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Abstract

In two dimensions every solution to a nonlinear elliptic system div a(-,u, Du) = 0 has Holder
continuous first derivatives provided that standard continuity, ellipticity and p-growth assumptions
hold for some p > 2. We give an example showing that this result cannot be extended to elliptic
systems in the subquadratic case, i. e. that weak solutions are not necessarily continuous if 1 < p < 2.
Furthermore, we discuss related results for variational integrals.
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1 Introduction

The aim of this paper is to investigate some regularity properties and the possible existence of singularities
for vector-valued weak solutions u € W1 (Q, RY) of second order elliptic systems in divergence form

—diva(-,u, Du) = b(-,u, Du) in Q. (1.1)

We further discuss some related results for the minimization problem of convex variational integrals
Flw] := / f(+,w, Dw) dx (1.2)
Q

in Dirichlet classes in W?(€2,RY). Here the case n, N € N for n > 2, p € (1,00) is considered, with
) denoting a bounded domain in R™. The previous two problems are closely connected in the following
sense: provided that the integrand is sufficiently regular, minimizers of F solve the Euler-Lagrange system
associated to J:

divD,f(-,u,Du) = Dy, f(-,u, Du) in Q.

Nevertheless, exploiting the fact that the minimizer is a solution to the Euler-Lagrange system does often
not lead to the desired results since this approach cannot distinguish between minimizers and extremals.
Therefore, the regularity of weak solutions and of minimizers has to be discussed separately to a large
extend. Various, by now classical results are available in the literature and helped to establish a quite
general regularity theory for both the scalar (N = 1) and the vectorial (N > 1) case. Furthermore,
several counterexamples to full regularity were constructed in the vectorial case. In what follows, we give
a short description of the known regularity theory and study its consequences, but also its limits for the
two-dimensional case n = 2. We then demonstrate how regularity and smoothness of solutions depend
on the integrability exponent p.

We begin with a short overview on existing regularity results (for more details and an extensive list
of references we recommend Mingione’s invitation to the dark side [Min06]), supposing always that the
coefficients or the integrands are sufficiently regular and that they satisfy suitable assumptions (see (1.3)
and (1.4) below). Since the fundamental papers of De Giorgi, Nash and Moser on solutions to single
equations, the theory of scalar weak solutions or minimizers is by now well understood, establishing
regularity in the sense that the gradients are locally Holder continuous, independently of the space
dimension n. In the vectorial case instead, first counterexamples of De Giorgi [DG68] and of Giusti and
Miranda [GM68b] dating from 1968 have revealed that solutions to elliptic systems as well as minima
of variational integrals may develop singularities for n > 3 even if the coefficients are analytic. Hence,
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in contrast to the scalar case, we can in general expect only a partial regularity result to be true, which
means regularity outside a negligible set, which is called the singular set. Here regularity is always
understood as (Holder) continuity of the solution (or of its gradient), and we introduce the set

Reg,, (w) := {x € Q: w is locally continuous with Holder exponent a near x}

for functions w € L*(€2, RY) and exponents « € [0, 1] (with the obvious inclusion Reg, (w) D Reg,, (w)
for a1 < ap). Partial regularity of the solution itself in dimensions n < p+2 (which are referred to as low
dimensions) is obtained via Morrey-type estimates. It is traced back to Campanato [Cam82, Cam87a,
Cam87b] and yields in particular the bound n —p on the Hausdorff dimension of the singular set. Partial
regularity of the gradient instead was accomplished via Campanato-type estimates in general dimensions
by various authors starting from the classical papers [Mor68, GM68a, GMT79, Eva86, FH85, GMS6,
AF87] and resulting in optimal Holder continuity outside a set of Lebesgue measure zero. However, the
counterexamples available in the literature still leave open the question of whether or not full regularity
necessarily holds true in dimension n = 2. We now discuss in more detail the main ingredients for
proving regularity, namely classical Morrey- and Campanato-decay estimates for the gradient as well as
some particular features exhibited in the two-dimensional case.

We are first interested in Holder continuity of weak solutions to (1.1) or minimizers of (1.2), which
will both be denoted by u. In view of Sobolev’s embedding every function in W1 4(Q, RY) with ¢ > 2
is continuous with some (possibly small) Holder exponent. By taking advantage of the minimality resp.
the system equation, it turns out that even if u is a priori only in WP(Q,R™) for some p < 2, then
it indeed also belong to such W14(Q, RY), provided that the a priori integrability is not too small, i.e.
that p > po for some py € (1,2) depending crucially on the structure constants. On the contrary, for
small integrability exponents p € (1,pg) only the Morrey regularity theory is available, which states the
equivalence Reg,(u) = Reg, (u) for all A € (0,1) and in fact guarantees that Reg,(u) coincides with the
whole domain €2 possibly apart from a set of Hausdorfl dimension less than 2 — p (but this does not
exclude singularities/discontinuities).

In the next step a non-trivial relation between Regy(u) and Reg,(Du) is established. We first recall
the counterexamples [Nec77, HLN96| of Necas et al., where an integrand f is constructed which — in
contrast to the examples mentioned before — depends only on the gradient variable, and where the solution
to the related minimization problem (1.2) for dimensions n > 5 (resp. its Euler-Lagrange equation for
n > 3) is Lipschitz-continuous, but not of class C'. This example is important for two reasons: on the
one hand this particular singular solution arises from the vectorial setting and not from an interaction
effect with the (x,u)-dependency of the integrand or the coefficients; on the other hand it shows that in
general the strict inclusion Reg,(Du) C Reg,(u) holds. However, we now focus on the two-dimensional
situation which is very different: in fact, C'-regularity of solutions is well-known if the convex integrand
resp. the coefficients of the system depend on the gradient variable, cf. Proposition 2.2 below. Moreover,
by a simple comparison or perturbation argument, the regularity of the comparison solution is carried
over to the solution of the original problem and implies Regy(u) = Regy(Du).

The last step is the regularity improvement for the gradient Du: the minimality property of u or the
system equation can be used under quite general conditions (in particular for arbitrary dimension and
arbitrary integrability exponents) to prove the equivalence Reg,(Du) = Regﬁ(Du) with 8 the optimal
Hélder exponent (given in terms of the regularity of the coefficients or the integrand with respect to the
(z,u)-variables) and to further show that this regularity criterion applies £"-almost everywhere on ().

In conclusion, the following, straightforward strategy can be employed in two dimensions:

Sobolev Morrey freezing Campanato

0 for P:ZIH Rego (u) estimates Reg/\ (’U,) argtgnent Rego (Du) estimates Reg5 (Du)

(with 8, A € (0,1) as above), and we now proceed to the precise statement of the full regularity results
for minimizers of variational integrals and for weak solutions to elliptic system: Dealing with variational
integrals we consider integrands f: Q x RY x R?Y — R subject to standard differentiability, growth and
convexity assumptions: we require that z +— f(-,-, z) is of class C? with jointly continuous second order
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derivatives and that we have

D..f(x,u, z) is continuous on Q x RY x R2N |

vzl < flw,u,2) < L1+ |2[)7,

V(L + 2P AP < Doz f(,u, 2)(AA) < L(1+|2)P72A2, (1.3)
|D.f(z,u,2) = Do f(%,4,2)| < L1+ |2)P " wa, (Jo — & + |u —al)

|f(@,u,2) = f(x,1,2)] < L1+ |2])Pway (Ju - 4])

for all 7,z € Q, u,u € RN, 2, A\ € R?N and with fixed L > v > 0, a3, a2 € (0,1). Here wg: Rt — R*
denotes for arbitrary § € (0, 1] the modulus of continuity

wg(t) = min{1,t"}.

Then the following full regularity result holds:

Theorem 1.1: Let p € (1,00) and suppose that Q C R? is a bounded domain. There exists py =
po(N,v, L) < 2 such that the following statement is true: whenever u € WHP(Q,RY) is a minimizer to
(1.2) under the assumptions (1.3), then Du is locally Hélder continuous in the interior of Q with optimal

exponent ( := min{ 23‘32 G} < %, i.e. u € Cl’B(Q,RN), for p > py. The same assertion remains true

loc

for all p > 1 if the integrand is independent of u, i.e. f(x,u,z) = f(x,2), or ifu € CL (Q,RY).

loc

For the treatment of elliptic systems we consider coefficients a:  x RV x RN — R2N for which we
impose similar assumptions concerning differentiability, growth and ellipticity: we require that we have

2+ a(x,u, z) is of class CH(R2N R2V) |

|la(z,u, 2)| + |D.a(z,u, 2)| (1 + |2]) < L(1+ \z|)p_1 ,
D.a(z,u,2)A- A >v(1+ |z|)p_2|)\|2 ,

|a(z,u, 2) — a(z,4, 2)| < L(1+ \z|)p_1wa(|a: —Z|+ u—1al),

(1.4)

forallz,z € Q, u,u € RY, and z, A\ € R?Y | with a € (0,1). For the inhomogeneity b: QxRN xR2N — RV
we assume the controllable growth condition

[b(z, u, 2)| < L(1+ |2])P~ (1.5)
for all z € Q, v € RY, and z € R?N. The corresponding regularity result is then given as follows:

Theorem 1.2: Let p € (1,00) and suppose that Q@ C R? is a bounded domain. There exists p; =
p1(N,v, L) < 2 such that the following statement is true: whenever u € WHP(Q,RN) with p > py is a
weak solution to (1.1) under the assumptions (1.4) and (1.5), then Du is locally Holder continuous in
the interior of Q with optimal exponent «, i.e. u € CIIO’S(Q,RN). The same assertion remains true for
all p > 1 if the coefficients are independent of u, i.e. a(z,u,z) = a(z,z), or if u € CL (Q,RY).

Remark: This regularity statement is extended easily to bounded solutions of inhomogeneous systems
under a natural growth condition and the additional standard smallness assumption on ||u||f.

The first regularity result Theorem 1.1 is a special case of [Becl0, Theorem 1.4] (using in turn the
arguments from [KMO06, Theorem 1.7]) and is recalled here in order to draw a picture, as complete as
possible, of the topic of regularity for two-dimensional elliptic problems. The second result seems not to
be stated explicitly in the literature — even if all parts of the proof of Theorem 1.2 are essentially known.
For this reason we give a proof in Section 2. For the optimality in both theorem we refer to [Gro02,
Example 1.1] and [Phi83, Section I].

We now comment on the existing literature and we explain the reason for which the distinction
concerning the u-dependence in the above statements is made. For the moment we shall restrict ourselves
to the u-independent case and concentrate on systems rather than on variational integrals (for which
we can pass to the Euler-Lagrange system). Imposing a differentiable dependence on the z-variable,
Stard [Sta71] succeeded in showing the existence of higher order derivatives, ending up with a global
Hoélder continuity result for Du. In the case of merely Holder continuous dependence on x, arguments
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of Campanato [Cam82, Section 3] reveal that every solution u € W1HP(Q,RY) to (1.1) is in fact Holder
continuous independently of the value of p € (1, 00). This corresponds to the first step described in the
strategy above. Similarly, regarding fractional Sobolev spaces as a generalization of the class of Holder
continuous functions, one further has a fractional differentiability result, see [Min03b].

For the u-dependent case and with an a priori continuous solution u, the low dimensional theory
guarantees in a first step Holder continuity of u. At this point the philosophy is to pass to new coefficients
a(x, z) = a(z,u(x), z), and one is then back in the u-independent case.

After having given the background for the full regularity results, we now proceed to the main objective
of this paper: we want to address the problem of whether full regularity necessarily holds for all p > 1
(which would be equivalent to setting pp, p1 = 1 in Theorem 1.1, Theorem 1.2 above) or whether there
might arise singularities — a question which was already posed by Campanato [Cam82].

With the strategy from above, the optimal Holder regularity of Du follows only outside of the open
set Regy(u), i.e. in the case p € (1,p;) outside a negligible set of Hausdorff dimension less than 2 — p,
and it is not clear to what extend this result can still be improved. In light of the full regularity
results, the construction of an adequate system resp. functional that might provide an example with
a singular solution demands one of the following features: either the integrand resp. coefficients have
to be less regular in the z-variable (not satisfying the assumption (1.3)4 resp. (1.4)4), or they have to
depend explicitly on the u-variable (in case of continuous dependence of all variables we then need a
construction involving a discontinuous solution). We shall deal with both situations, always working
with the function u(z) = z/|x| € W1P(B" R") for all p € (1,n), which is discontinuous in one point
and appears as a prominent example in the literature: Giusti and Miranda [GM68b] constructed a
quadratic-type functional which is minimized by this function w for n > 3. Moreover, passing to the
related Euler-Lagrange equation, it is at the same time also a weak solution to an elliptic system. Taking
advantage of this construction we will provide in Section 3 for n = 2 and every p € (1,2) an example of
a functional and a system with L°°-dependence on x which are solved by u. Since the particular form of
u allows to express the z-dependency in terms of u, we end up with:

Theorem 1.3: Letu: R2 D B — R? be given by u(x) = z/|z| and let p € (1,2). Thenu € WHP(B,R?)N
L>®(B,R?), and there exist coefficients a: RN x R2N — R2N satisfying the assumptions (1.4) for some

L >v >0 and every a € (0,1) such that u is a weak solution of the homogeneous system div a(u, Du) =0
in B.

Theorem 1.3 is established via Proposition 3.3 and Theorem 3.5, and it further yields the strict
inequality p; > 1. At this point we recall that p; crucially depends on the structure constants, in
particular on the ratio L/v. As a consequence the closer the integrability exponent p is chosen to 2, the
greater this ratio needs to be chosen; see Remark 3.4. Moreover, we highlight that with this example at
hand, it is now possible to construct elliptic systems of subquadratic growth in arbitrary dimensions n > 2
which admit weak solutions which are discontinuous on sets of Hausdorff dimension n — 2. However,
whether or not there exists a minimization problem with singular solution under the assumptions (1.3)
remains open.

We mention briefly that a/|z| is frequently considered as a function taking almost everywhere values
in the unit-sphere S"~! C R", i.e. as a function in the space W1P(B" S"~1) for p < n. Direct
computation shows that z/|z| is p-harmonic in the sense that it satisfies

/|Du|p_2Du~D<pda:=/ |Du|Pu - ¢ dx

for all ¢ € WyP(B",R") N L>®(B",R"). In other words, it is stationary for the p-energy S [Dw|P da
under the constraint |w| = 1 almost everywhere (note that this case is not contained in the above
regularity theory, but it is covered by a serial of classical papers). In fact, even minimality holds, see
[HLW98, Hon01].

We close the introduction with some remarks on the notation: we write B,(z¢) := {x € R™ : |[z—x¢| <
p} for the n-dimensional ball centered at zy € R™ with radius p > 0. The function spaces used in this
paper are the Hélder spaces C**, Morrey-spaces L7, the Sobolev spaces LP and (fractional) Sobolev
spaces WP with o, € (0,1], k € N, 0 > 0 and p € [1,00) (see e.g. [Ada75, Chapter 7] for the definition
and embedding theorems for fractional Sobolev spaces). Furthermore, we shall use two abbreviations: for
a bounded set X € R™ with positive Lebesgue-measure we denote the average of a function f € L'(X)
by f y fdz, and for £ € RF we write V(£) = (1 + |¢[?)P=2/4¢.
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2 Review of some regularity results

We collect some regularity results which are only partially available in the literature. We will only outline
the proofs or give suitable references. We first observe that every weak solution u € WP (2, RY) to
(1.1) with coefficients not depending explicitly on u (or with u being a priori Holder continuous) actually
belongs to a fractional Sobolev space. More precisely, we have

Proposition 2.1: Let u € WHP(Q,RY), p € (1,00), be a weak solution to (1.1) under the assumption
(1.4) and (1.5). Furthermore, we suppose the coefficients to be independent of u, i. e. a(x,u,z) = a(zx, 2),

oru e CYY(Q,RN) for some v > 0. Then V(Du) € Wal’z(Q,RN) and Du € Wmin{l’Q/p}a/’p(Q,RN) for

loc loc loc
every o < a.

PROOF (SKETCH): Using difference quotients techniques we can argue similarly to Mingione [Min03b,
proof of Proposition 3.1] and [Min03a, proof of Proposition 5.2], where the superquadratic case was con-
sidered, in order to derive the fractional differentiability from an (uniform) estimate for finite difference
quotients. It should be noted that no further assumption (such as the continuity assumption [Min03b,
(1.8)]) on the inhomogeneity is needed. O

After this higher differentiability result (which implies higher integrability via fractional Sobolev
embedding), we come to an essential ingredient needed for the application of the comparison argument
in the proof of Theorem 1.2, namely a priori estimates for solutions of a “frozen” problem. Following
[Cam82, Section 3] we see that these solutions admit second order derivatives. Using Gehring’s lemma in
order to deduce a higher integrability result of second order derivatives (or applying a version of Widman’s
hole filling trick [Wid71] as in [SS10, Lemma 8.2]), we thus obtain (see also [Cam87b, Theorem 3.I] for
the superquadratic case):

Proposition 2.2: Let v € WP (Bg(z0), RY) be a weak solution to
divag(Dv) =0 in Br(zo) C Q CR"

with coefficients ao(-) under the assumptions (1.4)01,2. Then there exists 0 < ¢ = e(n, N,p, L,q) such
that for every p € (0, R] we have:

24¢€ 2
V(Dv) - (V(Dv), . | de < (£ / V(Dv)| dz
Lo (VD) ol e e() [ o
and

min{n,2+e}
V(D)2 dz < ¢ 2 / V(Dv)|* dz |
/Bpm)’ (Do) <R) Bmo)’ (Bv)

and both constants depend only on n, N,p, L and v.

This proposition uncovers a peculiarity of the two-dimensional case n = 2: the solution to the
comparison problem has Hoélder continuous first derivatives. This helps us to obtain in a first step a
Morrey-space regularity result for the weak solution u to (1.1) (see also [Cam82, proof of Theorem 1.1]),
which in turn yields the global Holder regularity result in the interior of Q C R?:

PROOF (OF THEOREM 1.2): We here follow the arguments in [KMO06, Section 9] where the related result
for minimizers of variational functionals was proved for p > 2.

Step 1a: Determination of p1 and preliminary reqularity improvement of u. Via a standard Cacciop-
poli inequality and Gehring’s Lemma we first recall the higher integrability result Du € LI (2, RY)
for some exponent g > p depending only on N,p and L/v. This is exploited to determine the num-
ber p1(N,L,v) < 2 such that ¢(N,p,L,v) > 2 for all p > p;. Sobolev’s embedding in turn implies
u € C’IOO’;\(Q,RN) for some A = A\(N,L,v) > 0. For p € (1,p1) and general coefficients instead, local
continuity of u is assumed. In fact, this is equivalent to local Holder continuity u € C'IOO’CA (Q,RY) for
some A > 0 by the low dimensional theory, see [Cam82, Theorem 1.I].

Step 1b: Morrey-space reqularity: Du € Lﬁf_“(Q, R2N) for every pn > 0. Let Bagr(x) C Q and define
v € u+W,P(Bg(xo), RN) as the unique solution to div ag(Dv) = 0 in Br(x¢), where the coefficients are

defined by freezing via aop(z) := a(2o, (¥) By (x0), 2) (We note that existence and uniqueness follow from
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standard theory for monotone operators). Using u — v € Wy *(Bg(zo),RY) as a test-function in the
weak formulation of the comparison Dirichlet problem, we deduce the energy estimate

/ |V (Dv)|? dz < ¢(p, L, u)/ (1+ |V(Du)|2) dzx .
Br(zo)

BR(wo)

Furthermore, taking into account the growth, ellipticity and continuity assumption in (1.4) as well as
Poincaré’s inequality, we find the comparison estimate

¢ (N, p,v) /BR(zO) |V(Du) — V(Dv)|" dz < /B lao(Du) — ag(Dv)] - (Du — Dv) dx

r(zo)

= / [ao(Du) — a(z,u, Du)| - (Du — Dv) dx —l—/ b(x,u, Du) - (u —v)dx
Br(zo) Br(zo)

gc(N,p,L)R“’\/B( )(1+|V(Du)\2)d:v. (2.1)

To obtain the last line, different cases need to be distinguished: on the one hand we might be concerned
with coefficients with explicit u-dependencies and the prerequisite p > p; or u a priori continuous. This
situation is handled via the local C%*-regularity of u according to Step la. On the other hand the
coeflicients might have no explicit u-dependency, for which the above estimate holds trivially with A = 1.
Combining the previous two estimates with the decay estimate in Proposition 2.2, we hence end up with

/B,,(:ro) (1+|V(Duw)?) dx < C(Mp,L,u)((%)2 + RC“) /B (1+ |V(Du)|?) da

r(zo)

for all p € (0, R]. An iteration procedure (see e.g. [Gia83, Chapter III, Lemma 2.1]) then yields: for
every p > 0 there exists a radius Ry = Ro(u, N,p, L, v, ) > 0 (independent of the center z( of the balls)
such that

/ (14 |V(Du)|?) dz < p*~*
BP(IO)

for all p < Ry. To conclude the desired Morrey-space embedding for Du we observe that for large radii
p > Ry the left-hand side is easily estimated by ¢(u,n, N, p, L, v, «, HDUHLP(BJRN))p?_#. We lastly note
that this Morrey-type estimate is in particular a further regularity improvement of u in the sense that u
is locally Holder continuous for any exponent less than 1.

Step 2: Continuity of Du. We next apply the comparison estimate (2.1) and the a priori estimate
for v from Proposition 2.2, and we find

V(Du) — (V(Du % d
[ -0

2+

< CRQ)‘/ (14 |V(Du)|?) dz + c(ﬁ) E/ |V(Dv)|2 dx
Br(zo) R Br(zo)

< C(Ma Napv La v, a, ||Du||LP(B,RN)) [R2+a/\+€ + P2+E} R™HTE

for every pu > 0. Now we choose R as a power of p such that all powers of p on the right-hand side are
equal, i.e. R = p2te)/@tarte) 5 Hence, we get

ar—p

/ |V(Du) - (V(Du))B (rco)|2 dr < CIO(2+E) TrarTe
Bp(x()) ’

for a constant ¢ admitting the same dependencies as above. Therefore, the exponent at the right-hand side
is strictly greater than the space dimension n = 2 if we choose u € (0, Zi;) sufficiently small. Since the
estimate is independent of the ball under consideration, we conclude from Campanato’s characterization
of Holder continuous functions that Du is in particular locally continuous in the interior of €2.

Step 3: Optimal Hoélder regularity of Du. Standard regularity regularity (e.g. summarized for all
possible exponents in [Min06] in Theorem 4.4 and the following characterization of the singular set) may
now be applied, which states that local continuity of Du is in fact equivalent to local Holder continuity
of Du with optimal Holder exponent . We thus get the desired regularity Du € C2% (€2, R*V). O

loc
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Remark: In fact, also global regularity estimates can be achieved in a similar way. For this purpose one
supposes that ) is a domain of class C™® and then studies solutions in the space g + Wol’p(Q,RN) with
g € CH(Q,RY). Via a standard flattening and transformation procedure the problem is first reduced
to the model situation of the unit half-ball and zero-boundary values. Then all the results above need to
be extended up to the boundary: for the extension of the fractional Sobolev estimates in Proposition 2.1
we refer to the approach in [DKMO07, Proposition 5.1], for the a priori estimates of the frozen solution in
order to conclude the Hoélder regularity of Du to [Cam87b, Section 6] and [Bec09, Section 3]. A (quite
technical) combination of the interior and the boundary estimates then yields the global result.

3 An example for irregularity

As already explained in the introduction, the previous regularity results still leave open the questions,
namely whether there exist systems and variational integrals in the subquadratic case p € (1,2) which
admit discontinuous weak solutions. The construction of such integrands or system — depending dis-
continuously on the x-variable or depending explicitly on the solution u — shall be addressed to in this
last section. Giusti and Miranda [GM68b] succeeded in showing that in dimensions n > 3 the function
x/|lz| € WH2(B3R?) N L>°(B3,R3) is a minimizer to a quadratic-type functional and weak solution to
a quasi-linear elliptic system, and they thus demonstrated that discontinuities may occur in dimensions
n > 3. We now take advantage of their construction and show that in the two-dimensional case for any
p € (1,2) the map z/|z| € WHP(B?,R?) is a minimizer of functional satisfying the p-growth conditions
(1.3), but discontinuous in the z-variable, and it is also a weak solution of a homogeneous elliptic system
satisfying all assumptions in (1.4).

Analogously to Giusti’s and Miranda’s construction [GM68b] we start by defining a bilinear form on
R2%2 via,

2D ujug 2p  ujuy
AN () = G003 (5m- P )(5 . | )
i () = Onndig + Tt/ \ VT T T

for p € (1,2), all u € R? and indices s, \,4,j € {1,2}. In what follows we shall use the convention
A(u)(2,2) = X2, vijefi2) A%)‘ (u)zfzj’\ for all 2,z € R?*2. We further introduce the abbreviations

20 z-u@u

) =)+ 5

Due to the symmetry of A we immediately find the following two useful identities

2p u®u
A= 2+ (o) (14 52 1O,
(2= 2+ 1) (14 52

A(u)(2,2) = 2 2+ Tu(2)Tu(2). (3.1)

We next take g : R — [0,1] as a symmetric, smooth cut-off function satisfying Iy < g < T(_q 1).
We set

mg = (p = 1) (14 sup{lg'(s)] + 21" (s)]s}) > 1

(the only benefit of this constant will be to compensate the effects of ¢ occurring in the convexity
condition). We then define an integrand f(z, z): R? x R?*? — R via

(NS}

fx,2) = (9(|2*) + mgA(x/|2]) (2, 2)) (3-2)
for all z € R%\ {0} x R?*2 (and with arbitrary value for z = 0). By definition, the integrand is bounded
(for fixed z) and 0-homogeneous in the z-variable, and it also satisfies the subquadratic growth and
ellipticity condition:

Proposition 3.1: The integrand f(-,-) defined in (3.2) is smooth with respect to the variable z and
satisfies the assumptions (1.3)1 — (1.3)3 with constants v, L depending only on p, mg.

PROOF: The smoothness of the integrand with respect to the gradient variable is guaranteed by con-
struction. The assumption (1.3)s on coercivity and boundedness is easily verified by taking into account
the identity (3.1), for some constant v and L depending only on p and my (via the choice of g). Here we
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already note that L blows up as p 2. Hence, it only remains to prove (1.3)3: for this purpose we first
observe

D, 2)(0N) = p(g(12P) + mg A/ la]) (2, 2)) T
[(901212) + my A/ |2]) (2, 2)) (5 (12 A1R + 29" (122) (= - A2 + my Aw/ | (A, )
— @2 =p)(g'(12P)z - A+ myA(a/lal)(2, 1)

for all z € R?\ {0} and 2, A € R?*2. The second inequality in (1.3)3 then follows immediately from
(3.1), whereas for the first one we need to take advantage of the Cauchy-Schwarz inequality, of g(s) < 0
for all s > 0, and of the definition of the constant m, to infer:

—4

Doz f(x, 2)(0A) = p(g(122) + maA(e/|])(2,2)) *
[(9(1212) + me A/ |2]) (2 2)) ((mg — 9'(121%) — 29" (|2)] =) A(a/ [ (A, 1)
— (2= pym2 A(w/lal)(z, 2) A(w/|]) (0, V)]

B2 _ p=2
> p(g(|2*) +mgAlx/|z])(2,2)) 7 Ala/la])(AX) = ¢ Hpomg) (L +[22) = AP
This completes the proof of the proposition. O

The regularity of f also allows us to study the Euler-Lagrange system for F[-] with integrand (3.2),
which is given by
p=2
div [(g(|Du\2) + mgA(z/|z])(Du, Du)) 2 (g'(|z|2)Du + mgA(ac/|x|)Du)] =0. (3.3)
Due to the convexity of f minimizers and critical points of the functional (1.2) indeed coincide. This
fact is now exploited to determine a discontinuous minimizer u, which in particular demonstrates that
both the singular sets of w and of Du are not empty. Moreover, by the strict convexity u is even the
unique minimizer with respect to its own boundary values.

Proposition 3.2: Assume Q = B C R?, p € (1,2), and let u: B — R? be given by u(z) = x/|z|. Then
u € WhP(B,R)NL>(B,R?), and u is the unique minimizer of the functional (1.2) with integrand f(-,")
defined in (3.2) among all functions in the class u + Wol’p(B,]RQ).

PrROOF: We start with some preliminary observations and calculations: we note that w is smooth in
R?\ {0} and |u| is bounded by 1. Furthermore, for all € R? \ {0} and every x € {1,2} we find

2 Y wiDgu; = Dyful* = 0.
ie{1,2}
We next calculate for all x € R?\ {0}

1 TRT . -
Du(z) = ERREE with |Du| = Tr(Du) = |27t
21 2(p—1
Ale/le)Du= 22 4 2o Do

[o] © @=p) [
A(z/|z|)(Du, Du) = |Du|? 4+ Tr(Du)? = 2|z| 2.
From the first line we immediately obtain u € W1P(B,R?) and |Du(z)| > 1 for all x € B\ {0},

which implies g(|Du|?) = 0. In order to verify that u a minimizer we start by recalling the identity
div(|z|"" 'z ®x) = 0 for all z € R™\ {0}. Applying this in the two-dimensional case, we hence arrive at

p—2

div [(g(1Duf?) +my A(z/|2])(Du, Du) T (g'(|Dul?) D+ my Az |2)) Du)]

p—2 d _

=2 mi 3 gl (At e Do)’]
ke{1,2y F

p2 o r 2  20p—1)2?+ a3 R |

=272 2{2_ 7<7 [ — ) P9 d 7}
" PP\ Y Ty R ) TRV

p=2 P T 2 9_p—2T

=2"72"myg {(Q—P)Wﬂ+\m| pw] =
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Therefore, observing that the expression in the divergence on the left-hand side of the previous equality
belongs to Wh1(B,R?*2), we derive from the integration by parts formula that u is a weak solution to
the Euler-Lagrange system (3.3) to (1.2), which means that u is a critical point. The strict convexity of
f then yields the minimization property and the uniqueness, and this concludes the proof. O

In particular, the Euler-Lagrange system (3.3) has a discontinuous solution (with coefficients still
depending only on the independent and the gradient variable). Moreover, we may also take advantage
of the particular structure of the integrand or the coefficients above, in the sense that the z-dependence
occurs only in terms of x/|z|, i.e. of the minimizer itself. Expressing the z-dependence through the
known solution (and omitting the ¢g’-term which anyway vanishes for u) leads to the following definition
of coefficients a(u, z): R? x R?*2 — R2%2 by

p—2

a(u, z) := (g(|z\2) +mgA(u)(z,z)) 2 Au)z (3.4)

for all (u,z) € R? x R?*2. We deduce essentially from Proposition 3.1 that these coefficients have the
correct behavior concerning growth and ellipticity, and we further prove a continuity assumption with
respect to the u-variable:

Proposition 3.3: The coefficients a(-,+) defined in (3.4) are smooth with respect to the variable z and
satisfy the assumptions (1.4) with constants v, L depending only on p,mg and with o = 1.

PROOF: We first observe that the coefficients are smooth in the gradient variable by definition and choice
of the cut-off function g. We now use p < 2 and the boundedness of the bilinear form A (by a constant
depending only on p, independently of u) to find

la(u, 2)| < e(p,mg) (1 +2))" ",

where the constant c(p, mgy) blows up as p * 2. Furthermore, the boundedness and ellipticity of D,a(u, 2)
is proved as in Proposition 3.1 (with the slight simplification that the second derivative of g does not
appear any more). Thus, the assumptions (1.4)s and (1.4)3 hold true, and it only remains to verify the
continuity condition (1.4)4: here we note that the bilinear form A(u) is differentiable with respect to
u with bounded derivatives. Therefore, also a(u, z) is differentiable with respect to w, and a(u, z) and
Dy,a(u, z) are bounded by c(p,m,)(1 + |z|)P~!. Distinguishing the cases |u — @| > 1 and |u — | < 1, we
hence end up with
la(u, 2) — a(a, 2)| < c(p,mg) min{|u — a|, 1} (1 + |z|)p_1

for all u,u € R? and all z € R?*2. Thus, the assumptions in (1.4) are satisfied with the asserted
dependencies. 0

Remark 3.4: We emphasize that the ellipticity ratio L/v of the coefficients a(-,-) blows up as p 2
by definition of the bilinear form A, and this property is indeed necessary for the construction of an
elliptic system with a discontinuous weak solution in view of the existence of the “critical” exponent p;
in Theorem 1.2 (the higher integrability exponent ¢ > p for Du depends only on the structure data; in
particular, the difference ¢ — p approaches zero as the ellipticity ratio L/v blows up).

It is now an easy consequence of Proposition 3.2 that there exists a discontinuous weak solution —
namely the function z/|x| as above — to the homogeneous system related to the coefficients given by
(3.4). Hence, we have an example of a system satisfying the assumptions (1.4) and admitting a weak
solution with non-empty singular sets:

Theorem 3.5: Assume p € (1,2) and let u: R? D B — R? be given by u(x) = z/|z|. Then u €
WLP(B,R?) N L>®(B,R?), and u is a weak solution of the system

diva(u, Du) =0 in B, (3.5)
with coefficients a(-,-) defined in (3.4).

PROOF: We observe that the choice u(x) = x/|z| implies a(u, Du) = D, f(-, Du) with f taken from
(3.2). Thus the assertion follows from Proposition 3.2, where div D, f(-, Du) = 0 was calculated. 0
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Remark: The theorem also provides an example that the fractional differentiability Du € W*P can-
not be obtained in the general subquadratic case for weak solutions to elliptic systems depending also
explicitly on the solution itself.

Remark: The question remains open whether or not there exists a discontinuous minimizer of a varia-
tional integral F[-] with an integrand satisfying all the assumptions (1.3). Instead of replacing z/|x| in
the coefficients in the Euler-Lagrange equation (3.3) by u, we could also have argued on the level of the
integrand (3.2), defining

(SIS

Flu,2) = (9(121%) +mgA(u) (2, 2))

for all (u,z) € R? x R?*2 and then studying minimizers of the associated variational integral. It is then
easy to check that the function z/|z| is still a critical point, but due to the lack of convexity of the
integrand with respect to the u-variable this does not necessarily imply the minimization property — and
hence it does not lead in a straightforward way to a counterexample to full regularity for minimizers. So
far it is not clear if minimality holds (as in the quadratic case for large n for which Giusti and Miranda
were able to take advantage of the Euler-Lagrange equation) or not.
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