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Abstract. In the spirit of the macroscopic crowd motion models with hard congestion (i.e. a
strong density constraint ρ ≤ 1) introduced by Maury et al. some years ago, we analyze a variant
of the same models where diffusion of the agents is also take into account. From the modeling point
of view, this means that individuals try to follow a given spontaneous velocity, but are subject
to a Brownian diffusion, and have to adapt to a density constraint which introduces a pressure
term affecting the movement. From the PDE point of view, this corresponds to a modified Fokker-
Planck equation, where with an additional gradient of a pressure (only living in the saturated zone
{ρ = 1}) in the drift. The paper proves existence and some estimates, based on optimal transport
techniques.

1. Introduction

In the past few years modeling crowd behavior has become a very active field of applied mathe-
matics. Beyond their importance in real life applications, these modeling problems serve as basic
ideas to understand many other phenomena coming for example from biology (cell migration, tu-
mor growth, pattern formations in animal populations, etc.), particle physics and economics. A
first non-exhaustive list of references for these problems is [6, 7, 8, 9, 12, 14, 15, 17, 18, 24]. A very
natural question in all these models is the problem of congestion phenomena: in many practical
situations, very high quantities of individuals could try to occupy the same spot, which could be
impossible, or lead to strong negative effects on the motion, because of natural limitations on the
crowd density.

These phenomenas have been studied by using different models, which could be either “micro-
scopic” (based on ODEs on the motion of a high number of agents) or “macroscopic” (describing
the agents via their density and velocity, typically with Eulerian formalism). Let us concentrate on
the macroscopic models, where the density ρ plays a crucial role. These very same models can be
characterized either by “soft congestion” effects (i.e. the higher the density the slower the motion),
or by “hard congestion” (i.e. an abrupt threshold effect: if the density touches a certain maximal
value, the motion is strongly affected, while nothing happens for smaller values of the density).
See [23] for comparison between the different classes of models. This last class of models, due to
the discontinuity in the congestion effects, presents new mathematical difficulties, which cannot be
analyzed with the usual techniques from conservation laws (or, more generally, evolution PDEs)
used for soft congestion.

A very powerful tool to attack macroscopic hard-congestion problems is the theory of optimal
transportation (see [32, 29]), as we can see in [22, 23, 28, 30]. In this framework, the density of the
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agents solves a continuity equation (with velocity field taking into account the congestion effects),
and can be seen as a curve in the Wasserstein space.

Our aim in this paper is to endow the macroscopic hard congestion models of [22, 23, 28, 30]
with diffusion effects. In other words, we want to model a crowd, where every agent has a sponta-
neous velocity, a non-degenerate diffusion (i.e. a stochastic component in its motion), driven by a
Brownian motion, and is subject to a density constraint. Implementing this new element into these
models could give a better approximation of reality, when dealing with large populations. We also
underline that one of the goals of this analysis1 is to better “prepare” these hard congestion crowd
motion models for a possible analysis in the framework of Mean Field Games (see [19, 20, 21], and
also [31]). These MFG models usually involve a stochastic term, also implying regularizing effects,
which are useful in the mathematical analysis of the corresponding PDEs.

1.1. The existing first order models in the light of [22, 23]. Some macroscopic models for
crowd motion with density constraints and “hard congestion” effects were studied in [23] and [22].
We briefly present them as follows:

• The density of the population in a bounded (convex) domain Ω ⊂ Rd is described by
a probability measure ρ ∈ P(Ω). The initial density ρ0 ∈ P(Ω) evolves in time, and ρt
denotes its value at each time t ∈ [0, T ].
• The spontaneous velocity field of the population is a given time-dependent field, denoted

by ut. It represents the velocity that each individual would like to follow in the absence of
the others. Ignoring the density constraint, this would give rise to the continuity equation
∂tρt + ∇ · (ρtut) = 0. We observe that in the original work [22] the vector field ut(x)
was taken of the form −∇D(x) (independent of time and of gradient form) but we try
here to be more general (see [28] for the general case, which requires some extra regularity
assumption).
• The set of admissible densities will be denoted by K := {ρ ∈ P(Ω) : ρ ≤ 1}. In order to

guarantee that K is neither empty nor trivial, we suppose |Ω| > 1.
• The set of admissible velocity fields with respect to the density ρ is characterized by the

sign of the divergence of the velocity field on the saturated zone; formally we set

adm(ρ) :=
{
v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}

}
.

• We consider the projection operator P in the L2(Ld) or in the L2(ρ) sense (which will be
the same, because the only relevant zone is {ρ = 1}).
• Finally we solve the following modified continuity equation for ρ

(1.1) ∂tρt +∇ ·
(
ρtPadm(ρt)[ut]

)
= 0,

where the main point is that ρ is advected by a vector field, compatible with the constraints,
which is the closest to the spontaneous one.

The problem in solving Equation (1.1) is that the projected field has very low regularity: it is a
priori only L2 in x, and it does not depend smoothly on ρ neither (since a density 1 and a density
1−ε give very different projection operators). By the way, its divergence is not well-defined neither.

1The insertion of a diffusive behavoir in the model also leads to easier and more general uniqueness results: this
is the object of an on-going work of the first author in collaboration with S. Di Marino, see [11].
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To handle this issue we need to redefine the set of admissible velocities by duality:

adm(ρ) =

{
v ∈ L2(ρ) :

∫
Ω
v · ∇p ≤ 0, ∀p ∈ H1(Ω), p ≥ 0, p(1− ρ) = 0

}
.

With the help of this formulation we always have the orthogonal decomposition

u = Padm(ρ)[u] +∇p,

where p ∈ press(ρ) :=
{
p ∈ H1(ρ) : p ≥ 0, p(1− ρ) = 0

}
. Indeed, the cones adm(ρ) and ∇press(ρ)

are dual to each other. Via this approach the continuity equation (1.1) can be rewritten as a system
for (ρ, p) which is

(1.2)

{
∂tρt +∇ · (ρt(ut −∇pt)) = 0
p ≥ 0, ρ ≤ 1, p(1− ρ) = 0.

We can naturally endow this equation/system with initial condition ρ(0, x) = ρ0(x) (ρ0 ∈ K) and
with Neumann boundary conditions.

1.2. A diffusive counterpart. The goal of our work is to study a second order model of crowd
movements with hard congestion effect where beside the transport factor a non-degenerate diffusion
is present as well. The diffusion is the consequence of a randomness (a Brownian motion) in the
movement of the crowd.

With the ingredients that we introduced so far, we would like to modify the Fokker-Planck equa-
tion ∂tρt−∆ρt+∇·(ρtut) = 0 (always equipped with the natural Neumann boundary conditions on
∂Ω) in order to take into account the density constraint ρt ≤ 1. We observe that the Fokker Planck
equation is derived from a motion dXt = ut(Xt)dt+

√
2dBt, but is macroscopically represented by

the advection of the density ρt by the vector field −∇ρt
ρt

+ut. Projecting onto the set of admissible

velocities raises a natural question: should we project only ut, and then apply the diffusion, or

project the whole vector field, including −∇ρt
ρt

? Indeed, this is not a real issue, as
∇ρt
ρt

= 0 on the

saturated set {ρt = 1}. This corresponds to the fact that the Heat Kernel preserves the constraint
ρ ≤ 1. As a consequence, we consider the modified Fokker-Planck type equation

(1.3)

{
∂tρt −∆ρt +∇ ·

(
ρtPadm(ρt)[ut]

)
= 0,

ρ(0, x) = ρ0(x), in Ω,

which can also be written equivalently as

(1.4)

{
∂tρt −∆ρt +∇ · (ρt(ut −∇pt)) = 0
p ≥ 0, ρ ≤ 1, p(1− ρ) = 0, ρ(0, x) = ρ0(x), in Ω.

This equation describes the law of a motion where each particle solves the stochastic differential
equation

dXt = (ut(Xt)−∇pt(Xt))dt+
√

2dBt,

where Bt is the standard d-dimensional Brownian motion. More precisely, if we know the solution
Xt of the SODE above, and we define ρt := L(Xt), the law of the random variable Xt, this will
solve the Fokker-Planck equation (1.4).
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1.3. Structure of the paper and main results. The main goal of the paper is to provide
an existence result, with some extra estimates, for the Fokker-Planck equation (1.4) via time
discretization, using the so-called splitting method (the two main ingredients of the equation, i.e.
the advection with diffusion on one hand, and the density constraint on the other hand, are treated
one after the other). In Section 2 we will collect some preliminary results, including what we need
from optimal transport and from the previous works about density-constrained crowd motion, in
particular on the projection operator onto the set K. In Section 3 we will provide the existence
result we aim at, by a splitting scheme and some entropy bounds; the solution will be a curve of
measures in H1([0, T ];W2(Ω)). In Section 4 we will make use of BV estimates to justify that the
solution we just built is also Lip([0, T ];W1(Ω)) and satisfies a global BV bound ‖ρt‖BV ≤ C: this
requires to combine BV estimates on the Fokker-Planck equation (which are available depending
on the regularity of the vector field u) with BV estimates on the projection operator on K (which
have been recently proven in [10]). Section 5 presents a short review of alternative approaches,
all discretized in time, but based either on gradient-flow techniques (the JKO scheme, see [13])
or on different splitting methods. Finally, in the Appendix we detail the BV estimates on the
Fokker-Planck equation (without any density constraint) that we could find; this seems to be a
delicate matter, interesting in itself, and we are not aware of the sharp assumptions on the vector
field u to guarantee the BV estimate that we need.

2. Preliminaries

2.1. Basic definitions and general facts on optimal transport. Here we collect some tools
from the theory of optimal transportation, Wasserstein spaces, its dynamical formulation, etc.
which will be used later on. We set our problem either in a compact convex domain Ω ⊂ Rd
with smooth boundary (or in the d−dimensional flat tours Ω := Td, even if we will not adapt
all our notations to the torus case). We refer to [32, 29] for more details. Given two probability
measures µ, ν ∈ P(Ω) and for p ≥ 1 we define the usual Wasserstein metric by means of the
Monge-Kantorovich optimal transportation problem

Wp(µ, ν) := inf

{∫
Ω×Ω
|x− y|p dγ(x, y) : γ ∈ Π(µ, ν)

} 1
p

,

where Π(µ, ν) := {γ ∈ P(Ω× Ω) : (πx)#γ = µ, (πy)#γ = ν} and πx and πy denote the canonical
projections from Ω × Ω onto Ω. This quantity happens to be a distance on P(Ω) which metrizes
the weak-∗ convergence of probability measures; we denote by Wp(Ω) the space of probabilities on
Ω endowed with this distance.

Moreover, in the quadratic case p = 2 and under the assumption µ � Ld (the d−dimensional
Lebesgue measure on Ω) in the late 80’s Y. Brenier showed (see [4, 5]) that actually the optimal
γ in the above problem is induced by a map, which is the gradient of a convex function, i.e. there
exists T : Ω→ Ω and ψ : Ω→ R convex such that T = ∇ψ and γ := (id, T )#µ. The function ψ is

obtained as ψ(x) = 1
2 |x|

2 − ϕ(x), where ϕ is the so-called Kantorovich potential for the transport
from µ to ν, and is characterized as the solution of a dual problem that we will not develop here.
In this way, the optimal transport map T can also be written as T (x) = x −∇ϕ(x). Later in the
90’s R. McCann (see [25]) introduced a notion of interpolation between probability measures: the
curve µt := ((1− t)x+ ty)# γ, for t ∈ [0, 1], gives a constant speed geodesic in the Wasserstein
space connecting µ0 := µ and µ1 := ν.
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Based on this notion of interpolation in 2000 J.-D. Benamou and Y. Brenier used some ideas
from fluid mechanics to give a dynamical formulation to the Monge-Kantorovich problem (see [3]).
They showed that

1
pW

p
p (µ, ν) = inf {Bp(Et, µt) : ∂tµt +∇ · (Et) = 0, µ0 = µ, µ1 = ν} ,

where Bp : M([0, 1]× Ω)d × L∞([0, 1];Wp(Ω))→ R2 is given by

Bp(E,µ) :=


∫ 1

0

∫
Ω

1
p

∣∣∣∣dEtdµt

∣∣∣∣p dµt(x)dt, if Et � µt, a.e. t ∈ [0, 1],

+∞, otherwise.

It is well-known that Bp is jointly convex and l.s.c. w.r.t the weak-∗ convergence of measures (see
Section 5.3.1 in [29]) and that, if ∂tµt +∇ · Et = 0, then Bp(E,µ) < +∞ implies that t 7→ µt is a
curve in W 1,p([0, 1];Wp(Ω)). Coming back to curves in Wasserstein spaces, it is well known (see [1]
or Section 5.3 in [29]) that for any distributional solution µt (being a narrowly continuous curve in
(P(Ω),Wp)) of the continuity equation ∂tµt +∇ · (vtµt) = 0 we have the relations

|µ′|Wp(t) ≤ ‖vt‖Lpµt and Wp(%t, %s) ≤
∫ t

s
|µ′|Wp(τ) dτ,

where we denoted by |µ′|Wp(t) the metric derivative w.r.t. Wp of the curve µt (see for instance [2]
for general notions about curves in metric spaces and their metric derivative). For curves µt which
are geodesic in Wp we have the equality

Wp(µ, ν) =

∫ 1

0
|µ′|Wp(t) dt =

∫ 1

0
‖vt‖Lpµt dt.

The last equality is in fact the Benamou-Brenier formula with the optimal velocity field vt being
the density of the optimal Et w.r.t. the optimal µt. This optimal velocity field vt can be computed
as vt := (T − id) ◦ (Tt)

−1, where Tt := (1 − t)id + tT is the transport in McCann’s interpolation
(we assume here that the initial measure µ0 is absolutely continuous, so that we can use transport
maps instead of plans). This vector field is easily obtained if we consider that in this interpolation
particles move with constant speed T (x)− x, but x represents here a Lagrangian coordinate, and
not an Eulerian one: if we want to know the velocity at time t at a given point, we have to find
out first the original position of the particle passing through that point at that time.

In the sequel we will also need the notion of entropy of a probability density, and for any
probability measure % ∈ P(Ω) we define it as

E(%) :=


∫

Ω
%(x) log %(x) dx, if %� Ld,

+∞, otherwise.

We recall that this functional is l.s.c. and geodesically convex in the W2 topology.
As we will be mainly working with absolutely continuous probability measures (w.r.t. Lebesgue),

we often identify measures with their densities.

2We denote by M(X) the signed Radon measures on X. Observe that µ ∈ L∞([0, 1];Wp(Ω)) only means that
µ = (mut)t is a time-dependent family of probability measures.
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2.2. Projection problems in Wasserstein spaces. Our analysis relies a lot on the projection
operator PK in the sense of W2. Here K := {ρ ∈ P(Ω) : ρ ≤ 1} and

PK[µ] := argminρ∈K
1

2
W 2

2 (µ, ρ).

We recall (see [22, 30] and [10]) the main properties of the projection PK operator.

• As far as Ω is compact, for any probability measure µ, the minimizer in minρ∈K
1
2W

2
2 (µ, ρ)

exists and is unique, and the operator PK is continuous (it is even C0,1/2 for theW2 distance).
• The projection PK[µ] saturates the constraint ρ ≤ 1 in the sense that for any µ ∈ P(Ω)

there exists a measurable set B ⊆ Ω such that PK[µ] = 1B + µac
1Bc , where µac is the

absolutely continuous part of µ.
• The projection is characterized in terms of a pressure field, in the sense that ρ = PK[µ] if

and only if there exists a Lipschitz function p ≥ 0, with p(1 − ρ) = 0, and such that the
optimal transport map T from ρ to µ is given by T := id−∇ϕ = id +∇p.
• There is (as proven in [10]) a quantified BV estimate: if µ ∈ BV (in the sense that it is

absolutely continuous and that its density belongs to BV (Ω)), then PK[µ] is also BV and

TV (PK[µ],Ω) ≤ TV (µ,Ω).

This last BV estimate will be crucial in Section 4, and it is important to have it in this very
form (other estimates of the form TV (PK[µ],Ω) ≤ aTV (µ,Ω) + b would not be as useful as this
one, as they cannot be easily iterated).

3. Existence via a splitting-up type algorithm (Main Scheme)

Similarly to the approach in [23] (see the algorithm (13) and Theorem 3.5) for a general, non-
gradient, vector field, we will build a theoretical algorithm, after time-discretization, to produce a
solution of (1.4). In this section the spontaneous velocity field is a general vector field ut : Ω→ Rd
(not necessarily a gradient), which depends also on time. We will work on a time interval [0, T ]
and in a bounded convex domain Ω ⊂ Rd (the case of the flat torus is even simpler and we will not
discuss it in details). We consider ρ0 ∈ Pac(Ω) to be given, which represents the initial density of
the population, and we suppose ρ0 ∈ K.

3.1. Splitting using the Fokker-Planck equation. We assume here that ut ∈ L∞(Ω)d for all
t ∈ [0, T ]. Let us consider the following scheme.

Main scheme: Let τ > 0 be a small time step
with N := [T/τ ]. Let us set ρτ0 := ρ0 and for
every k ∈ {1, . . . , N} we define ρτk+1 from ρτk in
the following way. First we solve
(3.1){

∂t%t −∆%t +∇ · (%tut+kτ ) = 0, t ∈]0, τ ],
%0 = ρτk,

equipped with the natural Neumann boundary
condition ((∇%t− ut) ·n = 0 a.e. on ∂Ω) and set
ρτk+1 = PK[ρ̃τk+1], where ρ̃τk+1 = %τ . See Figure 1
on the right.

•ρτk

∂ t
% t
−∆%

t
+
∇ ·

(% t
u t+

kτ
) =

0 •
ρ̃τk+1 = %τ

id
+
τ∇

p
τk

+
1

•ρτk+1

Figure 1. One time step
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This means: first follow the Fokker-Planck equation, ignoring the density constraint, for a time
τ , then project. In order to state and prove the convergence of the scheme, we need to define some
suitable interpolations of the discrete sequence of densities that we have just introduced.

First interpolation. We define the following curves of densities, velocities and momentums con-
structed with the help of the ρτk’s. First set

ρτt :=

{
%2(t−kτ), if t ∈ [kτ, (k + 1/2)τ [ ,(
id + 2((k + 1)τ − t)∇pτk+1

)
#
ρτk+1, if t ∈ [(k + 1/2)τ, (k + 1)τ [ ,

where %t is the solution of the Fokker-Planck equation (3.1) with initial datum ρτk and ∇pτk+1 arises
from the projection of ρ̃τk+1, more precisely (id + τ∇pτk+1) is the optimal transport from ρτk+1 to
ρ̃τk+1. What are we doing? We are fitting into a time interval of length τ the two steps of our
algorithm. First we follow the FP equation (3.1) at double speed, then we interpolate between the
measure we reached and its projection following the geodesic between them. This geodesic is easily
described as an image measure of ρτk+1 through McCann’s interpolation. By the construction it is
clear that ρτt is a continuous curve in P(Ω) for t ∈ [0, T ]. We now define a family of time-dependent
vector fields though

vτt :=

{
−2
∇%2(t−kτ)
%2(t−kτ)

+ 2ut, if t ∈ [kτ, (k + 1/2)τ [ ,

−2∇pτk+1 ◦ (id + 2((k + 1)τ − t)∇pτk+1)−1, if t ∈ [(k + 1/2)τ, (k + 1)τ [ ,

and finally let use define the curve of momentums simply as Eτt := ρτt v
τ
t .

Second interpolation. We define another interpolation as follows. Set

ρ̃τt := %t−kτ , if t ∈ [kτ, (k + 1)τ [,

where %t is (again) the solution of the Fokker-Planck equation (3.1) on the time interval [0, τ ] with
initial datum ρτk. Here we do not double its speed. We define the curve of velocities

ṽτt := −∇%t−kτ
%t−kτ

+ ut, if t ∈ [kτ, (k + 1)τ [ ,

and we build the curve of momentums by Ẽτt := ρ̃τt ṽ
τ
t .

Mind the two differences in the construction of ρτt and ρ̃τt (hence in the construction of vτt and ṽτt
and Eτt and Ẽτt ): 1) the first one is continuous in time, while the second one is not; 2) in the first
construction we have taken into account the projection operator explicitly, while in the second one
we see it just in an indirect manner (via the ‘jumps’ occurring at every time of the form t = kτ).

Third interpolation. For each τ , we also define piecewise constant curves,

ρ̂τt := ρτk+1, if t ∈ [kτ, (k + 1)τ [,

v̂τt := ∇pτk+1, if t ∈ [kτ, (k + 1)τ [,

and Êτt := ρ̂τt v̂
τ
t . We remark that pτk+1(1− ρτk+1) = 0, hence the curve of momentums is just

Êτt := ∇pτk+1, if t ∈ [kτ, (k + 1)τ [.

In order to prove the convergence of the scheme above, we will obtain uniform H1([0, T ];W2(Ω))
bounds for the curves ρτ . A key observation here is that the metric derivative (w.r.t. W2) of
the solution of the Fokker-Planck equation is comparable with the time differential of the entropy
functional along the same solution (see Lemma 3.2). Now we state the main theorem of this section.
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Theorem 3.1. There exists a continuous curve [0, T ] 3 t 7→ ρt ∈ W2(Ω) and some measures

E, Ẽ, Ê ∈M([0, T ]× Ω) such that the curves ρτ , ρ̃τ , ρ̂τ converge uniformly in W2(Ω) to ρ and

Eτ
∗
⇀ E, Ẽτ

∗
⇀ Ẽ, Êτ

∗
⇀ Ê, in M([0, T ]× Ω)d, as τ → 0.

Moreover E = Ẽ − Ê and for a.e. t there exist vt, ṽt, v̂t ∈ L2
ρt(Ω)d such that E = ρv, Ẽ = ρṽ,

Ê = ρv̂,

∫ T

0

(
‖vt‖2L2

ρt
+ ‖ṽt‖2L2

ρt
+ ‖v̂t‖2L2

ρt

)
dt < +∞, v = ṽ− v̂, Ẽt = ρtut−∇ρt and v̂t = ∇pt with

pt ≥ 0 and pt(1− ρt) = 0. As a consequence, ρt is a weak solution of the “modified” Fokker-Planck
equation

(3.2)


∂tρt −∆ρt +∇ · (ρt(ut −∇pt)) = 0, in ]0, T ]× Ω,
pt ≥ 0, ρt ≤ 1, pt(1− ρt) = 0, in [0, T ]× Ω,
(∇ρt − ut +∇pt) · n = 0, on [0, T ]× ∂Ω,
ρ(t = 0, ·) = ρ0,

with the natural Neumann boundary conditions on ∂Ω.

To prove this theorem we will use the following tools.

Lemma 3.2. Let us consider a solution %t of the Fokker-Planck equation with the velocity field ut.
Then for any time interval ]a, b[ we have the following estimate

(3.3)
1

2

∫ b

a

∫
Ω

∣∣∣∣−∇%t%t + ut

∣∣∣∣2 %t dxdt ≤ E(%a)− E(%b) +
1

2

∫ b

a

∫
Ω
|ut|2%t dxdt

In particular this implies

(3.4)
1

2

∫ b

a
|%′t|2W2

dt ≤ E(%a)− E(%b) +
1

2

∫ b

a

∫
Ω
|ut|2%t dxdt,

where |%′t|W2 denotes the metric derivative of the curve t 7→ %t ∈W2(Ω).

Proof. To prove this inequality, let us compute first

d

dt
E(%t) =

∫
Ω

(log %t + 1)∂t%t dx =

∫
Ω

log %t(∆%t −∇ · (%tut)) dx

=

∫
Ω

(
−|∇%t|

2

%t
+ ut · ∇%t

)
dx,

where we used the conservation of mass (hence

∫
Ω
∂t%t dx = 0) and the Neumann boundary condi-

tions in the integration by parts. We now compare this with

1

2

∫
Ω

∣∣∣∣−∇%t%t + ut

∣∣∣∣2 %t dx− 1

2

∫
Ω
|ut|2%tdx =

∫
Ω

(
1

2

|∇%t|2

%t
−∇%t · ut

)
dx

≤
∫

Ω

(
|∇%t|2

%t
−∇%t · ut

)
dx = − d

dt
E(%t).

This provides the first part of the statement, i.e. (3.3). If we combine this with the fact that the
metric derivative of the curve t 7→ %t is always less or equal than the L2

%t norm of the velocity field
in the continuity equation, we also get

1

2
|%′t|2W2

− 1

2

∫
Ω
|ut|2%t ≤ −

d

dt
E(%t),
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and hence (3.4). �

Corollary 3.3. From the inequality (3.4) we deduce that

E(%b)− E(%a) ≤
1

2

∫ b

a

∫
Ω
|ut|2%t dxdt,

hence in particular for ut ∈ L∞(Ω)d we have that

E(%b)− E(%a) ≤
1

2
‖u‖2L∞(b− a).

In particular, if %a ≤ 1, then we have that

E(%b) ≤
1

2
‖u‖2L∞(b− a).

The same estimate can be applied to the curve ρ̃τ , with a = kτ and b ∈]kτ, (k+ 1)τ [, thus obtaining
E(ρ̃τt ) ≤ Cτ for every t.

Lemma 3.4. For any ρ ∈ P(Ω) we have E (PK[ρ]) ≤ E(ρ).

Proof. We can assume ρ� Ld otherwise the claim is straightforward. As we pointed out in Section
2.2, we know that there exists a measurable set B ⊆ Ω such that

PK[ρ] = 1B + ρ1Bc .

Hence it is enough to prove that∫
B
ρ log ρdx ≥ 0 =

∫
B
PK[ρ] logPK[ρ]dx,

as the entropies on Bc coincide. As the mass of ρ and PK[ρ] is the same on the whole Ω, and they

coincide on Bc, we have

∫
B
ρ(x)dx =

∫
B
PK[ρ]dx = |B|.

Then, by Jensen’s inequality we have

1

|B|

∫
B
ρ log ρdx ≥

(
1

|B|

∫
B
ρ dx

)
log

(
1

|B|

∫
B
ρdx

)
= 0.

The entropy decay follows. �

To analyse the pressure field we will need the following result.

Lemma 3.5. Let {pτ}τ>0 be a bounded sequence in L2([0, T ];H1(Ω)) and {ρτ}τ>0 a sequence of
piecewise constant curves valued in W2(Ω), which satisfy W2(ρτ (a), ρτ (b)) ≤ C

√
b− a+ τ for all

a < b ∈ [0, T ] and ρτ ≤ C for a fixed constant C. Suppose that

pτ ≥ 0, pτ (1− ρτ ) = 0, ρτ ≤ 1,

and that

pτ ⇀ p weakly in L2([0, T ];H1(Ω)) and ρτ → ρ uniformly in W2(Ω).

Then p(1− ρ) = 0 a.e.

Proof. The proof of this result is the same as in Step 3 of Section 3.2 of [22] (see also [28]), hence
we omit it. �
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Lemma 3.6. (i) For every τ > 0 and k we have

W 2
2 (ρτk, ρ̃

τ
k+1),W 2

2 (ρτk, ρ
τ
k+1) ≤ τC

(
E(ρτk)− E(ρτk+1)

)
+ Cτ2,

where C > 0 only depends on ‖u‖L∞ .
(ii) There exists a constant C, only depending on ρ0 and ||u||L∞, such that B2(Eτ , ρτ ) ≤ C,

B2(Ẽτ , ρ̃τ ) ≤ C and B2(Êτ , ρ̂τ ) ≤ C.
(iii) For the curve [0, T ] 3 t 7→ ρτt we have that∫ T

0
|(ρτt )′|2W2

dt ≤ C,

for a C > 0 independent of τ . In particular, we have a uniform Hölder bound on ρt:
W2(ρt(a), ρt(b)) ≤ C

√
b− a for every b > a.

(iv) Eτ , Ẽτ , Êτ are uniformly bounded sequences in M([0, T ]× Ω)d.

Proof. (i) First by the triangle inequality and by the fact that ρτk+1 = PK[ρ̃τk+1] we have that

(3.5) W2(ρτk, ρ
τ
k+1) ≤W2(ρτk, ρ̃

τ
k+1) +W2(ρ̃τk+1, ρ

τ
k+1) ≤ 2W2(ρτk, ρ̃

τ
k+1).

We use (as before) the notation %t, t ∈ [0, τ ] for the solution of the Fokker-Planck equation (3.1)
with initial datum ρτk, in particular we have %τ = ρ̃τk+1. Using Lemma 3.2 and since %0 = ρτk and

%τ = ρ̃τk+1 we have by (3.4) and using W2(ρτk, ρ̃
τ
k+1) ≤

∫ τ

0
|%′t|W2 dt

W 2
2 (ρτk, ρ̃

τ
k+1) ≤

(
τ

1
2

(∫ τ

0
|%′t|2W2

dt

) 1
2

)2

≤ 2τ (E(%0)− E(%τ )) + τ

∫ τ

0

∫
Ω
|ukτ+t|2%t dxdt

≤ 2τ
(
E(ρτk)− E(ρ̃τk+1)

)
+ Cτ2 ≤ 2τ

(
E(ρτk)− E(ρτk+1)

)
+ Cτ2,

where C > 0 is a constant depending just on ‖u‖L∞ . We also used the fact that E(ρτk+1) ≤ E(ρ̃τk+1),
a consequence of Lemma 3.4.

Now by the means of (3.5) we obtain

W 2
2 (ρτk, ρ

τ
k+1) ≤ τC

(
E(ρτk)− E(ρτk+1)

)
+ Cτ2.

(ii) We use Lemma 3.2 on the intervals of type [kτ, (k+ 1/2)τ [ and the fact that on each interval
of type [(k + 1/2)τ, (k + 1)τ [ the curve ρτt is a constant speed geodesic. In particular, on these
intervals we have

|(ρτ )′|W2 = ‖vτt ‖L2
ρτt

= 2τ‖∇pτk+1‖L2
ρτ
k+1

= 2W2(ρτk+1, ρ̃
τ
k+1).

On the other hand we also have

τ2‖∇pτk+1‖2L2
ρτ
k+1

= W 2
2 (ρτk+1, ρ̃

τ
k+1) ≤W 2

2 (ρτk, ρ̃
τ
k+1) ≤ τC

(
E(ρτk)− E(ρτk+1)

)
+ Cτ2.

Hence we obtain∫ (k+1)τ

kτ
‖vτt ‖2L2(ρτt ) dt

=

∫ (k+1/2)τ

kτ

∫
Ω

4

∣∣∣∣−∇%2(t−kτ)

%2(t−kτ)
+ u2t−kτ

∣∣∣∣2 %2(t−kτ)(x) dxdt+ 4

∫ (k+1)τ

(k+1/2)τ

∫
Ω
|∇pτk+1|2ρτk+1 dxdt

≤ C
(
E(ρτk)− E(ρτk+1)

)
+ Cτ + 2τ‖∇pτk+1‖2L2

ρτ
k+1
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≤ C
(
E(ρτk)− E(ρτk+1)

)
+ Cτ.

Hence by adding up we obtain

B2(Eτ , ρτ ) ≤
∑
k

{
C
(
E(ρτk)− E(ρτk+1)

)
+ Cτ

}
= C

(
E(ρτ0)− E(ρτN+1)

)
+ CT ≤ C.

The estimate on B2(Ẽτ , ρ̃τ ) and B2(Êτ , ρ̂τ ) are completely analogous and descend from the
previous computations.

(iii) The estimate on B2(Eτ , ρτ ) implies a bound on

∫ T

0
|(ρτt )′|2W2

dt because vτ is a velocity field

for ρτ (i.e., the pair (Eτ , ρτ ) solves the continuity equation).
(iv) In order to estimate the total mass of E we write

|Eτ |([0, T ]× Ω) =

∫ T

0

∫
Ω
|vτt |ρτt dxdt ≤

∫ T

0

(∫
Ω
|vτt |2ρτt dx

) 1
2
(∫

Ω
ρτt dx

) 1
2

dt

≤
√
T

(∫ T

0

∫
Ω
|vτt |2ρτt dxdt

) 1
2

≤ C.

The bounds on Ẽτ and Êτ rely on the same argument. �

Proof of Theorem 3.1. We use the tools from Lemma 3.6.
Step 1. By the bounds on the metric derivative of the curves ρτt we get compactness, i.e. there

exists a curve [0, T ] 3 t 7→ ρt ∈ P(Ω) such that ρτt converges uniformly in [0, T ] w.r.t. W2, in
particular weakly-∗ in P(Ω) for all t ∈ [0, T ]. It is easy to see that ρ̃τ and ρ̂τ are converging to the
same curve. Indeed we have ρ̃τt = ρτs̃(t) and ρ̂τt = ρτŝ(t) for |s̃(t) − t| ≤ τ and |ŝ(t) − t| ≤ τ , which

implies W2(ρτt , ρ̃
τ
t ),W2(ρτt , ρ̂

τ
t ) ≤ Cτ

1
2 . This provides the convergence to the same limit.

Step 2. By the boundedness of Eτ , Ẽτ and Êτ in M([0, T ] × Ω)d we have the existence of

E, Ẽ, Ê ∈ M([0, T ] × Ω)d such that Eτ
∗
⇀ E, Ẽτ

∗
⇀ Ẽ, Êτ

∗
⇀ Ê as τ → 0. Now we show that

E = Ẽ − Ê. Indeed, let us show that for any f ∈ Lip([0, T ]× Ω)d test function we have that∣∣∣∣∫ T

0

∫
Ω
ft ·
(
Eτt − (Ẽτt + Êτt )

)
(dx, dt)

∣∣∣∣→ 0,

as τ → 0. First for each k ∈ {0, . . . , N} we have that∫ (k+1/2)τ

kτ

∫
Ω
ft · Eτt (dx,dt) =

∫ (k+1)τ

kτ

∫
Ω
f(t+kτ)/2 · (−∇%t−kτ + ut%t−kτ )(dx, dt)

=

∫ (k+1)τ

kτ

∫
Ω
ft · Ẽτt (dx,dt) +

∫ (k+1)τ

kτ

∫
Ω

(
f(t+kτ)/2 − ft

)
· Ẽτt (dx,dt)

and∫ (k+1)τ

(k+1/2)τ

∫
Ω

ft · Eτt (dx, dt) =

∫ (k+1)τ

kτ

∫
Ω

−f(t+(k+1)τ)/2 ◦ (id + ((k + 1)τ − t)∇pτk+1) · ∇pτk+1ρ
τ
k+1(dx, dt)

= −
∫ (k+1)τ

kτ

∫
Ω

ft · Êτt (dx, dt)

+

∫ (k+1)τ

kτ

∫
Ω

(
ft − f(t+(k+1)τ)/2 ◦ (id + ((k + 1)τ − t))

)
· v̂τt ρ̂τt (dx, dt)
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This implies that∣∣∣∣∣
∫ T

0

∫
Ω
ft · (Eτt − Ẽτt + Êτt )(dx, dt)

∣∣∣∣∣ ≤∑
k

∫ (k+1)τ

kτ
Lip(f)τ

∫
Ω
|Ẽτt |(dx,dt)

+
∑
k

∫ (k+1)τ

kτ
Lip(f)τ

∫
Ω

(1 + |v̂τt |)|Êτt |(dx, dt)

≤ τCLip(f)
(
|Ẽτ |([0, T ]× Ω) + |Êτ |([0, T ]× Ω) + B2(Ê, ρ̂)

)
≤ τCLip(f),

for a uniform constant C > 0. Letting τ → 0 we prove the claim.
Step 3. The bounds on B2(Eτ , ρτ ),B2(Ẽτ , ρ̃τ ) and B2(Êτ , ρ̂τ ) pass to the limit by semicontinuity

and allow to conclude that E, Ẽ and Ê are vector valued Radon measures absolutely continuous
w.r.t. ρ. Hence there exist vt, ṽt, v̂t ∈ L2

ρt(Ω) such that E = ρv, Ẽ = ρṽ and Ê = ρv̂.

Step 4. We now look at the equations satisfied by E, Ẽ and Ê. First we use ∂tρ
τ +∇ · Eτ = 0,

we pass to the limit as τ → 0, and we get

∂tρ+∇ · E = 0.

Then, we use Ẽτ = −∇ρ̃τ + utρ̃
τ , we pass to the limit again as τ → 0, and we get

Ẽ = −∇ρ+ utρ.

To justify the above limit, the only delicate point is passing to the limit the term utρ̃
τ , since u

is only L∞, and ρ̃τ converges weakly as measures, and we are a priori only allowed to multiply it
by continuous functions. Yet, we remark that by Corollary 3.3 we have that E(ρ̃τt ) ≤ Cτ for all
t ∈ [0, T ]. In particular, this provides, for each t, uniform integrability for ρ̃τt and turns the weak
convergence as measures into weak convergence in L1. This allows to multiply by ut in the weak
limit.

Finally, we look at Êτ . There exists a piecewise constant (in time) function pτ (defined as pτk+1

on every interval ]kτ, (k + 1)τ ]) such that pτ ≥ 0, pτ (1− ρ̂τ ) = 0,

(3.6)

∫ T

0

∫
Ω
|∇pτ |2(dx,dt) =

∫ T

0

∫
Ω
|∇pτ |2ρ̂τ (dx,dt) =

∫ T

0

∫
Ω
|v̂τ |2ρ̂τ (dx,dt) ≤ C

and Êτ = ∇pτ ρ̂τ = ∇pτ . The bound (3.6) implies that pτ is uniformly bounded in L2(0, T ;H1(Ω)).
Since for every t we have |{pτt = 0}| ≥ |{ρ̂τt < 1}| ≥ |Ω| − 1, we can use a version of Poincaré’s
inequality, and get a uniform bound in L2([0, T ];L2(Ω)) = L2([0, T ] × Ω). Hence there exists

p ∈ L2([0, T ] × Ω) such that pτ ⇀ p weakly in L2 as τ → 0. In particular we have Ê = ∇p.
Moreover it is clear that p ≥ 0 and by Lemma 3.5 we obtain p(1− ρ) = 0 a.e. as well. Indeed, the
assumptions of the Lemma are easily checked: we only need to estimate W2(ρ̂τ (a), ρ̂τ (b)) for b > a,
but we have

W2(ρ̂τ (a), ρ̂τ (b)) = W2(ρτ (kaτ), ρτ (kbτ)) ≤ C
√
kb − ka, for kbτ ≤ b+ τ and ka ≥ a.

Once we have Ê = ∇p with p(1− ρ) = 0, p ∈ L2([0, T ];H1(Ω)) and ρ ∈ L∞, we can also write

Ê = ∇p = ρ∇p.
If we sum up our results, using E = Ẽ − Ê, we have

∂tρ−∆ρ+∇ · (ρ(u−∇p)) = 0 together with p ≥ 0, ρ ≤ 1, p(1− ρ) = 0.
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As usual, this equation is satisfied in a weak sense, with Neumann boundary conditions. �

4. Uniform Lip([0, T ];W1)) and BV estimates

In this section we provide uniform estimates for the curves ρτ , ρ̃τ and ρ̂τ of the following form:
we prove uniform BV (in space) bounds on ρ̃τ (which implies the same bound for ρ̂τ ) and uniform
Lipschitz bounds in time for the W1 distance for ρτ . This is a small improvement compared to the
previous section, both in time regularity (Lipschitz instead of H1, but for W1 instead of W2) and
in space (any higher order regularity of ρ was absent from the previous results). Nevertheless there
is a price to pay for this improvement: we have to assume higher regularity for the velocity field.
These uniform Lipschitz in time bounds are based both on BV estimates for the Fokker-Planck
equation (see Lemma A.1 from Appendix A) and for the projection operator PK (see [10]). The
assumption on u is essentially the following: we need to control the growth of the total variation
of the solutions of the Fokker-Planck equation (3.1), and we need to iterate this bound along time
steps.

We will discuss in the Appendix the different BV estimates on the Fokker-Planck equation that
we were able to find. The desired estimate is true for ut ∈ C1,1(Ω) and ut(x) · n(x) = 0 for.
x ∈ ∂Ω, and seems to be an open problem if u is only Lipschitz continuous. We will also assume
ρ0 ∈ BV (Ω). Despite these extra regularity assumptions, we think these estimates have their own
interest, exploiting some finer properties of the solutions of the Fokker-Planck equation and of the
Wasserstein projection operator.

Before entering into the details of the estimates, we want to discuss why we concentrate on BV
estimates (instead of Sobolev ones) and on W1 (instead of Wp, p > 1). The main reason is the role
of the projection operator: indeed, even if ρ ∈ W 1,p(Ω), we do not have in general PK[ρ] ∈ W 1,p

because the projection creates some jumps at the boundary of {PK[ρ] = 1}. This prevents from
obtaining any W 1,p estimate for p > 1. On the other hand, [10] exactly proves a BV estimate on
PK[ρ] and paves the way to BV bounds for our equation. Concerning the regularity in time, we
observe that the velocity field in the Fokker-Planck equation contains a term in ∇ρ/ρ. Since the
metric derivative in Wp is given by the Lp norm (w.r.t. ρt) of the velocity field, it is clear that
estimates in Wp for p > 1 would require spatial W 1,p estimates on the solution itself, which are
impossible for p > 1. The precise result that we prove is

Theorem 4.1. Supposing ‖ut‖C1,1 ≤ C and ρ0 ∈ BV (Ω), then we ‖ρ̃τt ‖BV ≤ C and W1(ρτk, ρ
τ
k+1) ≤

Cτ . As a consequence we also have ρ ∈ Lip([0, T ];W1)) ∩ L∞([0, T ];BV (Ω)).

To prove this theorem we need the following lemmas.

Lemma 4.2. Suppose ‖ut‖Lip ≤ C and ut · n = 0 on ∂Ω. Then for the solution %t of (A.1) we
have the estimate

‖%t‖L∞ ≤ ‖%0‖L∞eCt,
where C = ‖∇ · ut‖L∞.

Proof. Let us set f : [0,+∞[×Ω→ R, ft := %te
−Ct ≥ 0 with a fixed constant C > 0. We have

∂tft = ∂t%te
−Ct − Cft = e−Ct(∆%t −∇ · (%tut))− Cft,

which means that ft is a solution of

∂tft = ∆ft −∇ · (ftut)− Cft.
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Now for a p > 1 let us denote Ip(t) := ‖ft‖pLp and compute

d

dt
Ip(t) = p

∫
Ω
|ft|p−1∂tft dx = p

∫
Ω
|ft|p−1(∆ft −∇ · (ftut)− Cft) dx

= −pCIp(t)− p(p− 1)

∫
Ω
|ft|p−2|∇ft|2 dx+ p(p− 1)

∫
Ω
|ft|p−1∇ft · ut dx

≤ −pCIp(t)− (p− 1)

∫
Ω
|ft|p∇ · ut dx

≤ ((p− 1)‖∇ · ut‖L∞ − pC)Ip(t)

By Grönwall’s lemma we obtain that

Ip(t) ≤ et((p−1)‖∇·u‖L∞−pC)Ip(0),

hence

I1/p
p (t) ≤ et((p−1)/p‖∇·u‖L∞−C)I1/p

p (0),

and sending p→ +∞ we get that

‖ft‖L∞ ≤ et(‖∇·u‖L∞−C)‖f0‖L∞ .

Using the definition of ft we get the estimation

‖%t‖L∞ ≤ et‖∇·u‖L∞‖%0‖L∞ ,

which proves the claim. �

We remark that the above lemma implies in particular that after every step in the Main scheme
we have ρ̃τk+1 ≤ eτc ≤ 1 + Cτ, where c := ‖∇ · u‖L∞ . Let us now present the following lemma as
well.

Corollary 4.3. Along the iterations of our Main scheme, for every k we have W1(ρ̃τk+1, ρ
τ
k+1) ≤ τC

for a constant C > 0 independent of τ .

Proof. With the saturation property of the projection (see Section 2.2 or [10]), we know that there
exists a measurable set B ⊆ Ω such that ρτk+1 = ρ̃τk+11B + 1Ω\B. On the other hand we know that

W1(ρ̃τk+1, ρ
τ
k+1) = sup

f∈Lip1(Ω), 0≤f≤diam(Ω)

∫
Ω
f(ρ̃τk+1 − ρτk+1) dx

= sup
f∈Lip1(Ω), 0≤f≤diam(Ω)

∫
Ω\B

f(ρ̃τk+1 − 1) dx ≤ τC |Ω|diam(Ω).

We used the fact that the competitors f in the dual formula can be taken positive and bounded
by the diameter of Ω, just by adding a suitable constant. This implies as well that C is depending
on c, |Ω| and diam(Ω). �

Proof of Theorem 4.1. First we take care of the BV estimate. Lemma A.1 in the Appendix guar-
antees, for t ∈]kτ, (k+1)τ [, that we have TV (ρ̃τt ) ≤ Cτ+eCτTV (ρτk). Together with the BV bound
on the projection that we presented in Section 2.2 (taken from [10]), this can be iterated, providing
a uniform bound (depending on TV (ρ0), T and supt ‖ut‖C1,1) on ‖ρ̃τt ‖BV . Passing this estimate to
the limit as τ → 0 we get ρ ∈ L∞([0, T ];BV (Ω)).
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Then we estimate the behavior in terms of W1. We estimate

W1(ρτk, ρ̃
τ
k+1) ≤

∫ (k+1)τ

kτ
|(ρ̃τt )′|W1 dt ≤

∫ (k+1)τ

kτ

∫
Ω

(
|∇ρ̃τt |
ρ̃τt

+ |ut|
)
ρ̃τt dxdt

≤
∫ (k+1)τ

kτ
‖ρ̃τt ‖BV dt+ Cτ ≤ Cτ.

Hence, we obtain

W1(ρτk, ρ
τ
k+1) ≤W1(ρτk, ρ̃

τ
k+1) +W1(ρ̃τk+1, ρ

τ
k+1) ≤ τC.

This in particular means, for b > a,

W1(ρ̂τ (a), ρ̂τ (b)) ≤ C(b− a+ τ).

We can pass this relation to the limit, using that, for every t, we have ρ̂τt → ρt in W2(Ω) (and
hence also in W1(Ω), since W1 ≤W2), we get

W1(ρ(a), ρ(b)) ≤ C(b− a),

which means that ρ is Lipschitz continuous in W1(Ω). �

5. Variations on a theme: some reformulations of the Main scheme

In this section we propose some alternative approaches to study the problem (1.4). The general
idea is to discretize in time, and give a way to produce a measure ρτk+1 starting from ρτk. Observe
that the interpolations that we proposed in the previous sections ρτ , ρ̃τ and ρ̂τ are only technical
tools to state and prove a convergence result, and the most important point is exactly the definition
of ρτk+1.

The alternative approaches proposed here explore different ideas, more difficult to implement
than then one that we presented in Section 3, and/or restricted to some particular cases (for
instance when u is a gradient). They have their own modeling interest and this is the main reason
justifying their sketchy presentation.

5.1. Variant 1: transport, diffusion then projection. We recall that the original splitting
approach for the equation without diffusion ([23, 28]) exhibited an important difference compared
to what we did in Section 3. Indeed, in the first phase of each time step (i.e. before the projection)
the particles follow the vector field u and ρ̃τk+1 was not defined as the solution of a continuity
equation with advection velocity given by ut, but as the image of ρτk via a straight-line transport:
ρ̃τk+1 := (id + τukτ )#ρ

τ
k. One can wonder whether it is possible to follow a similar approach here.

A possible way to proceed is the following: take a random variable X distributed according to
ρτk, and define ρ̃τk+1 as the law of X + τukτ (X) +Bτ , where B is a Brownian motion, independent
of X. This exactly means that every particle moves starting from its initial position X, following
a displacement ruled by u, but adding a stochastic effect in the form of the value at time τ of a
Brownian motion. We can check that this means

ρ̃τk+1 := ητ ∗ ((id + τukτ )#ρ
τ
k) ,

where ητ is a Gaussian kernel with zero-mean and variance τ , i.e. ητ (x) :=
1√
4τπ

e−
|x|2
4τ .

Then we define

ρτk+1 := PK [ρ̃k+1] .
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Despite the fact that this scheme is very natural and essentially not that different from the
Main scheme, we have to be careful with the analysis. First we have to quantify somehow the
distance Wp(ρ

τ
k, ρ̃

τ
k+1) for some p ≥ 1 and show that this is of order τ in some sense. Second, we

need to be careful when performing the convolution with the heat kernel (or adding the Brownian
motion, which is the same): this requires either to work in the whole space (which was not our
framework) or in a periodic setting (Ω = Td, the flat torus, which is qutie restrictive). Otherwise,
the “explicit” convolution step should be replaced with some other construction, such as following
the Heat equation (with Neumann boundary conditions) for a time τ . But this brings back to a
situation very similar to the Main scheme, with the additional difficulty that we do not really have
estimates on (id + τukτ )#ρ

τ
k.

5.2. Variant 2: gradient flow techniques for gradient velocity fields. In this section we
assume that the velocity field of the population is given by the opposite of the gradient of a function,
ut = −∇Vt a typical example is given when we take for V the distance function to the exit (see the
discussions in [22] about this type of question). We start from the case where V does not depend
on time, and we suppose V ∈ W 1,1(Ω). In this particular case – beside the splitting approach –
the problem has a variational structure, hence it is possible to show the existence by the means of
gradient flows in Wasserstein spaces.

Since the celebrated paper of Jordan, Kinderlehrer and Otto ([13]) we know that the solutions
of the Fokker-Planck equation (with a gradient vector field) can be obtained with the help of the
gradient flow of a perturbed entropy functional with respect to the Wasserstein distance W2. This
formulation of JKO scheme was also used in [22] for the first order model with density constraints.
It is easy to combine the JKO scheme with density constraints to study the second order/diffusive
model. As a slight modification of the model from [22], we can consider the following discrete
implicite Euler (or JKO) scheme. As usual, we fix a time step τ > 0, ρτ0 = ρ0 and for all k ∈ N we
just need to define ρτk+1. We take

(5.1) ρτk+1 = argminρ∈P(Ω)

{∫
Ω
V (x)ρ(x) dx+ E(ρ) + IK(ρ) +

1

2τ
W 2

2 (ρ, ρτk)

}
,

where IK is the indicator function of K, which is

IK(x) :=

{
0, if x ∈ K,
+∞, otherwise.

The usual techniques from [13, 22] can be used to identify that the problem (1.4) is the gradient

flow of the functional ρ 7→ J(ρ) :=

∫
Ω
V (x)ρ(x) dx + E(ρ) + IK(ρ) and that the above discrete

scheme converges (up to a subsequence) to a solution of (1.4), thus proving existence. The key
estimate for compactness is

1

2τ
W 2

2 (ρτk+1, ρ
τ
k) ≤ J(ρτk)− J(ρτk+1),

which can be summed up (as on the r.h.s. we have a telescopic series), thus obtaining the same
bounds on B2 that we used in Section 3.

It is also possible to study a variant where V depends on time. We assume for simplicity that
V ∈ Lip([0, T ]×Ω) (this is a simplification, less regularity in space, such asW 1,1, could be sufficient).
In this case we define

Jt(ρ) :=

∫
Ω
Vt(x)ρ(x) dx+ E(ρ) + IK(ρ)
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and

(5.2) ρτk+1 = argminρ∈P(Ω)

{
Jkτ (ρ) +

1

2τ
W 2

2 (ρ, ρτk)

}
,

The analysis proceeds similarly, with the only exception that the we get

1

2τ
W 2

2 (ρτk+1, ρ
τ
k) ≤ Jkτ (ρτk)− Jkτ (ρτk+1),

which is no more a a telescopic series. Yet, we have Jkτ (ρτk+1) ≥ J(k+1)τ (ρτk+1) + Lip(V )τ , and we
can go on with a telescopic sum plus a remainder of the order of τ .

5.3. Variant 3: transport then gradient flow-like step with the penalized entropy func-
tional. We present now a different scheme, which combines some of the previous approaches. It
could formally provide a solution of the same equation, but presents some extra difficulties.

We define now ρ̃τk+1 := (id + τukτ )#ρ
τ
k and with the help of this we define

ρτk+1 := argminρ∈KE(ρ) +
1

2τ
W 2

2 (ρ, ρ̃τk+1).

In the last optimization problem we minimize a strictly convex and l.s.c. functionals, and hence we
have existence and uniqueness of the solution. The formal reason for this scheme being adapted to
the equation is that we perform a step of a JKO scheme in the spirit of [13] (without the density
constraint) or of [22] (without the entropy term). This should let a term −∆ρ−∇ · (ρ∇p) appear
in the evolution equation. The term ∇ · (ρu) is due to the first step (the definition of ρ̃τk+1). To
explain a little bit more for the unexperienced reader, we consider the optimality conditions for the
above minimization problem. Following [22], we can say that ρ ∈ K is optimal if and only if there
exists a constant ` ∈ R and a Kantorovich potential ϕ for the transport from ρ to ρτk such that

ρ =


1 on

(
ln ρ+ ϕ

τ

)
< `,

0 on
(
ln ρ+ ϕ

τ

)
> `,

∈ [0, 1] on
(
ln ρ+ ϕ

τ

)
= `.

We then define p = (` − ln ρ − ϕ
τ )+ and we get

p ∈ press(ρ). Moreover, ρ−a.e.∇p = −∇ρρ −
∇ϕ
τ .

We then use the fact that the optimal transport
is of the form T = id−∇ϕ and obtain a situation
as is sketched in Figure 2.

•ρτk

id
+
τuk

τ

•
ρ̃τk+1 id +

τ(∇p+ ∇ρ
ρ )

•ρτk+1
id−τ(u(k+1)τ−∇p−∇ρρ )+o(τ)

Figure 2. One time step

Notice that (id + τukτ )−1(id + τp) = id− τ(u(k+1)τ −∇p) + o(τ) provided u is regular enough.
Formally we can pass to the limit τ → 0 and have

∂tρ−∆ρ+∇ · (ρ(u−∇p)) = 0.

Yet, this turns out to be quite näıve, because we cannot get proper estimates on W2(ρτk, ρ
τ
k+1).

Indeed, this is mainly due to the hybrid nature of the scheme, i.e. a gradient flow for the diffusion
and the projection part on one hand and a free transport on the other hand. The typical estimate
in the JKO scheme comes from the fact that one can bound W2(ρτk, ρ

τ
k+1)2/τ with the opposite

of the increment of the energy, and that this gives rise to a telescopic sum. Yet, this is not the
case whenever the base point for a new time step is not equal to the previous minimizer. These
kinds of difficulties are matter of current study, in particular for mixed systems and/or multiple
populations.
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Appendix A. BV -type estimates for the Fokker-Planck equation

Here we present some Total Variation (TV ) decay results (in time) for the solutions of the
Fokker-Planck equation. Some are very easy, some trickier. The goal is to look at those estimates
which can be easily iterated in time and combined with the decay of the TV via the projection
operator, as we did in Section 4.

Let us take a vector field v : [0,+∞[×Ω → Rd (we will choose later which regularity we need)
and consider in Ω the problem

(A.1)

 ∂tρt −∆ρt +∇ · (ρtvt) = 0, in ]0,+∞[×Ω,
(∇ρt − vt) · n = 0, on ]0,+∞[×∂Ω,
ρ(0, ·) = ρ0, in Ω,

for ρ0 ∈ BV (Ω) ∩ P(Ω).

Lemma A.1. Suppose ‖vt‖C1,1 ≤ C for a.e. t ∈ [0,+∞[. Suppose that either Ω = Td, or that Ω is
convex and v · n = 0 on ∂Ω. Then, we have the following total variation decay estimate

(A.2)

∫
Ω
|∇ρt|dx ≤ C(t− s) + eC(t−s)

∫
Ω
|∇ρs| dx, ∀ 0 ≤ s ≤ t,

where C > 0 is a constant depending just on the C1,1 norm of v.

Proof. First we remark that by the regularity of v the quantity ‖v‖L∞ + ‖Dv‖L∞ + ‖∇(∇ · v)‖L∞
is uniformly bounded. Let us drop now the dependence on t in our notation and calculate in
coordinates

d

dt

∫
Ω

|∇ρ|dx =

∫
Ω

∇ρ
|∇ρ|

· ∇(∂tρ) dx =

∫
Ω

∇ρ
|∇ρ|

· ∇(∆ρ−∇ · (vρ)) dx =

∫
Ω

∑
j

ρj
|∇ρ|

(∑
i

ρiij − (∇ · (vρ))j

)
dx

= −
∫

Ω

∑
i,j,k

(
ρ2
ij

|∇ρ|
− ρjρkρkiρij

|∇ρ|3

)
dx+B1 −

∫
Ω

∑
j,i

ρj
|∇ρ|

(
viijρ+ viiρj + vijρi + viρij

)
dx

≤ B1 + C + C

∫
Ω

|∇ρ|dx+

∫
Ω

|∇ρ||∇ · v|dx+B2

≤ B1 +B2 + C + C

∫
Ω

|∇ρ|dx.

Here the Bi are the boundary terms, i.e.

B1 :=

∫
∂Ω

∑
i,j

ρjn
iρij
|∇ρ|

dHd−1 and B2 := −
∫
∂Ω
v · n|∇ρ|dHd−1.

The constant C > 0 only depends on ‖v‖L∞ + ‖∇ · v‖L∞ + ‖∇(∇ · v)‖L∞ . We used as well the fact

that −
∫

Ω

∑
i,j,k

(
ρ2
ij

|∇ρ|
− ρjρkρkiρij

|∇ρ|3

)
dx ≤ 0.

Now, it is clear that in the case of the torus the boundary terms B1 and B2 do not exist, hence
we conclude by Grönwall’s lemma. In the case of the convex domain we have B2 = 0 (because of
the assumption v · n = 0) and B1 ≤ 0 because of the next Lemma A.2. �

Lemma A.2. Suppose that u : Ω → Rd is a smooth vector field with u · n = 0 on ∂Ω, ρ is a
smooth function with ∇ρ · n = 0 on ∂Ω, and that Ω ⊂ Rd is a smooth convex set parametrized as
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Ω = {h < 0} for a smooth convex function h with |∇h| = 1 on ∂Ω (so that n = ∇h on ∂Ω). Then

we have, on the whole boundary ∂Ω,
∑
i,j

uijρjn
i = −

∑
i,j

uihijρj .

In particular, we have
∑
i,j

ρijρjn
i ≤ 0.

Proof. The Neumann boundary assumption on u means u(γ(t)) · ∇h(γ(t)) = 0 for every curve γ
valued in ∂Ω and for all t. Differentiating in t, we get∑

i,j

uij(γ(t))(γ′(t))jhi(γ(t)) +
∑
i,j

ui(γ(t))hij(γ(t))(γ′(t))j = 0.

Take a point x0 ∈ ∂Ω and choose a curve γ with γ(t0) = x0 and γ′(t0) = ∇ρ(x0) (which is possible,
since this vector is tangent to ∂Ω by assumption). This gives the first part of the statement. The

second part, i.e.
∑
i,j

ρijρjn
i ≤ 0, is obtained by taking u = ∇ρ and using that D2h(x0) is a positive

definite matrix. �

Remark A.3. If we look attentively at the proof of Lemma A.1, we can see that we did not really
exploit the regularizing effects of the diffusion term in the equation. This means that the regularity
estimate that we provide are the same that we would have without diffusion: in this case, the
density ρt is obtained from the initial density as the image through the flow of v. Thus, the density
depends on the determinant of the Jacobian of the flow, hence on the derivatives of v. It is normal
that, if we want BV bounds on ρt, we need assumptions on two derivatives of v.

We would like to prove some form of BV estimates under weaker regularity assumptions on v,
trying to exploit the diffusion effects. In particular, we would like to treat the case where v is only
C0,1. As we will see in the following lemma, this degenerates in some sense.

Lemma A.4. Suppose that Ω is either the torus or a smooth convex set Ω = {h < 0} parameterized
as a level set of a smooth convex function h. Let vt : Ω→ Rd be a vector field for t ∈ [0, T ], Lipschitz
and bounded in space, uniformly in time. In the case of a convex domain, suppose v ·n = 0 on ∂Ω.
Let H : Rd → R be given by H(z) :=

√
ε2 + |z|2. Now let ρt (sufficiently smooth) be the solution of

the Fokker-Planck equation with homogeneous Neumann boundary condition.
Then there exists a constant C > 0 (depending on v and Ω) such that

(A.3)

∫
Ω
H(∇ρt) dx ≤

∫
Ω
H(∇ρ0) dx+ Cεt+

C

ε

∫ t

0
‖ρs‖2L∞ds.

Proof. First let us discuss about some properties of H. It is smooth, its gradient is ∇H(z) =
z

H(z)
and it satisfies ∇H(z) · z ≤ H(z), ∀z ∈ Rd. Moreover its Hessian matrix is given by

[Hij(z)]i,j∈{1,...,d} =

[
δijH2(z)− zizj

H3(z)

]
i,j∈{1,...,d}

=
1

H(z)
Id −

1

H3(z)
z ⊗ z, ∀ z ∈ Rd,

where δij =

{
1, if i = j,
0, if j 6= j,

is the Kronecker symbol. Note that, from this computation, the

matrix D2H ≥ 0 is bounded from above by
1

H
, and hence by ε−1. Moreover we introduce a

uniform constant C > 0 such that ‖v‖2L∞ |Ω|+ ‖∇ · v‖L∞ + ‖Dv‖L∞ ≤ C.
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Now to show the estimate of this lemma we calculate the quantity
d

dt

∫
H(∇ρt) dx.

d

dt

∫
Ω
H(∇ρt) dx =

∫
Ω
∇H(∇ρt) · ∂t∇ρt dx =

∫
Ω
∇H(∇ρt) · ∇(∆ρt −∇ · (vtρt)) dx

=

∫
Ω
∇H(∇ρt) · ∇∆ρt dx−

∫
Ω
∇H(∇ρt) · ∇(∇ · (vtρt)) dx

=: (I) + (II)

Now we study each term separately and for the simplicity we drop the t subscripts in the followings.
We start from the case of the torus, where there is no boundary term in the integration by parts.

(I) =

∫
Ω
∇H(∇ρ) · ∇∆ρ dx =

∫
Ω

∑
j,i

Hj(∇ρ)ρjii dx = −
∫

Ω

∑
j,i,k

Hkj(∇ρ)ρikρji dx

(II) = −
∫

Ω
∇H(∇ρ) · ∇(∇ · (vρ)) dx = −

∫
Ω

∑
i,j

Hj(∇ρ)(viρ)ij dx

=

∫
Ω

∑
i,j,k

Hjk(∇ρ)ρkiv
i
jρdx+

∫
Ω

∑
i,j,k

Hjk(∇ρ)ρkiv
iρj dx

=: (IIa) + (IIb).

First look at the term (IIa). Since the matrix Hjk is positive definite, we can apply a Young
inequality for each index i and obtain

(IIa) =

∫
Ω

∑
i,j,k

Hjk(∇ρ)ρkiv
i
jρdx ≤ 1

2

∫
Ω

∑
i,j,k

Hjk(∇ρ)ρkiρij dx+
1

2

∫
Ω

∑
i,j,k

Hjk(∇ρ)vijv
i
kρ

2 dx

≤ 1

2
|(I)|+ C‖ρ‖2L2‖D2H‖L∞ .

The L2 norm in the second term will be estimated by the L∞ norm for the sake of simplicity (see
Remark A.5 below).

For the term (IIb) we first make a point-wise computation∑
i,j,k

Hjk(∇ρ)ρkiv
iρj =

1

H3(∇ρ)

∑
i

[D2
i ρ ·

(
ε2Id + |∇ρ|2Id −∇ρ⊗∇ρ

)
· ∇ρ]vi

=
ε2

H3(∇ρ)

∑
i

viD2
i ρ · ∇ρ = −ε2

∑
i

vi∂i

(
1

H(∇ρ)

)
.

where D2
i ρ denotes the ith row in the Hessian matrix of ρ and we used

(
|∇ρ|2Id −∇ρ⊗∇ρ

)
·∇ρ = 0.

Integrating by parts we obtain

(IIb) = ε2

∫
Ω

(∇ · v)
1

H(∇ρ)
dx ≤ Cε2‖1/H‖L∞ ≤ Cε,

where we used H(z) ≥ ε.
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Summing up all the terms we get and using ‖D2H‖ ≤ ε−1 we get

d

dt

∫
Ω
H(∇ρt) dx ≤ −1

2
|(I)|+ C‖ρt‖2L∞‖D2H‖L∞ + Cε ≤ Cε+ C‖ρt‖2L∞ε−1,

which proves the claim.
If we switch to the case of a smooth bounded convex domain Ω, we have to handle boundary

terms. These terms are ∫
∂Ω

∑
i,j

Hj(∇ρ)ρijn
i −
∫
∂Ω

∑
i,j

Hj(∇ρ)ρvijn
i,

where we ignored those terms involving nivi (i.e., the integration by parts in (IIb), and the term
Hj(∇ρ)ρjn

ivi in the integration by parts of (IIa)), since we already supposed v · n = 0. We use
here Lemma A.2, which provides∑
i,j

Hj(∇ρ)ρijn
i−ρHj(∇ρ)vijn

i =
1

H(∇ρ)

∑
i,j

(
ρjρijn

i − ρρjvijni
)

= − 1

H(∇ρ)

∑
i,j

(
ρjhijρi − ρρjhijvi

)
.

If we use the fact that the matrixD2h is positive definite and a Young inequality, we get
∑

i,j ρjhijρi ≥
0 and

ρ
∑
i,j

|ρjhijvi| ≤
1

2

∑
i,j

ρjhijρi +
1

2

∑
i,j

ρ2vjhijv
i,

which implies

1

H(∇ρ)

∑
i,j

(
ρjρijn

i − ρρjvijni
)
≤ ρ2

H(∇ρ)
‖D2h‖L∞ |v|2 ≤

C‖ρ‖2L∞
ε

.

This provides the desired estimate on the boundary term. �

Remark A.5. In the above proof, we needed to use the L∞ norm of ρ only in the boundary term.
When there is no boundary term, the L2 norm is enough, in order to handle the term (IIa). In
both cases, the norm of ρ can be bounded in terms of the initial norm multiplied by eCt, where
C bounds the divergence of v. On the other hand, in the torus case, one only needs to suppose
ρ0 ∈ L2 and in the convex case ρ0 ∈ L∞. Both assumptions are satisfied in the applications to
crowd motion with density constraints.

We have seen that the constants in the above inequality depend on ε and explode as ε→ 0. This
prevents us to obtain a clean estimate on the BV norm in this context, but at least proves that
ρ0 ∈ BV ⇒ ρt ∈ BV for all t > 0 (to achieve this result, we just need to take ε = 1). Unfortunately,

the quantity which is estimated is not the BV norm, but the integral

∫
H(∇ρ). This is not enough

for the purpose of the applications to Section 4, as it is unfortunately not true that the projection
operator decreases the value of this other functional3.

If we stay interested to the value of the BV norm, we can provide the following estimate.

3Here is a simple counter-example: consider µ = g(x)dx a BV density on [0, 2] ⊂ R, with g defined as follows.
Divide the interval [0, 2] into 2K intervals Ji of length 2r (with 2rK = 1); call ti the center of each interval Ji (i.e.

ti = i2r+ r, for i = 0, . . . , 2K − 1) and set g(x) = L+
√
r2 − (x− ti)2 on each Ji with i odd, and g(x) = 0 on Ji for

i even, taking L = 1− πr/4. It is not difficult to check that the projection of µ is equal to the indicator function of
the union of all the intervals Ji with i odd, and that the value of

∫
H(∇ρ) has increased by K(2− π/2)r = 1− π/4,

i.e. by a positive constant (see Figure 3).
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L
1

µ

L
1 PK[µ]

Figure 3. The counter-example to the decay of

∫
H(∇ρ), which corresponds to

the total legth of the graph

Lemma A.6. Under the assumptions of Lemma A.4, if we suppose ρ0 ∈ BV (Ω) ∩ L∞(Ω), then,
for t ≤ T , we have

(A.4)

∫
Ω
|∇ρt| dx ≤

∫
Ω
|∇ρ0|dx+ C

√
t,

where the constant C depends on v, on T and on ‖ρ0‖L∞.

Proof. Using the L∞ estimate of Lemma 4.2, we will assume that ‖ρt‖L∞ is bounded by a constant
(which depends on v, on T and on ‖ρ0‖L∞). Then, we can write∫

Ω
|∇ρt| dx ≤

∫
Ω
H(∇ρt) dx ≤

∫
Ω
H(∇ρ0) dx+ Cεt+

Ct

ε
≤
∫

Ω
(|∇ρ0|+ ε) dx+ Cεt+

Ct

ε
.

It is sufficient to choose, for fixed t, ε =
√
t, in order to prove the claim. �

Unfortunately, this
√
t behavior is not suitable to be iterated, and the above estimate is useless

for the sake of Section 4. The existence of an estimate (for v Lipschitz) of the form TV (ρt) ≤
TV (ρ0) + Ct, or TV (ρt) ≤ TV (ρ0)eCt, or even f(TV (ρt)) ≤ f(TV (ρ0))eCt, for any increasing
function f : R+ → R+, seems to be an open question.
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