
ON THE CHEEGER SETS IN STRIPS AND NON-CONVEX DOMAINS

GIAN PAOLO LEONARDI AND ALDO PRATELLI

Abstract. In this paper we consider the Cheeger problem for non-convex domains, with a
particular interest in the case of planar strips, which have been extensively studied in recent
years. Our main results are an estimate on the Cheeger constant of strips, which is stronger
than the previous one known from [18], and the proof that strips share with convex domains
a number of crucial properties with respect to the Cheeger problem. Moreover, we present
several counterexamples showing that the same properties are not valid for generic non-convex
domains.

1. Introduction

The Cheeger problem is an isoperimetric-like problem, which has been extensively studied
in the last decades in different contexts, ranging from Riemannian Geometry to Calculus of
Variations, also because of its connections with eigenvalue problems. Its formulation is very
simple: given a domain Ω ⊆ Rn, with n ≥ 2, one is asked to compute or estimate its Cheeger
constant, defined as

h(Ω) := inf

{
P (F )

|F |
: F ⊆ Ω, |F | > 0

}
,

where |F | and P (F ) denote respectively the volume and perimeter of a Borel set F ⊆ Rn.
Despite this so simple formulation, many non-trivial questions arise, and they are object of deep
investigation. For quite a large class of domains Ω, it is possible to say that the above infimum
is actually a minimum, and in this case each set E realizing the minimum is called a Cheeger
set in Ω; if the whole set Ω is a minimizer, then it is simply called a Cheeger set ; it is clear that
any set E which is a Cheeger set for some domain Ω ⊇ E, is also a Cheeger set. One usually
refers to the “Cheeger problem” both for the computation, or the estimation, of the constant
h(Ω), and for the characterization of Cheeger sets in Ω.

Among various geometric properties, that will be discussed in more detail later, a particularly
useful one is that the free boundary of any Cheeger set E in Ω, that is, the part of ∂E which
is in the interior of Ω, is the union of a singular set of Hausdorff dimension at most n − 8 and
a smooth hypersurface with constant mean curvature, and this curvature coincides with the
inverse of the constant h(Ω). This is particularly useful in the two-dimensional case, because
then one deduces that ∂E ∩ Ω is made by arcs of circle of radius 1/h(Ω), which is a very
strong geometric constraint. Another very important case is the one of convex domains. In
particular, for a convex 2-dimensional domain Ω, it is known that a Cheeger set E exists, is
unique, and it coincides with the union of all balls of radius 1/h(Ω) which are contained in
Ω, thus E = Er + Br where r = 1/h(Ω) and Er is the set of all points of Ω having distance
at least r from ∂Ω; moreover, the inner Cheeger formula |Er| = πr2 for the area of Er holds.
All these properties are extremely useful, in particular the “union of balls property” completely
characterizes the Cheeger set once the Cheeger constant is known, and on the other hand the
inner Cheeger formula allows to explicitly compute r, thus h(Ω), because when r increases the
set Er become smaller and smaller, thus there is a unique r such that the inner Cheeger formula
holds.
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The interested reader can look for instance [4, 5, 6, 8, 9, 14, 26], where further applications,
developments and extensions of the Cheeger problem are considered (see also the survey paper
[19]).

In this paper we will mainly deal with the case of strips, which are basically bended rectan-
gles, that is, curved two-dimensional tubes. The strips, or their three-dimensional counterpart,
namely, the waveguides, are quite studied since several years, in particular they are crucial in
applications, for instance in engineering and in medicine for their optical properties. Under-
standing the spectral properties of waveguides or strips is very important, and –as said above–
this is deeply connected with the Cheeger problem. Particularly relevant is the limit case when
strips or waveguides become extremely thin; up to a rescaling, it is equivalent but notationally
simpler to assume that the thickness is fixed and the length explodes. Some more information
on waveguides and their importance can be found in [11, 17] and in the references therein, while
the mathematical study of the Cheeger problem for strips has been also carried on in [18], see
also [23]. The main goal of this paper is to observe that strips behave like convex domains,
even if they are not convex; in other words, this shows that bending a rectangle to transform
it into a strip does not change too much the situation for what concerns the Cheeger problem.
More precisely, we will show that all the properties listed above and valid for convex sets, are
actually valid also for strips; as a consequence, we derive an estimate from above and below for
the Cheeger constant of a strip, which is stronger than the analogous estimate found in [18]. We
will present also several examples, some of which new, to underline that the above-mentioned
properties are not valid for generic sets, but they are really specific for convex sets and for strips.

The plan of the paper is the following. In Section 2 we briefly recall the definition of perimeter
and its main properties, then we set the Cheeger problem and we list some of the main results:
these are well-known, with the exception of Proposition 2.5 (vii) (a weak form of a well-known
“tangential contact property” of Cheeger sets) and of Theorem 2.7 (two continuity properties of
the Cheeger constant with respect to L1 and BV-strict topologies), and mostly focused on the
convex two-dimensional case. Then we show a technical but useful result about “rolling balls”,
Lemma 2.12. Section 3 is the main section of the paper: here we give the definition of the strips
and we prove all results concerning them. Finally, in Section 4 we collect several examples, some
well-known and other original (and possibly interesting in themselves), in order to stress the
peculiarity of convex domains, as well as of strips, with respect to the Cheeger problem.

2. Some preliminary results on the Cheeger problem

This Section is devoted to present some important facts about the Cheeger problem. After
a first, very brief introduction on the concept of perimeter, we will start, in Section 2.2, with
the relevant definitions and the most important, general properties of the Cheeger problem (in
addition to the well-known ones, we prove two facts, namely Proposition 2.5 (vii) and Theorem
2.7, that we have not been able to locate in the existing literature). Then, in Section 2.3, we will
discuss some known facts concerning the convex case, and finally, in Section 2.4, we will give a
couple of technical results valid in the planar case: even though they seem quite intuitive, we
could not find them written anywhere.

2.1. Basic facts about the perimeter. Let us start with a very quick introductory section
about the notion of perimeter. The initiated reader can clearly skip it, but also any other reader
can do the same, and limit himself to read this paper considering the case of sufficiently regular
sets, where the notion of perimeter is well-known.

Given any Borel set E ⊆ Rn, we will denote by |E| its Lebesgue measure (which we will also
shortly call volume), and by P (E) its perimeter. While for a sufficiently smooth set, for instance
a set with Lipschitz boundary, or a polyhedron, the standard concept of perimeter is simply the
(n− 1)-area of the boundary, in the general framework of Borel sets this doesn’t work properly.
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The correct, general definition of perimeter of a Borel set E ⊆ Rn is then the following,

P (E) := sup

{∫
E

div g : g ∈ C1
c (Rn;Rn), |g| ≤ 1

}
.

Whenever P (E) < +∞, we will say that E is a set of finite perimeter ; if this is the case, it
can be proved that the perimeter of E coincides with the total variation of the distributional
gradient of the characteristic function of E, namely,

P (E) = |DχE |(Rn) .

This allows us to define also the relative perimeter P (E;A) := |DχE |(A) for any pair of Borel
sets A, E ⊆ Rn; roughly speaking, the relative perimeter P (E;A) measures how big is the
boundary of E inside A. An immediate application of the Radon-Nikodym Theorem yields
the existence of a Borel vector-valued function νE , the outer normal of E, such that |νE | = 1
|DχE |-almost everywhere, and

DχE = −νE |DχE | .
An important, equivalent definition of νE is the following: we define the reduced boundary ∂∗E
as the set of all the points x ∈ Rn such that 0 < |E ∩Br(x)| < ωnr

n for all r > 0 and the limit

lim
r→0+

DχE(Br(x))

|DχE |(Br(x))

exists and has norm 1 (here, and in the following, we will always denote byBr(x) the ball centered
at x with radius r, and set ωn = |B1(0)|). One can prove that this limit exists |DχE |-almost
everywhere and coincides with −νE(x) for |DχE |-almost each point of ∂∗E. It is immediate to
observe that, whenever E is smooth enough, then the reduced boundary is nothing else than the
usual topological boundary, and the outer normal coincides with the exterior normal vector to
the boundary. However, for a general Borel set the next classical result by De Giorgi holds [10].

Theorem 2.1 (De Giorgi). Let E be a set of finite perimeter, then
(i) ∂∗E is countably Hn−1-rectifiable in the sense of Federer [13];
(ii) for any x ∈ ∂∗E, χt(E−x) → χHνE(x)

in L1
loc(Rn) as t → +∞, where Hν denotes the

half-space through 0 whose exterior normal is ν;
(iii) for any Borel set A, P (E;A) = Hn−1(A∩ ∂∗E), thus in particular P (E) = Hn−1(∂∗E);
(iv)

∫
E div g =

∫
∂∗E g · νE dH

n−1 for any g ∈ C1
c (Rn;Rn).

As we noticed above, these notions extend perfectly the classical notions whenever a set is
smooth enough. In particular, for a regular set one has P (E) = Hn−1(∂E) = Hn−1(∂∗E); for
a general Borel set it is always true, by the Theorem above, that P (E) = Hn−1(∂∗E), but this
does not need to coincide with the Hn−1 measure of the topological boundary.

There are many advantages of using this generalized notion of perimeter. First of all, this
applies to any Borel set; moreover, whenever two sets coincide almost everywhere, then their
reduced boundaries –and so, their perimeters– coincide (while the topological boundaries can
be completely different). Another important feature is the validity of the following well-known
lower-semicontinuity and compactness properties (see, e.g., [3]):

Proposition 2.2 (Lower-semicontinuity and compactness). Let Ω ⊆ Rn be an open set and let
(Ej)j be a sequence of Borel sets. We have the following well-known properties:

(i) if E is a Borel set, such that χEj → χE in L1
loc(Ω), then P (E; Ω) ≤ lim inf

j
P (Ej ; Ω);

(ii) if there exists a constant C > 0 such that P (Ej ; Ω) ≤ C for all j, then there exists a
subsequence Ejk and a Borel set E such that χEjk → χE in L1

loc(Ω).

Other useful properties of the perimeter (invariance by isometries and scaling property, isoperi-
metric inequality, lattice property) are collected in the next proposition.
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Proposition 2.3. Given two Borel sets E,F ⊆ Rn of finite perimeter, λ > 0 and an isometry
T : Rn → Rn, we have

P (λT (E)) = λn−1P (E) , (2.1)

P (E) ≥ nω1/n
n |E|

n−1
n , (2.2)

P (E ∪ F ) + P (E ∩ F ) ≤ P (E) + P (F ) . (2.3)

While generic sets of finite perimeter can be also very weird, a regularity theory is available
in particular for minimizers of the perimeter subject to a volume constraint (see [28]).

Theorem 2.4 (Regularity of perimeter minimizers with volume constraint). Let Ω be a fixed
open domain, and assume that E is a Borel set satisfying the following property: P (E; Ω) < +∞
and for all Borel F such that E∆F ⊂⊂ Ω and |F ∩ Ω| = |E ∩ Ω|, it holds

P (F ; Ω) ≤ P (E; Ω) .

Then, ∂∗E ∩ Ω is an analytic surface with constant mean curvature, and the singular set (∂E \
∂∗E) ∩ Ω is a closed set with Hausdorff dimension at most n− 8.

2.2. Setting of the Cheeger problem and first main results. In this section we introduce
the Cheeger problem and we list some well-known results. The definition of the problem is the
following: for any bounded, open set Ω, we define the Cheeger constant of Ω as

h(Ω) := inf

{
P (F )

|F |
: F ⊆ Ω, |F | > 0

}
. (2.4)

Any set F ⊆ Ω which realizes the above infimum is called a Cheeger set in Ω, and a set is
simply called a Cheeger set when it realizes the above infimum itself. Observe that of course
if F is a Cheeger set in Ω, then it is also a Cheeger set. The following are some of the basic
properties which are known about the problem, the proof of most of them can be found for
instance in [27, 15, 16] as we discuss below.

Proposition 2.5. Let Ω, Ω̃ ⊆ Rn be bounded, open sets. Then the following properties hold.
(i) If Ω ⊆ Ω̃ then h(Ω) ≥ h(Ω̃).
(ii) For any λ > 0 and any isometry T : Rn → Rn, one has h(λT (Ω)) = 1

λh(Ω).
(iii) There exists a (possibly non-unique) Cheeger set E ⊆ Ω.
(iv) If E is Cheeger in Ω, then it minimizes the relative perimeter among subsets of Ω with

the same volume as E; consequently, ∂∗E ∩ Ω has the regularity stated in Theorem 2.4,
and in particular ∂∗E ∩ Ω is a hypersurface of constant mean curvature equal to h(Ω)

n−1 .

(v) If E is Cheeger in Ω then |E| ≥ ωn
(

n
h(Ω)

)n
.

(vi) If E and F are Cheeger in Ω, then E∪F and E∩F (if it is not empty) are also Cheeger
in Ω.

(vii) If E is Cheeger in Ω and Ω has finite perimeter, then ∂E ∩ Ω can meet ∂∗Ω only in a
tangential way, that is, for any x ∈ ∂∗Ω∩ ∂E one has that x ∈ ∂∗E and νE(x) = νΩ(x).

The claims (i)–(vi) are simple and widely known, and can be found in the previously cited
references. More precisely, (i) and (ii) are immediate consequences of the definition of Cheeger
constant and of (2.1) coupled with |λΩ| = λn|Ω|. The proofs of (iii) and (iv) are accomplished by,
respectively, Proposition 2.2 and Theorem 2.4. The proof of (v) follows from the isoperimetric
inequality (2.2) and the fact that P (E) = h(Ω)|E|. Finally, to prove (vi) it is enough to
apply (2.3) and get

h(Ω)(|E ∪ F |+ |E ∩ F |) = h(Ω)(|E|+ |F |) = P (E) + P (F )

≥ P (E ∪ F ) + P (E ∩ F ) ≥ h(Ω)(|E ∪ F |+ |E ∩ F |) ,

hence all previous inequalities are actually equalities and this readily proves (vi). Instead,
concerning the property (vii), it is widely known if the boundary of Ω is smooth in a neighborhood
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of x (see for instance [27]) but, as far as we know, it has not yet been written in the fully general
form as above. For the sake of completeness, we add in the Appendix a proof of it.

Remark 2.6. We notice that, by Proposition 2.5 (iii), (v) and (vi), we can always find minimal
Cheeger sets in Ω (possibly not unique) and a unique maximal Cheeger set (this last can be
obtained as the union of all minimal Cheeger sets of Ω). An example of a domain with two
disjoint minimal Cheeger sets is shown in Figure 8.

We consider now the problem of continuity of the Cheeger constant h(Ω) with respect to
some suitable notions of convergence of domains. In Theorem 2.7 below, we show that the
Cheeger constant is lower semicontinuous with respect to L1-convergence of domains, while it is
continuous if we additionally assume that the perimeters of the approximating domains converge
to the perimeter of the limit domain. We point out that the continuity of the Cheeger constant
under L1-convergence of convex domains has been proved in [22] (since L1-convergence plus
convexity implies convergence of the perimeters, the continuity result for convex domains is a
particular case of Theorem 2.7).

Theorem 2.7 (Continuity of the Cheeger constant). Let Ω,Ωj ⊆ Rn be nonempty open bounded
sets for all j ∈ N. If χΩj → χΩ in L1, then

lim inf
j→∞

h(Ωj) ≥ h(Ω) . (2.5)

If in addition Ω,Ωj are sets of finite perimeter and P (Ωj)→ P (Ω) as j →∞, then

lim
j→∞

h(Ωj) = h(Ω) . (2.6)

Proof. Let Ej be a Cheeger set in Ωj (whose existence is guaranteed by Proposition 2.5 (iii)).
Without loss of generality we assume that lim inf

j→∞
P (Ej) is finite, then by Proposition 2.2 we

deduce that χEj → χE in L1 as j → ∞, up to subsequences and for some Borel set E with
positive volume. Since Ej ⊆ Ωj and χΩj → χΩ in L1 as j → ∞, one immediately infers that
E ⊆ Ω up to null sets. Then by Proposition 2.2 and by the convergence of |Ej | to |E|, one has

h(Ω) ≤ P (E)

|E|
≤ lim inf

j→∞

P (Ej)

|Ej |
= lim inf

j→∞
h(Ωj) ,

which is (2.5). If in addition P (Ωj) → P (Ω) as j → ∞, then we consider E Cheeger in Ω and
define Ej = Ωj ∩ E. One can easily check that Ej → E and E ∪ Ωj → Ω in L1, as j → ∞.
Therefore by (2.3) we find

lim sup
j→∞

P (Ej) ≤ P (E) + lim sup
j→∞

P (Ωj)− lim inf
j→∞

P (E ∪ Ωj) ≤ P (E) + P (Ω)− P (Ω) = P (E) ,

which combined with (2.5) gives (2.6). �

2.3. The Cheeger problem in convex domains. In the particular case when the domain Ω is
convex, several further properties are known; in this section, we list some of the most interesting
ones. Some of these properties will be later generalized to the case of the strips, which we will
introduce in Section 3.

The first property, which can be found in [1] (see also the references therein), is the following
uniqueness and convexity result.

Theorem 2.8. Let Ω ⊆ Rn be a convex domain. Then there exists a unique Cheeger set E in
Ω. Moreover, E is convex and of class C1,1.

While the previous result holds for any dimension n ≥ 2, a quite more precise statement holds
in the planar case, see [27, 16]. We will use the following notation: for any set Ω, and any r > 0,
we write

Er := {x ∈ Ω : dist(x, ∂Ω) > r} ;

in particular, if r = h(Ω)−1, then the set Er is referred to as the inner Cheeger set of Ω, the
reason being clear from the next result.

5



Theorem 2.9. Let Ω be a bounded convex set in R2. Then the unique Cheeger set E of Ω is
the union of all balls of radius r = h(Ω)−1 that are contained in Ω, hence E = Er + Br(0).
Moreover, it holds

|Er| = πr2 .

The proof of Theorem 2.9 is essentially based on Steiner’s formulae for area and perimeter
of tubular neighbourhoods of convex sets in the plane ([25]): if A ⊆ R2 is a bounded convex set
and ρ > 0, then setting Aρ = A+Bρ(0) we have

|Aρ| = |A|+ ρP (A) + πρ2, (2.7)
P (Aρ) = P (A) + 2πρ . (2.8)

Some generalizations of Steiner’s formulae have been proved, for instance by Weyl in the case
of n-dimensional domains with C2 boundary (the so-called tube formula, see [29]) and then by
Federer [12] under the assumption of positive reach. Let us be more precise: given K ⊆ Rn
compact, we define the reach of K as

R(K) = sup{ε ≥ 0 : if dist(x,K) ≤ ε then x has a unique projection onto K} .

We say that K has positive reach if R(K) > 0. Notice that if K is convex, then R(K) = +∞.
It is convenient to introduce the outer Minkowski content of an open bounded set A, defined as

M(A) = lim
ρ→0

|Aρ| − |A|
ρ

,

provided that the limit exists. Then the following result holds.

Proposition 2.10. Let A ⊆ R2 be a bounded open set with Lipschitz boundary and assume that
A has positive reach. Then Steiner’s formulae (2.7) and (2.8) hold for all 0 < ρ ≤ R(A).

Proof. Let dA denote the distance function from A. The positive reach assumption implies
that dA is of class C1,1

loc on the open set {x : 0 < dA(x) < R(A)}. Moreover its Jacobian is
|∇dA(x)| = 1 on this set. Since Weil’s extension of the Steiner formula (2.7) in particular holds
true for C1,1 planar domains, for any 0 < t < ρ < R(A) we can use coarea formula getting

|Aρ| − |At| =
∫ ρ

t
P (As) ds =

∫ ρ

t

(
P (At) + 2π(s− t)

)
ds = (ρ− t)P (At) + π(ρ− t)2 .

Now, since |At| → |A| as t→ 0, we obtain the existence of lim
t→0

P (At) and, calling P0 this limit,
it holds

|Aρ| − |A|
ρ

− πρ = P0 , ∀ 0 < ρ < R(A) .

Letting now ρ→ 0, we deduce thatM(A) = P0. On the other hand, being A of positive reach
and with Lipschitz boundary, we can apply Theorem 9 in [2] to deduce that M(A) = P (A).
Then for all 0 < ρ < R(A) we obtain

P (A) =M(A) = P0 =
|Aρ| − |A|

ρ
− πρ .

By multiplying this last equality by ρ we obtain (2.7), while by differentiating (2.7) we get (2.8).
The validity also for ρ = R(A) follows then by continuity. �

2.4. Some further results about Cheeger sets in R2. Let E be a Cheeger set inside an
open bounded domain Ω ⊆ R2, and set r = h(Ω)−1 as before. Then a first, general fact is that
any connected component of ∂E ∩ Ω is an arc of radius r, that cannot be longer than πr (i.e.,
it can be at most a half-circle).

Lemma 2.11. Any connected component S of ∂E ∩ Ω is an arc of circle of radius r, whose
length does not exceed πr.
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Proof. By Proposition 2.5 (iv) we already know that S is a circular arc of radius r. Assume then
by contradiction that this arc has length l > πr. Consider the arc S′ ⊆ S with length equal to
πr and whose mid-point coincides with that of S: notice that S′ lies entirely in the interior of Ω.
Call now x the center of the corresponding circle, and let now S′′ be the arc of circle centered
at xε := x + r tan(ε)ν, connecting the two endpoints of S′ and having opening angle equal to
π + 2ε. Since S′ is contained in the open set Ω, the same holds true for S′′ if ε is small enough.
For such a small ε, let us then define the competitor Eε, slightly bigger than E, whose boundary
coincides with (∂E \ S′) ∪ S′′. Now we compute the perimeter and the area of Eε: we have

P (Eε) = P (E)− πr + (π + 2ε)
r

cos ε
=
|E|
r

+ 2rε+
πr

2
ε2 + o(ε3) ,

while

|Eε| = |E| −
π

2
r2 +

π + 2ε

2
· r2

cos2 ε
+ r2 tan ε = |E|+ 2r2ε+

πr2

2
ε2 +

r2

3
ε3 + o(ε3) .

Therefore, the Cheeger ratio of Eε satisfies
P (Eε)

|Eε|
<

1

r
= h(Ω),

which contradicts the definition of h(Ω). �

A seemingly reasonable property of a planar Cheeger set E is the fact that E satisfies an
internal ball condition of radius r = |E|

P (E) , or that it is a union of balls of radius r (this second
property is slightly stronger). This fact is false in general (see Figure 5 and, in particular,
Example 4.2). Anyway, the following result holds true: if a maximal Cheeger set E in Ω
contains some ball Br(x0), then it contains also all the balls which can be obtained by “rolling”
Br(x0) inside Ω.
Lemma 2.12 (Rolling ball). Assume that the maximal Cheeger set E in Ω contains a ball
Br(x0), being r = 1/h(Ω), and let γ : [0, 1] → Ω be a C1,1 curve, with curvature bounded by
h(Ω), such that γ(0) = x0 and Br(γ(t)) ⊆ Ω for all t ∈ [0, 1]. Then Br(γ(t)) ⊆ E for all
t ∈ [0, 1].
Proof. Let t∗ ∈ [0, 1] be the largest time for which Br(γ(t)) ⊆ E for all t ∈ [0, t∗], set B∗ =
Br(γ(t∗)) for brevity, and assume by contradiction that t∗ < 1. Take now t ∈ (t∗, 1), very close
to t∗ and such that Br(γ(t)) is not contained in E, while it is contained in Ω by hypothesis. This
implies that there exists some x ∈ Br(γ(t))\E, thus in particular there is some x ∈ Br(γ(t))∩∂E,
recalling that B∗ ⊆ E. Consider now the connected component S of ∂E passing through x: we
know that it is an arc of circle, with radius r, and with both endpoints in ∂Ω. Recall that a
Cheeger set is always in the “interior part” of the arcs of circle forming its boundary or, in other
words, the curvature of ∂E is always positive (and equal to 1/r) inside Ω. Since t is very close
to t∗ and since the endpoints of the arc S must be outside E, thus outside both balls B∗ and
Br(γ(t)), which have the same boundary curvature as that of S, we infer that the length of S is
at least πr − ε, where ε can be chosen arbitrarily small if t and t∗ are close enough.

Notice now that ∂E has only finitely many connected components with length greater than
πr−ε, then we can assume the existence of a sequence tn ↘ t∗ as before, such that the same arc
S intersects the interior of each ball Br(tn). Since tn is converging to t∗, the distance between
S and ∂B∗ must be zero, and then, also recalling Lemma 2.11, we obtain that S is exactly an
arc of circle of length πr inside ∂B∗.

Let us now take some t+ ∈ (t∗, 1), and consider the sets

E− =
⋃

0<t<t∗

Br(γ(t)) , E+ =
⋃

0<t<t+

Br(γ(t)) .

It can be easily proven (and this will be explicitely done later in Section 3) that the following
exact formulae hold

P (E+)− P (E−) = 2` , |E+ \ E−| = 2r` ,
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being ` the length of γ restricted to (t∗, 1). Calling Ê = E ∪E+, we aim to show that Ê is also
a Cheeger set, which gives a contradiction with the maximality of E. If E does not intersect
E+ \ E−, this is clear, because since E is a Cheeger set then

P (Ê)

|Ê|
=
P (E) + P (E+)− P (E−)

|E|+ |E+| − |E−|
=
h(Ω)|E|+ 2`

|E|+ 2r`
= h(Ω) ,

so Ê is also a Cheeger set, a contradiction.
To conclude, suppose then that F := E ∩

(
E+ \E−

)
6= ∅, and notice that, as a consequence,

|Ê| = |E|+ |E+| − |E−| − |F | , P (Ê) = P (E) + P (E+)− P (E−)− P (F ;E+ \ E−) . (2.9)

Since ∂F has constant curvature h(Ω) inside E+ \E−, while ∂(E+ \E−) has curvature smaller
than h(Ω) by construction, we infer that

P (F ;E+ \ E−) ≥ P (F )

2
.

Finally, since by choosing t+ close enough to t∗ we have that |F | is arbitrarily small, hence by the
isoperimetric inequality P (F )/|F | is arbitrarily big, from (2.9) we directly obtain P (Ê)/|Ê| ≤
h(Ω), which gives again a contradiction. �

Remark 2.13. The requirement in Lemma 2.12 of the maximality of E can be dropped whenever
the rolling ball remains at a positive distance from ∂Ω. In this case, the previous proof ensures
that the rolling ball will never intersect ∂E, so that the claim follows.

3. Characterization of Cheeger sets in planar strips

In recent years, there has been an increasing interest in the geometrical and spectral study of
three-dimensional waveguides, or in their two-dimensional counterpart, the “strips”. Basically, a
waveguide is a generalization of a cylinder; more precisely, while a cylinder is obtained by taking
a segment and considering the union of equal disks centered on the points of the segment and
orthogonal to the segment itself, a waveguide is done in the very same way, just substituting the
segment with a sufficiently regular curve. They are important in many applications, for instance
for their optical properties. A number of interesting questions concern the spectral properties of
the waveguides in the limit when they become extremely thin; for more information, the reader
could see [11, 17] and the references therein. In the two-dimensional case, a strip is constructed
by taking a sufficiently regular curve and considering the union of equal segments centered on
the points of the curve and orthogonal to the curve itself. In this sense, strips are generalized
rectangles.

Let us now give all the formal definitions concerning the strips. Let γ : [0, L]→ R2 be a C1,1

curve, with γ(0) 6= γ(L), parametrized by arc-length. For every t ∈ [0, L], we denote by σ(t) the
relatively open segment of length 2 centered in γ(t) and orthogonal to γ′(t), and we define the
set

S :=
⋃

t∈(0,L)

σ(t) .

Let us denote by Ψ the obvious parametrization of S on (0, L)× (−1, 1); more precisely, calling
ν(t) the normal vector whose direction is obtained by counter-clockwise rotating γ′(t) of 90◦,
the map Ψ : (0, L)× (−1, 1)→ S is given by

Ψ(t, ρ) := γ(t) + ρν(t) .

Finally, we say that S is an open strip of width 2 if the map Ψ is a C1,1 diffeomorphism: notice
that this implies, in particular, that all the open segments σ(t) are disjoint, hence in particular
that the curvature of γ is always at most 1. The curve γ is sometimes called the spinal curve of
the strip S.

It is possible to consider the case of the closed strips (or annuli), which roughly speaking
correspond to the case when γ(0) = γ(L); however, in this article we concentrate ourselves to
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the case of the open strips because the other case was already completely discussed in [18]. It is
also possible to consider the open strips of any width 2s, where the segments σ(t) have length
2s instead of 2, but we prefer to fix the width to 2 for simplicity of notations, since the general
case can be trated by a trivial rescaling.

σ(0)
σ(L)

σ(t)

∂+S

∂−S

γ(t)

Figure 1. A planar strip S.

The study of the behaviour of the strips in the Cheeger problem has been already started
in [18], see also [23]. In particular, an interesting feature of the Cheeger problem for strips is that
some of the properties which are valid in the convex case (recall the discussion of Section 2.3)
are still valid for the strips, which are not convex. Another interesting fact is a two-sided bound
on the Cheeger constant of strips when their length goes to infinity, found in the paper [18] (see
Theorem 3.1 below). Notice that, up to a rescaling, having fixed the width of the strips and
letting their length go to infinity is completely equivalent to fix the length and consider the limit
when they become infinitely thin, which is the physically relevant case, as said before.

The aim of the present article is to push forward the understanding of the properties of the
convex case still valid for the strips, and to prove a refinement of the bounds on the Cheeger
constant found in [18] –basically, while the bounds there were at the first order, we obtain a
second order kind of estimates, see Teorem 3.2 below. The following estimate is the one proved
in [18].

Theorem 3.1. Let S be a strip of length L and width 2. Then

1 +
1

400L
≤ h(S) ≤ 1 +

2

L
.

We will be able to prove the following improvement of the above estimate.

Theorem 3.2. Let S be an open strip of length L and width 2. Then

h(S) = 1 +
π

2L
+O(L−2) as L→ +∞ . (3.1)

It is important to underline that the asymptotic estimate (3.1) is optimal. The main brick to
prove it is the following theorem, which is our main result concerning strips.

Theorem 3.3. Let S be an open strip of length L ≥ 9π/2, and let r = h(S)−1. Then there is a
unique Cheeger set E of S, which can be described as

E = Ψ
(
{(t, s) : 0 < t < L, ρ−(t) < s < ρ+(t)}

)
(3.2)

where ρ+, ρ− : [0, L]→ [−1, 1] are two suitable continuous functions. Moreover, E coincides with
the union of all balls of radius r contained in S, it is simply connected, and it can be obtained
as the Minkowski sum E = Er +Br, where

Er = {x ∈ S : dist(x, ∂S) ≥ r}

is a set with Lipschitz boundary and positive reach R(Er) ≥ r. Finally, the inner Cheeger
formula

|Er| = πr2 (3.3)
holds true.
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Remark 3.4. We stress that the conclusions of Theorem 3.3 (in particular, the fact that the
Cheeger set E is the union of all balls of radius r contained in S, and that (3.3) holds true) are
typical properties of the convex case, keep in mind Theorem 2.9, but they are not satisfied by
a generic planar domain. Two examples showing that no inclusion between Cheeger sets and
unions of balls of radius r is generally true, are given in the last section (Examples 4.1 and 4.2).
Concerning the inner Cheeger formula (3.3), there exists a star-shaped domain whose Cheeger
set is the union of all included balls of radius r, but for which the formula fails (see Example 4.3).

The plan of the remaining of this section is the following. First, we prove a simple technical
relation between perimeter and area of a strip and length of the corresponding spinal curve:
in particular, we will see that perimeter and area of a strip depend only on the length of the
spinal curve, not on the shape or curvature of the curve itself. Then, we will use this relation
to give a straightforward proof of Theorem 3.2 by means of Theorem 3.3. After that, we will
state and prove our two “key lemmas”. And finally, we will conclude the section with the proof
of Theorem 3.3.

Proposition 3.5. Let S be a strip of length L and width 2. Then the area and the perimeter of
S are given, respectively, by

|S| = 2L , P (S) = 2L+ 4 . (3.4)

Proof. Let γ be the spinal curve of S and notice that, since γ is parametrized by arc-length, the
curvature κ(t) is simply given by

γ̈(t) = κ(t)ν(t) ,

being ν(t) the normal vector to the curve γ at t obtained by counter-clockwise rotating γ′(t)
by 90◦; as already noticed, the curvature κ is always between 1 and −1. Recall now that the
map Ψ is a C1,1 diffeomorphism between the rectangle (0, L) × (−1, 1) and the strip S, being
Ψ(t, ρ) = γ(t) + ρ · ν(t). The Jacobian of Ψ can then easily be calculated as

J(t, ρ) =
∥∥(γ̇(t) + ρ · γ̈(t)⊥) ∧ ν(t)

∥∥ = |1− ρκ(t)| = 1− ρκ(t) ,

where the last equality comes from the fact that |ρ| ≤ 1 and |κ(t)| ≤ 1. Therefore, a simple
change of variables gives us directly the following formula for the area of the strip S:

|S| =
∫ L

0

∫ 1

−1
1− ρκ(t) dρ dt = 2L .

Instead, the perimeter is obtained adding the length of the “left” and “right” side of the boundary
of the strip (that is, σ(0) and σ(L), each of which having length 2) to the length of the “top”
and “bottom” parts, corresponding to ρ = ±1, so we find

P (S) = 4 +

∫ L

0
J(t, 1) + J(t,−1) dt = 4 +

∫ L

0

(
1− κ(t)

)
+
(
1 + κ(t)

)
dt = 4 + 2L ,

so (3.4) is obtained and the proof is concluded. �

Remark 3.6. More generally, the above proof shows that if Γ is any measurable subset of the
spinal curve γ, and G is the corresponding union of segments σ(t) issuing from γ(t) ∈ Γ, we
have |G| = 2H1(Γ), where H1 denotes the one-dimensional Hausdorff measure in R2.

Proof of Theorem 3.2. Let us start by estimating the area of the set Er defined in Theorem 3.3:
let x ∈ S be a point, and let (t, ρ) ∈ (−L,L)× (−1, 1) be defined as (t, ρ) = Ψ−1(x). We clearly
have x /∈ Er if |ρ| > 1 − r, thus Er is contained in the strip of width 2(1 − r) with the same
spinal curve γ; by Proposition 3.5, this implies

|Er| ≤ 2(1− r)L ;

in particular, we get that r < 1, because otherwise Er would be empty, and this would be against
the claim of Theorem 3.3. On the other hand, take x = Ψ(t, ρ) and assume that |ρ| ≤ 1− r; by
the definition of the strips, x belongs to Er unless it has a distance smaller than r from one of
the two segments σ(0) and σ(L). If this is the case, then the whole segment σ(t) has distance
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smaller than 2 from either σ(0) or σ(L), since any point of σ(t) has distance less than 2−r from
x. If we call then

Γ =
{
γ(t) : ∃ρ ∈

[
− (1− r), 1− r

]
, Ψ(t, ρ) /∈ Er

}
,

then the strip corresponding to Γ in the sense of Remark 3.6 has an area 2H1(Γ). Being this
area concentrated in the two zones of points having distance less than 2 from σ(0) and from
σ(L), we deduce

2H1(Γ) ≤ 2
(
4π + 8) .

Summarizing, the strip corresponding to the whole spinal curve without Γ, and with width
2(1− r), is contained in Er, hence recalling again Proposition 3.5 we finally derive

|Er| ≥ 2(1− r)
(
L− 4π − 8

)
.

Then, the inner Cheeger formula (3.3) gives

2(1− r)
(
L− 4π − 8

)
≤ πr2 ≤ 2(1− r)L ,

which finally implies (3.1) by an elementary computation, recalling that h(S) = 1/r. �

Let us claim and prove the two key lemmas, which will later be used for the proof of Theo-
rem 3.3. The first lemma states that, if E is a Cheeger set in S, and the length of S is large
enough, then any osculating ball to ∂E ∩ S is entirely contained in S (see Figure 2).

α

E

S

q

p

Figure 2. The arc-ball property of a Cheeger set inside a strip.

Lemma 3.7 (Arc-ball property). Let E be a Cheeger set inside a strip S of length L ≥ 9π
2 . Set

r = h(S)−1. Then ∂E ∩S is non-empty, and for any circular arc α contained in ∂E ∩S the ball
Br, such that α ⊆ ∂Br, is entirely contained in S.

Proof. We split the proof in three steps.

Step I. S is not Cheeger in itself, and r < 1.
It is immediate to observe that, if a set has a concave corner, then a small cut around it (of size
ε) decreases the perimeter of order ε, and the area only of order ε2, hence for ε small enough
the Cheeger ratio is decreased. This simple remark ensures that a Cheeger set can never contain
a concave corner, thus in particular a set with concave corners cannot be Cheeger in itself. In
particular, having four 90-degrees corners, a strip is never Cheeger in itself (and since a strip is
connected, this implies that ∂E∩S is not empty). Moreover, Theorem 3.1 ensures that h(S) > 1,
hence r < 1.
Step II. Any connected component of ∂E ∩ S “cuts a corner” of S.
Let α be a connected component of ∂E ∩ S, let p, q ∈ ∂S its two endpoints, and call Br the
ball whose boundary contains α. In this step we are going to show that one of the two points
p and q belongs to a lateral side (that is, σ(0) or σ(L)), and the other point belongs either to
the “upper side” or to the “lower side” –that is, Ψ

(
(0, L)×{1}

)
and Ψ

(
(0, L)×{−1}

)
. To prove

this claim, we have to exclude the following possibilities.
• Both p and q belong to σ(0).
This is impossible. Indeed, recall that by Proposition 2.5 (vii) the arc α meets ∂S tangentially.
Then, since σ(0) is a segment, there cannot be a circle meeting twice σ(0) in a tangential way.
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The same argument excludes also that both p and q belong to σ(L).
• Both p and q belong to the upper side.
This is impossible. Indeed, as already noticed the arc α meets ∂S tangentially; hence, if p
belongs to the upper side, say p = Ψ(t, 1), this implies that the center of Br belongs to the line
orthogonal to ∂S in p, so it must be in the segment σ(t); here we just need to use that r < 2
and that the arc α belongs to S. Now, if also q belongs to the upper side, say q = Ψ(t′, 1),
for the same reason we discover that the center of Br belongs to the segment σ(t′). But since
σ(t) ∩ σ(t′) = ∅, because all the segments are disjoint and t 6= t′ because p and q are distinct,
this gives a contradiction. The same argument excludes also that both p and q belong to the
lower side.
• p belongs to the upper side, and q to the lower one.
This is impossible. Indeed, the same argument as above implies that p = Ψ(t, 1) and q =
Ψ(t,−1); but then the distance between p and q would be 2, while any two points in ∂Br have
distance at most 2r < 2.
• p ∈ σ(0) and q ∈ σ(L).
This is impossible. Indeed, if the two endpoints of α belong to σ(0) and σ(L), then by continuity
every segment σ(t), for 0 < t < L, would intersect α. But then every point of S would have
distance less than 2 + r < 3 from the center of Br, so the whole strip S would be contained in
the ball of radius 3 having the same center as Br. This would imply that 2L = |S| < 9π, which
is in turn ruled out by the assumption on L. The step is then concluded.
Step III. The whole ball Br is contained in S.
In this last step we conclude the proof of the lemma. Thanks to Step II, we can assume without
loss of generality that p ∈ σ(0) while q belongs to the lower side. Hence, q = Ψ(t,−1) for some
0 < t < L, and thus the center of Br is the point Ψ(t,−1 + r). Assuming by contradiction that
Br is not contained in S, there must be some point s ∈ Br ∩ ∂S. The arguments of Step II
already ensure that s cannot be contained in σ(0), nor in σ(L), so we must exclude that s
belongs to the upper or to the lower side. But in fact, if s belongs to the upper side or to the
lower side, then s has distance less than r from Ψ(t,−1+r), thus less than 1 from Ψ(t, 0), which
is against the definition of strip. The proof is then concluded. �

The second lemma establishes a ball-to-ball connectivity property of a generic strip, that is,
the possibility of connecting two balls of radius r that are contained in S by rolling one of them
towards the other, following a suitable path of centers with controlled curvature and preserving
the inclusion in S (see Figure 3).

Figure 3. The ball-to-ball property of a strip.

Lemma 3.8 (Ball-to-ball property). If Br(x0) and Br(x1) are two balls of radius r ≤ 1, both
contained in a strip S, then there exists a piece-wise C1,1 curve β : [0, 1]→ S such that β(0) = x0,
β(1) = x1, the curvature of β is smaller than r−1, and Br(β(t)) ⊆ S for all t ∈ (0, 1).

Proof. We split again the proof into three steps.
Step I. Centers of balls in S with fixed ρ and r are projected onto arcs of the spinal curve.
Let us fix r ≤ 1 and ρ ∈ (−1, 1), and call for brevity xt = Ψ(t, ρ) for 0 < t < L. The goal of this
step is to show that the set

J :=
{
t ∈ (0, L) : Br(xt) ⊆ S

}
12



is a closed interval. To begin, we observe that J is clearly closed; moreover, it is admissible to
assume |ρ| ≤ 1 − r, since otherwise J is empty and there is nothing to prove. We observe now
that, since |ρ| ≤ 1 − r, then every ball Br(xt) has an empty intersection with the upper side
Ψ
(
(0, L) × {1}

)
, as well as with the lower side Ψ

(
(0, L) × {−1}

)
. Therefore, by continuity, for

each t ∈ ∂J the boundary of the ball Br(xt) must necessarily be tangent to either σ(0) or σ(L)
(or both). We claim now that there cannot be two distinct t1 < t2 in ∂J such that the balls
Br(xt1) and Br(xt2) are both tangent to σ(0) (by symmetry, the same will be true for σ(L)):
since for sure t /∈ J when t is too close to 0 or L, the fact that J is a closed segment will follow
at once as soon as we show this claim.

Assume then the existence of t1 < t2 against the claim. Then, the segment connecting xt1
and xt2 is parallel to σ(0), and as a consequence there must be some t̄ ∈ (t1, t2) such that the
direction γ′(t̄) of the curve γ at γ(t̄) is parallel to σ(0). In other words, the segment σ(t̄) is
orthogonal to the segment σ(0). Now, observe that all segments σ(t) are disjoint, both endpoints
of any σ(t) are by definition outside the ball Br(xt2), and σ(0) is tangent to Br(xt2). Then,
an immediate geometric argument implies that the segments σ(t), for t varying between 0 and
t̄, sweep strictly more than one half of the ball Br(xt2). As a consequence, there exists some
t′ ∈ [0, t̄] such that σ(t′) contains the point xt2 . And finally, this is impossible, because xt2 only
belongs to σ(t2) and t2 > t̄ ≥ t′.
Step II. The case of two balls tangent to σ(0).
Let x, y ∈ S be two points such that both balls Br(x) and Br(y) are contained in S and tangent
to σ(0). We claim that the (open) convex envelope K of the two balls Br(x) and Br(y) is
entirely contained in S. We prove the claim by contradiction, assuming that ∂S ∩ K is not
empty. By construction, it is clear that σ(0) does not intersect K; moreover, since σ(L) does
not intersect Br(x) nor Br(y), then it is impossible that ∂S ∩K consists only of points of σ(L).
As a consequence, there must be points of ∂S∩∂K which are not in σ(0)∪σ(L), hence which are
either in the upper side ∂+S or in the lower side ∂−S. Since we can assume that both endpoints
of σ(0) are a strictly positive distance apart from K (because otherwise the claim is immediate),
there is a strictly positive t0 < L such that one of the endpoints of σ(t0) belongs to ∂K \ σ(0),
and t0 is the smallest number for which this happens. Without loss of generality, let us assume
that this endpoint is the upper one, that is, Ψ(t0, 1) ∈ ∂K. Notice that this point does not
belong to σ(0), nor to the boundaries of Br(x) and Br(y), hence it belongs to the segment of
∂K which is parallel to σ(0) but not intersecting σ(0).

Let us now call K+ the biggest bounded set in R2 whose boundary is contained in the union
of ∂K, σ(0), and the curve t 7→ Ψ(t, 1) with 0 < t < t0. Observe that K+ ) K, and that the
whole curve t 7→ Ψ(t, 1) with 0 < t < t0 is part of ∂K+; observe also that the curve t 7→ Ψ(t,−1)
for 0 ≤ t ≤ t0 does not intersect K+, by the minimality of t0. Notice now that the direction of
the segment σ(t0) has a strictly negative component in the direction of σ(0): this comes again by
the minimality of t0, since the curve t 7→ Ψ(t, 1) must enter in the stadium K from the straight
side which is not contained in σ(0). As a consequence, the segment σ(t0) must lie entirely inside
K+: indeed, in the point Ψ(t0, 1) the segment is pointing inside K+ by construction, and the
argument above about the direction implies that it could exit from K+ only either at a point of
σ(0) –and this is impossible because σ(t0) and σ(0) do not intersect– or at a point of ∂+S∩∂K+

–and this is impossible because σ(t0) and ∂+S cannot intersect. Summarizing, we have proved
that the whole segment σ(t0) is inside K+, hence in particular Ψ(t0,−1) is K+; and finally, this
gives the required contradiction because we proved above that t 7→ Ψ(t,−1) for 0 ≤ t ≤ t0 does
not intersect K+.
Step III. Conclusion.
The conclusion now easily follows from steps I and II. Given any two balls of same radius r ≤ 1
contained inside the strip, by Step I we can move both with constant distance from ∂+S until
they become tangent to σ(0); then, we can connect these two balls parallel to σ(0) thanks to
Step II. The corresponding curve β is clearly made by three C1,1 pieces, and by construction
each piece has curvature smaller than r−1. �
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With these two lemmas at hand, we can finally prove Theorem 3.3 and conclude this section.

Proof of Theorem 3.3. For simplicity, we divide the proof in some steps.
Step I. The functions ρ± such that (3.2) holds.
Let us start by defining the functions ρ±. First of all, Lemma 3.7 ensures the existence of arcs
of circle contained in ∂E ∩ S, each one associated with a corner of S in the sense of Step II of
the proof of Lemma 3.7. As we already pointed out in that proof, each of the four corners of S
must be ruled out of E, and this means that there are at least four arcs in ∂E ∩ S. We want to
show that they are actually exactly four, or in other words that the four corners of S are in a
one-to-one correspondence with the connected components of ∂E ∩ S. To do so, let α be such
an arc, and let Br(x) be the ball which contains α as a part of its boundary: by Step II of the
proof of Lemma 3.7, we know that exactly one endpoint of α belongs either to the upper side
∂+S or to the lower side ∂−S. If an endpoint of α belongs to ∂+S, then we know that the center
x of Br(x) must be x = Ψ(t, 1 − r) for some t ∈ (0, L); conversely, if an endpoint of α belongs
to ∂−S, then x = Ψ(t,−1 + r) for some t ∈ (0, L). However, Step I of the proof of Lemma 3.8
implies that there is exactly a single x of the form x = Ψ(t, 1 − r) such that the ball Br(x) is
tangent to σ(0), and exactly another one such that the ball is tangent to σ(L). This ensures
that there is exactly a single arc ruling out each of the four corners of S.

As a consequence, we know that ∂E ∩ S is made by four arcs of circle A+
l , A

+
r , A−r and A−l ,

connecting respectively the left side with the upper side, the upper with the right, the right with
the bottom, and the bottom with the left. Therefore, ∂E is the union of these four arcs, plus
two segments Σl and Σr respectively in σ(0) and σ(L), plus two curves Γ+ and Γ− respectively
in ∂+S and ∂−S. We can define the “upper boundary” ∂+E of E, and the “lower boundary”
∂−E of E as

∂+E := A+
l ∪ Γ+ ∪A+

r , ∂−E := A−l ∪ Γ− ∪A−r .

We now claim that for every 0 < t < L there is exactly one number ρ+(t) ∈ [−1, 1], and exactly
one number ρ−(t) ∈ [−1, 1], such that Ψ

(
t, ρ±(t)

)
∈ ∂±E. Indeed, otherwise there should be a

segment σ(t) which intersects twice one of the four arcs, say A+
l , and then by continuity there

should be another segment σ(t′) which is tangent to the arc A+
l : this is impossible, because then

the whold segment σ(t′) would be in the upper-left connected component of S \ E, and this is
absurd because Ψ(t′,−1) cannot be in that component. It readily follows that the functions ρ±
are continuous, and that they fulfill the property (3.2); the fact that E is simply connected is
then immediate. Moreover, the construction ensures that the four arcs A±l, r only depend on S,
not on E, and thus there is actually a unique Cheeger set.
Step II. E is the union of balls of radius r contained in S and E = Er +Br.
Let us now call U the union of all balls of radius r contained in S, and let us show that E = U .
First of all, let Br be any ball of radius r contained in E (we know that such a ball exists,
for instance any of the balls containing one of the four arcs A±l, r have this property by Lemma
3.7). Then let B′r be any other ball, still of radius r, contained in S. Lemma 3.8 ensures that
we can roll the ball Br in S until it covers B′r. Then, the “rolling ball” Lemma 2.12 implies
that all the intermediate balls, and in particular B′r, are contained in E; notice that we can
apply Lemma 2.12 because E, being the unique Cheeger set as shown in the previous step, is in
particular the maximal one. Hence, we have proved that U ⊆ E.

Conversely, notice that the assumption on L gives, thanks to Theorem 3.1, that h(S) < 2,
thus r > 1/2. Hence, every point of S has distance less than 2r from ∂S, and so every point of
E has distance less than 2r from ∂E. Therefore, to check that E ⊆ U , it is sufficient to prove
that, for each point p ∈ ∂E, the ball with radius r tangent to ∂E in p (from the same side of
E) is entirely contained in S.

If p belongs to one of the four arcs of ∂E, this is ensured by Lemma 3.7, while if p belongs to
σ(0) or σ(L), this is an immediate consequence of Step II of the proof of Lemma 3.8. Assume
then by contradiction the existence of a point p in ∂+S ∩∂E such that the above-mentioned ball
is not contained in S; by construction, this means that the circle of radius r tangent in p to ∂+S
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has two points which both belong to σ(0) or both to σ(L); since this happens exactly with one of
the two segments, by the assumption on L, we assume that the segment is σ(0). Since p ∈ ∂E,
then by Step I it is “after” the arc A+

l : this means that, if we call t′ such that p = Ψ(t′, 1), and
t′′ such that Ψ(t′′, 1) is the extreme of the arc A+

l which belongs to ∂+S, then t′ > t′′. Let us
now “roll” the ball, that is, let us consider all the balls Bt of radius r which are tangent to ∂+S
at points Ψ(t, 1) for t > t′: by continuity, there exists some t′′′ such that this ball is tangent to
σ(0), before reaching the arc A+

r . By construction, this ball is inside S and tangent to ∂S both
on ∂+S and on σ(0); moreover, since t′′′ > t′ > t′′, this ball does not coincide with Bt′′ (which
is the ball containing the arc A+

l in its boundary). Hence, there are two distinct balls, namely
Bt′′ and Bt′′′ , which are contained in S and tangent to ∂S both at the left and at the upper
side. To conclude our claim, then, we need to show that this is impossible. We can now apply
Step II of Lemma 3.8, since Bt′′′ is by construction in the stadium K: since Bt′′′ is tangent to
∂+S at some point, but ∂+S cannot enter in the interior of K, we deduce that the point of
tangency is the opposite point in Bt′′′ to the point of tangency with σ(0). This means that the
segment σ(t′′′) is orthogonal to σ(0), and since the distance between the two opposite points is
2r < 2 this implies that σ(0) and σ(t′′′) intersect each other, which is the desired contradiction.
Summarizing, we have proved that for every point p ∈ ∂E the ball of radius r tangent to ∂E in p
is entirely contained in E, and as said above this implies that E ⊆ U , hence finally the equality
E = U is established. Moreover, since by definition U = Er + Br, the fact that E = Er + Br
follows.
Step III. Er has Lipschitz boundary and positive reach R(Er) ≥ r.
In this step we consider the set Er, and we show that it has Lipschitz boundary and positive
reach R(Er) ≥ r. First of all, we can find a more or less explicit formula to describe the set
Er. More precisely, let x = Ψ(t, ρ) be a point of S. The point x surely does not belong to Er
if |ρ| > 1 − r; on the other hand, if |ρ| ≤ 1 − r, then x belongs to Er unless it has distance
less than r from one of the two sides σ(0) and σ(L). Suppose then that a point x = Ψ(t, ρ) has
distance less than r from σ(0) but |ρ| ≤ 1 − r: this implies that the point of σ(0) minimising
the distance from x is in the interior of σ(0), because since |ρ| ≤ 1− r the point x has distance
greater than r from the upper and lower side of ∂S. Let us then take the segment S0 parallel to
σ(0) at a distance r, in the direction of S: x does not belong to Er if it is between σ(0) and S0;
similarly, the point x = Ψ(t, ρ) with |ρ| ≤ 1− r does not belong to Er if it is between σ(L) and
SL, the latter being the segment parallel to σ(L) having distance r, in the direction of S. Notice
that we can limit ourselves to rule out the points between σ(0) (resp. σ(L) and the segment S0

(resp. SL) with distance r in the direction of S: indeed, if x has distance less than r from σ(0)
but it is on the other side, then in particular it has also distance less than r from σ(L), and vice
versa. Summarizing, also keeping in mind Step I of the proof of Lemma 3.8, we can write

∂Er = Γ+ ∪ Γ− ∪ Sl ∪ Sr ,

where Γ+ and Γ− are two arcs, respectively contained in the curve t 7→ Ψ(t, 1 − r) and t 7→
Ψ(t,−1 + r), while Sl and Sr are two segments, respectively contained in the segments S0 and
SL defined above. Thanks to the properties of Ψ, we have then already that Er has Lipschitz
boundary.

We must now check that the reach of Er is at least r; in other words, since E = Er +Br, for
every point x of E\Er we have to check that there is a single point of minimal distance from x in
Er. To do so, it is convenient to subdivide E \Er in eight regions, as Figure 4 shows. The region
R+ is made by all points Ψ(t, ρ) with ρ > 1− r, and being t ∈ (0, L) such that Ψ(t, 1− r) ∈ Γ+.
Analogously, the generic point of R− is Ψ(t, ρ) with ρ < −1+r if Ψ(t,−1+r) ∈ Γ−. The regions
D±l, r are the four circular sectors corresponding to the arcs A±l, r. And finally, the regions Ql and
Qr are two rectangles, having as parallel sides the segment Sl and the parallel subsegment of
σ(0), and the segment Sr and the parallel subsegment of σ(L) respectively. The fact that this
is actually a subdivision of E \ Er comes readily from the construction and from the two key
Lemmas 3.7 and 3.8.
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Figure 4. The decomposition of the Cheeger set. The inner Cheeger set Er is
colored in dark grey. One can see the eight regions of the decomposition of E \Er
colored in light grey.

Let us then take a generic point x ∈ E \ Er, and let us show that it admits a unique point
of minimal distance in ∂Er. If x ∈ R+, then x = Ψ(t, ρ) for some ρ > 1 − r. Since any point
x′ = Ψ(t′, ρ′) ∈ ∂Er must satisfy ρ′ ≥ 1− r, then |x− x′| ≥ ρ− (1− r) for every x′ ∈ ∂Er, with
strict inequality if t′ 6= t by the definition of strip; on the other hand, by definition y = Ψ(t, 1−r)
belongs to ∂Er, and |x− y| = ρ− (1− r), so y is the unique point of minimal distance in ∂Er
from x. The same argument of course works if x ∈ R−.

Assume now that x ∈ Ql (the fully analogous argument will work for Qr). By construction,
every point of ∂Er has distance greater than r from σ(0), with equality only for points of Sl.
Thus, every point of the rectangle Ql has as unique point of minimal distance from ∂Er its
orthogonal projection on Sl.

Finally, let x be in the upper-left circular sectorD+
l (and as usual, the analogous argument will

work for the other three sectors). Then, by construction and immediate geometric considerations,
it is clear that the center of the sector, which belongs to ∂Er, is the unique point of minimal
distance from x (here we use again that Γ+ is an arc, by Step I of Lemma 3.8). Hence, we have
proved the uniqueness of the minimizer in every possible case, and this step is concluded.
Step IV. The inner Cheeger formula (3.3) holds true.
Thanks to Step III, we can apply Proposition 2.10 to the set A = Er, with ρ = r. Since then
Ar = A+Br = Er +Br = E, Steiner’s formulae (2.7) and (2.8) read as

|E| = |Er|+ rP (Er) + πr2 , P (E) = P (Er) + 2πr .

Recalling that E is a Cheeger set, hence P (E)/|E| = h(S) = 1/r, we deduce

r =
|E|
P (E)

=
|Er|+ rP (Er) + πr2

P (Er) + 2πr
,

from which one readily derives |Er| = πr2, that is, the validity of (3.3) is established and the
proof is concluded. �

4. Some planar examples

This last section is devoted to collect some examples of non-convex planar domains, whose
Cheeger sets have particular properties; basically, for most of the standard properties of the
convex planar domains, that we have generalized for the case of the strips, we show non-convex
domains which are not strips, and for which these properties are not valid.

The first example is a domain G, whose Cheeger set is strictly contained in the union of balls
of radius r = h(G)−1 that are contained in G.

Example 4.1 ([16]). Let G be the union of two disjoint balls B1 and B 2
3
, of radii 1 and 2

3

respectively (see Figure 5). One has P (G)
|G| = 30

13 > 2. It is not difficult to check that the Cheeger
set E of G coincides with B1, hence h(G) = 2. However, G coincides with the union of all balls
of radius r = h(G)−1 = 1

2 contained in G, which is therefore strictly larger than E.
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1
2
3

E

Figure 5. A union of two disjoint balls B1 and B 2
3
, whose Cheeger set E coin-

cides with the largest ball B1.

The next example shows a Cheeger set W strictly containing the union of all balls of radius
h(W)−1 contained in W. This example and the one depicted in Figure 5 show that, in general,
no inclusion holds between a Cheeger set of Ω and the union of all balls of radius r = h(Ω)−1

contained in Ω.

Example 4.2 (Bow-tie). Let us consider a unit-side equilateral triangle T , as in Figure 6,
together with its Cheeger set ET (depicted in grey). Then, cut T with the vertical line tangent
to E and reflect the portion on the left to the right, as shown in the picture. This produces a
bow-tie W. Let now EW be a Cheeger set inside W. By the 2-symmetry of W one can infer the

ET EW

Figure 6. The construction of the bow-tie W (left) and the Cheeger set EW
in the bow-tie (right). Notice that the region between the two dashed lines in
the picture on the right is the difference between the Cheeger set EW and the
(strictly smaller) union of all balls of radius r included in W.

2-symmetry of EW . On the other hand, EW cannot have a connected component F completely
contained in T , since otherwise F would be Cheeger inside W and, at the same time, it would
coincide with ET . But then ET ∪E′T (denoting by E′T the reflected copy of ET with respect to
the cutting line) would be Cheeger in W, which is not possible since ∂(ET ∪ E′T ) ∩ W is not
everywhere smooth, as it should be according to Proposition 2.5. Being necessarily ∂EW ∩W
equal to a finite union of circular arcs, all with the same curvature h(W), it is not difficult to rule
out all possibilities except the one in which ∂EW∩W is composed by four congruent arcs, one for
each concave corner in the boundary ofW. Moreover one has the strict inequality h(W) < h(T ),
therefore the union of all balls of radius h(W)−1 contained in W does not contain EW (indeed,
some small region around the two concave corners cannot be covered by those balls).

The next example is obtained as a slight variation of Example 4.2. In this case, the resulting
Cheeger set is simply connected, while the inner Cheeger set is disconnected. As a result, we
derive the impossibility for the inner Cheeger formula (3.3) to hold.

Example 4.3 (Loose bow-tie). Take the bow-tie W constructed in the previous example and
vertically move the two concave corners a bit far apart. By the continuity of the Cheeger constant
(see (2.6)) we infer the existence of some minimal vertical displacement of the two corners, such
that the Cheeger set Ẽ in the modified bow-tie W̃ actually coincides with the union of all balls
of radius r = h(W̃)−1. This corresponds to the situation represented in Figure 7. It is then easy

17



α
r

Figure 7. A loose bow-tie for which the inner Cheeger formula does not hold.

to check that the formula |Ẽr| = πr2 does not hold in this case, essentially because the inner
Cheeger set Ẽr (depicted in dark grey) does not satisfy R(Ẽr) ≥ r. We also notice that, while
the Cheeger set Ẽ is connected, the inner Cheeger set Ẽr is disconnected. Finally, one can easily
check that the true formula, that is satisfied by the inner Cheeger set in this case, is

|Ẽr| = 2αr2 > πr2 ,

where α is the angle depicted in Figure 7.

Before getting to the last examples, we recall a result of generic uniqueness for the Cheeger
set inside a domain Ω ⊆ Rn, proved in [7]:

Theorem 4.4 ([7]). Let Ω ⊆ Rn be any bounded open set, and let ε > 0 be fixed. Then there
exists an open set Ωε ⊆ Ω, such that |Ω \ Ωε| < ε and the Cheeger set of Ωε is unique.

Idea of proof. Let E be a minimal Cheeger set of Ω, and let ωε be a relatively compact, open
subset of Ω with smooth boundary, such that |Ω \ ωε| < ε. Define Ωε = E ∪ ωε, then by an
application of the strong maximum principle for constant mean curvature hypersurfaces one can
show that E is the unique Cheeger set of Ωε. �

Example 4.5 ([16]). Figure 8 shows a simply connected domain consisting of two congruent
squares connected by a small strip. Both the left and the right square with suitably rounded
corners are Cheeger sets, and their union is the maximal Cheeger set of the domain.

Figure 8. A simply connected domain whose Cheeger set is not unique.

A more sophisticated example of non-uniqueness, where the Cheeger sets are more than
countably many, is constructed below; we point out that a similar example was numerically
discussed by E. Parini in his master degree thesis [21].

Example 4.6 (Pinocchio). Let Pθ be the union of a unit disc B1 centered at (0, 0) and a disc
of radius r = sin θ and center (cos θ, 0), where θ ∈ (0, π/2) will be chosen later. The perimeter
of Pθ is

P (θ) = 2(π − θ) + π sin θ,

while its area is

A(θ) = (π − θ) + sin θ cos θ +
π sin2 θ

2
.
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1

θ
r

Figure 9. The set P(θ).

Given 0 ≤ α ≤ π/2−θ we define the subset P(θ, α) of P(θ) as the union of B1 and a disc of radius
r(θ, α) = sin θ

cosα and center (cos θ−r(θ, α) sinα, 0). Clearly P(θ, α) ⊆ P(θ) for all α ∈ [0, π/2−θ].
Moreover P(θ) = P(θ, 0) and B1 = P(θ, π/2 − θ). Notice also that the boundary of P(θ, α) is
made of two circular arcs meeting at the points (cos θ,± sin θ). The perimeter of P(θ, α) is

P (θ, α) = 2(π − θ) + (π − 2α)
sin θ

cosα
,

while the area is

A(θ, α) = (π − θ) + sin θ
(

cos θ − sin θ tanα
)

+
sin2 θ

cos2 α

(
π/2− α

)
.

Owing to Proposition 2.5(vii) and Lemma 2.11, it is not difficult to deduce that, for every
θ ∈ (0, π/2), a Cheeger set in P(θ) must be of the form P(θ, α) for some (in principle, not
necessarily unique) α ∈ [0, π/2−θ]. Indeed, the boundary of any Cheeger set inside ∂P(θ) must
be done by arcs of circle, which can only encounter ∂P(θ) tangentially, if the “meeting point”
–that is, the point where an arc of circle internal to P(θ) reaches the boundary of P(θ)– is a
point where ∂P(θ) has a tangent. This immediately ensures that no meeting point can exist,
except possibly for the two corner points. But then, either P(θ) is Cheeger in itself, and then
there is no meeting point, or the internal boundary of the Cheeger set must be an arc of circle
connecting the two corner points. In other words, the possible Cheeger sets in P(θ) are only the
sets P(θ, α), as claimed.

Let us now look for the existence of θ0 ∈ (0, π/2) such that P(θ0) is Cheeger in itself: a
necessary but not sufficient condition is of course that

P (θ0, 0)

A(θ0, 0)
=

1

r(θ, 0)
=

1

sin θ0
,

that is, θ = θ0 must be a solution of

2(π − θ) sin θ +
π

2
sin2 θ − (π − θ)− sin θ cos θ = 0 (4.1)

We claim that there exists a unique θ0 ∈ (0, π/2) such that (4.1) is satisfied. Indeed, setting
g(θ) equal to the left hand side of (4.1), we have g(0) = −π and g(π/2) = π, and for every
θ ∈ (0, π/2) it holds

g′(θ) = 2(π − θ) cos θ + sin θ
(
2 sin θ + π cos θ − 1

)
> 0 ,

which proves our claim; a numerical approximation gives θ0 ' 0.531. We set for brevity P0 =
Pθ0 , and we aim to prove that this set is Cheeger in itself (recall that the validity of the above
equation was only a necessary, but not sufficient condition).

Assume then by contradiction that P0 is not Cheeger in itself: as discussed above, this means
that a Cheeger set in P0 must be a set of the form P(θ0, α) for some α ∈ (0, π/2− θ0]. We will
now show that this is impossible.
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To do so, we only have to check that P
(
P(θ0, α)

)
sin θ0 > A

(
θ0, α

)
for every α ∈ (0, π/2−θ0].

Writing down this inequality, and using (4.1), we readily reduce to
π

2

(
1− 2 cosα+ cos2 α) < α(1− 2 cosα) + sinα cosα ,

which in turn is a trigonometric inequality that can be elementary verified. We have thus proved
that the set P0 is Cheeger in itself.

1

θ0

r0

Figure 10. The one-parameter family of Cheeger sets.

Let us then consider a one parameter family of sets Pt, t ∈ [0,+∞), obtained by “elongating
the nose” of P0 (see Figure 10). More precisely, for t ≥ 0 we define

Pt = P(θ0) ∪
⋃

0<τ<t

Br0(xτ ) ,

where r0 = sin θ0 is the radius of the right half-ball in P0, and xτ = (cos θ0 +τ, 0). Since Pt ⊇ P0

we have h(Pt) ≤ h(P0), and we can immediately observe that

A(Pt) = A(P0) + 2r0t , P (Pt) = P (P0) + 2t =
1

r0
A(P0) + 2t =

A(Pt)
r0

. (4.2)

Then, either h(Pt) = h(P0) and Pt is Cheeger in itself, or h(Pt) < h(P0), and thus Pt is not
Cheeger in itself. We want to exclude this second possibility: indeed, if it were so, then a Cheeger
set in Pt should have some boundary in the interior of Pt, and this boundary should be made
by arcs of circle with radius 1/h(Pt) > r0. But any such arc must necessarily start and end in
the two corner points, because otherwise it should meet ∂Pt tangentially and then it would be
a complete circle, which is impossible because Lemma 2.11 ensures that any such arc must be
at most half a circle. A Cheeger set in Pt would then be contained in P0, and this is impossible
because h(P0) > h(Pt). The argument shows at once that h(Pt) = h(P0) for any t > 0, and
then that each Pt is Cheeger in itself. However, from (4.2) we deduce that the Cheeger sets in Pt
are all the sets Pσ for every 0 ≤ σ ≤ t. We have then found a set which admits a one-parameter
family of Cheeger sets, as promised. Actually, owing to the properties of curved strips studied
in Section 3 (and in particular to Proposition 3.5), the very same situation occurs even if one
modifies the set Pt by “bending the nose”.

Example 4.7 (A face with two stretched ears). We can push forward the construction of
Example 4.6 by adding a symmetric arc on the left of the unit disk, thus obtaining a “face
with two ears” (see Figure 11). Let Q(θ) denote this domain, where the geometric meaning of
θ ∈ (0, π/2) is the same as in the previous example. By similar calculations as before, one finds

P (Q(θ)) = 2(π − 2θ) + 2π sin θ

and
A(Q(θ) = π − 2θ + sin(2θ) + π sin2 θ .

As before, one can check that there exists a unique solution θ1 of the equation
P (θ)

A(θ)
=

1

sin θ
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in the interval (0, π/2). Moreover, still arguing as in Example 4.6, one can prove that also Q(θ1)
is uniquely self-Cheeger. At this point, we can stretch independently the two ears producing a
domain that contains a 2-parameter family of Cheeger sets.

The interest of this example is not just having a two-parameter family of Cheeger sets instead
of a one-parameter, but also that we have found a simply connected domain with Cheeger
sets which have all non-empty intersection, but which are not all included into each other. In
fact, as far as we know, in all the previous examples of domains with non-unique Cheeger sets,
the different Cheeger sets either had empty intersection, as for instance in Example 4.5 (taken
from [16]), or were all contained into each other, as for instance in Example 4.6.

Figure 11. A “face with two stretched ears”, containing a two-parameter fam-
ily of Cheeger sets. The minimal Cheeger set of the family corresponds to the
white region (not foliated with half-circles) while the maximal one is the entire
domain. A generic Cheeger set of the family is uniquely identified by indepen-
dently choosing an arc in the foliation on the left and an arc in the foliation on
the right.

Appendix A. Proof of property (vii) in Proposition 2.5

We put here a proof of the property (vii) of Proposition 2.5, for the sake of completeness.

Proof. First we prove that, if we blow-up E at x ∈ ∂∗Ω ∩ ∂E, we obtain the same tangent
half-space to Ω at x. To this purpose, we need to show perimeter and volume density estimates
for E in Ω at the point x. More precisely, we set m(r) = |E ∩ Br(x)| and observe that, by our
assumptions, m(r) > 0 for all r > 0. We now prove that

lim inf
r→0+

m(r)

rn
> 0 . (A.1)

We choose a point z ∈ ∂∗E ∩ Ω and, by standard estimates (see [20]), we consider a one-
parameter family of diffeomorphisms equal to the identity outside a small ball Bε(z), that allow
us to produce any sufficiently small volume adjustment ∆V with a change in perimeter bounded
by c1∆V , for some constant c1 > 0 depending only on E. Then for r > 0 small enough
we construct a competitor Fr to E such that |Fr| = |E|, Fr ∩ Br(x) = ∅, Fr = E outside
Br(x) ∪Bε(z), and

P (Fr) ≤ P (E \Br(x)) + c1m(r) .

On the other hand, we also have P (E) ≤ P (Fr), thus for almost all r > 0 we obtain

P (E;Br(x)) ≤ m′(r) + c1m(r) . (A.2)

By the isoperimetric inequality (2.2) we find

2m′(r) + c1m(r) ≥ nω1/n
n m(r)1−1/n ,

thus for any r > 0 small enough we obtain (hereafter c denotes a small positive constant, possibly
decreasing from line to line)

m′(r)

m(r)1−1/n
≥ c .
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By integrating between ρ/2 > 0 and ρ we find

cρ ≤ (m(ρ)1/n −m(ρ/2)1/n) ,

hence up to constants
m(ρ) ≥ cρn

for all ρ > 0 small enough. This proves (A.1). By adjusting the volume of E \Br(x) as before,
we obtain a competitor Fr that, owing to the minimality of E, allows us to show the existence
of a positive constant c2 > nωn such that for all r > 0 small enough we have

P (E;Br(x)) ≤ c2r
n−1 .

Now we blow-up Ω and E at x. By our assumption on x, and thanks to Theorem 2.1 (ii) and
Proposition 2.2, we get respectively a halfspace x + H having x on its boundary and, up to
subsequences, a limit set E∞ contained in x + H and with x ∈ ∂E∞. One can show that E∞
is not empty and minimizes the perimeter without volume constraint and with respect to any
compact variation F contained in x+H. Since H is convex, E∞ is also minimizing with respect
to a generic compact variation in Rn. By a maximum principle argument (see [24, Corollary 1])
we get that E∞ = x+H. This shows that E admits the half-space x+H as unique blow-up at
x. We now prove that

lim
r→0

P (E;Br(x))

rn−1
= ωn−1 . (A.3)

Indeed, we define Er = r−1(E − x) and notice that χEr → χH in L1
loc(Rn), as r → 0. By

Proposition 2.2 (i) we have

lim inf
r→0

P (E;Br(x))

rn−1
= lim inf

r→0
P (Er;B1(0)) ≥ P (H;B1(0)) = ωn−1 ,

thus to prove (A.3) we only need to show that

lim sup
r→0

P (Er;B1(0)) ≤ ωn−1 . (A.4)

Let us assume by contradiction that there exists ε > 0 and a sequence of radii ri → 0 as i→∞,
such that setting Ei = Eri and Ωi = r−1

i (Ω− x) we have for all i ∈ N

P (Ei;B1(0)) ≥ ωn−1 + ε . (A.5)

Notice that, for i large enough, one has

P (Ωi;Bs(0)) ≤ sn−1(ωn−1 + ε/3) for all 1 < s < 2 . (A.6)

Since χEi → χH in L1(B2(0)) as i→∞, by the Coarea formula we find some

t ∈
(

1,

(
ωn−1 + ε/2

ωn−1 + ε/3

) 1
n−1

)
such that we have

P (Ωi; ∂Bt(0)) = P (Ei; ∂Bt(0)) = 0 , (A.7)∣∣Ei∆ Ωi ∩B2(0)
∣∣ < ε3 , (A.8)

Hn−1
(
Ei∆ Ωi ∩ ∂Bt(0)

)
<
ε

4
. (A.9)

Consider now the set
F̂i =

(
E \Btri(x)

)
∪
(
Ω ∩Btri(x)

)
,

and notice that by (A.7) and (A.9) one has

P (F̂i; Ω) = P
(
E; Ω \Btri(x)

)
+ P (Ω;Btri(x)) + rn−1

i Hn−1
(
Ei∆ Ωi ∩ ∂Bt(0)

)
, (A.10)

while by (A.8) ∣∣∣∣∣F̂i∣∣− ∣∣Ê∣∣∣∣∣ ≤ ε3rni .
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If now Fi is a set with the same volume as E obtained, as before, with a small adjustement of
F̂i far from B2ri(x), we get

P (Fi) ≤ P (F̂i) + c1ε
3rni . (A.11)

Finally, combining (A.5), (A.6), (A.7), (A.9), (A.10) and (A.11) with the minimality of E and
the bound on t, we get for ri small enough that

rn−1
i (ωn−1 + ε) ≤ P (E;Bri(x)) ≤ P (E;Btri(x)) ≤ (tri)

n−1(ωn−1 + ε/3) +
ε

4
rn−1
i + c1ε

3rni

≤ (tri)
n−1(ωn−1 + ε/3) +

ε

2
rn−1
i < rn−1

i (ωn−1 + ε) ,

which is a contradiction. This proves (A.4), thus (A.3). To show that x ∈ ∂∗E and νE(x) =
νΩ(x) we set v = −νΩ(x) = −νH(0) and, owing to (A.3), we just have to show that

lim
r→0

DχE(Br(x)) · v
ωn−1rn−1

= 1 . (A.12)

In fact, by Theorem 2.1 (iv) we have for almost all r > 0 that

DχE(Br(x)) · v =

∫
E∩∂Br(x)

v ·N dHn−1 =

∫
H∩∂Br(0)

v ·N dHn−1 +A(x, r)

= ωn−1r
n−1 +A(x, r) ,

(A.13)

where N is the exterior normal to ∂Br(x) and

|A(x, r)| =

∣∣∣∣∣v ·
∫
∂Br(x)

(χE(y)− χx+H(y))N(y) dHn−1(y)

∣∣∣∣∣
≤
∫
∂Br(x)

|χE(y)− χx+H(y)| dHn−1(y) .

For any fixed δ > 0, we define the set Σ(x, δ) ⊆ (0,+∞) of radii r > 0 such that A(x, r) > δrn−1.
Then by the L1

loc-convergence of r−1(E − x) to the half-space H we infer that

lim
ρ→0+

H1(Σ(x, δ) ∩ (0, ρ))

ρ
= 0 .

Consequently, for any decreasing infinitesimal sequence (ri)i we can find another sequence (ρi)i
such that ρi /∈ Σ(x, δ) for all i and ρi = ri+o(ri) as i→∞. Let us now assume by contradiction
that (A.12) does not hold. Then there must exist α > 0 and a decreasing infinitesimal sequence
(ri)i, such that ∣∣∣∣DχE(Bri(x)) · v

ωn−1r
n−1
i

− 1

∣∣∣∣ ≥ α (A.14)

for all i ∈ N. We now choose δ = α
2ωn−1 and consider the infinitesimal sequence ρi as above.

By (A.13) with ρi replacing r, we have that∣∣∣DχE(Bρi(x)) · v − ωn−1ρ
n−1
i

∣∣∣ = |A(x, ρi)| ≤
α

2
ωn−1ρ

n−1
i .

On the other hand, by (A.3) we also have∣∣∣DχE(Bρi(x))−DχE(Bri(x))
∣∣∣ ≤ P (E;Bρi(x)∆Bri(x)) ≤ ωn−1|ρn−1

i − rn−1
i |+ o(rn−1

i )

= o(rn−1
i )

as i→∞. By combining the last two inequalities we get∣∣∣DχE(Bri(x)) · v − ωn−1r
n−1
i

∣∣∣ ≤ α

2
ωn−1ρ

n−1
i + o(rn−1

i ) =
α

2
ωn−1r

n−1
i + o(rn−1

i ) ,

which contradicts (A.14) for i large enough. This concludes the proof of (vii). �
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