{\varphi}\varphi(w)|^2}}\right),$$
(2.18)

and, for any $D' \subset D$, we have the area formula

$$P_H(E_{\varphi}; D' * \mathbb{R}) = \int_{D'} \sqrt{1 + |\nabla^{\varphi} \varphi|^2} dw.$$
(2.19)

The equivalence between A) and B) is a deep result that is proved in [3], Theorem 1.1. Formula (2.18) for the normal and the area formula (2.20) are proved in [8] Corollary 4.2 and Corollary 4.3, respectively. Part of these results is the fact that $\|\nabla^{\varphi}\varphi\|_{\infty}$ is equivalent to the Lipschitz constant. The area formula (2.19) can be improved in the following way

$$\int_{\partial E_{\varphi} \cap (D' \ast \mathbb{R})} g(p) \, d\mu_{E_{\varphi}} = \int_{D'} g(w \ast \varphi(w)) \sqrt{1 + |\nabla^{\varphi} \varphi(w)|^2} dw, \qquad (2.20)$$

where $g: \partial E_{\varphi} \to \mathbb{R}$ is a Borel function.

A result related to Theorem 2.4 can be found in [16], where it is proved that if $E \subset \mathbb{H}^n$ is a set with finite *H*-perimeter having controlled normal ν_E , say $\langle \nu_E, \mathbf{e}_1 \rangle \geq k > 0$ μ_E -a.e., then the reduced boundary $\partial^* E$ is an intrinsic Lipschitz graph along X_1 .

2.3. Blow-up of *H*-minimal boundaries. Let $E \subset \mathbb{H}^n$ be an *H*-perimeter minimizing set in a neighborhood of $0 \in \mathbb{H}^n$, with $0 \in \partial E$ and $\nu_E(0) = X_1$. Let E_h be the rescaled sets of *E* introduced before equation (2.7). The square root of excess

$$\eta_h = \sqrt{\operatorname{Exc}(E_h, B_1)} \tag{2.21}$$

is infinitesimal, and we may assume that $\eta_h > 0$.

Let $\sigma > 0$ be a small number, e.g., $0 < \sigma \leq 1/k$ where k > 1 is the geometric constant given by Theorem 2.2, and let $0 < L \leq 1$ be a Lipschitz constant. Since

each set E_h is *H*-perimeter minimizing in the ball B_1 , by Theorem 2.2 there exist *L*-intrinsic Lipschitz functions $\varphi_h : W \to \mathbb{R}$ such that

$$\mathscr{S}^{Q-1}\big((\operatorname{gr}(\varphi_h)\Delta\partial E_h)\cap B_\sigma\big)\leq c(L,n,\sigma)\operatorname{Exc}(E_h,B_1)=c_0\eta_h^2,\qquad(2.22)$$

where $c_0 = c(L, n, \sigma)$.

In this section we prove the following theorem. Recall that the Sobolev space $W_{H}^{1,2}(D)$ is the set of all $\varphi \in L^{2}(D)$ such that the distributional derivatives

$$X_2\varphi, \ldots, X_n\varphi, \frac{\partial \varphi}{\partial y_1}, Y_2\varphi, \ldots, Y_n\varphi \in L^2(D)$$

are squared integrable. In this case, we let

$$abla_H \varphi = \left(X_2 \varphi, \dots, X_n \varphi, \frac{\partial \varphi}{\partial y_1}, Y_2 \varphi, \dots, Y_n \varphi \right).$$

Theorem 2.5. Let $n \geq 2$. Under the assumptions made at the beginning of this section, there exist an open neighborhood $D \subset W$ of $0 \in W$, constants $\bar{\varphi}_h \in \mathbb{R}$, a function $\varphi \in W^{1,2}_H(D)$, and a selection of indices $k \mapsto h_k$ such that, for $k \to \infty$ we have

$$\frac{\varphi_{h_k} - \bar{\varphi}_{h_k}}{\eta_{h_k}} \rightharpoonup \varphi \qquad weakly \ in \ L^2(D),$$
$$\frac{\nabla^{\varphi_{h_k}}\varphi_{h_k}}{\eta_{h_k}} \rightharpoonup \nabla_{\!H}\varphi \qquad weakly \ in \ L^2(D; \mathbb{R}^{2n-1}).$$

In the proof of Theorem 2.5, we use the Poincaré inequality of [8]. As in Section 2.1 of [8] (but with our normalization (1.2) of the vector fields), for $w = (z, t) \in W$ and $\varphi : W \to \mathbb{R}$ we let

$$d_{\varphi}(w,0) = \frac{1}{2} \max\left\{ |z|, |t+4\varphi(w)y_1|^{1/2} \right\} + \frac{1}{2} \max\left\{ |z|, |t+4\varphi(0)y_1|^{1/2} \right\}, \quad (2.23)$$

and, for r > 0,

$$U_{\varphi}(r) = \{ w \in W : d_{\varphi}(w, 0) < r \}.$$
(2.24)

Theorem 2.6. Let $n \ge 2$ and let $\varphi : W \to \mathbb{R}$ be an L-intrinsic Lipschitz function. There exist constants $C_1, C_2 > 0$ depending on L and n such that

$$\int_{U_{\varphi}(r)} |\varphi(w) - \varphi_{U_{\varphi}(r)}|^2 dw \le C_1 r^2 \int_{U_{\varphi}(C_2 r)} |\nabla^{\varphi} \varphi(w)|^2 dw, \quad r > 0,$$
(2.25)

where

$$\varphi_{U_{\varphi}(r)} = \frac{1}{\mathscr{L}^{2n}(U_{\varphi}(r))} \int_{U_{\varphi}(r)} \varphi(w) dw.$$
(2.26)

See Corollary 4.5 in [8].

Proof of Theorem 2.5. By the lower density estimate $P_H(E_h; B_{\sigma/2}) \ge C\sigma^{Q-1}$ with a constant C > 0 independent of h and, from (2.22), we deduce that $\operatorname{gr}(\varphi_h) \cap B_{\sigma/2} \neq \emptyset$ for all $h \in \mathbb{N}$ large enough. It follows that (details are omitted) there exists $\varepsilon_1 > 0$ such that

$$\operatorname{gr}(\varphi_h) \cap \{ w \in W : |w| < \varepsilon_1 \} * \mathbb{R} \subset B_{\sigma}.$$

$$(2.27)$$

Without loss of generality we can assume that $\|\varphi_h\|_{\infty} \leq 1$ for all $h \in \mathbb{N}$. Thus, from (2.23) and (2.24), it follows that there exist $\varepsilon_0 > 0$ and r > 0 such that

$$D := \left\{ w \in W : |w| < \varepsilon_0 \right\} \subset U_{\varphi_h}(r) \subset U_{\varphi_h}(C_2 r) \subset \left\{ w \in W : |w| < \varepsilon_1 \right\} =: D'.$$
(2.28)

Then, by (2.22), we deduce the estimate

$$\mathscr{S}^{Q-1}\big((\operatorname{gr}(\varphi_h) \setminus \partial E_h) \cap D' * \mathbb{R}\big) \le c_0 \eta_h^2.$$
(2.29)

Let $D_h \subset D'$ be the set of the points $w \in D'$ such that

$$\nu_{E_{\varphi_h}}(w * \varphi_h(w)) = \left(\frac{1}{\sqrt{1 + |\nabla^{\varphi_h}\varphi_h(w)|^2}}, \frac{-\nabla^{\varphi_h}\varphi_h(w)}{\sqrt{1 + |\nabla^{\varphi_h}\varphi_h(w)|^2}}\right),$$
(2.30)

and

$$\nu_{E_{\varphi_h}}(w * \varphi_h(w)) = \nu_{E_h}(w * \varphi_h(w)).$$
(2.31)

By Theorem 2.4, see formula (2.18), identity (2.30) holds for \mathscr{L}^{2n} -a.e. $w \in D'$. By the locality of *H*-perimeter (see Corollary 2.5 in [1]) and by the area formula (2.19), identity (2.31) holds for \mathscr{L}^{2n} -a.e. $w \in \pi(\operatorname{gr}(\varphi_h) \cap \partial E_h)$, where $\pi : \mathbb{H}^n \to W$ is the projection along X_1 .

Since each function φ_h is *L*-intrinsic Lipschitz with $0 < L \leq 1$, we can assume $\|\nabla^{\varphi_h}\varphi_h\|_{\infty} \leq 1$. Then for any point $w \in D_h$ we have:

$$|\nu_{E_h}(w * \varphi_h(w)) - \nu|^2 = |\nu_{E_{\varphi_h}}(w) - \nu|^2 \ge \frac{1}{2} |\nabla^{\varphi_h} \varphi_h(w)|^2,$$

where $\nu = (1, 0, \dots, 0) \in \mathbb{S}^{2n}$. By the area formula (2.20) for intrinsic Lipschitz functions and by (2.7), we obtain the estimate

$$\int_{D_h} |\nabla^{\varphi_h} \varphi_h(w)|^2 dw \le 2 \int_{B_1} |\nu_{E_h} - \nu|^2 d\mu_{E_h} \le 2\eta_h^2.$$
(2.32)

Again by $\|\nabla^{\varphi_h}\varphi_h\|_{\infty} \leq 1$, by the area formula, and by (2.22), we obtain

$$\int_{D' \setminus D_h} |\nabla^{\varphi_h} \varphi_h(w)|^2 dw \leq \mathscr{L}^{2n}(D' \setminus D_h)
\leq \mathscr{S}^{Q-1}((\operatorname{gr}(\varphi_h) \setminus \partial E_h) \cap B_{\sigma}) \leq c_0 \eta_h^2.$$
(2.33)

It follows that the sequence of functions $|\nabla^{\varphi_h}\varphi_h|/\eta_h$, $h \in \mathbb{N}$, is uniformly bounded in $L^2(D')$. Then there exists a function $\Phi \in L^2(D'; \mathbb{R}^{2n-1})$ such that, possibly taking a subsequence, we have as $h \to \infty$

$$\frac{\nabla^{\varphi_h}\varphi_h}{\eta_h} \rightharpoonup \Phi \quad \text{weakly in } L^2(D'; \mathbb{R}^{2n-1}).$$
(2.34)

After a relabeling, we assume here and hereafter that the full sequence is converging.

We denote by $\bar{\varphi}_h$ the mean of φ_h defined in (2.26), namely,

$$\bar{\varphi}_h = \frac{1}{\mathscr{L}^{2n}(U_{\varphi_h}(r))} \int_{U_{\varphi_h}(r)} \varphi_h(w) dw, \qquad (2.35)$$

where r > 0 is such that the inclusions in (2.28) hold. By the Poincaré inequality (2.25), by the inclusions in (2.28), (2.32), and (2.33) we have

$$\int_{D} |\varphi_{h}(w) - \bar{\varphi}_{h}|^{2} dw \leq \int_{U_{\varphi_{h}}(r)} |\varphi_{h}(w) - \bar{\varphi}_{h}|^{2} dw$$
$$\leq C_{1} r^{2} \int_{U_{\varphi_{h}}(C_{2}r)} |\nabla^{\varphi_{h}} \varphi_{h}(w)|^{2} dw$$
$$\leq C_{1} r^{2} \int_{D'} |\nabla^{\varphi_{h}} \varphi_{h}(w)|^{2} dw$$
$$\leq C_{1} r^{2} (2 + c_{0}) \eta_{h}^{2}.$$

Then, the sequence $(\varphi_h - \bar{\varphi}_h)/\eta_h$ is uniformly bounded in $L^2(D)$. It follows that we have $\varphi_h - \bar{\varphi}_h \to 0$ in $L^2(D)$. As the sequence of sets $(E_h)_{h \in \mathbb{N}}$ is converging to a half-plane inside the ball B_1 , we deduce that $\bar{\varphi}_h \to 0$ as $h \to \infty$. Finally, by weak compactness there exists a function $\varphi \in L^2(D)$ such that, possibly taking a further subsequence, we have

$$\frac{\varphi_h - \bar{\varphi}_h}{\eta_h} \rightharpoonup \varphi \quad \text{weakly in } L^2(D).$$
(2.36)

We claim that $\varphi \in W^{1,2}_H(D)$ and that

$$\Phi = \nabla_{\!H}\varphi = \left(X_2\varphi, \dots, X_n\varphi, \frac{\partial\varphi}{\partial y_1}, Y_2\varphi, \dots, Y_n\varphi\right),\tag{2.37}$$

in the sense of weak derivatives in $L^2(D)$. Notice that the nonlinear derivative $\mathscr{B}\varphi_h/\eta_h$ is converging to the linear derivative $\partial_{y_1}\varphi$.

By (2.36), for any test function $\psi \in C_c^1(D)$ we have

$$\lim_{h \to \infty} \int_D \frac{\varphi_h - \bar{\varphi}_h}{\eta_h} \psi dw = \int_D \varphi \, \psi \, dw.$$
(2.38)

On the other hand, by the distributional definition (2.16) of the derivative $\mathscr{B}\varphi_h$ we have

$$\begin{split} \frac{1}{\eta_h} \int_D \psi \,\mathscr{B}\varphi_h \, dw &= -\frac{1}{\eta_h} \int_D \left\{ \varphi_h \psi_{y_1} - 2\varphi_h^2 \psi_t \right\} dw \\ &= -\frac{1}{\eta_h} \int_D \left\{ (\varphi_h - \bar{\varphi}_h) \psi_{y_1} - 2(\varphi_h^2 - \bar{\varphi}_h^2) \psi_t \right\} dw \\ &= -\int_D \left\{ \frac{\varphi_h - \bar{\varphi}_h}{\eta_h} \psi_{y_1} - 2\frac{\varphi_h - \bar{\varphi}_h}{\eta_h} (\varphi_h + \bar{\varphi}_h) \psi_t \right\} dw. \end{split}$$

Since $\varphi_h + \bar{\varphi}_h$ is converging to zero strongly in $L^2(D)$ and $(\varphi_h - \bar{\varphi}_h)/\eta_h$ is uniformly bounded in $L^2(D)$, we obtain

$$\lim_{h \to \infty} \frac{1}{\eta_h} \int_D \psi \, \mathscr{B} \varphi_h \, dw = - \int_D \varphi \, \psi_{y_1} dw.$$

A similar argument shows that for any $Z \in \{X, Y\}$ and j = 2, ..., n we have

$$\lim_{h \to \infty} \frac{1}{\eta_h} \int_D \psi \, Z_j \varphi_h \, dw = - \int_D \varphi \, Z_j \psi dw.$$

This finishes the proof of (2.37).

3. H-harmoncity of the limit function

In this section, we prove that the limit function φ given by Theorem 2.5 is independent of the variable y_1 dual in the complex sense to the graph direction x_1 . If the set E is a *strong* minimizer in the sense of Definition 1.2, we show that the function φ is *H*-harmonic in \mathbb{H}^{n-1} , the lower dimensional Heisenberg group.

3.1. First variation formula. We recall the first variation formula for *H*-perimeter of sets in \mathbb{H}^n that are deformed along a contact flow. A diffeomorphism $\Psi : \Omega \to \Psi(\Omega)$, with $\Omega \subset \mathbb{H}^n$ open set, is a contact map if for any $p \in \Omega$ the differential Ψ_* maps the horizontal space H_p into $H_{\Psi(p)}$. A one-parameter flow $(\Psi_s)_{s \in \mathbb{R}}$ of diffeomorphisms in \mathbb{H}^n is a contact flow if each Ψ_s is a contact map. Contact flows are generated by contact vector fields (see [12]). A contact vector field in \mathbb{H}^n is a vector field of the form

$$V_{\psi} = \sum_{j=1}^{n} (Y_j \psi) X_j - (X_j \psi) Y_j - 4\psi T, \qquad (3.39)$$

where $\psi \in C^{\infty}(\mathbb{H}^n)$ is the generating function. For any compact set $K \subset \mathbb{H}^n$ we have the flow $\Psi : [-\delta, \delta] \times K \to \mathbb{H}^n$ that is defined by $\dot{\Psi}(s, p) = V_{\psi}(\Psi(s, p))$ and $\Psi(0, p) = p$ for any $s \in [-\delta, \delta]$ and $p \in K$, for some $\delta = \delta(\psi, K) > 0$. We call Ψ the flow generated by ψ . We also let $\Psi_s = \Psi(s, \cdot)$.

Related to the generating function ψ , we have, at any point $p \in \mathbb{H}^n$, the real quadratic form $\mathcal{Q}_{\psi}: H_p \to \mathbb{R}$

$$\mathscr{Q}_{\psi}\Big(\sum_{j=1}^{n} x_{j}X_{j} + y_{j}Y_{j}\Big) = \sum_{i,j=1}^{n} x_{i}x_{j}X_{j}Y_{i}\psi + x_{j}y_{i}(Y_{i}Y_{j}\psi - X_{j}X_{i}\psi) - y_{i}y_{j}Y_{j}X_{i}\psi, \quad (3.40)$$

where $x_j, y_j \in \mathbb{R}$, and ψ with its derivatives are evaluated at p. The quadratic form \mathscr{Q}_{ψ} appears in the first variation of H-perimeter along the flow generated by ψ . In the following, we identify H_p with \mathbb{R}^{2n} by declaring $X_1, \ldots, X_n, Y_n, \ldots, Y_n$ an orthonormal basis.

Theorem 3.1. Let $\Omega \subset \mathbb{H}^n$ be a bounded open set and let $\Psi : [-\delta, \delta] \times \Omega \to \mathbb{H}^n$ be the flow generated by $\psi \in C^{\infty}(\mathbb{H}^n)$. Then there exists $C = C(\psi, \Omega) > 0$ such that for any set $E \subset \mathbb{H}^n$ with finite *H*-perimeter in Ω we have

$$\left| P_H(\Psi_s(E), \Psi_s(\Omega)) - P_H(E, \Omega) + s \int_{\Omega} \left\{ 4(n+1)T\psi + \mathcal{Q}_{\psi}(\nu_E) \right\} d\mu_E \right| \le C P_H(E, \Omega) s^2$$
(3.41)

for any $s \in [-\delta, \delta]$.

The proof of Theorem 3.1 when $\partial E \cap \Omega$ is a C^{∞} -smooth hypersurface can be found in [15]. The proof for a set with finite *H*-perimeter will appear elsewhere.

3.2. *H*-harmonicity of φ . Let $E \subset \mathbb{H}^n$ be a set with locally finite *H*-perimeter in \mathbb{H}^n . Assume that $0 \in \mathbb{H}^n$ is a point of the *H*-reduced boundary of $E, 0 \in \partial^* E$, with $\nu_E(0) = (1, 0, \ldots, 0) \in \mathbb{R}^{2n}$, and that *E* is *H*-perimeter minimizing in a neighborhood of 0, in the sense of Definition 1.1.

Let $(E_h)_{h\in\mathbb{N}}$ be the sequence of rescaled sets introduced in Section 2.1. We can assume that each set E_h is *H*-perimeter minimizing in the cube

$$Q_R = \{(z,t) \in \mathbb{H}^n : |x_i|, |y_i|, |t|^2 < R, \ i = 1, \dots, n\},\$$

for some large R > 0. Let $(\varphi_h)_{h \in \mathbb{N}}$ be the sequence of *L*-intrinsic Lipschitz functions satisfying (2.22), with $0 < L \leq 1$. We can assume that each φ_h is defined on $D_1 = \{(z,t) \in Q_1 : x_1 = 0\}$. Finally, let $\varphi \in W_H^{1,2}(D_1)$ be the limit function of a subsequence of $(\varphi_h)_{h \in \mathbb{N}}$, as in Theorem 2.5. Without loss of generality, we can assume that φ is defined on the whole D_1 . Let $D_{1/4} = \{(z,t) \in Q_{1/4} : x_1 = 0\}$.

Theorem 3.2. Let $n \ge 2$ and let E be a set with locally finite H-perimeter, as above. Then:

i) If E is H-perimeter minimizing in a neighborhood of $0 \in \mathbb{H}^n$, then the function $\varphi: D_{1/4} \subset \mathbb{R} \times \mathbb{H}^{n-1} \to \mathbb{R}$ is independent of the variable y_1 of the factor \mathbb{R} .

 ii) If E is strongly H-perimeter minimizing in a neighborhood of 0 ∈ Hⁿ, then the function φ is H-harmonic, i.e., it is of class C[∞] and it solves the partial differential equation

$$\Delta_H \varphi = 0 \quad in \quad D_{1/4} \cap \{y_1 = 0\}, \tag{3.42}$$

where Δ_H is the Kohn Laplacian (1.6) in \mathbb{H}^{n-1} .

Proof. Let $\psi \in C^{\infty}(\mathbb{H}^n)$ be the generating function of a contact vector field V_{ψ} . We assume that ψ has the following structure. First we assume that we have

$$\psi = \alpha + x_1\beta + \frac{1}{2}x_1^2\gamma,$$

where $\alpha, \beta, \gamma \in C^{\infty}(\mathbb{H}^n)$ are smooth functions such that

$$X_1 \alpha = X_1 \beta = X_1 \gamma = 0 \text{ in the stripe } \{ (z, t) \in \mathbb{H}^n : |x_1| < 1/4 \}.$$
(3.43)

After a Taylor development in the variable x_1 along the flow of X_1 , the function ψ has this structure plus a remainder. The functions β, γ are always assumed to satisfy

$$\beta, \gamma \in C_c^{\infty}(Q_{1/2}). \tag{3.44}$$

As far as the function α is concerned, we distinguish two cases, according to the claims i) and ii):

i) In this case, we assume also that

$$\alpha \in C_c^{\infty}(Q_{1/2}). \tag{3.45}$$

ii) In this case, we let

$$\alpha(x_1, y_1, z_2, \dots, z_n, t) = \int_0^{y_1} \vartheta(x_1, s, z_2, \dots, z_n, t) ds, \quad x_1 \in \mathbb{R},$$
(3.46)

where $\vartheta \in C_c^{\infty}(Q_{1/2})$ is an arbitrary smooth compactly supported function such that $X_1 \vartheta = 0$ in $\{|x_1| < 1/4\}$.

We consider the sets $E'_h = \Phi_{s_h}(E_h)$, where $s_h > 0$ are small numbers that will be fixed later. We can assume that $\partial E_h \subset \{|x_1| < 1/4\}$ for all $h \in \mathbb{N}$. In the stripe (3.43), the vector field V_{ψ} has the form

$$V_{\psi} = (Y_1\psi)X_1 - (\beta + x_1\gamma)Y_1 + \sum_{j=2}^n (Y_j\psi)X_j - (X_j\psi)Y_j - 4\psi T.$$
 (3.47)

It follows that $P_H(\Psi_{s_h}(E_h), \Psi(Q_1)) = P_H(E'_h, Q_1)$ for all large $h \in \mathbb{N}$.

In case i), each E_h is *H*-perimeter minimizing in the cube Q_1 ; in fact we have $E'_h \Delta E_h \subset \subset Q_1$. In case ii), each E_h is strongly *H*-perimeter minimizing in the cube

 Q_1 ; in fact, we have $E'_h \Delta E_h \cap \overline{Q}_1 \subset \overline{Q}_1^{Y_1,+}$. In both cases, by Theorem 3.1 the minimality condition $P_H(E_h, Q_1) \leq P_H(E'_h, Q_1)$ gives

$$0 \le P_H(E'_h, Q_1) - P_H(E_h, Q_1) = -s_h \int_{Q_1} \left\{ 4(n+1)T\psi + \mathscr{Q}_{\psi}(\nu_{E_h}) \right\} d\mu_{E_h} + O(s_h^2),$$

where $O(s_h^2)/s_h^2$ is bounded by a constant independent of h. We fix $s_h > 0$ such that $s_h = o(\eta_h)$ as $h \to \infty$, where $\eta_h > 0$ is the excess (2.21), and we obtain

$$0 \leq -\frac{1}{\eta_h} \int_Q \left\{ 4(n+1)T\psi + \mathscr{Q}_{\psi}(\nu_{E_h}) \right\} d\mu_{E_h} + o(1),$$

where o(1) is infinitesimal as $h \to \infty$. Replacing ψ with $-\psi$ and using the identity $\mathscr{Q}_{-\psi}(\nu_{E_h}) = -\mathscr{Q}_{\psi}(\nu_{E_h})$, we also have the opposite inequality. We therefore deduce that

$$\lim_{h \to \infty} \frac{1}{\eta_h} \int_{Q_1} \left\{ 4(n+1)T\psi + \mathscr{Q}_{\psi}(\nu_{E_h}) \right\} d\mu_{E_h} = 0.$$
(3.48)

Notice that the excess η_h in (2.21) can be equivalently defined using homogeneous cubes in place of balls.

From now on, we let $D = D_1$. Let $E_{\varphi_h} \subset \mathbb{H}^n$ be the intrinsic epigraph of φ_h , as in (2.8). Let $\operatorname{gr}(\varphi_h)$ be the intrinsic graph of φ_h over D, as in (2.9). With a slightly abuse of notation, for any $h \in \mathbb{N}$ let $D_h \subset D$ be the set of points $w \in D$ such that (2.30) and (2.31) hold. By (2.22), (2.31), and (2.20) we have

$$\begin{split} \int_{Q_1} \Big\{ 4(n+1)T\psi + \mathscr{Q}_{\psi}(\nu_{E_h}) \Big\} d\mu_{E_h} &= \int_{Q_1 \cap \operatorname{gr}(\varphi_h)} \Big\{ 4(n+1)T\psi + \mathscr{Q}_{\psi}(\nu_{E_h}) \Big\} d\mu_{E_h} + O(\eta_h^2) \\ &= \int_{Q_1 \cap \operatorname{gr}(\varphi_h)} \Big\{ 4(n+1)T\psi + \mathscr{Q}_{\psi}(\nu_{E_{\varphi_h}}) \Big\} d\mu_{E_{\varphi_h}} + O(\eta_h^2) \\ &= \int_{D_h} \Big\{ 4(n+1)T\psi + \mathscr{Q}_{\psi}(\nu_{E_{\varphi_h}}) \Big\} \sqrt{1 + |\nabla^{\varphi_h}\varphi_h(w)|^2} dw + O(\eta_h^2), \end{split}$$

where $\nu_{E_{\varphi_h}}$ is the vector in (2.30) and the bracket $\{\ldots\}$ in the last line is evaluated at $w * \varphi_h(w)$. By (2.22), we have $\mathscr{L}^{2n}(D \setminus D_h) = O(\eta_h^2)$, and so we deduce that

$$\lim_{h \to \infty} \frac{1}{\eta_h} \int_D \left\{ 4(n+1)T\psi(w \ast \varphi_h(w)) + \mathcal{Q}_{\psi}(\nu_{E_{\varphi_h}}(w \ast \varphi_h(w))) \right\} dw = 0.$$
(3.49)

We compute the limit in (3.49). We start from the integral of $T\psi(w * \varphi_h(w))$. The sequence $(\varphi_h)_{h\in\mathbb{N}}$ is converging to 0 uniformly. We omit details of the proof of this fact. Then we can assume that $\|\varphi_h\|_{\infty} < 1/4$ and thus, by (3.43), we have $X_1T\alpha = TX_1\alpha = 0$. This implies that $T\alpha(w * \varphi_h(w)) = T\alpha(w) = \alpha_t(w)$, where we are using the notation $\alpha_t = \partial \alpha/\partial t$. The same holds for β and γ . Thus we have, for any $w \in D$,

$$T\psi(w * \varphi_h(w)) = \alpha_t + \varphi_h \beta_t + \frac{1}{2} \varphi_h^2 \gamma_t,$$

where the right hand-side is evaluated at w. With abuse of notation, here and in the following we denote by $\psi, \alpha, \beta, \gamma, \vartheta$ also the restriction of the functions to $\{x_1 = 0\}$.

Since we have

$$\operatorname{supp}(\alpha), \operatorname{supp}(\beta), \operatorname{supp}(\gamma) \subset \left\{ (z, t) \in \mathbb{H}^n : |t|^2 < 1/2 \right\},$$
(3.50)

then there holds

$$\int_D \alpha_t \, dw = \int_D \beta_t \, dw = \int_D \gamma_t \, dw = 0.$$

Let $\bar{\varphi}_h \in \mathbb{R}$ be the numbers given by Theorem 2.5. By (2.38), we have

$$\lim_{h \to \infty} \frac{1}{\eta_h} \int_D \varphi_h \beta_t \, dw = \lim_{h \to \infty} \int_D \frac{\varphi_h - \bar{\varphi}_h}{\eta_h} \beta_t \, dw = \int_D \varphi \, \beta_t dw, \tag{3.51}$$

and

$$\lim_{h \to \infty} \frac{1}{\eta_h} \int_D \varphi_h^2 \gamma_t \, dw = \lim_{h \to \infty} \int_D \frac{\varphi_h - \bar{\varphi}_h}{\eta_h} (\varphi_h + \bar{\varphi}_h) \gamma_t \, dw = 0, \tag{3.52}$$

because $\varphi_h + \bar{\varphi}_h$ is converging to 0 strongly in L^2 . From (3.51) and (3.52), we deduce that

$$\lim_{h \to \infty} \frac{1}{\eta_h} \int_D 4(n+1)T\psi(w \ast \varphi_h(w))dw = 4(n+1) \int_D \varphi \,\beta_t \,dw.$$
(3.53)

We compute the limit of the integral of $\mathscr{Q}_{\psi}(\nu_{E_{\varphi_h}})$ in (3.49). Letting

$$\nu_{E_{\varphi_h}} = (\nu_{X_1}, \ldots, \nu_{X_n}, \nu_{Y_1}, \ldots, \nu_{Y_n}) \in \mathbb{S}^{2n},$$

we isolate in (3.40) the terms containing ν_{X_1} . Namely, we have

$$\mathcal{Q}_{\psi}(\nu_{E_{\varphi_{h}}}) = (X_{1}Y_{1}\psi)\nu_{X_{1}}^{2} + \sum_{j=2}^{n} (X_{j}Y_{1}\psi + X_{1}Y_{j}\psi)\nu_{X_{1}}\nu_{X_{j}} + \sum_{j=1}^{n} (Y_{j}Y_{1}\psi - X_{1}X_{j}\psi)\nu_{X_{1}}\nu_{Y_{j}} + \mathscr{E}_{\psi}(\nu_{E_{\varphi_{h}}}),$$
(3.54)

where $\mathscr{E}_{\psi}(\nu_{E_{\varphi_h}})$ is a quadratic form that does not contain ν_{X_1} .

Inserting into formula (3.54) the derivatives

$$X_{1}Y_{1}\psi = Y_{1}X_{1}\psi - 4T\psi$$

= $Y_{1}\beta + x_{1}Y_{1}\gamma - 4\left(\alpha_{t} + x_{1}\beta_{t} + \frac{1}{2}x_{1}^{2}\gamma_{t}\right),$
 $X_{j}Y_{1}\psi = Y_{1}X_{j}\alpha + x_{1}Y_{1}X_{j}\beta + \frac{1}{2}x_{1}^{2}Y_{1}X_{j}\gamma, \qquad j \ge 2,$
 $X_{1}Y_{j}\psi = Y_{j}\beta + x_{1}Y_{j}\gamma, \qquad j \ge 2,$
(3.55)

$$Y_j Y_1 \psi = Y_j Y_1 \alpha + x_1 Y_j Y_1 \beta + \frac{1}{2} x_1^2 Y_j Y_1 \gamma, \qquad j \ge 1,$$

16

we obtain

$$\mathcal{Q}_{\psi}(\nu_{E_{\varphi_{h}}}) = \left\{ Y_{1}\beta + x_{1}Y_{1}\gamma - 4\left(\alpha_{t} + x_{1}\beta_{t} + \frac{1}{2}x_{1}^{2}\gamma_{t}\right) \right\} \nu_{X_{1}}^{2} \\ + \sum_{j=2}^{n} \left\{ Y_{1}X_{j}\alpha + x_{1}Y_{1}X_{j}\beta + \frac{1}{2}x_{1}^{2}Y_{1}X_{j}\gamma + Y_{j}\beta + x_{1}Y_{j}\gamma \right\} \nu_{X_{1}}\nu_{X_{j}} \\ + \sum_{j=1}^{n} \left\{ Y_{j}Y_{1}\alpha + x_{1}Y_{j}Y_{1}\beta + \frac{1}{2}x_{1}^{2}Y_{j}Y_{1}\gamma - X_{j}\beta - x_{1}X_{j}\gamma \right\} \nu_{X_{1}}\nu_{Y_{j}} \\ + \mathscr{E}_{\psi}(\nu_{E_{\varphi_{h}}}), \qquad (3.56)$$

where, by (2.18) and (2.17), we have

$$\nu_{X_1} = \frac{1}{\sqrt{1 + |\nabla^{\varphi_h} \varphi_h|^2}}, \quad \nu_{Y_1} = -\frac{\mathscr{B}\varphi_h}{\sqrt{1 + |\nabla^{\varphi_h} \varphi_h|^2}},$$

$$\nu_{Z_j} = -\frac{Z_j \varphi_h}{\sqrt{1 + |\nabla^{\varphi_h} \varphi_h|^2}}, \quad Z \in \{X, Y\}, \quad j \ge 2.$$
(3.57)

Above, $\mathscr{B}\varphi_h$ is the Burgers' operator. In particular, since each φ_h is intrinsic *L*-Lipschitz with $0 < L \leq 1$ we can assume that $\sup_{h \in \mathbb{N}} \|\nabla^{\varphi_h}\varphi_h\|_{\infty} < \infty$ and thus there exists an absolute constant C > 0 such that

$$|\mathscr{E}_{\psi}(\nu_{E_{\varphi_h}})| \le C |\nabla^{\varphi_h} \varphi_h|^2. \tag{3.58}$$

So, from (2.32) and (2.33) we have

$$\lim_{h \to \infty} \frac{1}{\eta_h} \int_D |\mathscr{E}_{\psi}(\nu_{E_{\varphi_h}}(w * \varphi_h(w)))| dw = 0.$$

In other words, the limit (3.49) of the integral of \mathscr{E}_{ψ} in (3.49) vanishes.

We compute the limit of the integral of the first three lines in (3.56), separately. By (3.43), we have $X_1Y_1\beta = Y_1X_1\beta - 4T\beta = -4T\beta$ and thus

$$Y_1\beta(w * \varphi_h(w)) = \beta_{y_1}(w) - 4\varphi_h(w)\beta_t(w).$$

Similarly, there holds

$$Y_1\gamma(w*\varphi_h(w)) = \gamma_{y_1}(w) - 4\varphi_h(w)\gamma_t(w).$$

The limit of the integral of terms in the first line of (3.56) containing x_1^2 vanishes, by a computation analogous to (3.52). Moreover, by (2.32), (2.33), and (3.57) the function $\nu_{X_1}^2$ may be replaced by 1. Thus, the limit of the integral of the first line in (3.56) is

$$\lim_{h \to \infty} \frac{1}{\eta_h} \int_B \left\{ \beta_{y_1} - 4\varphi_h \beta_t + \varphi_h (\gamma_{y_1} - 4\varphi_h \gamma_t) - 4\left(\alpha_t + \varphi_h \beta_t + \frac{1}{2}\varphi_h^2 \gamma_t\right) \right\} \nu_{X_1}^2 dw =$$

$$= \lim_{h \to \infty} \int_D (\gamma_{y_1} - 8\beta_t) \frac{\varphi_h - \bar{\varphi}_h}{\eta_h} dw$$

$$= \int_D (\gamma_{y_1} - 8\beta_t) \varphi \, dw.$$
(3.59)

We used Theorem 2.5.

We compute the limit of the integral of the second line in (3.56). In this case, the limit of the integral of terms containing x_1 or x_1^2 vanishes. So we have:

$$\lim_{h \to \infty} \frac{1}{\eta_h} \int_D \sum_{j=2}^n \left\{ Y_1 X_j \alpha + \varphi_h Y_1 X_j \beta + \frac{1}{2} \varphi_h^2 Y_1 X_j \gamma + Y_j \beta + \varphi_h Y_j \gamma \right\} \nu_{X_1} \nu_{X_j} dw =$$

$$= -\lim_{h \to \infty} \int_D \sum_{j=2}^n (Y_1 X_j \alpha + Y_j \beta) \frac{X_j \varphi_h}{\eta_h} dw$$

$$= -\int_D \sum_{j=2}^n \left(\frac{\partial}{\partial y_1} X_j \alpha + Y_j \beta \right) X_j \varphi dw.$$
(3.60)

We used Theorem 2.5.

Finally, we compute the limit of the integral of the third line in (3.56):

$$\lim_{h \to \infty} \frac{1}{\eta_h} \int_D \sum_{j=1}^n \left\{ Y_j Y_1 \alpha + \varphi_h Y_j Y_1 \beta + \frac{1}{2} \varphi_h^2 Y_j Y_1 \gamma - X_j \beta - \varphi_h X_j \gamma \right\} \nu_{X_1} \nu_{Y_j} dw =$$

$$= -\lim_{h \to \infty} \int_D \left\{ \frac{\mathscr{B} \varphi_h}{\eta_h} Y_1^2 \alpha + \sum_{j=2}^n \left\{ Y_j Y_1 \alpha - X_j \beta \right\} \frac{Y_j \varphi_h}{\eta_h} \right\} dw \qquad (3.61)$$

$$= -\int_D \left\{ \partial_{y_1} \varphi Y_1^2 \alpha + \sum_{j=2}^n \left(Y_j Y_1 \alpha - X_j \beta \right) Y_j \varphi \right\} dw.$$

We used Theorem 2.5.

Putting together (3.53), (3.59), (3.60), and (3.61), we obtain:

$$\int_{D} \left\{ \left(4(n+1)\beta_{t} + \gamma_{y_{1}} - 8\beta_{t} \right)\varphi - \partial_{y_{1}}\varphi Y_{1}^{2}\alpha - \right. \\ \left. - \sum_{j=2}^{n} \left(\frac{\partial}{\partial y_{1}} X_{j}\alpha + Y_{j}\beta \right) X_{j}\varphi - \left(Y_{j}Y_{1}\alpha - X_{j}\beta \right) Y_{j}\varphi \right\} dw = 0.$$

$$(3.62)$$

When $\alpha = \beta = 0$, this equation reads

$$0 = \int_D \gamma_{y_1} \varphi \, dw = -\int_D \gamma \varphi_{y_1} dw,$$

for any test function $\gamma \in C_c^{\infty}(D_{1/2})$. This implies that φ is independent of y_1 . This proves claim i) of the theorem.

When $\alpha = \gamma = 0$, equation (3.62) reads

$$0 = \int_D \left\{ 4(n-1)\beta_t \varphi + \sum_{j=2}^n X_j \beta Y_j \varphi - Y_j \beta X_j \varphi \right\} dw$$
$$= \int_D \left\{ 4(n-1)\beta_t - \sum_{j=2}^n Y_j X_j \beta - X_j Y_j \beta \right\} \varphi \, dw,$$

for any $\beta \in C_c^{\infty}(D_{1/2})$. This information is empty. In fact, the equation is satisfied for any test function because $Y_j X_j - X_j Y_j = [Y_j, X_j] = 4T$.

When $\beta = \gamma = 0$, by $Y_1 \varphi = 0$ and (3.46) equation (3.62) reads

$$0 = \int_{D} \left\{ Y_{1}^{2} \alpha Y_{1} \varphi + \sum_{j=2}^{n} Y_{1} X_{j} \alpha X_{j} \varphi + Y_{j} Y_{1} \alpha Y_{j} \varphi \right\} dw$$
$$= -\int_{D} \frac{\partial \alpha}{\partial y_{1}} \sum_{j=2}^{n} (X_{j}^{2} \varphi + Y_{j}^{2} \varphi) dw$$
$$= -\int_{D} \vartheta \Delta_{H} \varphi \, dw,$$

for any test function $\vartheta \in C_c^{\infty}(D_{1/2})$. Then the function $\varphi \in W_H^{1,2}(D)$ solves the partial differential equation $\Delta_H \varphi = 0$ in the weak sense in $D_{1/4} \cap \{y_1 = 0\}$. It follows that φ is smooth, by hypoellipticity, and φ is a classical solution. This proves claim ii). \Box

References

- L. AMBROSIO, M. SCIENZA, Locality of the perimeter in Carnot groups and chain rule. Ann. Mat. Pura Appl. (4) 189 (2010), no. 4, 661–678.
- [2] L. AMBROSIO, F. SERRA CASSANO & D. VITTONE, Intrinsic regular hypersurfaces in Heisenberg groups. J. Geom. Anal., 16 (2006), no. 2, 187–232.
- [3] F. BIGOLIN, L. CARAVENNA & F. SERRA CASSANO, Intrinsic Lipschitz graphs in the Heisenberg group and continuous solutions of a balance equation. Preprint 2013.
- [4] L. CAPOGNA, G. CITTI, M. MANFREDINI, Regularity of non-characteristic minimal graphs in the Heisenberg group ℍ¹. Indiana Univ. Math. J. 58 (2009), no. 5, 2115–2160.
- [5] _____, Smoothness of Lipschitz minimal intrinsic graphs in Heisenberg groups \mathbb{H}^n , n > 1. J. Reine Angew. Math. 648 (2010), 75–110.
- [6] J.-H. CHENG, J.-F. HWANG, P. YANG, Regularity of C¹ smooth surfaces with prescribed p-mean curvature in the Heisenberg group. Math. Ann. 344 (2009), no. 1, 1–35.
- [7] J.-H. CHENG, J.-F. HWANG, A. MALCHIODI, P. YANG, Minimal surfaces in pseudohermitian geometry. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), 129–177.
- [8] G. CITTI, M. MANFREDINI, A. PINAMONTI, F. SERRA CASSANO, Poincaré type inequality for intrinsic Lipschitz continuous vector fields in the Heisenberg group, preprint 2013.

- [9] B. FRANCHI, R. SERAPIONI, F. SERRA CASSANO, Rectifiability and perimeter in the Heisenberg group. Math. Ann. 321 (2001), 479–531.
- [10] B. FRANCHI, R. SERAPIONI & F. SERRA CASSANO, Regular submanifolds, graphs and area formula in Heisenberg groups, Adv. Math. 211 (2007), no. 1, 152–203.
- [11] N. GAROFALO, D.-M. NHIEU, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math. 49 (1996), 1081–1144.
- [12] A. KORÁNYI, H. M. REIMANN. Foundations for the theory of quasiconformal mappings on the Heisenberg group. Adv. Math. 111 (1995), no. 1, 1–87.
- [13] F. MAGGI, Sets of finite perimeter and geometric variational problems. An introduction to geometric measure theory. Cambridge Studies in Advanced Mathematics, 135. Cambridge University Press, Cambridge, 2012. xx+454 pp.
- [14] R. MONTI, Lipschitz approximation of *H*-perimeter minimizing boundaries, Calc. Var. Partial Differential Equations 50 (2014), no. 1-2, 171–198.
- [15] R. MONTI, Isoperimetric problem and minimal surfaces in the Heisenberg group, Lecture notes of the ERC School Geometric Measure Theory and Real Analysis, 57–130, Edizioni SNS Pisa, 2014-2015.
- [16] R. MONTI, D. VITTONE, Sets with finite *H*-perimeter and controlled normal. Math. Z. 270 (2012), no. 1-2, 351–367.
- [17] R. MONTI, D. VITTONE, Height estimate and slicing formulas in the Heisenberg group. Preprint 2014.
- [18] F. SERRA CASSANO, D. VITTONE, Graphs of bounded variation, existence and local boundedness of non-parametric minimal surfaces in the Heisenberg group, Adv. Calc. Var. 7 (2014), no. 4, 409–492.

E-mail address: monti@math.unipd.it

(Monti) Università di Padova, Dipartimento di Matematica, via Trieste 63, 35121 Padova, Italy