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Abstract

We consider a class of quasilinear elliptic systems of PDEs consisting of N Hamilton-
Jacobi-Bellman equations coupled with N divergence form equations, generalising to N >
1 populations the PDEs for stationary Mean-Field Games first proposed by Lasry and
Lions. We provide a wide range of sufficient conditions for the existence of solutions to
these systems: either the Hamiltonians are required to behave at most linearly for large
gradients, as it occurs when the controls of the agents are bounded, or they must grow
faster than linearly and not oscillate too much in the space variables, in a suitable sense.
We show the connection of these systems with the classical strongly coupled systems
of Hamilton-Jacobi-Bellman equations of the theory of N -person stochastic differential
games studied by Bensoussan and Frehse. We also prove the existence of Nash equilibria
in feedback form for some N -person games.

Keywords: Nonlinear elliptic systems, stochastic differential games, N-person games, Nash
equilibria, Mean-Field Games.

1 Introduction

This paper deals with systems of partial differential equations of the following type
Livi +H i(x,Dvi) + λi = V i[m] in Q := Td,

Li∗mi − div
(
gi(x,Dvi)mi

)
= 0 in Q,∫

Qmi(x)dx = 1, mi > 0,
∫
Q vi(x)dx = 0, i = 1, . . . , N,

(1)
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where the unknowns are the constants λ = (λ1, . . . , λN ), the functions v = (v1, . . . , vN )
and the densities of probability measures m = (m1, . . . ,mN ), at least continuous on the
d-dimensional torus Q := Td. The operators

Li := −tr(ai(x)D2), i = 1, . . . , N,

are second-order uniformly elliptic with Zd-periodic and Lipschitz coefficients ai(·), i.e., for
some ν, C > 0,

ai(x) ≥ νId, ai(x) = ai(x+ k) ∀k ∈ Zd, |ai(x)− ai(x+ y)| ≤ C|y| ∀x, y ∈ Rd, (2)

where Id is the identity d× d matrix, and

Li∗v := −
∑
h,k

D2
hk(a

i
hk(x)v)

are their formal adjoints.
The Hamiltonians H i : Rd × Rd → R are Zd-periodic in x and satisfy either one of the

following alternative sets of conditions.

C1. For all i = 1, . . . , N, H i = H i(x, p) is locally Lipschitz, superlinear in p uniformly in x,
i.e.,

inf
x∈Q
|H i(x, p)|/|p| → +∞ as |p| → ∞, (3)

and ∃θi ∈ (0, 1), C > 0, such that

tr(ai)DxH
i · p+ θi(H i)2 ≥ −C|p|2 for |p| large, and for a.e. x ∈ Q. (4)

C2. For all i = 1, . . . , N , for some α ∈ (0, 1), H i is locally α-Hölder continuous and grows
at most linearly in p, i.e., for some C1, C2 > 0,

|H i(x, p)| ≤ C1|p|+ C2 ∀x ∈ Q, p ∈ Rd. (5)

The operators V i :
(
W 1,p(Q) ∩ P (Q)

)N → C0,α(Q) with p > d are continuous with respect
the uniform convergence and either uniformly bounded in C0,1 norm, if condition C1 holds,
or uniformly bounded in the sup norm if condition C2 holds (see Sect. 2 for the notations
and a more precise statement of these assumptions).

Finally, we assume that

gi : Q× Rd → Rd are measurable, locally bounded, and continuous in p. (6)

Under the above conditions we show the existence of a solution λi ∈ R, vi ∈ C2,α(Q),mi ∈
W 1,p(Q), for all 1 ≤ p <∞, i = 1, . . . , N , to the system (1), where α is the Hölder exponent
appearing in condition C2 on H i if such condition holds, and it is any number in (0, 1) if
condition C1 is assumed instead.

There are two main motivations for studying systems of the form (1). The first is the
theory of stationary Mean-Field Games (briefly, MFG) as formulated by J-M. Lasry, P-L.
Lions [44, 46]. In fact, for N = 1, Li = −∆, H i = H smooth and gi = DpH, (1) reduces
to the stationary MFG PDEs introduced and studied in [44, 46]. This is a model of the
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equilibrium distribution of a large population of identical agents whose dynamics is subject
to white noise and seeking to minimise a given individual cost functional. The additive
eigenvalue problem (1) arises when such functional is the long-time-average of some running
cost, sometimes called ergodic cost. For N > 1 the system (1) with gi = DpH

i can be
associated to Mean-Field Games with N different populations of players, see Section 3.6 and
[25, 2] for further motivations. Mean-Field Games were also introduced independently by
Huang, Caines, and Malhamé and studied by different methods [41, 42], see Section 3.6.

In case of Condition C1 our assumptions allow for several populations and a more general
controlled dynamics for the generic agent of each population than in [44, 46], but they are in
the same spirit. Namely, the drift velocity of each player can point in any direction of the
state space and can be arbitrarily large with a large cost, similarly to problems of Calculus of
Variations. This is reflected by the strong coercivity condition (3) on the Hamiltonians H i.
Condition C2, instead, is natural in Control Theory, where the set of controls is bounded and
therefore so are drift velocities and costs; moreover no controllability of the underlying system
is assumed because H i is not required to have any coercivity property. See Section 3 and in
particular 3.4 and 3.5 for several examples. Therefore the main novelties of this paper are in
the results under condition C2, whose proofs are also quite different from those of [44, 46].

The second motivation is the synthesis of Nash equilibria in feedback form for N -person
stochastic differential games with cost functionals of ergodic type. This is usually based on the
solution of a strongly coupled system of N Hamilton-Jacobi-Bellman (briefly, HJB) equations,
the system (54) in Section 3.1, following a classical observation of Friedman [32]. A systematic
study of such nonlinear elliptic systems was pursued by Bensoussan and Frehse starting with
[14], see [15] for problems with ergodic cost and their book [16] for more references. In
[44, 46] Lasry and Lions propose instead a system of N HJB and N Kolmogorov-Fokker-
Planck equations of the form (1) for games where the players are coupled only via the cost
functionals. An advantage of this system is the weaker coupling among the HJB equations.
They give an existence result in the case Li = −νi∆, νi > 0, H i smooth, satisfying (3) and
(4) with C = 0, and gi = DpH

i, and show how to synthesize a feedback Nash equilibrium
for the N -person game from the solution of such system. In Section 3.1 we show a more
precise connection among the classical systems of [14, 15] and systems of the form (1), which
is related to the adjoint methods for Hamilton-Jacobi equation explored by Evans [30]. In
Section 3 we also generalise the result in [44, 46] on the synthesis of the equilibrium and give
several examples of classes of differential games to which our abstract results apply. Also
for these applications the main novelties of our results are in the case of Condition C2, since
the elliptic system for N -person games with ergodic costs had been studied so far only for
Hamiltonians quadratic in p [15, 16] (see, however, [4] for two-person, zero-sum games, and
[17] for N -person with different cost functionals).

We recall that the pioneering papers [44, 46] prove also the convergence, in a suitable
sense, of N -person games to a Mean-Field Game with a single population as the number of
players tends to infinity. Some estimates of the present paper were used by Feleqi [31] to
prove the same result in the case of several interacting populations and under more general
conditions.

The proof of the existence of solutions to (1) under condition C1 follows the suggestion
in [44, 46] about getting a priori estimates for Dvi by the Bernstein method (see also [1],
[47] and [48]). On the other hand, rather than relying on estimates for Bellman equations,
we mostly use more classical local a priori estimates for linear equations. We also included
some of their proofs for the reader’s convenience when we were not able to find an explicit
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reference in the literature, in the attempt to make the paper reasonably self-contained and
readable by a wide audience. The proof in this case allows some variants to conditions C1
and C2 and can be adapted, for instance, to Hamiltonian behaving like |p1|+ |p2|γ , γ > 1, as
p = (p1, p2) ∈ Rd1 × Rd2 tends to infinity, see Remark 2.4 and Example 3.11.

Under condition C2 the proof is different. We first study an elliptic system where the
additive eigenvalue λi in (1) is replaced by a zero-th order term ρivi with ρi > 0. The
existence of solutions for such system is achieved under the more general natural growth
condition

|H i(x, p)| ≤ C1|p|2 + C2 ∀x ∈ Q, p ∈ Rd,

using some deep estimates by Ladyzhenskaya and Uraltseva [43] and other tools of the el-
liptic theory [34]. This result is of independent interest because the system is associated
to feedback Nash equilibria for some N -person stochastic differential games with discounted
infinite-horizon cost functionals (see Section 3.3). Next we find solutions of (1) by letting
ρi → 0, which corresponds to the small-discount approximation of the ergodic control prob-
lem [6, 4]. We remark that the results under condition C2, Theorems 2.5 and 2.6, hold without
any regularizing property of the operators V i, which can be local functions of m(x), provided
they are bounded.

Note also that we do not assume any monotonicity property of the operators V i, so our
results can be applied, for instance, to models of segregation [2] or aggregation [28]. On the
other hand we do not address the uniqueness of the solution, which is known to hold if N = 1
under a monotonicity condition on V i introduced by Lasry and Lions [44, 46]. If N > 1
one does not expect uniqueness, and explicit examples of non-uniqueness can be found in [2].
For some very special cases of uniqueness with two populations see Cirant [25, 26] (where
Neumann boundary conditions are also treated).

We conclude with some bibliographical remarks. The existence of Nash equilibria for
some stochastic N -person differential games was also proved by probabilistic methods, see,
e.g., [21, 33] and the references therein. The difficulties arising from constraints on the controls
in such games were treated by Mannucci [49] working on parabolic systems. For a general
presentations of Mean-Field Games and their applications we refer to the lecture notes by
Guéant, Lasry, and Lions [40] and Cardaliaguet [22], the survey paper [39] and the very recent
books [35, 37] by Gomes and collaborators. For the case of local coupling terms V [m] we refer
to Gomes and his coworkers [38, 36, 50] (single population), and to Cirant [26, 27, 28, 29]
(several populations and Neumann boundary conditions). Evolutive MFG were first studied
in [45, 46] and [41, 42]. The justification of stationary MFG via long-time asymptotics is in [23]
and numerical methods in [3], see also the references therein. For other recent contributions
on MFG see also the courses of P.-L. Lions at Collège de France, the monograph [18], the two
special issues of Dynamic Games and Applications [10, 11], and the very recent important
paper [24] on the master equation and its application to the convergence of games with a
large population to a MFG.

The paper is organized as follows. Section 2 contains the statements and proofs of the
existence results for (1) and for related systems with zero-th order terms arising from dis-
counted infinite horizon problems. In Section 3 we describe the connections of the system
(1) with N-person and Mean-Field games. We also apply the results of Section 2 to show
the existence of Nash equilibria for such games in the cases of long-time-average costs and
discounted infinite horizon costs. Finally, the Appendix contains the proofs of some technical
lemmas.
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2 Existence of solutions to elliptic systems

We denote by C(Q) the set of Zd-periodic continuous functions on Rd, by Ck,α(Q), k ∈ N,
0 < α ≤ 1, the set of Zd-periodic functions having k-th order derivatives which are α-Hölder
continuous, by Lp(Q), 1 ≤ p ≤ ∞, the set of p-summable Lebesgue measurable Zd-periodic
on Q, by W k,p(Q), k ∈ N, 1 ≤ p ≤ ∞, the Sobolev space of Zd-periodic functions having weak
derivatives up to order k which are p-summable on Q, and by P (Q) the set of probability
measures on Q.

We will use the notations tr b for the trace of a square matrix b, and a · b = tr abt,
|b| := (b · b)1/2. The adjoint operator Li∗ will be interpreted in the sense of distributions:

< Li∗v, φ >=

∫
Q
vLφdx ∀φ ∈ C∞(Q).

In all existence results we assume V i are continuous in the following sense

∀mn,m ∈
(
W 1,p(Q) ∩ P (Q)

)N
, ‖mn −m‖∞ → 0 =⇒ ‖V i[mn]− V i[m]‖∞ → 0. (7)

2.1 The additive eigenvalue problem

For the first result, under condition C1, we assume V i :
(
W 1,p(Q) ∩ P (Q)

)N → C0,1(Q),
p > d, are uniformly Lipschitz continuous, i.e.,

sup
m∈(W 1,p(Q)∩P (Q))N

‖V i[m]‖C0,1(Q) <∞ . (8)

Theorem 2.1. Assume (2) and (6), H i satisfy condition C1, and V i verify (7) and (8). Then
there exist λ1, . . . , λN ∈ R, v1, . . . , vN ∈ C2,α(Q), m1, . . . ,mN ∈ W 1,p(Q), for all 0 < α < 1,
1 ≤ p <∞, which solve the system (1).

We need the following two lemmas for linear equations. We believe they are well-known,
but for lack of a precise reference we give their proofs in the Appendix.

Lemma 2.2. Let
L = −ahk(x)Dhk + bh(x)Dh

be a second-order uniformly elliptic linear differential operator in Q = Td with coefficients
ahk, bh, ∈ Cα(Q), h, k = 1, . . . , d, 0 < α < 1. Then, for any f ∈ Cα(Q), the problem{

Lv + λ = f∫
Q v(x)dx = 0

(9)

has a unique solution (v, λ) ∈ C2,α(Q)× R. Moreover,

|λ| ≤ ‖f‖∞, (10)

‖v‖C1,α(Q) ≤ C‖f‖∞, (11)

‖v‖C2,α(Q) ≤ C‖f‖Cα(Q) (12)

for some constant C > 0 which depends only on (the coefficients of) L.
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Lemma 2.3. Let
L = −ahk(x)Dhk, g : Q→ Rd

be a (symmetric) second-order uniformly elliptic linear differential operator in Q = Td with
coefficients ahk ∈ C0,1(Q), h, k = 1, . . . , d, and a bounded measurable vector field, respectively.
Then the problem {

L∗m− div(g(x)m) = 0∫
Qm(x)dx = 1

(13)

has a unique solution m ∈W 1,p(Q) for all 1 ≤ p <∞. Moreover, m is positive and

‖m‖W 1,p(Q) ≤ C(‖g‖∞), (14)

for some constant C(‖g‖∞) which depends (continuously) on g only through ‖g‖∞ (and also
on p and the coefficients ahk).

Proof of Theorem 2.1. The proof is based on Schauder’s fixed point theorem (see for
instance [52, Theorem 4.1.1, p. 25] or [34, Corollary 11.2, p. 280]) and on a priori estimates
for the gradients of vi that are obtained by Bernstein’s method, as suggested in [44, 46].

We first assume, instead of (3) and (4), that the Hamiltonians are bounded, that is,

∃M > 0 such that |H i(x, p)| ≤M ∀i, x, p.

Let

B =

{
u = (u1, . . . , uN ) ∈ (C1,α(Q))N :

∫
Q
udx = 0

}
,

which is a Banach space as a closed subspace of C1,α(Q)N . We define an operator

T : B → B,

according to the scheme
u 7→ m 7→ (v, λ) 7→ v,

as follows. Given u = (u1, . . . , uN ) ∈ B, we plug it in place of v in the second N scalar linear
equations of the system (1) and solve those equations for the unknowns m = (m1, . . . ,mN ),
requiring that these unknowns satisfy conditions in the third line of (1). That these {mi}Ni=1

exist, are uniquely defined and have the required properties, is a consequence of Lemma 2.3.
Then, with these {mi}, we solve theN scalar linear equations obtained from the first equations
in (1) after plugging ui into H i in place of vi, i.e., by solving the N uncoupled linear equations

Livi +H i(x,Dui) + λi = V i[m]

for the unknowns v = (v1, . . . , vN ), λ = (λ1, . . . , λN ) ∈ RN . Since we require in addition
that the vi have zero mean, then v = (v1, . . . , vN ) ∈ C2,α(Q) and λ = (λ1, . . . , λN ) ∈ RN are
uniquely defined, as a consequence of Lemma 2.2. We set Tu = v. By (10), (12), (14), and
a standard embedding theorem, T is continuous and compact. Moreover, the C1,α-estimate
(11) and the boundedness of H i and V i gives

‖v‖C1,α(Q) ≤ C

for some C > 0 independent of v; thus T (B) is bounded. Therefore, by Schauder’s fixed point
theorem, T has a fixed point (in the convex hull of the closure of T (B)).
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Now we turn to consider Hamiltonians H i that satisfy the assumptions of the theorem.
We introduce the truncated Hamiltonians H i

R defined as follows

H i
R(x, p) =

{
H i(x, p), if |p| ≤ R,

H i
(
x,R p

|p|

)
, if |p| > R,

x ∈ Q, p ∈ Rd, (15)

where the parameter R > 0 is to be fixed in the sequel sufficiently large. Let R1 > 0 be such
that (4) is verified for all x ∈ Q, |p| ≥ R1. Then

inf
x∈Q

(
(tr ai)DxH

i
R · p+ θi(H i

R)2
)
≥ −C|p|2 for all R ≥ |p| ≥ R1 , (16)

with the same θi (i = 1, . . . , N) and C as in (4). Clearly the H i
R are bounded and Lipschitz

continuous. So let λR1 , . . . , λ
R
N ∈ R, vR1 , . . . , v

R
N ∈ C2,α(Q), mR

1 , . . . ,m
R
N ∈ W 1,p(Q) (0 < α <

1, 1 ≤ p <∞) be a solution of (1) with H i
R in the place of H i.

The crucial step of the proof is an a priori estimate for ‖DvRi ‖∞ uniform in R, obtained
by Bernstein’s method. We drop the indices i and R in the following estimates. Let w = Dv
and ψ = (1/2)|w|2. We have these identities

Dψ = wD2v (17)

D2ψ =
∑
h

whD
2wh + (D2v)2 (18)

Lψ = −a ·D2ψ = −
∑
h

wh(a ·D2wh)− a · (D2v)2. (19)

Let us assume temporarily that u is of class C3 and ahk, H, F are of class C1 (clearly the
truncation of H above could have been done smoothly). We apply to the first equations in (1)
the operator w ·D and use (19), (17) to obtain

Lψ + a · (D2v)2 − δa ·D2v +DxH · w +DpH ·Dψ = G · w, (20)

where
δa := (δahk)h,k=1,...,d with δahk :=

∑
l

Dlahkwl (21)

and G is a function whose L∞-norm does not exceed a universal constant which does not
depend on v (recall the assumptions on operators V i). We use the following inequalities which
are simple consequences of Cauchy-Schwarz inequality: for any a, b symmetric matrices with
a ≥ 0 and c, e ∈Md×mi

(a · b)2 ≤ (a · b2)tr a and (tr cetb)2 ≤ |e|2cct · b2. (22)

Assume that

a =
1

2
σσt, (23)

where the matrix σ(x) is Lipschitz; such a decomposition is always possible for a(x) is Lipschitz
and its smallest eigenvalue (which is positive) is bounded away from zero uniformly for x ∈ Q.
By (23) and (21) we have

δa = (δσ)σt.
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Using this identity, the second of inequalities (22) and (23), we obtain

δa ·D2v ≤ |δσ|
(
σσt · (D2v)2

)1/2
=
√

2|δσ|
(
a · (D2v)2

)1/2
≤ εa · (D2v)2 +

1

2ε
|δσ|2, (24)

for any 0 < ε < 1. On the other hand, using the first of inequalities (22) and the first
equations in (1), we have

(a · (D2v)2)tr a ≥ (a ·D2v)2 = (Lv)2

≥ (λ+H − V [m])2

≥ ωH2 − cω (25)

for any 0 < ω < 1 and a constant cω independent of R, The last inequality is obtained by the
boundedness of operators V and constants λ. In fact, looking at the minima and maxima of
v in the first equations of (1) we obtain

|λ| ≤ sup
x∈Q

(|H(x, 0)|+ |V [m](x)|).

Multiplying (20) by tr a, and using (24), (25), we get

(tr a)(Lψ +DpHDψ +DxH · w) + (1− ε)ωH2 ≤ (tr a)

(
G · w +

1

2ε
|δσ|2

)
+ cω .

If we choose ε and ω such that (1 − ε)ω > θ, where θ is the constant appearing in (16),
using (16) we get

(tr a)(Lψ +DpHDψ) + ((1− ε)ω − θ)H2 ≤ (tr a)

(
G · w +

1

2ε
|δσ|2

)
+ C|w|2 + cω (26)

for R ≥ |w| > R1. At a maximum point of ψRi , (now we reintroduce i and R in order to avoid
any possible confusion), say xiR, taking into account that |δσi| is at most linear in wRi , we
have

((1− εi)ωi − θi)(H i
R)2(xiR, w

R
i (xiR)) ≤ C(|wRi (xiR)|2 + 1) (27)

for some C > 0 (independent of R) and R ≥ |wRi (xiR)| ≥ R1. But by (3), the left-hand
side above is superlinear in |wRi (xiR)| and thus |wRi (xiR)| must be bounded by some constant
independent of R.

Thus, we have shown that
‖DuRi ‖∞ ≤ R2 (28)

for some R2 > 0 independent of R > R1. So if take any R > max{R1, R2} in (15), we discover
that λR1 , . . . , λ

R
N ∈ R, vR1 , . . . , v

R
N ∈ C2,α(Q), mR

1 , . . . ,m
R
N ∈W 1,p(Q) (0 < α < 1, 1 ≤ p <∞)

is also a solution of the original system of PDEs (1).
To complete the proof under our general assumptions we observe that equation (20) still

holds a.e. in Rd. In fact u ∈ W 3,p, p > n (by classical elliptic regularity theory for linear
equations), hence u is three times differentiable in the usual sense a.e. and also the coefficients,
being Lipschitz continuous, are differentiable a.e. A sort of chain rule usable for our purposes
holds by a result in [5], and the maximum principle to be used is that of [20]. Alternatively,
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and more simply, one can proceed by regularizing the data {(aihk)1≤h,k≤d : i = 1, . . . , N},
V i[m], for m ∈ P (Q)N , and H i, for i = 1, . . . , N , via smooth approximations to the identity
{ρε}ε>0, {ρ̂ε}ε>0 given by ρε(x) = ε−dρ1(x/ε) and ρ̂ε(x, p) = ρε(x)ρε(p) for all x ∈ Rd, p ∈ Rd,
ε > 0, where ρ1 is some mollification kernel in Rd (that is, a nonnegative function of class C∞

with support in the unit ball B of Rd and
∫
B ρ1(z) dz = 1). Noting that ‖ρε ? aihk‖C1(Q) →

‖aihk‖C0,1(Q), ‖ρε ? V i[m]‖C1(Q) → ‖V i[m]‖C0,1(Q) and inf Dx(ρ̂ε ? H
i) → ess inf DxH

i as

ε→ 0 for all h, k, i, m ∈ P (Q)N , one deduces estimates of type (28) with R2 independent of
ε for ε small enough.

Remark 2.4. (i) In dimension d = 1 condition (4) is not needed. Note that d2vi
dx2

is bounded
from below if H i is bounded from below; since it has zero mean in (0, 1), it is bounded in L1

norm. Therefore dvi
dx is bounded.

(ii) Theorem 2.1 still holds if (3) is weakened to

∃νi > 0 such that lim inf
|p|→∞

infx∈Q |H i(x, p)|
|p|

= νi > 0, (29)

provided that we substitute (4) with the stronger condition: ∃θi, ηi ∈ (0, 1) such that

lim inf
|p|→∞

1

|p|2
inf
x∈Q

(
θi(tr a)DxH

i · p+ (1− θi)θiηi(H i)2 − |p|2 (tr ai)|Dσi|2

2

)
≥ 0, (30)

where ai = (1/2)σσt, Dσi = (Dσihk) is a matrix (whose entries are vectors) and |Dσi|2 =∑
h,k |Dσihk|2. To see this take εi = θi in (24), multiply (26) by θi and choose ωi in (25)

so that ωi > ηi. Let s > 0, Rs > 0 be such that the quantity under the lim inf sign in the
left-hand side of (30) is > −s for all |p| ≥ Rs. Noting that |δσi| ≤ |Dσi||wRi |, we deduce

(ωi − ηi)(1− θi)θi(H i
R)2(xiR, w

R
i (xiR))− s|wRi (xiR)|2 ≤ C(|wRi (xiR)|+ 1)

for some C > 0 (independent of R and s) and for R ≥ |wRi (xiR)| ≥ Rs. Now if we choose s > 0
so small that s < νi(ωi − ηi)(1 − θi)θi, by (29) we find that |wRi (xiR)| is bounded uniformly
in R.

(iii) The arguments of the proof of Theorem 2.1, with some obvious modifications, prove
also the solvability of the problem

Lv + λ+H(x,Dv) = 0

for the unknowns v ∈ C2(Q), λ ∈ R, where L satisfies (2) and the Hamiltonian H is locally
Lipschitz continuous and satisfies (3) and (4) or, alternatively, any condition mentioned in
the remarks above. This result is known for Dirichlet and Neumann boundary value problems
with H satisfying similar conditions, see [47]. If L is degenerate elliptic the existence of a
viscosity solution v ∈ C0,1(Q) can be found in [48].

These existence results for (1), under condition C1, may be interpreted as follows. The
Hamiltonians H i can grow arbitrarily provided that they “do not oscillate too much in x”,
which rigorously means that they should satisfy the technical condition (4); moreover, the
operators V i must be regularizing, therefore necessarily non-local.

On the other hand, if instead the Hamiltonians have at most linear growth as in condition
C2 of the Introduction, we do not need any additional assumption of the aforementioned
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type, but the uniform boundedness of V i. More precisely, in the next result we assume

V i :
(
W 1,p(Q) ∩ P (Q)

)N → C0,α(Q) (α being the same as in Condition C2) and

sup
m∈(W 1,p(Q)∩P (Q))N

‖V [m]‖∞ <∞ . (31)

Theorem 2.5. Assume (2) and (6), H i satisfy condition C2, and that V i verifies (7), (31).
Then there exist λ1, . . . , λN ∈ R, v1, . . . , vN ∈ C2,α(Q), m1, . . . ,mN ∈ W 1,p(Q), for all
1 ≤ p <∞, which solve the system (1).

The proof is obtained as a limit in a system of equations with zero-th order terms, based
on Theorem 2.6, and it is therefore postponed to the next section.

2.2 Equations with zero-th order terms

The next result holds under a condition much larger than C2, where we replace the lin-
ear growth in p of the Hamiltonians with a quadratic growth, the so-called natural growth
condition.

C2*. For all i = 1, . . . , N , for some α ∈ (0, 1), H i is locally α-Hölder continuous and for some
C1, C2 > 0,

|H i(x, p)| ≤ C1|p|2 + C2 ∀x ∈ Q, p ∈ Rd, (32)

Theorem 2.6. Assume (2) and (6), H i satisfy condition C2*, and that V i verifies (7), (31).
Let ρ1, . . . , ρN be positive constants. Then there exist v1, . . . , vN ∈ C2,α(Q), m1, . . . ,mN ∈
W 1,p(Q), for all 1 ≤ p <∞, i = 1, . . . , N , which solve

Livi +H i(x,Dvi) + ρivi = V i[m] in Q,

Li∗mi − div
(
gi(x,Dvi)mi

)
= 0 in Q,∫

Qmi(x)dx = 1, mi > 0, i = 1, . . . , N,

(33)

For the proof we need the following lemma which is proved in the Appendix.

Lemma 2.7. Let
L = −ahk(x)Dhk + bh(x)Dh + c(x)

be a second-order uniformly elliptic linear differential operator in Q = Td with coefficients
ahk, bh, c ∈ Cα(Q), h, k = 1, . . . , d, 0 < α < 1. Assume also that c > 0. Then, for any
f ∈ Cα(Q), the equation

Lv = f (34)

has one and only one solution v ∈ C2,α(Q). Moreover, for some constant C > 0 which
depends only on (the coefficients of) L,

‖v‖C2,α(Q) ≤ C‖f‖Cα(Q). (35)

Proof of Theorem 2.6. We define an operator

T : C1,α(Q)N → C1,α(Q)N ,

10



u 7→ m 7→ v,

in the following way. Given u = (u1, . . . , uN ), we solve the second N equations in (33) with ui
plugged into gi in place of vi and with the corresponding normalisation conditions, and find
m = (m1, . . . ,mN ), see Lemma 2.3. With these mi and the ui plugged into the Hamiltonians
H i, i = 1, . . . , N, in place of vi we solve, by Lemma 2.7, the first N linear equations of (33),
that is,

Livi + ρivi +H i(x,Dui) = V i[m], i = 1, . . . , N (36)

and find v = (v1, . . . , vN ) ∈ C2(Q); (actually we can say that vi ∈ C2,α2
(Q)N but this

is not important; notice that vi is solution to a linear equation Livi = f i with f i(x) =
V i[m](x) − H i(x,Dui) − ρivi(x) which is α2-Hölder continuous for x 7→ H i(x,Dui(x)) is
a composition of two α-Hölder continuous functions, while the coefficients of the uniformly
elliptic operator Li are Lipschitz continuous).

We set Tu = v.
It is standard to verify that T : C1,α(Q) → C1,α(Q), u → Tu is continuous and com-

pact. By Schaefer’s version of Leray-Schauder theorem (see [52, Theorem 4.3.2, p 29] or [34,
Theorem 11.3, p. 280]), we need only look at the set of the fixed points of the operators sT ,
0 ≤ s ≤ 1, that is,

{u ∈ C1,α(Q)N : sTu = u for some 0 ≤ s ≤ 1}, (37)

and prove that it is bounded in C1,α(Q)N .
To prove such an estimate first note that if u = sTu for some 0 ≤ s ≤ 1, then, by

assumption (31),

‖ui‖∞ =
s

ρi
max
x∈Q

(|H i(x, 0)|+ |V i[m](x)|) ≤ C

for some 0 < C <∞ independent of u and s, as can be seen by looking at the extrema of ui
which satisfies equation (36) with ui = vi and H i, V i[m] multiplied by s.

Next we combine the L∞ bound with a classical a priori interior estimate for the gradients
of solutions of quasilinear elliptic equations [43, Theorem 3.1, p. 266]. To do this we rewrite
the equations in divergence form, use the quadratic growth condition (32), and assume
temporarily that the coefficients ai of the equations are of class C1. Then we get

‖ui‖C1(Q) ≤ C (38)

for some C > 0 independent of u and s. Indeed, one has only to check carefully that all the
assumptions of of [43, Theorem 3.1] are satisfied. The additional regularity of the coefficients
can now be removed by approximation because the estimates depend only on the L∞-norm
of the derivatives of the coefficients and not on their moduli of continuity.

Finally, we can apply [34, Theorem 8.32, p. 210] to the linear uniformly elliptic equations
Liui = f i with f i(x) = V i[m](x)−H i(x,Dui(x))− ρiui(x), since the f i are bounded and the
coefficients of Li are Lipschitz, in order to deduce, taking into account (38),

‖ui‖C1,α(Q) ≤ C

for some C > 0 again independent of u and s. Thus T has at least one fixed point.
By classical Schauder regularity results for linear uniformly elliptic equations (see, e.g.,

Lemma 2.7) applied to the same equations Liui = f i as above, we deduce that actually
u ∈ C2,α(Q); we need only to notice that x 7→ f i(x) = V i[m](x)−H i(x,Dui(x))− ρui(x) are
α-Hölder continuous and the coefficients of Li are Lipschitz continuous.
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Remark 2.8. An alternative existence result for the system (33) can be stated under condi-
tion C1 instead of C2* if (8) holds. This requires only a slight modification of the proof of
Theorem 2.1.

Now we prove Theorem 2.5 on the existence of solutions for the system of ergodic PDEs
(1) under condition C2 by approximation with solutions of (33) with vanishing zero-th order
coefficients ρi.

Proof of Theorem 2.5. Let vρ1 , . . . , v
ρ
N ∈ C2,α(Q), mρ

1, . . . ,m
ρ
N ∈ W 1,p(Q) (1 ≤ p < ∞,

i = 1, . . . , N) be a solution of (33) with ρi = ρ > 0. Such a solution exists by Theorem 2.6.
By the comparison principle for the i-th equation we first get, for all i and ρ ∈]0, 1],

‖ρvρi ‖∞ ≤ C2 + ‖V i‖∞. (39)

Let < vρi >=
∫
Q v

ρ
i dx be the mean of vρi . The crucial estimate is

‖vρi− < vρi > ‖∞ ≤ C (40)

for some C > 0 independent of ρ, which we prove borrowing an idea from [6, 4]. Assume by
contradiction that there is a sequence ρn → 0 such that the sequence εn := ‖vρni − < vρni > ‖−1

∞
converges to 0. The function ψn := εn(vρni − < vρni >) satisfies

Liψn + εnH
i

(
x,
Dψn
εn

)
+ ρnψn = εn(V i[m]− ρn < vρni >).

Then, by the linear growth condition (5) on H i and (39), there is a constant K such that

Liψn − C1|Dψn|+ ρnψn ≤ Kεn. (41)

Liψn + C1|Dψn|+ ρnψn ≥ −Kεn. (42)

Since Li is uniformly elliptic and ‖ψn‖∞ = 1 we can apply the estimates of Krylov-Safonov
type as stated in Thm. 5.1 of [53]. By (41) ψn satisfies a local maximum principle with con-
stants depending only on d, ν, ‖ai‖∞, C1, C2, and ‖V i‖∞, whereas by (42) ψn satisfies a weak
Harnack inequality with constants depending only on the same quantities. The combination
of these two estimates with the classical Moser iteration technique (see, e.g., [53]) implies that
the family {ψn} is equi-Hölder continuous.

Extracting a subsequence, we get that ψn converges uniformly to a function ψ. Note that
‖ψ‖∞ = 1 and that, by choosing xn ∈ Q such that ψn(xn) = 0 and extracting a further
subsequence, we get ψ(x) = 0 for some x ∈ Q. Moreover ψ is a viscosity solution of

Liψ − C1|Dψ| ≤ 0.

Since Li is uniformly elliptic and ψ is periodic, we deduce from the strong maximum principle
(see, e.g., [9]) that ψ must be a constant, which is a contradiction.

We complete the proof by showing that there exists a sequence ρn → 0 such that, for
wρi = vρi− < vρi >,

(wρni , ρn < vρni >, mρn
i )→ (vi, λi, mi) in C2(Q)× R× C(Q), (43)

where (vi, λi, mi), i = 1, . . . , N, is a solution of (1).

12



Indeed, we note that (wρi ,m
ρ
i ) solve the equations

Liwρi +H i(x,Dwρi ) = V i[(mρ
1, . . . ,m

ρ
n)]− ρ < vρi > in Q,

Li∗mρ
i − div

(
gi(x,Dwρi )m

ρ
i

)
= 0 in Q := Td,∫

Qm
ρ
i (x)dx = 1, mρ

i > 0, ∀i = 1, . . . , N .

(44)

By known a priori estimates for quasilinear elliptic equations (more precisely, by [43,
Theorem 3.1, Ch. 4, p. 266]), ‖Dwρi ‖∞ can be bounded in terms of ‖wρi ‖∞ and the data, in
particular of the supremum norm of V i[(mρ

1, . . . ,m
ρ
n)]−ρ < vρi > , which is bounded uniformly

in ρ by the assumptions on V i and (39). Then, applying [34, Theorem 8.32, p. 210] we deduce

‖wρi ‖C1,α(Q) ≤ C

for some C ≥ 0 and 0 < α ≤ 1 independent of ρ. Next, by the classical Schauder estimates
and assumptions (8)

‖wρi ‖C2,α(Q) ≤ C (45)

for some C and α independent of ρ. On the other hand, by Lemma 2.3 and assumptions (2),
(6), for all 1 ≤ p <∞,

‖mρ
i ‖W 1,p(Q) ≤ C (46)

for C ≥ 0 independent of small enough ρ. Since C2,α(Q) ×W 1,p(Q) for p large enough is
compactly embedded into C2(Q)×C(Q), the previous estimates (45), (46) and the fact that
the set {ρ < vρi > : ρ > 0} is bounded by (39), we can extract a sequence ρn → 0 such that
(43) holds true.

Remark 2.9. If we drop the requirement that H i and V i[m] should be Hölder continuous
from the hypotheses of Theorems 2.6, 2.5 and require instead that H i be just a Carathèodory
function (measurable in the first variable, continuous in the second) and V i : (W 1,p(Q) ∩
P (Q))N → L∞(Q) satisfies (31), then we can still conclude the existence of a solution for
system (33), but in this case we can only say that vi ∈ W 2,p(Q) for every 1 ≤ p < ∞ (and
hence vi ∈ C1,α(Q) for every 0 < α < 1).

Example 2.10. Let d < p <∞. An example of a coupling term V i that satisfies conditions
(7), (8) (for α = 1) is given by

V [m](x) = F (x, η ∗m(x)) ∗ η(x),

where η is a smooth regularizing kernel (that is, η is a smooth function,
∫
Q |η|dx < ∞, and

supx∈Q |Dη| <∞) and F : Q× RN+ → R a continuous function.
Another example is given by

V [m](x) = F

(
x,

∫
Q
k(x, z)dm(x)

)
,

where k : Q×Q→ R is continuous and α1-Hölder continuous in the first variable uniformly
in the second, while F : Q×RN → R is a α2-Hölder continuous function, for 0 < α1, α2 ≤ 1.
Then conditions (7), (8) are satisfied with α = α1α2.
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Example 2.11 (Local and bounded V ). Theorems 2.5 and 2.6 cover also terms V i without
regularizing properties, such as local functions of the form

V [m](x) = F (x,m(x)) (47)

where d < p < ∞, and F : Q × RN+ → R is a bounded α0-Hölder continuous function for
some 0 < α0 ≤ 1. Then assumption (7) is satisfied with α = (1−d/p)α0 and assumption (31)
follows from the boundedness of F .

3 Stochastic differential games

As an application of the previous results, in this section we show the existence of Nash
equilibria for a class of N -person stochastic differential games with infinite horizon, such that
the state of each player evolves independently from the states of the other players and the
only coupling comes through the costs. Games of this type arise in many engineering and
economic problems [41, 42, 46].

Consider a control system driven by the stochastic differential equations

dXi
t = f i(Xi

t , α
i
t)dt+ σi(Xi

t)dW
i
t , Xi

0 = xi ∈ Rd, i = 1, . . . , N (48)

where {W i
t }Ni=1 are N independent Brownian motions in Rd, d ≥ 1, Ai ⊆ Rm are closed,

f i : Rd ×Ai → Rd σi : Rd → Rd×d

are continuous, Zd-periodic and Lipschitz continuous in x uniformly in α, the matrix σi(x)
is nonsingular for any value of x, αit is an admissible control of the i-th player, that is, a
stochastic process taking values in Ai and adapted to W i

t . In view of the assumed periodicity
in xi of all data we will often consider functions as defined on Q = Td.

3.1 N-person games with long-time-average cost

Consider a game where the i-th player seeks to minimize the long-time-average or ergodic
cost

J i(X,α1, . . . , αN ) := lim inf
T→+∞

1

T
E

[∫ T

0
Li(Xi

t , α
i
t) + F i(X1

t , . . . , X
N
t )dt

]
, (49)

where X = (x1, . . . , xN ) is the initial position of the system (48). On the cost of the i-th
player (49) we assume

Li : Q×Ai → R continuous, (50)

F i : QN → R α-Hölder continuous (51)

for some α ∈ (0, 1). Define

Hi(xi, p, α) := −p · f i(xi, α)− Li(xi, α), H i(xi, p) := sup
α∈Ai

Hi(xi, p, α), p ∈ Rd, (52)

and suppose the sup is attained in the definition of H i for all xi, p. Moreover, set

ai := σi(σi)t/2, Li := −ai ·D2. (53)
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Following the classical theory initiated by Friedman [32] and continued by Bensoussan and
Frehse [14, 15, 16], we look at the Nash equilibria for the maximization of the pre-Hamiltonians
with parameters xj , pj ∈ Rd, j = 1, . . . , N , namely,

P i(α1, . . . , αN ) := −
N∑
j=1

f j(xj , αj) · pj − Li(xi, αi).

Clearly (α1, . . . , αN ) is a Nash equilibrium for the static game with payoffs P 1, . . . , PN if and
only if αi ∈ argmaxαiHi(xi, pi, αi) and the value of P i at the equilibrium is

P i(α1, . . . , αN ) = H i(xi, pi)−
∑
j 6=i

f j(xj , αj) · pj .

Therefore the system of Bellman equations of ergodic type [15, 16] associated to the game
considered here is

∑N
j=1 Ljvi +H i(xi, Dxivi) + λi = F i(X) +

∑
j 6=i f

j(xj , αj) ·Dxjvi in RdN ,

αi ∈ argmaxαiHi(xi, Dxivi, α
i), i = 1, . . . , N,

(54)

where the unknowns are the constants λi and the functions vi(X), i = 1, . . . , N . Note that
this system is strongly coupled via the terms f j(xj , αj) on the right hand side of the equation
for vi, because αj depends on Dxjvj .

Assume there exist functions αi : Rd × Rd → Ai such that

αi(x, p) is a maximum point for α→ Hi(x, p, α) ∀x, p, (55)

αi is locally Lipschitz and Zd − periodic in x, (56)

and define
gi(x, p) = −f i(x, αi(x, p)), i = 1, . . . N. (57)

Making this choice in (54) we get

N∑
j=1

Ljvi +H i(xi, Dxivi) +
∑
j 6=i

gj(xj , Dxjvj) ·Dxjvi + λi = F i(X) in RdN , (58)

i = 1, . . . , N . By a classical verification argument [15], if (vi, λi) ∈ C2(TdN )×R, i = 1, . . . , N ,
is a solution, then αi(·, Dxivi(·)), i = 1, . . . , N , is a Nash equilibrium feedback. More precisely,
if one solves the stochastic differential equation

dXi
t = f i(Xi

t , α
i(Xi

t , Dxivi(Xt)))dt+ σi(Xi
t)dW

i
t , Xi

0 = xi ∈ Rd, i = 1, . . . , N. (59)

then αit := αi(Xi
t , Dxivi(Xt)), i = 1, . . . , N , is a Nash equilibrium for the cost functionals

(49), and λi, i = 1, . . . , N , are the values of the game corresponding to such equilibrium.
We want to derive from (58) a different system of elliptic equations of the form (1) from

which we can still synthesize a Nash equilibrium feedback. We follow an idea introduced by
Lasry and Lions in the seminal paper [44]. Given a solution of (58) consider the equilibrium
process defined by (59). Let us assume that

Dxiv
i depends only on xi for all i. (60)
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Then the equations in (59) are decoupled and each of them defines a non-degenerate diffusion
Xi
t on the torus Td, which has a unique ergodic invariant measure with density mi. It is

known that each mi ∈ C2(Td) solves the Kolmogorov-Fokker-Planck equation

Li∗mi − divxi
(
gi(xi, Dxivi)mi

)
= 0,

∫
Q
mi(x)dx = 1, i = 1, . . . , N, (61)

where Li∗ is the formal adjoint of Li.
The next result exploits the adjoint structure of (58) and (61) to prove that multiplying

the i-th equation in (58) by
∏
j 6=imj(x

j) and integrating over QN−1 with respect to dxj , j 6= i,
we arrive at

Livi +H i(x,Dvi) + λi = V i[m] in Rd, (62)

where

V i[m](x) =

∫
QN−1

F i(x1, . . . , xi−1, x, xi+1, . . . , xN )
∏
j 6=i

mj(x
j)dxj . (63)

Note that (51) implies (7) for such V i and that it is easy to see that also (31) holds.

Proposition 3.1. Assume (vi, λi) ∈ C2(TdN )× R, i = 1, . . . , N , is a solution of (58) satis-
fying (60) and m1, . . . ,mN solve (61). Then, for all i, x 7→ vi(x

1, . . . , xi−1, x, xi+1, . . . , xN )
solves (62) for all x1, . . . , xN .

Proof. Multiply the i-th equation in (58) by
∏
j 6=imj(x

j) and integrate over QN−1 with

respect to dxj , j 6= i. Observe that, for k 6= i, integrating by parts with respect to xk we get∫
QN−1

(
Lkvi + gk(xk, Dxkvk) ·Dxkvi

)∏
j 6=i

mj(x
j)dxj =∫

QN−2

∫
Q
vi

(
Lk∗mk − divxk

(
gk(xk, Dxkvk)mk

))
dxk

∏
j 6=i,k

mj(x
j)dxj .

Then (61) gives ∫
QN−1

∑
j 6=i

(
Ljvi + gj(xj , Dxjvj) ·Dxjvi

)∏
j 6=i

mj(x
j)dxj = 0.

On the other hand, using the assumption (60) and
∫
Qmj(x)dx = 1, we also have∫

QN−1

(
Livi +H i(xi, Dvi) + λi

)∏
j 6=i

mj(x
j)dxj = Livi +H i(xi, Dvi) + λi.

Now considering again the i-th equation in (58) multiplied by
∏
j 6=imj(x

j) and integrated

over QN−1 with respect to dxj , j 6= i, and plugging into it the last two identities, we get that
vi restricted to the variable xi solves (62) with V i given by (63).

Remark 3.2. If the maximum point αi(x, p) of Hi(x, p, ·) is unique, then H i is differentiable
with respect to p and DpH

i(x, p) = −f i(x, αi(x, p)) = gi(x, p). Then the resulting system of
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HJB-KFP equations can be written in the same form as in the Lasry-Lions papers [44, 46],
namely, 

Livi +H i(x,Dvi) + λi = V i[m] in Q,

Li∗mi − div
(
DpH

i(x,Dvi)mi

)
= 0 in Q,∫

Qmi(x)dx = 1, mi > 0,
∫
Q vi(x)dx = 0, i = 1, . . . , N.

(64)

These notations also show that the KFP equations are the linearizations of the HJB equations
around their solution v1, . . . , vN .

From the theory of the previous section we get the following existence result.

Corollary 3.3. In addition to (2) and the assumptions of this section suppose either that H i

satisfies condition C1 a or that H i verifies C2 with the same α as in (51). Then there exist
λ1, . . . , λN ∈ R, v1, . . . , vN ∈ C2,α(Q), m1, . . . ,mN ∈ W 1,p(Q), 1 ≤ p < ∞, which solve (1)
with V i and gi given by (63) and (57), respectively.

3.2 Synthesis of Nash equilibria

Next we prove a verification result that produces Nash feedback equilibria for the N -person
differential game from any solution of the HJB-KFP system of PDEs. We recall that a
feedback for the i-th player is a Lipschitz map αi : Rd → Ai that generates a process Xi

t

solving dXi
t = f i(Xi

t , α
i(Xi

t))dt+σ
i(Xi

t)dW
i
t , X

i
0 = xi, and an admissible control αit = αi(Xi

t).
As usual, when we say “we plug feedback controls x 7→ αj(x), j = 1, . . . , N , in the functional
J i, i = 1, . . . , N” we mean that we are plugging its associated admissible control t 7→ αj(Xj

t ),

where t 7→
(
Xj
t

)N
j=1

is the solution of the system of SDEs

dXj
t = f j(Xj

t , α
j(Xj

t ))dt+ σj(Xj
t )dW j

t , Xj
0 = xj j = 1, . . . , N .

A Nash equilibrium of the N -person game of Section 3.1 for the initial position X =
(x1, . . . , xN ) is a vector of admissible controls (α1, . . . , αN ) such that

J i(X,α1, . . . , αi−1, αi, αi+1, . . . , αN ) ≥ J i(X,α1, . . . , αN ) for all αi admissible control.

Theorem 3.4. Let λi, vi,mi, i = 1, . . . , N be a solution of the system (1) as in the preceding
Corollary 3.3. Then

αi(x) := αi(x,Dvi(x)), x ∈ Rd, i = 1, . . . , N, (65)

define a feedback which is a Nash equilibrium for all initial positions X ∈ QN of the control
system (48). In addition, for each X = (x1, . . . , xN ),

λi = J i(X,α1, . . . , αN ) = lim inf
T→+∞

1

T
E

[∫ T

0
Li(X

i
t, α

i(X
i
t)) + F i(X

1
t , . . . , X

N
t )dt

]
, (66)

where X
i
t is the process associated to the feedback αi with X

i
0 = xi.
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Proof. We follow the outline of proof in [44, 46]. Let us first check (66). The processes

X
i
t are independent diffusions on the torus, so each of them has a unique ergodic invariant

measure, which must be mi, see Chapter 3, Section 3 of [19] or [4]. Then the joint process

(X
1
t , . . . , X

N
t ) is ergodic with invariant measure

∏N
i=1mi(x

i), and therefore the right hand
side of (66) is

J i(X,α1, . . . , αN ) =

∫
Q
Li(x, αi(x))dmi(x) +

∫
QN

F i(x1, . . . , xN )
N∏
j=1

dmj(x
j).

On the other hand, the Ito-Dynkin formula gives

E
[
vi(X

i
T )− vi(xi)

]
= E

[∫ T

0

(
−gi(Xi

t, Dvi(X
i
t)) ·Dvi(X

i
t)− Livi(X

i
t)
)
dt

]
By (55) and (57)

gi(x, p) · p = H i(x, p) + Li(x, α(x, p)),

so the HJB equation (62) implies

E
[
vi(X

i
T )− vi(xi)

]
=

λiT − E

∫ T

0
Li(X

i
t, α

i(X
i
t)) +

∫
QN−1

F i(x1, . . . , xi−1, X
i
t, x

i+1, . . . , xN )
∏
j 6=i

dmj(x
j)dt

 .
We divide by T and let T → ∞. The left-hand side vanishes, whereas the right hand side
tends to λi − J i(X,α1, . . . , αN ) , which proves (66).

Next we check that the feedback law (65) defines a Nash equilibrium. We change the
control of the i-th player into an arbitrary admissible control αit and get

1

T
E
[
vi(X

i
T )− vi(xi)

]
=

1

T
E

[∫ T

0

(
f i(Xi

t , α
i
t) ·Dvi(Xi

t)− Livi(Xi
t)
)
dt

]

≥ λi −
1

T
E

∫ T

0
Li(Xi

t , α
i
t) +

∫
QN−1

F i(x1, . . . , xi−1, Xi
t , x

i+1, . . . , xN )
∏
j 6=i

dmj(x
j)dt

 .
By the ergodicity of the joint process (X

1
t , . . . , X

i−1
t , Xi

t , X
i+1
t , . . . , X

N
t ) the last term on the

right-hand side tends to J i(X,α1, . . . , αi−1, αi, αi+1, . . . , αN ) as T →∞, and then

J i(X,α1, . . . , αi−1, αi, αi+1, . . . , αN ) ≥ λi = J i(X,α1, . . . , αN )

for all X ∈ QN .

3.3 A class of N-person games with discounted costs

Consider again the controlled stochastic dynamics (48) with the same assumptions on the
regularity and periodicity of the drifts f i and diffusions σi, i = 1, . . . , N . For any set of
controls (αi)Ni=1, the corresponding solution processes Xi

t , i = 1, . . . , N , are ergodic with
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invariant measures mi(x) = mi(x;αi), x ∈ Q, see, e.g., [19, Theorem 3.2., p. 373]. The same
is true for the joint process Xt = (Xi

t , . . . , X
N
t ) with invariant measure

∏N
i=1mi(x

i).
Each player i seeks to minimize the discounted cost functional

J iρi(X,α
1, . . . , αN ) = E

[∫ ∞
0

e−ρ
it
(
Li(Xi

t , α
i
t) + V i[m](Xi

t)
)
dt

]
. (67)

Here Li, V i, i = 1, . . . , N , are the same as in (50), (63), respectively, and ρi > 0 is the
discount rate of the i-th player. Note that only the state of the i-th player appears explicitly
in the cost, whereas the states of the other players influence it only through their invariant
measure.

In order to find Nash points we are led to the system of PDEs (33) where the discount
rates ρi appear as coefficients of the zero-th order terms, and Li, H i are given by (53), (52),
respectively. We assume (55), (56), and define as before gi by (57). Under the assumptions of
either Theorem 2.6 or Remark 2.8 there exists a solution v1, . . . , vN ∈ C2(Q), m1, . . . ,mN ∈
W 1,p(Q), 1 ≤ p < ∞ to (33). Then a verification theorem similar to Therorem 3.4 gives the
existence of feedback Nash equilibria for this game.

Theorem 3.5. Let ρ1, . . . , ρN > 0 be given discount rates. For any solution vρ
1

1 , . . . , v
ρN

N ∈
C2(Q), m1, . . . ,mN ∈ W 1,p(Q), 1 ≤ p < ∞, of the system (33), the feedback law αi(x) :=

αi(x,Dvρ
i

i (x), i = 1, . . . , N , provides a Nash equilibrium for all initial positions X ∈ QN .
Moreover, for each X = (xi)Ni=1 ∈ QN ,

vρ
i

i (xi) = J iρi(X,α
1, . . . , αN ) = E

[∫ ∞
0

e−ρ
it
(
Li(X

i
t, α

i(X
i
t)) + V i[m](X

i
t)
)
dt

]
, (68)

where X
i
t is the solution of (48) associated to the feedback αi.

This theorem applies to a larger class of systems and cost functionals than Theorem 3.4,
because here we are assuming only the quadratic growth condition C2* on the Hamiltonians
instead of the linear growth C2.

3.4 Examples with unconstrained controls

In this section we consider Ai = Rd for all i and the system affine in the control, i.e.,

f i(x, α) = ϕi(x) +

d∑
k=1

αkf
i
k(x) = ϕi(x) + Φi(x)α, (69)

where Φi is a square matrix whose columns are the vector fields f ik, k = 1, . . . , d, and all
vector fields ϕi, f ik are Lipschitz in Q = Td (the d-dimensional torus). Then

H i(x, p) := −p · ϕi(x) + sup
α∈Rd
{−p · Φi(x)α− Li(x, α)}.

Assume Li is Lipschitz in x, uniformly as α varies in any bounded subset, and

lim
α→∞

inf
x∈Q

Li(x, α)/|α| = +∞. (70)
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Then the sup in the definition of H i is attained and

H i(x, p) = Li
∗ (
x,−Φi(x)tp

)
− p · ϕi(x), Li

∗
(x, q) := max

α∈Rd
{q · α− Li(x, α)}, (71)

i.e., Li
∗
(x, ·) is the convex conjugate of Li(x, ·). Moreover H i is locally Lipschitz in x and p.

Now the other conditions of the existence Theorems 2.1 or 2.6 for the elliptic systems, and of
the verification Theorems 3.4 or 3.5 can be checked on the last expression of H i, as we show
in the following examples. Recall that (70) implies that Li

∗
is superlinear in q, i.e.,

lim
q→∞

inf
x∈Q

Li
∗
(x, q)/|q| = +∞, (72)

so H i cannot satisfy the linear growth condition in C2 unless Φi(x) ≡ 0. Next we give
examples satisfying C1 or C2*.

Example 3.6. If for a γ > 0
Li(x, α) ≥ γ(|α|2 − 1),

then Li
∗
(x, q) ≤ |q|2/γ + γ and

|H i(x, p)| ≤ C(1 + |p|2), ∀x ∈ Q, p ∈ Rd.

Therefore H i satisfy condition C2* and Theorem 2.6 can be used. If (55) and (56) hold, then
all the assumptions of Theorem 3.5 are verified.

In order to have the coercivity condition (3) of C1 we will assume the the matrix Φi is
uniformly nonsingular in the following sense:

∃ δ > 0 such that |Φi(x)p| ≥ δ|p|, ∀ p. (73)

Example 3.7. Assume (73) and Li Lipschitz in x uniformly in α. Then condition C1 holds.
In fact |H i(x, p)|/|p| → +∞ as |p| → ∞, uniformly in x, by the formula (71) for H i combined
with (72) and (73). Moreover it is known that, at any point where Li

∗
is differentiable

(therefore for a.e. x ∈ Q), one can compute

DxL
i∗(x, q) = −DxL

i(x, α̃i(x, q)),

where α̃i(x, q) is any value of α at which the max in the definition of Li
∗
(x, q) is attained,

see, e.g., [8, Lemma II.2.11, p. 43]. Then DxL
i∗ is bounded and therefore DxH

i ·p = O(|p|2).
On the other hand (H i)2/|p|2 → +∞ as |p| → ∞, so the condition (4) in C1 holds for any
choice of θi > 0. In conclusion, Theorem 2.1 and Remark 2.8 apply to this example.

In order to apply the verification Theorems 3.4 and 3.5 and find Nash equilibrium feed-
backs for the stochastic differential games we must also check the conditions (55) and (56)
on the existence of a Lipschitz argmax for the Hamiltonians. A sufficient condition for them
is that Li be differentiable with respect to α and DαL

i(x, ·) be invertible (a fact related to
the strict convexity of Li in α) and locally Lipschitz. Then the sup in the definition of H i is
attained at a unique value

αi(x, p) = (DαL
i)−1

(
x,−Φi(x)tp

)
,

which is a locally Lipschitz function of x and p.
Next we give two examples where we can check all the conditions for the existence of a

feedback Nash equilibrium and give a more explicit formula for it. In both we assume that
F i are Lipschitz, so V i defined by (63) verify (8).
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Example 3.8. Consider
Li(x, α) = αtBi(x)α,

with positive definite matrices Bi(x) Lipschitz in Q = Td (the d-dimensional torus), and the
affine system (69). Then

Li
∗
(x, q) = qtBi(x)−1q/4,

so H i grows at most quadratically in p and satisfies condition C2*. Moreover

αi(x, p) = −1

2
Bi(x)−1Φi(x)tp

verifies (55) and (56), so Theorem 3.5 on games with discounted costs applies and the Nash
equilibrium feedback is linear in p = Dvi.

Assume in addition that Φi is uniformly nonsingular (73) and Bi(·)−1 is Lipschitz. Then
condition C1 holds. In fact, for γ > 0 such that qtBi(x)−1q ≥ γ|q|2 for all x and q, we have

H i(x, p) ≥ γδ2|p|2 −max |ϕi||p|

so (3) is verified. Moreover |DxH
i| ≤ C(|p|2 + 1), thus DxH

i · p = O(|p|3) and also (4) is
satisfied for any choice of θi > 0. Therefore Remark 3.2, Corollary 3.3, and Theorem 3.4 on
games with ergodic costs apply and produce the same linear Nash equilibrium feedback as
above.

Example 3.9. Consider

Li(x, α) = ci(x)
|α|γ

γ

for some Lipschitz ci > 0 and γ > 1, and the affine system (69) with Φi uniformly nonsingular
(73). Then

Li
∗
(x, q) = ci(x)1/(1−γ)|q|γ/(γ−1)γ − 1

γ
,

so we can compute DxH
i by (71) and see that (4) is satisfied for any θi > 0. Therefore

Theorem 2.1 and Remark 2.8 apply to this case with gi given by (57). Moreover

αi(x, p) = ci(x)1/(1−γ)|q|(2−γ)/(γ−1)q, q = −Φi(x)tp,

satisfies (55) and (56), so also Remark 3.2 and Theorem 3.4 on games with ergodic costs
apply, as well as Theorem 3.5 on games with discounted costs.

3.5 Examples with constrained controls

Assume first that the vector fields f i have the general form described at the beginning of
Section 3 with all control sets Ai bounded, and (50), (51) hold. Then the Hamiltonians
defined by (52) satisfy the linear growth condition (5) because

|H i(x, p)| ≤ sup
Q×Ai

|f i||p|+ sup
Q×Ai

|Li|, ∀x ∈ Q, p ∈ Rd.

If Li is α-Hölder, for some 0 < α ≤ 1, in x, condition C2 is verified. Then, assuming (55) and
(56), all the assumptions of Corollary 3.3 and Theorems 2.6, 3.4, and 3.5 are verified.

The next is a simple example where the argmax of the Hamiltonians is a singleton and
verifies (56).
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Example 3.10. Consider the system

f i(x, α) = ϕi(x)− α, Ai = {α ∈ Rd : |α| ≤ Ri}, ∀ i,

with ϕi Lipschitz, Ri > 0, and the costs

Li(x, α) = ci(x)
|α|2

2
,

for some Lipschitz ci > 0. Then

H i(x, p) = max
|α|≤Ri

{
p · α− ci(x)

|α|2

2

}
− p · ϕi(x)

=

{
|p|2/(2ci(x))− p · ϕi(x), if |p| ≤ Rici(x),

Ri|p| − ci(x)R2
i /2− p · ϕi(x), if |p| > Ric

i(x).

Moreover

αi(x, p) =

{
p/ci(x), if |p| ≤ Rici(x),

Rip/|p|, if |p| > Ric
i(x)

satisfies (55) and (56). Also Remark 3.2 applies and we have again an explicit formula for
the Nash equilibrium feedback. Note that H i is unbounded from below if ‖ϕi‖∞ > Ri, in
particular it does not satisfy the coercivity condition (29).

Note also that we can restrict further Ai to controls such that some components are null,
say αk = 0 for k = 1, . . . , d1, d1 ≤ d. Then the Hamiltonian is linear with respect to pk,
k = 1, . . . , d1, but it still satisfies the assumptions of Corollary 3.3 and Theorems 2.6, 3.4,
and 3.5.

In the last example some controls are bounded and the others are unconstrained; the
Hamiltonians satisfy neither condition C1 nor C2, but a solution of the system (1) exists by
Remark 2.4 (ii).

Example 3.11. Take d1, d2 ≥ 0 and such that d1 + d2 = d. Consider the system

f i(x, α) = ϕi(x)− α, Ai = {(α1, α2) ∈ Rd1 × Rd2 : |α1| ≤ Ri},∀ i,

with ϕi Lipschitz, Ri > 0, and the costs

Li(x, α) = ci
|α1|2

2
+
|α2|γ

γ
,

for ci > 0 and γ > 1. We write p = (p1, p2) ∈ Rd1 × Rd2 and find that for |p1| > Ric
i the

Hamiltonian is

H i(x, p) = Ri|p1|+ (γ − 1)
|p2|γ/(γ−1)

γ
− p · ϕi(x)− ciR

2
i

2
,

so neither the superlinearity condition (3) nor the linear growth (5) are satisfied. Denote
ϕi = (ϕi1, ϕ

i
2) ∈ Rd1 × Rd2 and x = (x1, x2) ∈ Rd1 × Rd2 . Then H i verifies the coercivity

condition (29) if ‖ϕi1‖∞ < Ri. Moreover, H i satisfies also (30) if Ri is large enough with
respect to ‖Dx1ϕ

i
1‖∞ and ‖Dσi‖∞, as it is easy to check (for instance, (30) holds for any

Ri > 0 if σi is constant and Dx1ϕ
i
1 = 0). By the calculations in the examples 3.9 and 3.10

also (55) and (56) hold true. Therefore, by Remark 2.4 (ii), the conclusions of Corollary 3.3
and Theorem 3.4 hold in this case as well.
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3.6 Stationary Mean-Field Games

For N = 1 the system of PDEs (1) is associated to a stationary Mean-Field Game if the
Hamiltonian has the form (52) related to the vector field g by (57). For N > 1 it is related to
Mean-Field Games involving N distinct homogeneous populations of agents. Each population
has a large number of identical players, and each of the players has a controlled nonlinear
dynamics affected by white noise and seeks to minimise his individual cost functional (the
withe noises of different agents are independent). The function mi in system (1) describes
the density of the distribution of the i-th population.

For MFG models V i typically has the form Gi(x,Ki
1∗m1, . . . ,K

i
N ∗mN ) with Ki

j Lipschitz

kernels on Q and Gi : Q × RN → R locally Lipschitz, so that the general conditions of the
Introduction are satisfied. If the Hamiltonians H i and the vector fields gi are, respectively, of
the form (52) and (57) of Section 3.1, we have existence of a solution λi, vi,mi, i = 1, . . . , N ,
to (1) under the same assumptions of Corollary 3.3, but with V i verifying (7), (8) under
condition C1 and only (7), (31) under condition C2.

Such solution can be used for the following verification theorem. Given a vector of prob-
ability densities m consider a generic agent of the i-th population with dynamics (48) and
cost functional

J̃ i(Xi
0, α

i,m) := lim inf
T→+∞

1

T
E

[∫ T

0
Li(Xi

t , α
i
t) + V i[m](Xi

t)dt

]
, (74)

with V i as above.

Proposition 3.12. Let λi, vi,mi, i = 1, . . . , N be a solution of the system (1) with H i, gi, V i

as above. Then
αi(x) := αi(x,Dvi(x)), x ∈ Rd, i = 1, . . . , N, (75)

is an optimal feedback for any agent of the i-th population for all initial positions Xi
0 ∈ Q,

i.e.,
J̃ i(Xi

0, α
i,m) ≤ J̃ i(Xi

0, α
i,m) for all admissible controls αi.

Moreover, the probability density of the position of the i-th agent using such feedback is mi.

Proof. It is enough to use a standard verification theorem in ergodic control (whose proof is
very similar to that of Theorem 3.4). In fact, the i-th HJB equation of the system (1) is the
Bellman equation of such a control problem with cost functional J̃ i. The second statement
follows from the i-th KFP equation of the system (1) and the choice of gi (57).

The meaning of the result is that a solution of (1) provides an equilibrium for the MFG
in the sense that for the generic agent of the i-th population the optimal control αi produces
a probability distribution of the agent that coincides with the distribution mi of the whole
i-th population.

Let us recall the connections between Mean-Field Games and games with large populations
of identical players.

• Suppose we have only one population made of Ñ identical players with dynamics f i(x, α) =

α, σi(x) = ν > 0, Li = L for all i = 1, . . . , Ñ , coupled only via the running costs F i(x1, . . . , xÑ ) =
V [ 1

Ñ−1

∑
j 6=i δxj ](x

i) where V is an operator on measures with the properties described in the

Introduction and δxj are Dirac measures, so the argument of V is the empirical distribution
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of the players different from i. Let λÑi , v
Ñ
i ,m

Ñ
i , i = 1, . . . , Ñ be the solution of (1) given

by Corollary 3.3. Then Lasry and Lions [44] showed that this sequence of solutions has a
convergent subsequence as Ñ →∞ and that the limit of each convergent subsequence solves
the MFG PDEs with N = 1

−∆v +H(x,Dv) + λ = V [m] in Q,
−∆m− div (DpH(x,Dv)m) = 0 in Q,∫
Qm(x)dx = 1, m > 0,

∫
Q v(x)dx = 0.

For linear-quadratic models a stronger convergence was proved by completely different meth-
ods in [7, 12].

• The same kind of limit result for general dynamics and N populations of identical players,
as the number of players of each population goes to infinity, was proved by Feleqi [31] using
the methods of [44] and the estimates of Section 2 of the present paper.

• A basic result of the approach to MFG by Huang, Caines and Malhame [41, 42] states
that the optimal feedback synthesised from the MFG PDEs is an ε-Nash equilibrium for the
Ñ -person game for Ñ large enough, see also [22].

4 Appendix: proofs of some technical results

Proof of Lemma 2.2. For any solution (v, λ) ∈ C2,α(Q) × R of (9), we immediately
deduce (10) by looking at the extrema of v.

Uniqueness. Thus f ≡ 0 implies λ = 0. On the other hand v ≡ 0 otherwise the strong
maximum principle (e.g., [34, Theorem 3.5, p. 35]) would be contradicted.

Existence. Consider (9) with L0 = −∆ instead of L. It is clearly solvable for any f ∈ C∞
with λ =

∫
Q fdx and v that can be determined by Fourier series. Moreover, by Bessel’s

identity one deduces ‖Dβv‖p ≤ ‖f‖p for all 2 ≤ p < ∞ and all multiindex β with length
|β| ≤ 2. By letting p → ∞, this estimate holds also for p = ∞. Thus (9) with L0 instead of
L is solvable for any f ∈ C(Q) and the solution v ∈ C2(Q). Actually, by Schauder interior
estimates (see [34, Theorem 4.8, p. 62]) f ∈ Cα(Q) implies v ∈ C2,α(Q). In order to apply
a continuity method, see [34, Theorem 5.2, p. 75], and deduce the solvability of (9), we
introduce the operators

Ti :C2,α(Q)/R× R→ Cα(Q), i = 0, 1,

(u, λ)→ Ti(u, λ) = Liu+ λ L1,≡ L.

Note that

[v]2, α,Q = sup
x, y∈Q, |β|=2

|Dβv(x)−Dβv(y)|
|x− y|α

is a norm in C2,α(Q)/R equivalent to the natural one. Define also Ts = (1 − s)T0 + sT1,
0 ≤ s ≤ 1. These operators are clearly linear and bounded. T0 is also an isomorphism of
Banach spaces. We need only prove that they are bounded from below in order to finish. This
requires a careful look at Schauder interior estimates, see [34, Theorem 6.2, p. 90]. Let Ω ⊃ Q
be a ball of diameter D containing Q and having same center as Q. We need some notation
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from [34]. For any function g differentiable as many times as needed, if dx := dist (x, ∂Ω),
dx, y := min{dx, dy}, we set

[g]∗2, α,Ω = sup
x,y∈Ω, |β|=2

d2+α
x, y

|Dβg(x)−Dβg(y)|
|x− y|α

,

[g]
(j)
l, α,Ω = sup

x,y∈Ω, |β|=2
dj+l+αx, y

|Dβg(x)−Dβg(y)|
|x− y|α

[g]
(j)
l,Ω = sup

x∈Ω, |β|=l
dl+jx |Dβg(x)|, |g|(j)i, α,Ω =

i∑
l=1

[g]
(j)
l,Ω + [g]

(j)
i, α,Ω

for any nonnegative integers i, j, l. Let Ts(v, λ) = f . Then, by [34, Theorem 6.2, p. 90],

[v]∗2, α,Ω ≤ C(‖v‖C(Ω) + |f − λ|(2)
0, α,Ω), (76)

where C depends only on a constant of ellipticity of Ls = (1− s)L0 + sL1 which clearly can
be taken to be independent of s, and at most linearly on

max
h, k
{|1− s+ sahk|

(0)
0, α,Ω, |sbh|

(1)
0, α,Ω} ≤ D

1+α max
h, k
{‖ahk‖∞, ‖bh‖Cα(Q)} ,

where D is the diameter of Ω. Therefore, taking also into account (10), by (76) we obtain

[v]2, α,Q ≤ C
D1+α

(D −
√
d)2+α

(
‖v‖∞ +D2+α‖f‖Cα(Q)

)
for some C independent of D. Now it is sufficient to take an Ω with a suitably large diameter
D in order to obtain (12). Finally, the C1,α-estimate (11) follows from [34, Theorem 8.32,
p. 210]. This concludes the proof of this lemma.

Remark 4.1. An alternative proof of the existence relies on the approximation by equations
with zero-th order terms Lv + ρv = f with ρ > 0. A solution vρ exists by Lemma 2.7, and
we can let ρ→ 0 following the proof of Theorem 2.5.

Proof of Lemma 2.3. That m ∈ W 1,2(Q) exists, is unique and positive is proved, e.g.,
in [19, Theorem 3.4, 378] or [13, Theorem 4.2, p. 133, Theorem 4.3, p. 136]. (In [13] only
the case L = −∆ is treated but the techniques adapt easily to our operator.) The fact that
m ∈W 1,p(Q) is also known, but for lack of a reference we sketch a proof here based on ideas
of [51]. Split the operator L = L0 +R into a (formally) selfadjoint part L0 = −Dk(ahk(x)Dh)
and a reminder R = DkaakDh. We use the deep fact that

L0 : W 2,p(Q)/R→ Lp(Q)/R, 1 < p <∞

is an isomorphism of Banach spaces. Then, by duality and interpolation,

L0 : W 1,p(Q)/R→W−1,p(Q)/R, 1 < p <∞

is also an isomorphism of Banach spaces. So we need only show that L0m ∈ W−1,p(Q) in
order to conclude.
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Note that, by Sobolev’s embedding lemma, m ∈ Lp(Q), where p > 2 is given by 1/p =
1/2 − 1/d if d ≥ 3, or, otherwise, for any 1 ≤ p < ∞. By the equation (13), we have
L0m = −R∗m+ div(gm). Hence, for any ϕ ∈ C∞(Q),

| < L0m,ϕ > | =
∣∣∣∣∫
Q
mDkahkDhϕdx−

∫
Q
mg ·Dϕdx

∣∣∣∣
≤ (‖g‖∞ + C)‖m‖p‖Dϕ‖p′

for some C > 0 (independent of g), p′ = p/(p − 1). Therefore, L0m ∈ W−1,p(Q) and
m ∈ W 1,p(Q). We are done if d ≤ 2. Otherwise, again Sobolev’s lemma implies that
m ∈ Lp(Q), where p now is given by 1/p = 1/2 − 2/d if d ≥ 5, or, otherwise, for any
1 ≤ p < ∞. In the same manner we conclude that m ∈ W 1,p(Q). Thus, by a bootstrap
argument, we deduce that m ∈W 1,p(Q) for all 1 ≤ p <∞.

Moreover, by the estimates above and the fact that L0 : W 1,p(Q)/R→W−1,p(Q)/R is an
isomorphism, we deduce that

‖m‖W 1,p(Q) ≤ C1(‖g‖∞ + C2)‖m‖p.

for some C1, C2 > 0 independent of g. Taking also into account [13, Theorem 4.3, p. 136]
which states that δ1 < m < δ2 for some constants δ1, δ2 > 0 that depend only on ‖g‖∞ (and
in our case also on the coefficients ahk, in a way which we do not specify because we will not
need it in the sequel) we obtain (14).

Proof of Lemma 2.7. Uniqueness is standard. For the existence, we use a continuity
method, e.g., [34, Theorem 5.2, p. 75], and Schauder a priori estimates to reduce to the
equation corresponding to a simpler operator, say

L0 = −∆ + 1.

That L0v = f has a solution v ∈ C∞(Q) for each f ∈ C∞(Q) can be shown, e.g., by Fourier
series. Moreover, L0v = f implies ‖v‖∞ ≤ ‖f‖∞. Then, by a Schauder estimate, see [34,
Theorem 4.8, p. 62], ‖v‖C2,α(Q) ≤ C‖f‖Cα(Q). Now for an arbitrary f ∈ Cα(Q) consider a
sequence {fn} ⊂ C∞(Q) such that fn → f in Cα(Q). The sequence of the corresponding
solutions {vn} is Cauchy in C2,α(Q) and its limit v verifies L0v = f .

Next, introduce the family of operators

Ls : C2,α(Q)→ Cα(Q), 0 ≤ s ≤ 1,

u→ Lsu = (1− s)L0u+ sLu.

For all u ∈ C2,α(Q), by looking at its extrema, we have

‖u‖∞ ≤ max{1, ‖1/c‖∞}‖Lsu‖∞.

Combining this with the interior Schauder estimates, see [34, Theorem 6.2, p. 90], we obtain

‖u‖C2,α(Q) ≤ C‖Lsu‖Cα(Q)

for all u ∈ C2,α(Q), 0 ≤ s ≤ 1 and some C > 0 independent of u and s. Since L0 is onto, by
the method of continuity [34, Theorem 5.2, p. 75], L1 is also onto, which is what we wanted
to prove. With these considerations we also proved (35).
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