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Abstract. This article deals with a two-player zero-sum differential game with infinitely
many initial positions and without Isaacs condition. The structure of information is asymmet-
ric: The first player has a private information on the initial position while the second player
knows only a probability distribution on the initial position. In the present model, we face two
difficulties: First, the incomplete information structure does not reduce to a finite set (as in the
famous Aumann-Maschler model for repeated games). Second, the game does not satisfy the
Isaacs condition (crucially used in classical approaches to differential games). Therefore, we use
tools from optimal transportation theory and stochastic control.

Our main result shows that with a suitable concept of mixed strategies, there exists a value
of the game with such random strategies.

As a byproduct of our approach, we obtain the Lipschitz continuity of the random value
with respect to the Wasserstein distance and we show the existence of a value in pure strategies
in the specific case of an initial distribution without atoms. We also discuss an extension of our
model when the asymmetric information concerns continuous scenarios.
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Introduction

We consider a two-player differential game with dynamics described by the following ordinary
differential equation

dXs

ds
= f (Xs, us, vs) , s ∈ [t, T ] (1)

parameterized by two measurable controls u : [t, T ] 7→ U and v : [t, T ] 7→ V chosen by the
players 1 and 2, respectively. Here U and V denote two compact metric spaces. The function
f : Rn×U×V 7→ Rn satisfies standard regularity assumptions in order to have a unique solution
s 7→ Xx,u,v

s of (1) associated with an initial condition X0 = x and a pair of measurable controls
(u, v).

The first player aims to minimize the payoff g(Xx,u,v
T ), while the second player’s objective is

to maximize it (where g : Rn 7→ R is a given cost function).
Let us now describe the structure of information and how the game is played. For this let

us fix the initial time t = 0.
- before the game starts, the initial position x is chosen randomly according to a probability

measure µ,
- the initial state x is communicated to player 1 but not to player 2,
- the game is played on the time interval [0, T ],
- both players know the probability µ and observe their opponents controls.
In the game we investigate here, the role of the information is crucial. Indeed the second

player does not know what the current state of the game is. However he can try to guess it
at least partially by observing the actions of the first player. For this reason the first player’s
interest is to hide as much as possible his actions by playing randomly (choosing a random
strategy), of course still trying to achieve his own goals. The second player’s interest is also to
conceal his actions by playing random strategies.

Such a game with asymmetric information was first introduced by Aumann and Maschler
[3] in the framework of repeated games, where the first player has a private information not
available for the second player. This was extended by Mertens and Zamir [21] to the case where
both players have a private information not available for their opponents.

A pioneering work in the literature of differential games is the article [15] where the authors
proved the existence of the value of the game under the following Isaacs condition:

∀ (x, ξ) ∈ Rn ×Rn, inf
u∈U

sup
v∈V

f (x, u, v) · ξ = sup
v∈V

inf
u∈U

f (x, u, v) · ξ. (2)

They also show that the value function is given as the unique viscosity solution of a Hamilton–
Jacobi–Isaacs equation. We refer the reader to [5] for an overview and a more complete descrip-
tion.

Differential games with incomplete/asymmetric information on the payoff were studied first
in [9] (see also [12, 14]). The case of a continuum of types for games in continuous times has
been addressed only recently in [14], in a very particular situation where there is no dynamics
and where the information issue lies on the payoff.

In [10], the authors studied a differential game with symmetric unperfect information on
the initial state. Both players are assumed to know the initial probability, but the “lack” of
information treated in that paper is very specific: it is symmetric for both players and is only
concerned with the current position of the game. The case with incomplete and asymmetric
information on a possibly infinite set of the initial positions was studied in [11] under the
supposition that the Isaacs condition (2) holds true.
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Without Isaacs condition, one can easily find examples - even with complete information
structure - where the value of the game does not exist in pure strategies. It is thus important
to define a good concept of mixed strategies. There are only few results for differential games
without Isaacs conditions. We mention [19] for differential games with positional strategies and
[2] for repeated games in continuous time. Recently, the article [6] considered zero-sum differen-
tial games with complete information without Isaacs condition by imposing on the underlying
controls for both players a conditional independence property (cf also [7] for an extension to
stochastic differential games using backward stochastic differential equations).

The present paper investigates differential games with an incomplete information on infinitely
many initial positions and without Isaacs condition. Our main result shows that it is possible
to define a suitable concept of mixed strategy and to prove the existence of a value of the game
associated to these strategies.

We consider a partition π of the time interval [0, T ]. By using a suitable notion of random
non-anticipative strategies with delay compatible with the partition π, we define upper and lower
values ( which depends on the partition). We show that both upper and lower values converge
- as the mesh of π converges to zero - to the same limit which is the value of the game. The
use of a partition in our approach is crucial due to the lack of Isaacs condition. Surprisingly,
when the initial measure has no atoms, we show that a value exists in pure strategies. This
can be somehow explained by the fact that when the initial measure has no atoms, it contains
“enough randomness” to avoid the use of random strategies. This phenomenon is discussed
more rigourously in Theorem 4.1.

We also explain how these results can be extended to games where the incomplete information
concerns also the dynamic and the payoff. We also prove the existence of the value for these
games with incomplete information on infinitely many scenarios

The organization of the paper is as follows. The next section concerns preliminaries and
basic facts on probability measure spaces and the complete description of the model. Section 2
deals with strategies and value functions. Section 3 is devoted to the Lipschitz continuity of the
values in random strategies along a partition π. As a consequence of this uniform continuity,
the existence of the value in random strategies is obtained for arbitrary probability measure µ.
In section 4, we show the existence of a value in pure strategy when the initial measure µ has
no atoms. Lastly, the above model is extended to differential games with continuous scenarios.

1 Preliminaries

This section is devoted to fix the notations and assumptions. We also recall some known facts
on measure theory and optimal transportation.

1.1 Assumptions on the dynamics

Throughout the paper we will consider Rn endowed with the Euclidian distance | · | and B(Rn)
the Borel σ-field.

The dynamics of the game is given by{
dXx,u,v

s = f (Xx,u,v
s , us, vs) ds, s ∈ [0, T ] , (u, v) ∈ U0,T × V0,T ,

Xx,u,v
0 = x ∈ Rn,

(3)

The controls u and v are supposed to be admissible according to the following
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Definition 1.1 (Admissible controls) Let t = 0 be the initial time. We define respectively the
sets of admissible controls for player 1 and player 2 by
U0,T = {u : [0, T ] 7→ U, which is Lebesque measurable };
V0,T = {v : [0, T ] 7→ V, which is Lebesque measurable };

Both spaces are endowed with the topology generated by the convergence in L1([0, T ]).

Throughout the paper we assume that f : Rn × U × V 7→ Rn is bounded, continuous, and
Lipschitz continuous in x ∈ Rn, uniformly with respect to u and v.

Under the above assumption it is well-known that (3) has a unique solution s 7→ Xx,u,v
s

which satisfies furthermore that there exists a constant C > 0 such that, for all x, x′ ∈ Rn and
all s ∈ [0, T ],

(i) |Xx,u,v
s − x| ≤ Cs,

(ii)
∣∣∣Xx,u,v

s −Xx′,u,v
s

∣∣∣ ≤ C |x− x′|.
Throughout the paper we assume that g : Rn 7→ R is a Lipschitz continuous and bounded

function.

1.2 Probability distribution on the initial condition

Notation. We denote by P(Rn) the set of Borel probability measures on Rn with a compact
support and with finite moment of order two and by P(K) the set of Borel probability measures
on K; K ⊂ Rn being a fixed compact set which is the closure of its interior. The space C(K)
denotes the set of continuous functions on K.
We endow P(K) with the weak star topology that is:

µn → µ if and only if

∫
K
ϕ(x) dµn(x)→

∫
K
ϕ(x) dµ(x) for all ϕ ∈ C(K).

Definition 1.2 Let µ, ν in P(Rn). We call the Wasserstein distance between µ and ν the
following quantity:

W2(µ, ν) = inf
γ∈P(Rn×Rn)

{(∫
Rn×Rn

|x− y|2 dγ(x, y)

)1/2
}

(4)

where the infimum is taken among the probability measures with µ and ν as first and second
marginals1 .

For any Borel measurable function φ : Rn → Rn and any µ ∈ P(Rn), we define the push
forward of µ by φ as the probability measure φ#µ ∈ P(Rn) such that:

φ#µ(A) = µ(φ−1(A)) ∀A ⊂ Rn Borel measurable .

In other words, considering (Rn,B(Rn), µ) as a probability space and φ as a random variable,
φ#µ is the law of φ.

We recall that the following well-known properties on the Wasserstein distance hold (see [1]
and [24]):

1This means that for any Borel set A ⊂ Rn, we have

µ(A) = γ(A×Rn) and ν(A) = (Rn ×A).
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Proposition 1.1 1) For any µ, ν in P(Rn), the infimum defining W2(µ, ν) in (4) is a
minimum. A γ achieving the minimum is called an optimal transport plan.

2) W2 is a distance on P(K) which is sequentially compact. Moreover the topology associated
to W2 is compatible with the weak star convergence of measure on P(K).

3) If µ ∈ P(Rn) is absolutely continuous with respect to the Lebesgue measure, there exists a
unique Borel measurable map S : Rn → Rn such that:

W2(µ, ν) =

∫
Rn

|x− Sx|2 dµ(x), S#µ = ν.

The map S is called an optimal transport map.

2 Strategies and Values

Throughout the paper we will work within the following probability space:

(Ω,F , P ) := ([0, 1] ,B ([0, 1]) , λ) ,

where λ is the Lebesgue measure on [0, 1] endowed with Borel σ-field B ([0, 1]). Let {ζj,l, l ≥
1, j = 1, 2} be a family of independent random variables following all a uniform distribution on
[0, 1]. Let us consider two compact metric spaces U and V as control state spaces used by player
1 and 2, respectively. P (U) and P (V ) denote the space of all probability measures over U and
V , endowed with Borel σ-field B (U) and B (V ), respectively. It is an immediate consequence of
Skorohod’s Representation Theorem that the set P (U) (resp., P (V )) coincides with the set of
the laws of all U -valued (resp., V -valued) random variables defined over ([0, 1] ,B ([0, 1]) , λ).

It is worth pointing out that even the Isaacs condition (2) is not supposed, the following
condition

inf
µ∈P(U)

sup
ν∈P(V )

∫
U×V

f (x, u, v)µ (du) ν (dv) · ξ = sup
ν∈P(V )

inf
µ∈P(U)

∫
U×V

f (x, u, v)µ (du) ν (dv) · ξ,

- which can be viewed as an Isaacs condition on P (U)× P (V ) - always holds true. Indeed the
above relation is deduced from Sion’s minimax theorem applied to the bilinear map

(µ, ν) −→
∫
U×V

f (x, u, v)µ (du) ν (dv) · ξ

defined on the convex compact sets P (U) and P (V ).
Let π = {0 = t0 < t1 < . . . < tN = T} be a given a partition. We now define the pure and

random non-anticipative strategies with delay (NAD) along this partition.

Definition 2.1 (Pure NAD strategies along partition π) A pure NAD strategies for player 1 is
a mapping α : Rn ×V0,T 7→ U0,T , Borel measurable and satisfying, for each x ∈ Rn, 1 ≤ l ≤ N ,

v = v′ ∈ V0,T a.e. on [0, tl−1] =⇒ ∀x ∈ Rn, α (x, v) = α (x, v′), a.e on [0, tl].
A pure NAD strategies for player 2 is a mapping β : U0,T 7→ V0,T , Borel measurable and

satisfying, for each 1 ≤ l ≤ N ,
u = u′ ∈ U0,T a.e. on [0, tl−1] =⇒ β (u) = β (u′), a.e on [0, tl].
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We denote by Aπ (0, T ) all such pure strategies for player 1, by Bπ (0, T ) all such strategies
for player 2.

Since the players need to hide a part of their information, they have to play random strategies
such that their counterparty cannot infer exactly their behaviors. From a technical point of view,
this randomness is also the key argument to get a value of the game without Isaacs condition.

Definition 2.2 (Random NAD strategies along partition π) A random NAD strategies for
player 1 is a mapping α : Rn × Ω × V0,T 7→ U0,T satisfying, for almost all ω ∈ Ω, for each
x ∈ Rn, s ∈ [tl−1, tl), 1 ≤ l ≤ N ,

α (x, ω, v) (s) = αl (x, (ζ1,1, . . . , ζ1,l) (ω) , v) (s)

with αl : Rn ×Rl × V0,T 7→ U0,T Borel measurable and
v = v′ ∈ V0,T a.e. on [0, tl−1] =⇒ ∀ (x,$) ∈ Rn × Rl, αl (x,$, v) = αl (x,$, v

′), a.e on
[tl−1, tl].

A random NAD strategies for player 2 is a mapping β : Ω × U0,T 7→ V0,T satisfying, for
almost all ω ∈ Ω, s ∈ [tl−1, tl], 1 ≤ l ≤ N ,

β (ω, u) (s) = βl ((ζ2,1, . . . , ζ2,l) (ω) , u) (s)

with βl : Rl × U0,T 7→ V0,T Borel measurable and
u = u′ ∈ U0,T a.e. on [0, tl−1] =⇒ ∀$ ∈ Rl, βl ($,u) = βl ($,u

′), a.e on [tl−1, tl].

We denote by Aπr (0, T ) all such random strategies for player 1, by Bπr (0, T ) all such strategies
for player 2.

Remark 2.1 For s ∈ [0, T ], (u, v) ∈ U0,T × V0,T ,

α (x, ω, v) (s) =
N∑
l=1

αl (x, (ζ1,1, . . . , ζ1,l) (ω) , v) · 1[tl−1,tl) (s) ,

β (ω, u) (s) =

N∑
l=1

βl ((ζ2,1, . . . , ζ2,l) (ω) , u) · 1[tl−1,tl) (s) .

Due to the delay of strategies, we have the following property.

Lemma 2.1 For any α, β ∈ Aπr (0, T ) × Bπr (0, T ) and for almost all ω ∈ Ω, for each x ∈ Rn,
there is a unique pair (ux,ω, vx,ω) ∈ U0,T × V0,T such that

α (x, ω, vx,ω) = ux,ω, β (ω, ux,ω) = vx,ω, a.e.,a.s. on [0, T ]× Ω.

Moreover (x, ω) ∈ Rn × Ω→ (ux,ω, vx,ω) ∈ U0,T × V0,T is Borel measurable.

The proof of this lemma uses standard arguments ( cf for instance [10, 11]). But since the
special form of the random NAD-strategies which we use here is new, we prefer to give the proof
for the convenience of the reader.
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Proof For each ω ∈ Ω (up to a null set), α (x, ω, v) and β (ω, u) restricted to [t0, t1] depend
only on v ∈ V0,T and u ∈ U0,T restricted to [t0, t0]. But [t0, t0] is a singleton, so that α (x, ω, v),
β (ω, u) on [t0, t1] do not depend on v and u. Thus, for any v0 ∈ V0,T and u0 ∈ U0,T , we
can define u1

x,ω = α
(
x, ω, v0

)
, v1

ω = β
(
ω, u0

)
. We observe that this definition guarantees the

measurability of the mapping Ω 3 ω 7→
(
u1
x,ω, v

1
ω

)
∈ U0,T × V0,T . Moreover, from this definition

we have
α
(
x, ω, v1

ω

)
= u1

x,ω, β
(
ω, u1

x,ω

)
= v1

ω, a.e., on [t0, t1] .

Assume that for j ≥ 2, Ω 3 ω 7→
(
uj−1
x,ω , v

j−1
x,ω

)
∈ U0,T × V0,T is measurable and such that

α
(
x, ω, vj−1

x,ω

)
= uj−1

x,ω , β
(
ω, uj−1

x,ω

)
= vj−1

x,ω , a.e., on [t0, tj−1]. Then we set ujx,ω = α
(
x, ω, vj−1

x,ω

)
,

vjx,ω = β
(
ω, uj−1

x,ω

)
. Obviously, the thus defined mapping ω 7→

(
ujx,ω, v

j
x,ω

)
is measurable and(

ujx,ω, v
j
x,ω

)
=
(
uj−1
x,ω , v

j−1
x,ω

)
, a.e., on [t0, tj−1]. Then by the NAD property of α and β, ujx,ω =

α
(
x, ω, vjx,ω

)
, vjx,ω = β

(
ω, ujx,ω

)
, a.e., on [t0, tj ]. Iterating the above steps, we can obtain the

desired result. The uniqueness is an immediate consequence of the above construction. �

Remark 2.2 We observe that, for all 1 ≤ l ≤ N − 1, the processes u and v constructed in
the above proof and restricted to the time interval [0, tl] are conditionally independent knowing
ζ1 = (ζ1,1, ζ2,1), . . . , ζl−1 = (ζ1,l−1, ζ2,l−1). Indeed, the processes u and v are of the following
form: {

ux,· (s) = u1 (s, x, ζ1,1) · 1[0,t1) (s) +
∑n

l=2 u
l (s, x, ζ1, . . . , ζl−1, ζ1,l) · 1[tl−1,tl) (s) ,

vx,· (s) = v1 (s, ζ2,1) · 1[0,t1) (s) +
∑n

l=2 v
l (s, x, ζ1, . . . , ζl−1, ζ2,l) · 1[tl−1,tl) (s) ,

where
(
ul, vl

)
are functions of s, x and ζj,l, j = 1, 2, l ≥ 1 and ζl = (ζ1,l, ζ2,l), for l ≥ 1.

Thanks to Lemma 2.1, to any pair (α, β) ∈ Aπr (0, T )×Bπr (0, T ), any (x, ω) ∈ Rn× [0, 1] can

be associated a trajectory t 7→ X
x,α(x,ω,·),β(ω,·)
t defined as:

X
x,α(x,ω,·),β(ω,·)
t = X

x,ux,ω ,vx,ω
t .

The controls ux,ω and vx,ω being as in Lemma 2.1.
We now define the lower and the upper value functions in pure and random strategies respec-
tively.

Definition 2.3 (Values in pure strategies) Let µ be the distribution of the initial position. For
α ∈ Aπ (0, T ), β ∈ Bπ (0, T ), we define cost function:

J (µ, α, β) =

∫
Rn

g
(
X
x,α(x,·),β(·)
T

)
dµ(x),

and upper value function:

V +π (µ) = inf
α∈Aπ(0,T )

sup
β∈Bπ(0,T )

J (µ, α, β) ,

and lower value function:

V −π (µ) = sup
β∈Bπ(0,T )

inf
α∈Aπ(0,T )

J (µ, α, β) .
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As the mesh of π converges to zero, the limit (upper and lower) values of the game in pure
strategies are defined as

V +(µ) = lim sup
|π|→0

V +π(µ), and V −(µ) = lim inf
|π|→0

V −π(µ).

Definition 2.4 (Values in random strategies) Let µ be the distribution of the initial position.
For α ∈ Aπr (0, T ), β ∈ Bπr (0, T ), we define cost function:

J (µ, α, β) =

∫
Ω

∫
Rn

g
(
X
x,α(x,ω,·),β(ω,·)
T

)
dµ(x)dP (ω),

and upper value function:

V +π
r (µ) = inf

α∈Aπr (0,T )
sup

β∈Bπr (0,T )
J (µ, α, β) ,

and lower value function:

V −πr (µ) = sup
β∈Bπr (0,T )

inf
α∈Aπr (0,T )

J (µ, α, β) .

As the mesh of π converges to zero, the limit (upper and lower) values of the game in random
strategies are defined as

V +
r (µ) = lim sup

|π|→0
V +π
r (µ), and V −r (µ) = lim inf

|π|→0
V −πr (µ).

The following result has been proved in [4]:

V +(µ) = lim sup
|π|→0

V +π(µ), and V −(µ) = lim inf
|π|→0

V −π(µ).

Proposition 2.1 For any µ ∈ P(K) with finite support, we have:

lim
|π|→0

V +π
r (µ) = V +

r (µ) = V −r (µ) = lim
|π|→0

V −πr (µ).

We denote by Vr(µ) the common value, which does not depend on the choice of the sequence
(πn)n.

We associate to α the following vector

A (x, (ω1,1, . . . , ω1,N ) , v) := (αl (x, ω1,1, . . . , ω1,l, v))l=1,...,N ,

and to β the following vector

B (x, (ω2,1, . . . , ω2,N ) , u) := (βl (x, ω2,1, . . . , ω2,l, u))l=1,...,N .

Following the proof of Lemma 2.1, we can easily show the following similar result:

Lemma 2.2 For any α, β ∈ Aπr (0, T )× Bπr (0, T ) and for almost all

($1, $2) = (ω1,1, ..., ω1,N , ω2,1, ..., ω2,N ) ∈ [0, 1]2N

and for each x ∈ Rn, there is a unique pair (ũx,$1,$2 , ṽx,$1,$2) ∈ U0,T ×V0,T such that, for any
l = 1, ..., N , s ∈ [tl−1, tl],:

αl(x, ω1,1, ..., ω1,l, ṽx,$1,$2) = ũx,$1,$2 , βl(ω2,1, ..., ω2,l, ũx,$1,$2) = ṽx,$1,$2, a.e.,a.s. on [0, T ]×Ω.

Moreover (x,$1, $2) ∈ Rn × Ω2N → (ũx,$1,$2 , ṽx,$1,$2) ∈ U0,T × V0,T is Borel measurable.
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For any α, β ∈ Aπr (0, T )×Bπr (0, T ) and (x,$1, $2) ∈ Rn×Ω2N , this lemma allows to define
the following trajectories:

t→ X
x,A(x,$1,·),B($2,·)
t := X

x,ũx,$1,$2 ,ṽx,$1,$2
t ;

in the same way, for any α, β ∈ Aπr (0, T ) × Bπ(0, T ) and (x,$) ∈ Rn × ΩN , we can define

t→ X
x,A(x,$,·),β(·)
t .

3 Existence of the value in random strategies

To prove the main result, we first establish the following two lemmas.

Lemma 3.1 The upper (lower) value function V +π
r (µ) (resp. V −πr (µ)) does not change if the

second (resp. first) player use pure strategies, i.e.:

V +π
r (µ) = inf

α∈Aπr (0,T )
sup

β∈Bπ(0,T )

∫
Ω

∫
Rn

g
(
X
x,α(x,ω,·),β(·)
T

)
dµ(x)dP (ω),

V −πr (µ) = sup
β∈Bπr (0,T )

inf
α∈Aπ(0,T )

∫
Ω

∫
Rn

g
(
X
x,α(x,·),β(ω,·)
T

)
dµ(x)dP (ω).

Proof. We only prove the first equality. The second one can be obtained using similar proce-
dure. Denote

Ṽ +π
r (µ) := inf

α∈Aπr (0,T )
sup

β∈Bπ(0,T )

∫
Ω

∫
Rn

g
(
X
x,α(x,ω·),β(·)
T

)
dµ(x)dP (ω).

Since the set of pure strategies Bπ(0, T ) can be viewed as a subset of random strategies Bπr (0, T ),
we deduce that for any α ∈ Aπr (0, T )

sup
β∈Bπ(0,T )

∫
Ω

∫
Rn

g
(
X
x,α(x,ω·),β(·)
T

)
dµ(x)dP (ω) ≤ sup

β∈Bπr (0,T )

∫
Ω

∫
Rn

g
(
X
x,α(x,ω·),β(·)
T

)
dµ(x)dP (ω).

Hence by taking the infimum over α ∈ Aπr (0, T ) in both sides of the above inequality we obtain
that Ṽ +π

r (µ) ≤ V +π
r (µ).

Now we proceed in proving Ṽ +π
r (µ) ≥ V +π

r (µ). In fact

V +π
r (µ) = inf

α∈Aπr (0,T )
sup

β∈Bπr (0,T )

∫
Ω

∫
Rn

g
(
X
x,α(x,ω,·),β(ω,·)
T

)
dµ(x)dP (ω)

= inf
α∈Aπr (0,T )

sup
β∈Bπr (0,T )

∫
Ω

∫
Rn

g
(
X
x,A(x,(ζ1,1,...,ζ1,N ),·),B(ζ2,1,...,ζ2,N ,·)
T

)
dµ(x)dP (ω)

= inf
α∈Aπr (0,T )

sup
β∈Bπr (0,T )

∫
Ω2N

∫
Rn

g
(
X
x,A(x,$1,·),B($2,·)
T

)
dµ(x)d$1d$2

≤ inf
α∈Aπr (0,T )

sup
β∈Bπr (0,T )

sup
$2∈ΩN

∫
ΩN

∫
Rn

g
(
X
x,A(x,$1,·),B($2,·)
T

)
dµ(x)d$1

= inf
α∈Aπr (0,T )

sup
$2∈ΩN

sup
β∈Bπr (0,T )

∫
ΩN

∫
Rn

g
(
X
x,A(x,$1,·),B($2,·)
T

)
dµ(x)d$1

= inf
α∈Aπr (0,T )

sup
β∈Bπ(0,T )

∫
ΩN

∫
Rn

g
(
X
x,A(x,$1,·),B(·)
T

)
dµ(x)d$1.
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The proof is complete. �
Now we prove the equi-Lipschitz continuity of (V +π

r ) and (V −πr ), π being a a partition of
[0, T ].

Lemma 3.2 The families (V +π
r )π and (V −πr )π - where π describes the set of subdivisions of

[0, T ] - are equicontinuous ( with respect to the Wasserstein distance W2). Moreover there exists
a Lipschitz constant C > 0 such that for every partition π of [0, T ], the functions V +π

r and V −πr

are Lipschitz continuous with a Lipschitz constant smaller than C.

Proof For some fixed partition π, we now show that V +π
r (·) is Lipschitz continuous. Consider

µ0, µ1 ∈ P(Rn). For fixed ε > 0, let α ∈ Aπr (0, T ) be an ε-optimal strategy for V +π
r (µ0). Let γ

be an optimal plan for W2 (µ0, µ1) (see Proposition 1.1). Then γ is disintegrated with respect
to µ1 as follows

dγ (x, y) = dγy (x) dµ1 (y) .

Let Pn be the uniform probability measure on [0, 1]n. By Proposition 1.1, there exists a unique
map (up to a µ1 negligible set) ξ : Rn × [0, 1]n → Rn such that:

ξ (y, ·) #(Pn) = γy for µ1-a.e. y ∈ Rn

and

W 2
2 (Pn, γy) =

∫
[0,1]n

|ξ(y,$)−$|2dPn($) µ1-a.e. y.

Arguing as in [11] (proof of Proposition 3), the map ξ is Borel measurable. We now associate
to α the following vector:

A (x, (ω1, . . . , ωN ) , v) := (αl (x, ω1, . . . , ωn, v))l=1,...,N .

Take measurable functions fi : [0, 1] 7→ [0, 1], i = 0, ..., n pairwise independent satisfying fi#P =
P . Set also F = (f1, ..., fn) : [0, 1] 7→ [0, 1]n. Then we construct a random strategy α̃ for player
1 by setting

α̃l (y, ω1, . . . , ωl, v) := αl (ξ (y, F (ω1)) , (f0 (ω1) , ω2, . . . , ωl) , v) ,

and

Ã (y, (ω1, . . . , ωN ) , v) := (α̃l (y, ω1, . . . , ωl, v))l=1,...,N

= A (ξ (y, F (ω1)) , (f0 (ω1) , ω2, . . . , ωN ) , v) .

Obviously, α̃ ∈ Aπr (0, T ).
For β ∈ Bπ (0, T ), since ζ1,l, l = 1, . . . , N, are independent and uniformly distributed on [0, 1],
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we have

J (µ1, α̃, β) =

∫
[0,1]×Rn

g
(
X
y,α̃(y,ω,·),β(·)
T

)
dµ1(y)dP (ω)

=

∫
[0,1]×Rn

g
(
X
y,Ã(y,(ζ1,1,...,ζ1,N )(ω),·),β(·)
T

)
dµ1(y)dP (ω)

=

∫
[0,1]N

∫
Rn

g
(
X
y,Ã(y,ω1,...,ωN ,·),β(·)
T

)
dµ1(y)dω1 . . . dωN

=

∫
[0,1]N

∫
Rn

g
(
X
y,A(ξ(y,F (ω1)),(f0(ω1),ω2,...,ωN ),·),β(·)
T

)
dµ1(y)dω1 . . . dωN

( by definitions of Ã )

=

∫
[0,1]N

∫
[0,1]n

∫
Rn

g
(
X
y,A(ξ(y,$),(ω1,ω2,...,ωN ),·),β(·)
T

)
dµ1(y)d(F#P )($)d(f0#P )(ω1)dω2 . . . dωN

=

∫
[0,1]N

∫
[0,1]n

∫
Rn

g
(
X
y,A(ξ(y,$),(ω1,ω2,...,ωN ),·),β(·)
T

)
dµ1(y)d$dω1 . . . dωN

( by definitions of fi ).

Now using the very definitions of ξ and γ:

J (µ1, α̃, β) =

∫
[0,1]N

∫
Rn×Rn

g
(
X
y,A(x,(ω1,ω2,...,ωN ),·),β(·)
T

)
d (ξ (y, ·) #Pn) (x) dµ1 (y) dω1 . . . dωN

=

∫
[0,1]

∫
Rn×Rn

g
(
X
y,A(x,(ω1,ω2,...,ωN ),·),β(·)
T

)
dγy (x) dµ1 (y) dω1 . . . dωN

=

∫
[0,1]

∫
Rn×Rn

g
(
X
y,α(x,ω,·),β(·)
T

)
dγ (x, y) dP (ω)

≤
∫

[0,1]

∫
Rn

g
(
X
x,α(x,ω,·),β(·)
T

)
dµ0 (x) dP (ω) + C

∫
Rn×Rn

|x− y| dγ (x, y)

(using the Lipschitz property of g)

≤
∫

[0,1]

∫
Rn

g
(
X
x,α(x,ω,·),β(·)
T

)
dµ0 (x) dP (ω) + CW2 (µ0, µ1) .

(by Cauchy-Schwarz inequality)

Then by the ε-optimality of α ∈ Aπr (0, T ) for V +π
r (µ0), we get

sup
β∈Bπr (0,T )

J (µ1, ᾱ, β) ≤ V +π
r (µ0) + CW2 (µ0, µ1) + ε.

Since ε is arbitrary, it yields

V +π
r (µ1) ≤ V +π

r (µ0) + CW2 (µ0, µ1) .

Interchange the position of µ1 and µ0, we get that, for a given partition π, V +π
r (·) is Lipschitz

with constant C. Since the constant C in the proof does not depend on the partition π, the
family (V +π

r )π is equi-Lipschitz continuous with respect to the measure µ under the Wasserstein
distance. �
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Theorem 3.1 The game with initial distribution µ ∈ P(K) has a limit value in random strate-
gies:

V −r (µ) = V +
r (µ).

Moreover V −r and V +
r are the limit in the uniform convergence topology (as |π| → 0) of V −πr

and V +π
r .

Proof As stated above, the families (V +π
r )π and (V −πr )π are equi-Lipschitz (with a Lipschitz

constant which is bounded by C > 0 independent of the partition). Take (πn)n a sequence of
partitions of [0, T ] such that |πn| → 0. By Ascoli-Arzela Theorem, each of the corresponding se-
quence (V +πn

r )n and (V −πnr )n has at least one cluster point which is also C-Lipschitz continuous.
Let W+ and W− be such a cluster point of (V +πn

r )n and (V −πnr )n respectively.
If µ ∈ P(K) has a finite support, we may deduce from Proposition 2.1 that

W+(µ) = W−(µ) = Vr(µ) for all µ ∈ P(K) with finite support. (5)

This proves also the uniqueness of the values of any cluster point in µ.
Now we know that W+ and W− are Lipschitz continuous on P(K). The function Vr is C

-Lipchitz continuous - from (5) - on the set of probability on K with finite support which is a
dense set in P(K). Hence the function Vr has a unique continuous extension on P(K). Let us
denote by Ṽr this extension which is also C-Lipschitz.

An direct density argument enables us to deduce from (5) the following

W+(µ) = W−(µ) = Ṽr(µ) for all µ ∈ P(K).

So W+ = W− and the set of cluster points is a singleton (equal to Ṽr).
Finally we get that both (V +πn

r )n and (V −πnr )n has only one cluster point which does not
depend on the choice of the sequence (πn)n. We conclude that:

V +
r (µ) = lim sup

|π|→0
V +π
r (µ) = lim

|π|→0
V +π
r (µ)

= W+(µ) = W−(µ)

= lim
|π|→0

V −πr (µ) = lim inf
|π|→0

V −πr (µ)

= V −r (µ).

The proof is complete. �

4 Existence of the limit value in pure strategies

The players can play the game in pure strategies when the initial distribution µ ∈ P (R) has no
atoms.

Theorem 4.1 Consider µ ∈ P(K) with no atoms. Then

V + (µ) = V +
r (µ) = V −r (µ) = V − (µ) .
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Proof Following Theorem 4.1 in [11], for fixed µ ∈ P (R) without atoms, we can prove that,
for any partition (πn)n≥1,

V +πn
r (µ) = V +πn (µ) and V −πnr (µ) = V −πn (µ) .. (6)

From the proof of Theorem 3.1, for fixed µ ∈ P (R) without atoms, we have(
V +πn
r (µ) , V −πnr (µ)

)
→
(
V +
r (µ) , V −r (µ)

)
, pointwise

and the limits do not depend on the choice of the sequence (πn)n. Then by (6) and Theorem
3.1, we get:

V +(µ) = lim sup
|π|→0

V +π(µ) = lim
|π|→0

V +π
r (µ)

= lim
|π|→0

V −πr (µ) = lim inf
|π|→0

V −π(µ)

= V −(µ).

�
Let P̃(K) denote all probability measures in P(K) without atoms. It is worth pointing out

that P̃(K) is not closed for the weak star convergence of measures. Generally, V + and V − are
not Lipschitz continuous on P(K). But we have the following

Corollary 4.1 The limit value in pure strategies V (= V + = V −) is Lipschitz continuous on
P̃(K).

Proof For µ0, µ1 ∈ P̃ (K), by the equi-Lipschitz continuity of the sequence (V +πn
r )n≥1, there

is a constant C > 0 such that∣∣V +πn (µ0)− V +πn (µ1)
∣∣ =

∣∣V +πn
r (µ0)− V +πn

r (µ1)
∣∣ ≤ C ·W2 (µ0, µ1) .

Passing to the limit as n → ∞, we get that |V (µ0)− V (µ1)| ≤ C ·W2 (µ0, µ1). So the value
V (·) in pure strategies is Lipschitz continuous on P̃ (K). �

Remark 4.1 In [4], in the game without Isaacs condition, both players have to use special
random strategies. But here, it is surprising that the game can be played in pure strategies when
the initial distribution µ has no atoms.

Remark 4.2 One can also extend our approach to the case where both players have private
information on the initial position. See Remark 5 in [11] for details how the game is described.

5 Extension to continuous scenarios

In this section, we consider games where the asymmetric information does not concern only the
initial position but also deals with the dynamics and the payoffs. Our goal here is to discuss
how our method can be applied to this case. The dynamics of the game is now given by{

dXθ,u,v
s = f

(
θ,Xθ,u,v

s , us, vs

)
ds, s ∈ [0, T ] , (u, v) ∈ U0,T × V0,T ,

Xθ,u,v
0 = x (θ) ∈ Rn,

(7)
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where the scenario θ follows a distribution µ ∈ P (I) where I ⊂ Rd (d ≥ 1) is a compact set and
the initial position x (·) is Lipschitz continuous. For each scenario θ, the terminal payoff is given
by g (θ, x) : R×Rn 7→ R which is bounded and Lipschitz continuous in (θ, x). We also assume
the function f : R×Rn × U × V 7→ Rn is bounded, continuous, and Lipschitz continuous in
(θ, x) ∈ R×Rn, uniformly with respect to u and v. Note that the model here generalizes the
one with continuous initial positions. In fact the case where f and g do not depend on θ and
when d = n is considered in the previous sections.

The game is played in the following way: For fixed initial time t = 0,
- before the game starts, the scenario θ is chosen randomly according to a probability measure

µ,
- the scenario θ is communicated to player 1 but not to player 2,
- the game is played on the time interval [0, T ],
- both players know the probability µ and observe their opponents controls.

Random NAD strategies along partition π are defined similarly to Definition 2.2 replacing
the initial position x by the scenario θ. Lemma 2.1 still holds for new defined strategies. The
cost function is

J (µ, α, β) =

∫
Ω

∫
R
g
(
θ,X

θ,α(θ,ω,·),β(ω,·)
T

)
dµ (θ) dP (ω) , (8)

and the upper value function is V +π
r (µ) = inf

α∈Aπr (0,T )
sup

β∈Bπr (0,T )
J (µ, α, β), and the lower value

function is V −πr (µ) = sup
β∈Bπr (0,T )

inf
α∈Aπr (0,T )

J (µ, α, β). The limit values are defined similarly to

Definition 2.4.
One can still prove the equi-Lipschitz continuity of (V +πn

r )n≥1 and (V −πnr )n≥1 with respect
to the Wasserstein distance on P(I) as in Lemma 3.2. Then by section 7 of [4], considering a

sequence
(∑N

i=1 p
N
i δθNi

)
N

in P(I) converging weakly star to µ, we can get that:

V −r (µ) = lim
N→+∞

V −r

(
N∑
i=1

pNi δθNi

)
= lim

N→+∞
V +
r

(
N∑
i=1

pNi δθNi

)
= V +

r (µ).

We can check that the game can be also played in pure strategies. In fact, by analogous
proof of Theorem 4.1 in [11], we can prove that, for any partition (πn)n≥1, V +πn

r (µ) = V +πn (µ)
and V −πnr (µ) = V −πn (µ). From the proof of Theorem 3.1, for fixed µ ∈ P (R) without atoms,
we have (V +πn

r (µ) , V −πnr (µ)) → (V +
r (µ) , V −r (µ)), pointwise and the limits do not depend on

the choice of the sequence (πn)n. Then similarly to Theorem 4.1, we can get the desired result.

Remark 5.1 There are many papers about the numerical theme of differential games. For two-
persons zero-sum deterministic differential games we refer to [8] or [16] and references therein
for approaches related to the Hamilton Jacobi Equation. We also quote [20] for Markov chain
methods (see also [18] for other numerical works on differential games).

To the best knowledge of the authors there is not yet any work on the computation of the
value of differential game with incomplete information when the information is not in a finite
dimensionnal space. Some approximation of the measure µ by discrete measure should be possi-
ble. However we think that for numerical methods we first need to study Hamilton-Jacobi-Isaacs
equations on the space of measure. This is far to be understood in the present framework (we
refer to [10] for related topics).

When the asymmetric information can be reduced to a finite dimensional space (for instance
µ has a finite support in the context of the present paper), there are several works concerning
the approximation of the value cf. [13, 17, 22].
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