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Abstract. In this paper we study the limit as ε → 0 of the singularly perturbed
second order equation ε2üε +∇xV (t, uε(t)) = 0, where V (t, x) is a potential. We
assume that u0(t) is one of its equilibrium points such that ∇xV (t, u0(t)) = 0
and ∇2

x V (t, u0(t)) > 0. We find that, under suitable initial data, the solutions uε

converge uniformly to u0, by imposing mild hypotheses on V . A counterexample
shows that they cannot be weakened.
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Introduction

A problem of interest in various areas of applied mathematics is to find stable
equilibrium points for time-dependent energies. In a simplified setting, the problem
is to find an evolution t→ u(t) such that{

∇xV (t, u(t)) = 0,
∇2
xV (t, u(t)) > 0, (1)

where V (t, x) is a potential, ∇x denotes the gradient with respect to x, and ∇2
x the

corresponding Hessian. This problem can be locally solved by means of the Implicit
Function Theorem, which provides a smooth solution defined in a neighborhood of
t = 0.

Problem (1) has also been studied in finite dimension as the limit case of ε-gradient
flows. A first general result was given by C. Zanini in [15], where the author studies
the system

εu̇ε(t) +∇xV (t, uε(t)) = 0. (2)
In [15] it is proved that the solutions uε(t) to (2) converge to a solution u(t) to (1),
obtained by connecting smooth branches of solutions to the equilibrium equation (1)
through suitable heteroclinic solutions of the ε-gradient flows (2).

In [1] V. Agostiniani analysed the second order approximation with a dissipative
term:

ε2Aüε(t) + εBu̇ε(t) +∇xV (t, uε(t)) = 0, (3)
where A and B are positive definite and symmetric matrices. It turns out that
(uε, εBu̇ε) → (u, 0), where u is piecewise continuous and satisfies (1). Moreover
the behaviour of the system at jump times is described by trajectories connecting
the states before and after the jumps; such trajectories are given by a suitable au-
tonomous second order system related to A, B, and ∇xV .

We remark that studying the asymptotic behaviour of solutions, as ε → 0, in
systems of the form (3) with A 6= 0 and B = 0 (vanishing inertia), or A = 0 and
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B 6= 0 (vanishing viscosity), or A,B 6= 0 (vanishing viscosity and inertia), may give a
selection principle for quasistatic evolutions (namely those evolutions whose loading
is assumed to be so slow that at every time the system is at equilibrium and internal
oscillation can be neglected). This approach has been succesfully adopted in various
situations in the case of vanishing viscosity (cf. e.g. [11, 10, 8, 2, 6, 3, 7]) and in the
case of vanishing viscosity and inertia (cf. e.g. [12, 13, 5, 14, 9]). We remark that in
[9] viscosity can be neglected under suitable assumptions.

The above mentioned results [1, 15] require strong smoothness assumptions on V
(C3-regularity is required). The aim of the present paper is to weaken the assump-
tions under which second order perturbed problems converge to (1). More precisely,
we consider a second order equation of the form (3) without the dissipative term
Bu̇ε. (Notice that in general, when B > 0, it is easier to prove the convergence of
solutions.) We therefore study the asymptotic behaviour of the solutions uε(t) of the
problem

ε2üε(t) +∇xV (t, uε(t)) = 0 (4)

to a continuous stable equilibrium u0(t) of (1). Our main result is that the conver-
gence uε → u0 still holds under some regularity and growth conditions on V that
are weaker than those required in [1, 15]. Furthermore we provide a counterexample
to that convergence when such assumptions do not hold.

More precisely we require continuity for V in both variables and we assume that
V (t, ·) ∈ C2. We also suppose that there is a function Vt(t, x) of class C1-Carathéodory
(i.e., Vt(·, x) is measurable and Vt(t, ·) is of class C1) such that

V (t2, x)− V (t1, x) =
∫ t2

t1

Vt(t, x) dt,

for a.e. t1, t2. With some further boundedness conditions on V (listed in Section 1)
we prove that u0(t) is absolutely continuous and we obtain the convergence result,
see Theorem 2.3 in Section 2. Specifically, we find that solutions to (4) satisfy

uε → u0 uniformly and ε‖u̇ε − u̇0‖L1 → 0 (5)

as ε→ 0.
In Section 3 we show that, if we weaken the assumptions on V , we are not able

to get (5). More precisely we provide a counterexample for a model case where the
time-dependent energy is given by

V (t, x) :=
1
2
|x− u0(t)|2.

We remark that, when u0 ∈W 1,1(0, T ), then V in its turn satisfies the assumptions
of Section 2. In this case, solutions uε of (4) converge uniformly to u0(t). On the
other hand we show that, if u0 is the Cantor-Vitali function, then (5) can not be
satisfied (see Example 3.3). In fact we prove that no subsequences of solutions to
(4) could converge to u0 and that the continuous functions u0 with this property are
infinitely many (see Proposition 3.1 and Remark 3.2).

This result thus shows a case in which the dynamic solutions do not converge to the
expected (quasistatic) equilibrium. A similar phenomenon was observed in [4] where
the authors give an example of non-convergence, in the context of a one-dimensional
peeling test without viscosity: more precisely, their dynamic solutions converge to a
limit that does not fulfill first order stability. Our non-convergence result in Section
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3 can therefore be regarded as an example in which, in the absence of a damping
viscous term, dynamic solutions do not converge to stable equilibria even in very
simple situations.

1. Setting of the problem

Let V : R×Rn → R be a continuous function such that V (t, ·) ∈ C2(Rn). It will
play the role of a time-dependent energy. We assume that there exists a function
u0 ∈ C0([0, T ]; Rn) such that the following properties are satisfied:

∇xV (t, u0(t)) = 0, for every t ∈ [0, T ], (1.1)

∃α > 0: ∇2
xV (t, u0(t))ξ · ξ ≥ α|ξ|2, for all ξ ∈ Rn. (1.2)

Furthermore, for a.e. t ∈ [0, T ] and for every x ∈ Rn, we assume that there is a
constant A > 0 such that

|∇xV (t, x)|, |∇2
xV (t, x)| ≤ A. (1.3)

We also assume that there exists a C1-Carathéodory function Vt : R×Rn → R, i.e.,
a Carathéodory function such that Vt(t, ·) ∈ C1(Rn), satisfying

V (t2, x)− V (t1, x) =
∫ t2

t1

Vt(t, x) dt, (1.4)

for a.e. t1, t2 ∈ R and all x ∈ Rn. Moreover, for every R > 0, we require that there
exists aR ∈ L1(R) such that

|Vt(t, x)|, |∇xVt(t, x)| ≤ aR(t), (1.5)

for a.e. t ∈ R and all x ∈ BR(0). We notice that, by condition (1.5), it is possible to
prove that ∇xV is continuous in both variables.

We consider, for fixed ε > 0, the Cauchy problem ε2üε +∇xV (t, uε(t)) = 0,
uε(0) = u0

ε,
u̇ε(0) = v0

ε ,
(1.6)

where we assume that

u0
ε → u0(0) = 0 and εvε(0)→ 0. (1.7)

Global existence and uniqueness of the solutions uε to (1.6) are consequences of
standard theorems on ordinary differential equations thanks to the continuity of
∇xV and to condition (1.3). Our goal is to study when convergence, as ε → 0, of
solutions uε to (1.6) satisfying conditions (1.7) to u0 is possible.

Using (1.3) and (1.5), we now study the dependence on x of the set of Lebesgue
points for a function t 7→ f(t, x) which will then play the role of Vt and ∇xVt.

Lemma 1.1. Let f : R×Rn → Rm be a Carathéodory function such that, for every
R > 0, there exists aR ∈ L1(R) with f(t, x) ≤ aR(t) for every x ∈ BR(0). Fix x ∈ Rn,
then for a.e. t ∈ R

lim
y→x

lim
h→0

1
h

∫ t+h

t
[f(τ, y)− f(t, y)] dτ = 0.
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Proof. Let t ∈ R be a right Lebesgue point for τ 7→ f(τ, x), i.e.,

lim
h→0

1
h

∫ t+h

t
[f(τ, x)− f(t, x)] dτ = 0.

Let δ > 0 and define

ωδR(τ) := sup
x,y∈BR(0)
|x−y|<δ

|f(τ, x)− f(τ, y)|. (1.8)

By assumption we have that ωδR(τ) ≤ 2aR(τ); moreover ωδR is measurable because
the supremum can be taken over all rational points and along a sequence δ = 1/n.
Therefore ωδR(·) ∈ L1(R).

If t is also a right Lebesgue point for τ 7→ ωδR(τ) for every δ ∈ Q, δ > 0 and
|x− y| < δ, then

lim
h→0

1
h

∫ t+h

t
|f(τ, x)− f(t, x)− (f(τ, y)− f(t, y))| dτ

≤ lim
h→0

1
h

∫ t+h

t

[
ωδR(τ) + ωδR(t)

]
dτ = 2ωδR(t). (1.9)

Since f(t, ·) is uniformly continuous in BR(0), the last term in (1.9) tends to zero as
δ → 0 for a.e. t ∈ R. �

Remark 1.2. Given any u ∈W 1,1(0, T ; Rn), we are now able to get a chain rule for
a.e. t ∈ [0, T ], by differentiating z(t) := V (t, u(t)). Indeed, if t is a Lebesgue point
for τ 7→ Vt(τ, u(t)), by (1.4) we have

z(t+ h)− z(t)
h

=
V (t+ h, u(t+ h))− V (t, u(t+ h))

h
+
V (t, u(t+ h))− V (t, u(t))

h

=
1
h

∫ t+h

t
Vt(τ, u(t+ h)) dτ +∇xV (t, ξ)

u(t+ h)− u(t)
h

, (1.10)

for some point ξ belonging to the segment [u(t), u(t+h)], thanks to the Mean Value
Theorem. We now re-write the first summand of (1.10) in the following form:

1
h

∫ t+h

t
Vt(τ, u(t+ h)) dτ

=
1
h

∫ t+h

t
[Vt(τ, u(t+ h))− Vt(t, u(t+ h))] dτ + Vt(t, u(t+ h). (1.11)

In view of Lemma 1.1, the integral in (1.11) tends to zero, for a.e. t ∈ [0, T ] as h→ 0:
this is done by a diagonal argument using the fact that u(t+h)→ u(t), because u is
an absolutely continuous function. Moreover, by continuity of Vt(t, u(·)), the second
summand in (1.11) tends to Vt(t, u(t)). Therefore, as h→ 0 in (1.10), we get

d
dt
V (t, u(t)) = ż(t) = Vt(t, u(t)) +∇xV (t, u(t))u̇(t), (1.12)

for a.e. t ∈ [0, T ], because ∇xV (t, ·) is continuous.
We now argue similarly for ∇xV (t, u(t)) and get a chain rule again. Since Vt(t, ·) ∈
C1(Rn) for a.e. t and condition (1.5) holds, by an application of the Dominated
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Convergence Theorem, we have that

∇xV (t2, x)−∇xV (t1, x) =
∫ t2

t1

∇xVt(t, x) dt. (1.13)

Therefore,
∇xV (t+ h, u(t+ h))−∇xV (t, u(t))

h

=
∇xV (t+ h, u(t+ h))−∇xV (t, u(t+ h))

h
+
∇xV (t, u(t+ h))−∇xV (t, u(t))

h

=
1
h

∫ t+h

t
∇xVt(τ, u(t+ h)) dτ +

∇xV (t, u(t+ h))−∇xV (t, u(t))
h

. (1.14)

Since ∇xVt(t, ·) is continuous and ∇xVt(·, x) is measurable (indeed, it can be ob-
tained as the limit along a sequence of measurable difference quotients), then ∇xVt
is a Carathéodory function controlled by an integrable function aR(t). Arguing as
before and recalling that V (t, ·) ∈ C2(Rn), we have that for a.e. t ∈ [0, T ]

lim
h→0

∇xV (t+ h, u(t+ h))−∇xV (t, u(t))
h

= ∇xVt(t, u(t)) +∇2
xV (t, u(t))u̇(t).

In particular, since ∇xV (t, u0(t)) = 0, we have

∇xVt(t, u0(t)) +∇2
xV (t, u0(t))u̇0(t) = 0. (1.15)

We are now in the position to state the following result which will enable us to
restrict to the case of absolutely continuous functions throughout the sequel.

Proposition 1.3. Let V : R×Rn → R be a continuous function which satisfies
V (t, ·) ∈ C2(Rn) for a.e. t ∈ R. Let Vt fulfill conditions (1.4) and (1.5), and let
u0 : [0, T ]→ Rn be a continuous function such that there exists α > 0 :

∇2
xV (t, u0(t))ξ · ξ ≥ α|ξ|2, (1.16)

for every ξ ∈ Rn and for a.e. t ∈ [0, T ]. Then, u0 is absolutely continuous in [0, T ].

Proof. We want to show that, if ε is small enough, there exists δ > 0 such that, for
a.e. t1, t2 ∈ [0, T ] with |t1 − t2| < δ, there exists Mε > 0 and an integrable function
g such that

|u0(t2)− u0(t1)| ≤Mε

∫ t2

t1

g(t) dt. (1.17)

We know that

0 = ∇xV (t2, u0(t2))−∇xV (t1, u0(t1))

= ∇xV (t2, u0(t2))−∇xV (t1, u0(t2)) +∇xV (t1, u0(t2))−∇xV (t1, u0(t1))

= ∇xV (t2, u0(t2))−∇xV (t1, u0(t2)) +∇2
xV (t1, y)(u0(t2)− u0(t1)),

where y is in the segment [u0(t1), u0(t2)]. Therefore we have

u0(t2)− u0(t1) = −∇2
xV (t1, y)−1[∇xV (t2, u0(t2))−∇xV (t1, u0(t2))]. (1.18)

Since ∇2
xV (t1, ·) is continuous and satisfies the coercivity assumption (1.16), we can

find ε > 0 such that, if y ∈ Bε(u0(t1)) then

∇2
xV (t1, y)ξ · ξ ≥ α

2
|ξ|2.
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We can thus invert ∇2
xV (t1, ·) in a neighborhood of u0(t1). Let λy be the minimum

eigenvalue of ∇2
xV (t1, y). Therefore we can control the norm of ∇2

xV (t1, y)−1 with
1/λy. If vy is an eigenvector of ∇2

xV (t1, y) with eigenvalue λy, then we have

λy|vy|2 = ∇2
xV (t1, y)vy · vy ≥

α

2
|vy|2,

from which we deduce that λy ≥ α
2 and therefore

‖∇2
xV (t1, y)−1‖ ≤ 2

α
. (1.19)

We can now plug (1.19) in (1.18) and, arguing as in (1.13) of the previous Remark,
we get

|u0(t2)− u0(t1)| ≤ 2
α

∫ t2

t1

|∇xVt(t, u0(t2)) dt| ≤ 2
α

∫ t2

t1

aR(t) dt

and we have thus obtained (1.17). �

2. Convergence of solutions

This section is devoted to the study of the convergence for solutions uε of problem
(1.6). We will show that uε uniformly converges to u0, which is the equilibrium for
the potential V introduced in the previous section, provided initial conditions (1.7)
are satisfied.

We recall here the standard Gronwall lemma which will be used as a main tool in
the proof of the convergence.

Lemma 2.1 (Gronwall). Let ϕ ∈ L∞(R), ϕ(t) ≥ 0 for a.e. t ∈ R and a ∈ L1(R),
a(t) ≥ 0 for a.e. t ∈ R. We assume that there exists a constant C > 0 such that

ϕ(t) ≤
∫ t

0
a(s)ϕ(s) ds+ C, for a.e. t ∈ R.

Then,

ϕ(t) ≤ C exp
(∫ t

0
a(s) ds

)
, for a.e. t ∈ R.

Remark 2.2. From now on assume that there exists ψ : [0,+∞)→ R such that

lim
t→+∞

ψ(t) = +∞ and V (t, x) ≥ ψ(|x|), (2.1)

for all t ∈ [0, T ] and x ∈ Rn, and there exist a(·), b(·) ∈ L1(0, T ) such that

Vt(t, x) ≤ a(t) + b(t)V (t, x), (2.2)

for a.e. t ∈ [0, T ] and for all x ∈ Rn. Then it is easy to deduce uniform boundedness
for the sequence {uε}, by applying Lemma 2.1 to the following energy estimate:

V (t, uε(t)) ≤ ‖a‖L1(0,T ) +
∫ T

0
b(t)V (t, uε(t)) dt.

We remark that conditions (2.1) and (2.2), which are standard in this context, are
not necessary for establishing our result if we already know that the sequence {uε}
is uniformly bounded.

We are now in the position to state the main result of this section.
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Theorem 2.3. Let V be a function fulfilling the assumptions of Proposition 1.3 and
let u0 ∈ C0([0, T ]; Rn) be such that ∇xV (t, u0(t)) = 0 for every t ∈ [0, T ]. Assume
also that conditions (2.1) and (2.2) are satisfied and that ∇2

xV (t, x) and ∇xVt(t, x)
are locally equi-Lipschitz in x, uniformly in t, i.e. for every x ∈ Rn there exists δ > 0
and constants C1, C2 > 0 (which may depend on x), such that, for every |h| < δ

|∇2
xV (t, x+ h)−∇2

xV (t, x)| ≤ C1|h|,
|∇xVt(t, x+ h)−∇xVt(t, x)| ≤ C2|h|,

(2.3)

for a.e. t ∈ [0, T ]. Let uε be a solution of the Cauchy problem ε2üε +∇xV (t, uε(t)) = 0,
uε(0) = u0

ε,
u̇ε(0) = v0

ε ,
(2.4)

where the initial data u0
ε and v0

ε are such that

u0
ε → u0(0) = 0 and εv0

ε → 0. (2.5)

Then, uε → u0 uniformly in [0, T ] and ε‖u̇ε − u̇0‖L1 → 0, as ε→ 0.

Proof. We fix a sequence εj → 0 and we prove convergence for uεj : this will show
convergence for the whole family {uε} to u0, by the arbitrariness of εj . However we
will keep writing just uε for the sake of simplicity of notation.

By Proposition 1.3, we have that u0 ∈W 1,1(0, T ; Rn). Since C2([0, T ]; Rn) is dense
in W 1,1(0, T ; Rn), for every k ∈ N there exists a sequence {uk0} ⊂ C2([0, T ]; Rn) such
that

‖u0 − uk0‖W 1,1 <
1
k
. (2.6)

A suitable choice of k will take place in due course. However, we can already notice
that, sinceW 1,1(0, T ; Rn) ⊂ C0([0, T ]; Rn), then uk0 uniformly converges to u0 in [0, T ]
and therefore they are all contained in a compact set containing {u0(t), t ∈ [0, T ]}.

We now introduce a surrogate of energy estimate, multiplying the equation in (2.4)
by u̇ε(t)− u̇k0(t). After an integration we get

ε2

2
|u̇ε(t)− u̇k0(t)|2 + V (t, uε(t))

=
ε2

2
|u̇ε(0)− u̇k0(0)|2 + V (0, uε(0))−

∫ t

0
ε2ük0(s)(u̇ε(s)− u̇k0(s)) ds

+
∫ t

0

[
Vt(s, uε(s)) +∇xV (s, uε(s))u̇k0(s)

]
ds (2.7)

Our aim is thus to infer some lower and upper bounds for (2.7) in order to get, by
Lemma 2.1, convergence of uε − uk0 and then deduce convergence to u0. It is thus
convenient to consider the following “shifted” potential Ṽ defined as

Ṽ (t, x) := V (t, x)− V (t, uk0(t)). (2.8)

Since uk0 is of class C2, then all regularity assumptions on V are inherited by Ṽ . We
have, in particular, that

Ṽt(t, x) = Vt(t, x)− Vt(t, uk0(t))−∇xV (t, uk0(t))u̇k0(t). (2.9)

Moreover it is easy to show that

∇xṼ (t, u0(t)) = 0, ∀t ∈ [0, T ]. (2.10)
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We also notice that (2.7) is equivalent to

ε2

2
|u̇ε(t)− u̇k0(t)|2 + Ṽ (t, uε(t))

=
ε2

2
|u̇ε(0)− u̇k0(0)|2 + Ṽ (0, uε(0))−

∫ t

0
ε2ük0(s)(u̇ε(s)− u̇k0(s)) ds

+
∫ t

0
Ṽt(s, uε(s)) +∇xṼ (s, uε(s))u̇k0(s) ds. (2.11)

We set Aε:= ε2

2 |u̇ε(0)− u̇k0(0)|2 + Ṽ (0, uε(0)), which tends to 0 as ε→ 0, by the initial
conditions (2.5) and because uk0 → u0 uniformly in [0, T ].

We now subdivide the proof into parts obtaining estimates which will then be used
in the final Gronwall argument.
Lower estimate. We look for a lower bound for the summand Ṽ (t, uε) in the left

hand side of (2.11). We have that, by first order expansion, there exists y in the
segment [0, x] such that

V (t, x+ u0(t)) = V (t, u0(t)) +∇xV (t, u0(t))x+∇2
xV (t, y)x · x

= V (t, u0(t)) +∇2
xV (t, y)x · x, (2.12)

because ∇xV (t, u0(t)) = 0 for every t ∈ [0, T ]. We now compute twice (2.12), once
for x = uε(t)−u0(t) and once for x = uk0(t)−u0(t), and then we make the difference
between the two results. Therefore, for suitable y1 between u0(t) and uε(t), and y2

between u0(t) and uk0(t), we have

Ṽ (t, uε(t)) = ∇2
xV (t, y1)(uε(t)− u0(t)) · (uε(t)− u0(t))

−∇2
xV (t, y2)(uk0(t)− u0(t)) · (uk0(t)− u0(t)). (2.13)

By a continuity argument and the coercivity assumption for ∇2
xV (1.16) we can find

δ > 0 such that, if |z| < δ, then

∇2
xV (t, z + u0(t))ξ · ξ ≥ α

2
|ξ|2.

We apply this estimate in the first summand of the right hand side of (2.13), while
for the other one we use boundedness of ∇2

xV (t, ·). We thus get

Ṽ (t, uε(t)) ≥
α

2
|uε(t)− u0(t)|2 − c|uk0(t)− u0(t)|2, (2.14)

for a suitable c > 0, provided that

|uε(t)− u0(t)| < δ for every t ∈ [0, T ] and for ε small enough. (2.15)

For the moment we assume that this bound holds and postpone its proof to the end.
Since

α

4
|uε(t)− uk0(t)|2 ≤ α

2
|uε(t)− u0(t)|2 +

α

2
|u0(t)− uk0(t)|2,

we deduce, from (2.14), that

Ṽ (t, uε(t)) ≥
α

4
|uε(t)− uk0(t)|2 − (c+

α

2
)|uk0(t)− u0(t)|2, (2.16)

where the last summand on the right hand side of (2.16) is small by the uniform
convergence of uk0 to u0.
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Upper estimate. We now switch our attention to the estimate on the right hand
side of (2.11), which we now re-write in the following way:

Aε −
∫ t

0
ε2ük0(s)(u̇ε(s)− u̇k0(s)) ds+

∫ t

0

[
Ṽt(s, uε(s)) +∇xṼ (s, uε(s))u̇k0(s)

]
ds

=: Aε −A1 +A2.

Estimate of A1. We first apply the Cauchy inequality and obtain

|A1| =
∣∣∣∣∫ t

0
ε2ük0(u̇ε − u̇k0) ds

∣∣∣∣ ≤ ε2

2

∫ t

0
|ük0|2 ds+

ε2

2

∫ t

0
|u̇ε − u̇k0|2 ds (2.17)

The second summand in (2.17) will enter the final estimate via the Gronwall lemma,
while for the first one we argue in the following way. We have no information about
how big ‖ük0‖L2(0,T ) is, nevertheless we can find, for every k ∈ N, an ε > 0 such that

‖ük0‖2L2(0,T ) ≤
1
ε
. (2.18)

Then, we can invert the function which associates ε to k and get k(ε)→∞ as ε→ 0,
though this convergence may be very slow. This is done by recalling that ε = εj and
then defining

k(εj) := min
{
k ∈ N : ‖ük0‖2L2(0,T ) >

1
εj

}
− 1.

From now on we will keep writing k intending k(εj) with this peculiar construction
and we have, combining (2.17) with (2.18),

|A1| ≤ Aε1 +
ε2

2

∫ t

0
|u̇ε − u̇k0|2 ds., (2.19)

where Aε1 → 0 as ε→ 0.
Estimate of A2. By using a variable x which will play the role of uε(t)− uk0(t), we

have that, for a.e. t ∈ [0, T ],

|Ṽt(t, x+ uk0) +∇xṼ (t, x+ uk0)u̇k0|

≤ |Ṽt(t, x+ uk0)− Ṽt(t, x+ u0)|+ |∇xṼ (t, x+ uk0)u̇k0 −∇xṼ (t, x+ uk0)u̇0|

+ |∇xṼ (t, x+ uk0)u̇0 −∇xṼ (t, x+ u0)u̇0|+ |Ṽt(t, x+ u0) +∇xṼ (t, x+ u0)u̇0|
(2.20)

The first three summands on the right are easy to deal with, by using Lipschitz and
boundedness assumptions. They are estimated, independently of x, by

C(1 + |u̇0|)(|uk0 − u0|+ |u̇k0 − u̇0|).

As for the fourth summand, we call

f(x) := Ṽt(t, x+ u0) +∇xṼ (t, x+ u0)u̇0
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If we set g(x) := f(x)−∇f(0)x, then there exists y in the segment [0, x] such that
g(x)− g(0) = ∇g(y)x. Therefore we have, for a.e. t ∈ [0, T ],

Ṽt(t, x+ u0) +∇xṼ (t, x+ u0) · u̇0 − Ṽt(t, u0)

−∇xṼ (t, u0) · u̇0 −∇xṼt(t, u0) · x−∇2
x Ṽ (t, u0)u̇0 · x

≤
∣∣∣∇xṼt(t, y + u0) +∇2

x Ṽ (t, y + u0)u̇0 −∇xṼt(t, u0)−∇2
x Ṽ (t, u0)u̇0

∣∣∣ |x|
≤ c(1 + |u̇0|)|y||x|
≤ c|x|2(1 + |u̇0|), (2.21)

since ∇xṼt and ∇2
x Ṽ are locally equi-Lipschitz in x uniformly in t, by condition (2.3),

and the constant c > 0 is independent of x = uε − uk0 because the functions uε are
bounded in ε as we pointed out in Remark 2.2. Moreover, by (2.9),

|Ṽt(t, u0)| = |Vt(t, u0)− Vt(t, uk0)−∇xV (t, uk0) · u̇k0|

≤ |Vt(t, u0)− Vt(t, uk0)|+ |∇xV (t, u0) · u̇k0 −∇xV (t, uk0) · u̇k0|

≤ C|u0 − uk0|(1 + |u̇k0|), (2.22)

for a.e. t ∈ [0, T ]. As in (1.15), we have that for a.e. t ∈ [0, T ],

∇xṼt(t, u0(t)) +∇2
x Ṽ (t, u0(t))u̇0(t) = 0. (2.23)

Therefore, plugging (2.10), (2.21), (2.22), and (2.23) in (2.20), we get

|Ṽt(t, x+ uk0) +∇xṼ (t, x+ uk0) · u̇k0|

≤ c1(1 + |u̇0|)(|uk0 − u0|+ |u̇k0 − u̇0|) + c2|x|2(1 + |u̇0|) + c3|u0 − uk0|(1 + |u̇k0|),
(2.24)

for a.e. t ∈ [0, T ], where c1, c2, and c3 > 0. We may therefore compute (2.24) with
x = uε(t)− uk0(t) and, if we integrate between 0 and t, we find that

c1

∫ t

0
(1 + |u̇0|)(|uk0 − u0|+ |u̇k0 − u̇0|) ds→ 0,

as k →∞ by W 1,1−convergence of uk0 to u0. Also

c3

∫ t

0
|u0 − uk0|(1 + |u̇k0|) ds→ 0,

as k → ∞ using this time the uniform convergence of uk0 to u0 and the fact that
u̇k0 ∈ L1(0, T ). Therefore the second integral in (2.11) is estimated by

c2

∫ t

0
|uε − uk0|2(1 + |u̇0|) ds+Ak, (2.25)

where Ak → 0 as k →∞.
Gronwall argument. We are now able to get, by the previous estimates, the

conclusion of the proof. We set

Bε := Aε +Aε1 +Ak(ε) + (c+
α

2
)|uk(ε)0 (t)− u0(t)|2,
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which tends to zero as ε → 0, and we plug (2.16), (2.17), (2.18), and (2.25) into
(2.11). We therefore have, for every t ∈ [0, T ],

ε2

2
|u̇ε(t)− u̇k0(t)|2 +

α

4
|uε(t)− uk0(t)|2

≤ Bε +
ε2

2

∫ t

0
|u̇ε − u̇k0|2 + c2

∫ t

0
|uε − uk0|2(1 + |u̇0|). (2.26)

With some further manipulations we are in position to apply Lemma 2.1. Therefore,
there exists C > 0 such that

ε2

2
|u̇ε(t)− u̇k0(t)|2 +

α

4
|uε(t)− uk0(t)|2 ≤ Bε exp

(
C

∫ t

0
(1 + |u̇0(s)|) ds

)
. (2.27)

Since u0 ∈ W 1,1(0, T ), we have that the right hand side of (2.27) tends to zero as
ε → 0, for every t ∈ [0, T ]. In particular, since |uε(t) − u0(t)| ≤ |uε(t) − uk0(t)| +
|uk0(t) − u0(t)|, we obtain that uε(t) → u0(t) uniformly in [0, T ] as ε → 0. We also
have

ε‖u̇ε − u̇0‖L1(0,T ) ≤ ε‖u̇ε − u̇k0‖L1(0,T ) + ε‖u̇k0 − u̇0‖L1(0,T )

≤ ε2T
∫ T

0
|u̇ε − u̇k0|2 + ε‖u̇k0 − u̇0‖L1(0,T ),

from which we deduce
ε‖u̇ε − u̇0‖L1 → 0,

as ε→ 0, because ‖u̇k0 − u̇0‖L1(0,T ) is bounded.
Proof of (2.15). In order to conclude we only need to prove that |uε(t)−u0(t)| < δ,

for every t ∈ [0, T ] and for ε small enough. We can define, for every ε > 0

tε = inf{t ∈ [0, T ] : |uε(t)− u0(t)| > δ},

with the convention that inf ∅ = T . Notice that the continuity of uε(·) − u0(·) and
the initial condition uε(0) → u0(0) as ε → 0, implies that tε > 0. We thus have
that (2.15) is satisfied for every t ∈ [0, tε). We now assume, by contradiction, that
tε < T . Then, with the previous Gronwall argument, we can find ε̄ so small such
that |uε(t) − u0(t)| < δ

2 for every ε ∈ (0, ε̄) and t ∈ [0, tε]. However this contradicts
the continuity of uε − u0 in t = tε. Therefore tε = T and this concludes the proof of
the theorem. �

3. Counterexample

In the previous section we proved that, under certain assumptions on V , the solu-
tions uε of problems (2.4) converge in W 1,1(0, T ) to u0, whenever u0 is continuous
and the initial conditions (2.5) are satisfied. We now prove that assumptions on V
can not be further relaxed in order to get the same result.

Let us consider the sample case ε2üε + uε − u0 = 0,
uε(0) = u0

ε,
uε(0) = v0

ε ,
(3.1)
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where we assume that u0
ε → u0(0) = 0 and εv0

ε → 0 as ε → 0. In this case the
potential V is given by

V (t, x) :=
1
2
|x− u0(t)|2.

We have that ∇xV (t, u0(t)) = 0 for every t and ∇2
xV (t, u0(t)) is the identity matrix.

We notice that, if we only assume continuity of u0, then a chain rule similar to (1.12)
can not be established. We can, nevertheless, find an explicit solution of (3.1) with
standard methods of ordinary differential equations:

uε(t) =
(
−1
ε

∫ t

0
u0(s) sin s

ε ds+ u0
ε

)
cos t

ε +
(

1
ε

∫ t

0
u0(s) cos sε ds+ εv0

ε

)
sin t

ε .

(3.2)
If we assume that u0 ∈W 1,1(0, T ), then assumption of Theorem 2.3 are satisfied and
therefore uε → u0 uniformly for every t ∈ [0, T ] and that εu̇ε → 0 for a.e. t ∈ R.
This result can be equivalently obtained by direct computation through the explicit
formula (3.2). We may remark the fact that, in the presence of a dissipative term
as in [1], the convergence of the solutions to the approximated problems is satisfied
with weaker assumptions on the initial conditions. More precisely if the equation is

ε2üε + εu̇ε + uε − u0 = 0,

then it is sufficient to assume only that

u0
εe
− 1

2ε → 0 and εv0
εe
− 1

2ε → 0 as ε→ 0.

We now show that convergence for the problem (3.1) fails if we only assume that
u0 is continuous. This gives a counterexample to the convergence result of Theorem
2.3 when the regularity assumptions on V are not satisfied. Indeed, there is a least
a continuous function that can not be approximated by solutions to second order
perturbed problems, as we show in the next proposition; we will exhibit one of these
functions in Example 3.3. Furthermore in W 1,1 there is a dense set of C0

0 functions
with this property, see Remark 3.2.

Proposition 3.1. There exists u0 ∈ C0
0 ([0, T ]) such that the functions uε, defined

in (3.2), do not converge uniformly to u0 as ε→ 0.

Proof. We argue by contradiction. Assume that for every u0 ∈ C0
0 ([0, T ]) uε uni-

formly converges to u0 as ε → 0. Without loss of generality we can assume that
T ≥ 1 and we show that the convergence fails at t = 1. Let us fix εk → 0. Then we
have, from (3.2),

uεk
(1) = − 1

εk

∫ 1

0
u0(s)[sin s

εk
cos 1

εk
− cos s

εk
sin 1

εk
] ds+ u0

εk
cos 1

εk
+ εkv

0
εk

sin 1
εk
.

Since u0
εk
, εkv

0
εk
→ 0 by assumption, we have convergence of uε(1) to u0(1) if and

only if the operator Fεk
: C0

0 ([0, T ])→ R, defined as

Fεk
(u0) := − 1

εk

∫ 1

0
u0(s)[sin s

εk
cos 1

εk
− cos s

εk
sin 1

εk
] ds,

converges. We thus have pointwise convergence of Fεk
to F0 defined by F0(u0) =

u0(1). By the Banach-Steinhaus Theorem this implies uniform equiboundedness. On
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the other hand we notice that

Fεk
(u0) =

∫ 1

0
u0(s) dµεk

(s),

where dµεk
(s) = − 1

εk
[sin s

εk
cos 1

εk
− cos s

εk
sin 1

εk
] ds. However

sup
k
|µεk
|(0, 1) = sup

k

(
1
εk

∫ 1

0
| sin s−1

εk
|ds
)

= sup
k

∫ 0

− 1
εk

| sin τ |dτ = +∞

which contradicts the uniform equiboundedness. �

Remark 3.2. The Banach-Steinhaus Theorem also implies that the set

R := {u0 ∈ C0
0 ([0, T ]) : sup

ε
|Fε(u0)| = +∞}

is dense. Therefore there are indeed infinitely many functions for which uε can not
converge to u0.

Example 3.3. We now give an explicit example of a continuous function that is not
approximated by solutions to second order perturbed problems. We consider as u0

the Cantor-Vitali function û : [0, 1]→ [0, 1]. Plugging u0 = û into (3.2) and through
integration by parts, we get

uε(t) = û(t)− cos t
ε

∫ t

0
cos sε dµ(s)− sin t

ε

∫ t

0
sin s

ε dµ(s) + u0
ε cos t

ε + εv0
ε sin t

ε , (3.3)

where µ is intended to be the distributional derivative of u0. We now choose εk = 1
2kπ

and remark that ∫
cos(2kπs) dµ(s) =

∫
e−i2kπs dµ(s),

where û and µ have been extended to R by setting û = 0 in the complement of [0, 1].
By using the well-known expression for the Fourier Tranform of the Cantor measure
we can compute (3.3) in t = 1 and get

uεk
(1) = û(1) + u0

εk
−
∫ 1

0
cos(2kπs) dµ(s) = û(1) + u0

εk
− (−1)k

∞∏
h=1

cos 2kπ
3h .

Since u0
εk
→ 0 by the assumptions on the initial conditions, we focus our attention

on the term

(−1)k
∞∏
h=1

cos 2kπ
3h = (−1)kf(2kπ),

where we have defined f : [0,+∞)→ [−1, 1] by

f(x) =
∞∏
h=1

cos x
3h .

We now prove that there exists a sequence kn such that (−1)knf(2knπ) does not
converge to 0.

By the definition f satisfies

f(3x) = f(x) cos(x).

In particular this implies

f(6π) = f(3 · 2π) = f(2π).
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Inductively one gets
f(3n · 2π) = f(2π)

and similarly
f(2 · 3n · 2π) = f(4π).

Therefore we choose as kn the sequence

{3, 2 · 3, 32, 2 · 32, . . . , 3n, 2 · 3n, . . . }.
Along this sequence (−1)knf(2knπ) tends to −f(2π) for the odd indexes and to f(4π)
for the even ones. We now prove that f(2π) and f(4π) are real numbers with the
same sign. This implies that (−1)knf(2knπ) does not converge and therefore uεk

(1)
does not converge to û(1).

We have that (using the convention that log 0 = −∞)

log f(x) =
∞∑
h=1

log
∣∣cos x

3h

∣∣ ≥ − ∞∑
h=1

x2

32h ,

if y ∈ (0, 1), because in this interval

log | cos y| = log cos y ≥ cos y − 1
cos y

.

Moreover
1− 1

cos y
≥ −x2 ⇐⇒ cos y(1 + y2) ≥ 1,

which is verified in (0, 1) using the fact that cos y ≥ 1 − y2

2 . Since 2π
3h and 4π

3h are
in the interval (0, 1) for h large enough, then f(2π) and f(4π) are controlled by
the geometric series and therefore f(2π), f(4π) 6= 0. This is enough in order to
prove that along the sequences k2n or k2n+1 convergence of uεkn

(1) to û(1) is not
satisfied. Moreover we notice that f(2π) and f(4π) have the same sign because
cos 2π

3 = cos 4π
3 = −1

2 , while cos(2π
3n ) ≥ 0 for every n ≥ 3. Therefore we have found

more than we claimed, since uεkn
(1) does not convergeat all.

We have thus shown an explicit example in which convergence of (3.2) to a partic-
ular continuous function u0 fails.
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