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Abstract. This paper proposes a direct approach to solve the Plateau’s problem in codimen-
sion higher than one. The problem is formulated as the minimization of the Hausdorff measure
among a family of d-rectifiable closed subsets of Rn: following the previous work [DGM14], the
existence result is obtained by a compactness principle valid under fairly general assumptions
on the class of competitors. Such class is then specified to give meaning to boundary conditions.
We also show that the obtained minimizers are regular up to a set of dimension less than (d−1).

1. Introduction

Plateau’s problem consists in looking for a surface of minimal area among those surfaces
spanning a given boundary. A considerable amount of effort in Geometric Measure Theory
during the last fifty years has been devoted to provide generalized concepts of surface, area
and of “spanning a given boundary”, in order to apply the direct methods of the calculus of
variations to the Plateau’s problem. In particular we recall the notions of sets of finite perimeter
[De54, De55], of currents [FF60] and of varifolds [All72, All75, Alm68], introduced respectively by
De Giorgi, Federer, Fleming, Almgren and Allard. A more “geometric” approach was proposed
by Reifenberg in [Rei60], where Plateau’s problem was set as the minimization of Hausdorff
d-dimensional measure among compact sets and the notion of spanning a given boundary was
given in term of inclusions of homology groups.

Any of these approach has some drawbacks: in particular, not all the “reasonable” bound-
aries can be obtained by the above notions and not always the solutions are allowed to have
the type of singularities observed in soap bubbles (the so called Plateau’s laws). Recently in
[HP13] Harrison and Pugh, see also [Har14], proposed a new notion of spanning a boundary,
which seems to include reasonable physical boundaries and they have been able to show, in the
codimension one case, existence of least area surfaces spanning a given boundary.

In the recent paper [DGM14], De Lellis, Maggi and the third author have proposed a direct
approach to the Plateau’s problem, based on the “elementary” theory of Radon measures and
on a deep result of Preiss concerning rectifiable measures. Roughly speaking they showed, in
the codimension one case, that every time one has a class which contains “enough” competitors
(namely the cone and the cup competitors, see [DGM14, Definition 1]) it is always possible to
prove that the infimum of the Plateau’s problem is achieved by the area of a rectifiable set.
They then applied this result to provide a new proof of Harrison and Pugh theorem as well as
to show the existence of sliding minimizers, a new notion of minimal sets proposed by David in
[Dav14, Dav13] and inspired by Almgren’s (M, 0,∞), [Alm76].

In this note, we extend the result [DGM14] to any codimension. More precisely, we prove
that every time the class of competitors for the Plateau’s Problem consists of rectifiable sets
and it is closed by Lipschitz deformations, it is possible to show that the infimum is achieved
by a compact set K which is, away from the “boundary”, an analytic manifold outside a closed
set of Hausdorff dimension at most (d − 1), see Theorem 1.3 below for the precise statement.
We then apply this result to provide existence of sets spanning a given boundary according to
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the natural generalization of the notion introduced by Harrison and Pugh, Theorem 1.3, and to
show the existence of sliding minimizers in any codimension, Theorem 1.8.

Although the general strategy of the proof is the same of [DGM14], some non-trivial modifi-
cations have to be done in order to deal with sets of any co-dimension. In particular, with respect
to [DGM14], we use a different notion of “good class”, the main reason being the following: one
of the key steps of the proof of our main result consists in showing a precise density lower bound
for the measure obtained as limit of the sequence of Radon measures naturally associated to a
minimizing sequence (Kj), see Steps 1 and 4 in the proof of Theorem 1.3. In order to obtain
such a lower bound, instead of relying on relative isopermetric inequalities on the sphere as in
[DGM14] (which are peculiar of the co-dimension one case), we use the deformation theorem
of David and Semmes in [DS00] to obtain suitable competitors, following a strategy already
introduced by Federer and Fleming for rectifiable currents, see [FF60] and [Alm76]. Moreover,
since our class is essentially closed by Lipschitz deformations, we are actually able to prove that
any set achieving the infimum is a stationary varifold and that, in addition, it is smooth outside
a closed set of relative co-dimension one (this does not directly follows by Allard’s regularity
theorem, see Step 7 in the proof of Theorem 1.3). Simple examples show that this regularity is
actually optimal.

In order to precisely state our main results, let us introduce some notations and definitions.
We will always work in Rn and 1 ≤ d ≤ n will always be an integer number, we recall that a
set K is said to be d-rectifiable if it can be covered, up to an Hd negligible set, by countably
many C1 manifolds, see [Sim83, Chapter 3], where Hd is the d-dimensional Hausdorff measure.
We also let Lip(Rn) be the space of Lipschitz maps in Rn.

Definition 1.1 (Lipschitz deformations). Given a ball Bx,r, we let D(x, r) be the set of functions
ϕ : Rn → Rn such that ϕ(z) = z in Rn \ Bx,r and which are smoothly isotopic to the identity
inside Bx,r, namely those for which there exists an isotopy λ ∈ C∞([0, 1]× Rn;Rn) such that

λ(0, ·) = Id, λ(1, ·) = ϕ, λ(t, h) = h ∀ (t, h) ∈ [0, 1]× (Rn \Bx,r) and

λ(t, ·) is a diffeomorphism of Rn ∀t ∈ [0, 1].

We finally set D(x, r) := D(x, r)
C0

∩ Lip(Rn), the intersection of the Lipschitz maps with the
closure of D(x, r) with respect to the uniform topology.

Observe that in the definition of D(x, r) it is equivalent to require any Ck regularity on the
isotopy λ, for k ≥ 1, as Ck isotopies supported in B(x, r) can be approximated in Ck by smooth
ones also supported in the same set.

The following definition describes the properties required on comparison sets: the key prop-
erty for K ′ to be a competitor of K is that K ′ is close in energy to sets obtained from K
via deformation maps as in Definition 1.1. This allows a larger flexibility on the choice of the
admissible sets, since a priori K ′ might not belong to the competition class.

Definition 1.2 (Deformed competitors and good class). Let H ⊂ Rn be closed, K ⊂ Rn \H be
a relatively closed countably Hd-rectifiable and Bx,r ⊂ Rn \H. A deformed competitor for K in
Bx,r is any set of the form

ϕ (K) where ϕ ∈ D(x, r).

Given a family P(H) of relatively closed d-rectifiable subsets K ⊂ Rn\H, we say that P(H)
is a good class if for every K ∈ P(H), for every x ∈ K and for a.e. r ∈ (0, dist(x,H))

inf
{
Hd(J) : J ∈ P(H) , J \Bx,r = K \Bx,r

}
≤ Hd(L) (1.1)

whenever L is any deformed competitor for K in Bx,r.
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Once we fix a closed set H, we can formulate Plateau’s problem in the class P(H):

m0 := inf
{
Hd(K) : K ∈ P(H)

}
. (1.2)

We will say that a sequence (Kj) ⊂ P(H) is a minimizing sequence if Hd(Kj) ↓ m0. The
following theorem is our main result and establishes the behavior of minimizing sequences.

Theorem 1.3. Let H ⊂ Rn be closed and P(H) be a good class. Assume the infimum in
Plateau’s problem (1.2) is finite and let (Kj) ⊂ P(H) be a minimizing sequence. Then, up to

subsequences, the measures µj := Hd Kj converge weakly? in Rn \H to a measure µ = Hd K,

where K = sptµ \H is a countably Hd-rectifiable set. Furthermore:

(a) the integral varifold naturally associated to µ is stationary in Rn \H;
(b) K is a real analytic submanifold outside a relatively closed set Σ ⊂ K with dimH(Σ) ≤

d− 1.

In particular, lim infj Hd(Kj) ≥ Hd(K) and if K ∈ P(H), then K is a minimum for (1.2).

We wish to apply Theorem 1.3 to two definitions of boundary conditions. The first one is
the natural generalization of the one considered in [HP13]:

Definition 1.4. Let H be a closed set in Rn.
Let us consider the family

CH =
{
γ : Sn−d → Rn \H : γ is a smooth embedding of Sn−d into Rn

}
.

We say that C ⊂ CH is closed by isotopy (with respect to H) if C contains all elements γ′ ∈ CH
belonging to the same smooth isotopy class [γ] in Rn \H of any γ ∈ C, see [Hir94, Ch. 8]. Given
C ⊂ CH closed by isotopy, we say that a relatively closed subset K of Rn \H is a C-spanning set
of H if

K ∩ γ 6= ∅ for every γ ∈ C .
We denote by F(H, C) the family of countably Hd-rectifiable sets which are C-spanning sets of
H.

We can prove the following closure property for the class F(H, C):

Theorem 1.5. Let H be closed in Rn and C be closed by isotopy with respect to H, then:

(a) F(H, C) is a good class in the sense of Definition 1.2.
(b) If the infimum (1.2) corresponding to P(H) = F(H, C) is finite, then the set K provided

by Theorem 1.3 belongs to F(H, C). In particular the Plateau’s problem in the class
F(H, C) has a solution.

The second type of boundary condition we want to consider is the one related to the notion
of “sliding minimizers” introduced by David in [Dav14, Dav13].

Definition 1.6 (Sliding minimizers). Let H ⊂ Rn be closed and K0 ⊂ Rn \ H be relatively
closed. We denote by Σ(H) the family of Lipschitz maps ϕ : Rn → Rn such that there exists a
continuous map Φ : [0, 1] × Rn → Rn with Φ(1, ·) = ϕ, Φ(0, ·) = Id and Φ(t,H) ⊂ H for every
t ∈ [0, 1]. We then define

A(H,K0) =
{
K : K = ϕ(K0) for some ϕ ∈ Σ(H)

}
and say that K0 is a sliding minimizer if Hd(K0) = inf{Hd(J) : J ∈ A(H,K0)}.

Remark 1.7. For every K0 ⊂ Rn \ H relatively closed and d-rectifiable, A(H,K0) is a good
class in the sense of Definition 1.2, since D(x, r) ⊂ Σ(H) for every Bx,r ⊂ Rn \H.

Applying Theorem 1.3 to the framework of sliding minimizers we obtain the following result
which is the analogous of [DGM14, Theorem 7] in any codimension. Here and in the following
Uδ(E) denotes the δ-neighborhood of a set E ⊂ Rn.
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Theorem 1.8. Assume that

(i) K0 is bounded d-rectifiable with Hd(K0) <∞;
(ii) Hd(H) = 0 and for every η > 0 there exist δ > 0 and Π ∈ Σ(H) such that

Lip Π ≤ 1 + η , Π(Uδ(H)) ⊂ H .

Then, given any minimizing sequence (Kj) in the Plateau’s problem corresponding to P(H) =
A(H,K0) and any set K as in Theorem 1.3, we have

inf
{
Hd(J) : J ∈ A(H,K0)

}
= Hd(K) = inf

{
Hd(J) : J ∈ A(H,K)

}
.

In particular K is a sliding minimizer.

Remark 1.9. It is far from obvious to prove the existence of a minimizer in the class A(H,K0).
It is indeed false in general that the sliding minimizer K in Theorem 1.8 belongs to A(H,K0)
(see the discussion in [DGM14, Remark 8]).

The paper is structured as follows, in Section 2 we will recall some basic definitions and
recall some known theorems we are going to use, in particular Preiss rectifiability criterion and
a version of the deformation theorem due to David and Semmes. In Section 3 we prove Theorem
1.3 and in Section 4 we prove Theorems 1.5 and 1.8.

Acknowledgements. The authors are grateful to Camillo De Lellis, Francesco Maggi and
Emanuele Spadaro for many interesting comments and suggestions. This work has been sup-
ported by ERC 306247 Regularity of area-minimizing currents and by SNF 146349 Calculus of
variations and fluid dynamics.

2. Notation and preliminaries

We are going to use the following notations: Qx,l denotes the closed cube centered in x,
with edge length l; moreover we set

Rx,a,b := x+
[
− a

2
,
a

2

]d
×
[
− b

2
,
b

2

]n−d
and Bx,r := {y ∈ Rn : |y − x| < r}. (2.1)

When cubes, rectangles and balls are centered in the origin, we will simply write Ql, Ra,b and

Br. Cubes and balls in the subspace Rd × {0}n−d are denoted with Qdx,l and Bd
x,r respectively.

We also let ωd be the Lebesgue measure of the unit ball in Rd.
Let us recall the following deep structure result for Radon measures due to Preiss [Pre87,

DeL08] which will play a key role in the proof of Theorem 1.3.

Theorem 2.1. Let d be an integer and µ a locally finite measure on Rn such that the d-density

θ(x) := lim
r→0

µ(Bx,r)

ωdrd

exists and satisfies 0 < θ(x) < +∞ for µ-a.e. x. Then µ = θHd K, where K is a countably
Hd-rectifiable set.

In order to apply Preiss’ Theorem, we will rely on the monotonicity formula for minimal
surfaces, which roughly speaking can be obtained by comparing the given minimizer with a cone.
To this aim let us introduce the following definition:

Definition 2.2 (Cone competitors). In the setting of Definition 1.2, the cone competitor for K
in Bx,r is the following set

Cx,r(K) =
(
K \Bx,r

)
∪
{
λx+ (1− λ)z : z ∈ K ∩ ∂Bx,r , λ ∈ [0, 1]

}
. (2.2)

Let us note that in general a cone competitor in Bx,r is not a deformed competitor in Bx,r.
On the other hand as in [DGM14] we can show that:
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Lemma 2.3. Given a good class P(H) in the sense of Definition 1.2, for any K ∈ P(H)
countably Hd-rectifiable and for every x ∈ K, the set K verifies the following inequality for a.e.
r ∈ (0, dist(x,H)):

inf
{
Hd(J) : J ∈ P(H) , J \Bx,r = K \Bx,r

}
≤ Hd(Cx,r(K)).

Proof. Without loss of generality, let us consider balls Br centered at 0 with Br ⊂⊂ Rn \H. We
assume in addition that K ∩ ∂Br is Hd−1-rectifiable with Hd−1(K ∩ ∂Br) <∞ and that r is a
Lebesgue point of t ∈ (0,∞) 7→ Hd−1(K ∩ ∂Bt). All these conditions are fulfilled for a.e. r and,
again by scaling, we can assume that r = 1 and use B instead of B1. For s ∈ (0, 1) let us set

ϕs(r) =


0 , r ∈ [0, 1− s) ,
r−(1−s)

s , r ∈ [1− s, 1] ,
r , r ≥ 1 ,

and φs(x) = ϕs(|x|) x
|x| for x ∈ Rn. In this way, one easily checks that φs : Rn → Rn ∈ D(0, 1).

Since φs(K ∩B1−s) = {0}, we need to show that

lim sup
s→0+

Hd
(
φs(K ∩ (B \B1−s))

)
≤ H

d−1(K ∩ ∂B)

d
= Hd(Cx,r(K)) .

Let x0 ∈ K∩∂Bt and let us fix an orthonormal base ν1, . . . , νd of the approximate tangent space
Tx0K such that νi ∈ Tx0K ∩ Tx0∂Bt for i ≤ d− 1. Let

JKd φs =
∣∣∣( d∧

Dφs)(Tx0K)
∣∣∣ = |Dφs(ν1) ∧ · · · ∧Dφs(νd)|

be the d-dimensional tangential Jacobian of φs with respect to K. A simple computation shows
that

JKd φs(x) ≤
(ϕs(|x|)
|x|

)d
+ |νd · x̂|ϕ′s(|x|)

(ϕs(|x|)
|x|

)d−1
≤ 1 + |νd · x̂|ϕ′s(|x|)

(ϕs(|x|)
|x|

)d−1
, for Hd-a.e. x ∈ K .

(2.3)

Here x̂ = x/|x| and in the last inequality we have exploited that ϕ(r) ≤ r for r ∈ [1 − s, 1].
Using that |νd · x̂| is the tangential co-area factor of the map f(x) = |x|, we find with the aid of
the area and co-area formulas,

Hd
(
φs(K ∩ (B \B1−s))

)
=

∫
K∩(B\B1−s)

JKd φs dHd

=

∫
K∩(B\B1−s)∩{|νd·x̂|6=0}

JKd φs dHd +

∫
K∩(B\B1−s)∩{|νd·x̂|=0}

JKd φs dHd

≤
∫ 1

1−s
dt

∫
K∩∂Bt

JKd φs
|νd · x̂|

dHd−1 +Hd
(
K ∩ (B \B1−s) ∩ {|νd · x̂| = 0}

)
,

(2.4)

since |JKd φs| ≤ 1 where |νd · x̂| = 0. Using

lim
s→0
Hd
(
K ∩ (B \B1−s)

)
= 0 ,

the second term in (2.4) can be ignored. Moreover, being t = 1 a Lebesgue point of t ∈ (0,∞) 7→
Hd−1(K ∩ ∂Bt), we have

lim
s→0

1

s

∫ 1

1−s
|Hd−1(K ∩ ∂Bt)−Hd−1(K ∩ ∂B)| dt = 0 .
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Thanks to this and to the estimate (2.3), we infer from (2.4) that

lim sup
s→0+

Hd(ϕs(K ∩B)) ≤ Hd−1(K ∩ ∂B) lim sup
s→0+

1

s

∫ 1

1−s

(ϕs(t)
t

)d−1
dt =

Hd−1(K ∩ ∂B)

d
,

as required.
�

The second key result we are going to use is a deformation theorem for closed sets due to
David and Semmes [DS00], analogous to the one for rectifiable currents [Sim83, Fed69]. We
provide a slightly extended statement for the sake of forthcoming proofs.

Before stating the theorem, let us introduce some further notation. Given a closed cube
Q = Qx,l and ε > 0, we cover Q with a grid of closed smaller cubes with edge length ε� l, with
non empty intersection with Int(Q) and such that the decomposition is centered in x (i.e. one
of the subcubes is centered in x). The family of this smaller cubes is denoted Λε(Q). We set

C1 :=
⋃
{T ∩Q : T ∈ Λε(Q), T ∩ ∂Q 6= ∅} ,

C2 :=
⋃
{T ∈ Λε(Q) : (T ∩Q) 6⊂ C1, T ∩ ∂C1 6= ∅} ,

Q1 := Q \ (C1 ∪ C2)

(2.5)

and consequently

Λε(Q
1 ∪ C2) :=

{
T ∈ Λε(Q) : T ⊂ (Q1 ∪ C2)

}
.

For each nonnegative integer m ≤ n, let Λε,m(Q1∪C2) denote the collection of all m-dimensional
faces of cubes in Λε(Q

1∪C2) and Λ∗ε,m(Q1∪C2) will be the set of the elements of Λε,m(Q1∪C2)

which are not contained in ∂(Q1 ∪ C2). We also let Sε,m(Q1 ∪ C2) :=
⋃

Λε,m(Q1 ∪ C2) be the
m-skeleton of order ε in Q1 ∪ C2.

Theorem 2.4. Let r > 0 and E be a compact subset of Q such that Hd(E) < +∞ and Q ⊂ Bx0,r.
There exists a map Φε,E ∈ D(x0, r) satisfying the following properties:

(1) Φε,E(x) = x for x ∈ Rn \ (Q1 ∪ C2);
(2) Φε,E(x) = x for x ∈ Sε,d−1(Q1 ∪ C2);
(3) Φε,E(E ∩ (Q1 ∪ C2)) ⊂ Sε,d(Q1 ∪ C2) ∪ ∂(Q1 ∪ C2);
(4) Φε,E(T ) ⊂ T for every T ∈ Λε,m(Q1 ∪ C2), with m = d, ..., n;

(5) either Hd(Φε,E(E) ∩ T ) = 0 or Hd(Φε,E(E) ∩ T ) = Hd(T ), for every T ∈ Λ∗ε,d(Q
1);

(6) Hd(Φε,E(E ∩ T )) ≤ k1Hd(E ∩ T ) for every T ∈ Λε(Q
1 ∪ C2);

where k1 depends only on n and d (but not on ε).

Proof. Proposition 3.1 in [DS00] provides a map Φ̃ε,E ∈ D(x0, r) satisfying properties (1)-(4)
and (6). We want to set

Φε,E := Ψ ◦ Φ̃ε,E ,

where Ψ will be defined below. We first define Ψ on every T ∈ Λε,d(Q
1 ∪C2) distinguishing two

cases

(a) if either Hd(Φ̃ε,E(E) ∩ T ) = 0 or Hd(Φ̃ε,E(E) ∩ T ) = Hd(T ) or T 6∈ Λ∗ε,d(Q
1), then we

set Ψ|T = Id;

(b) otherwise, since Φ̃ε,E(E) is compact, there exists yT ∈ T and δT > 0 such that BδT (yT )∩
Φ̃ε,E(E) = ∅; we define

Ψ|T (x) = x+ α(x− yT ) min

{
1,
|x− yT |
δT

}
,

where α > 0 such that the point x+ α(x− yT ) ∈ (∂T )× {0}n−d.
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The second step is to define Ψ on every T ′ ∈ Λε,d+1(Q
1 ∪ C2). Without loss of generality, we

can assume T ′ centered in 0. We divide T ′ in pyramids PT,T ′ with base T ∈ Λε,d(Q
1 ∪ C2) and

vertex 0. Assuming T ⊂ {xd+1 = − ε
2 , xd+2, ..., xn = 0} and T ′ ⊂ {xd+2, ..., xn = 0}, we set

Ψ|PT,T ′ (x) = −2xd+1

ε
Ψ|T

(
− x

xd+1

ε

2

)
.

We iterate this procedure on all the dimensions till to n, defining it well in Q1 ∪ C2. Since
Ψ|∂(Q1∪C2) = Id, we can extend the map as the identity outside Q1 ∪ C2. In addition, one can

easily check that Ψ ∈ D(x0, r) and thus, since Φ̃ε,E ∈ D(x0, r) and the class D(x0, r) is closed by
composition, this concludes the proof. �

Later we will need to implement the above deformation of a set E on a rectangle rather than
a cube. The deformation theorem can be proved for very general cubical complexes, [Alm86];
however, for the sake of exposition, we limit ourselves to the simple case of a rectangular complex,
which can be deduced by Theorem 2.4 through a bi-Lipschitz (linear) transformation of Rn. More
precisely, let us consider a closed rectangle

R := [0, `1]× · · · × [0, `n] `1 ≤ · · · ≤ `n
and a tiling of Rn made of rectangle ε-homothetic to R. Let ΛRε (R) denote the family of the
translated and ε scaled copies of R and let us set

CR1 :=
⋃{

T ∩R : T ∈ ΛRε (R), T ∩ ∂R 6= ∅
}
,

CR2 :=
⋃{

T ∈ ΛRε (R) : (T ∩R) 6⊂ CR1 , T ∩ ∂CR1 6= ∅
}
,

R1 := R \ (CR1 ∪ CR2 ).

As before, for each nonnegative integer m ≤ n, we let ΛRε,m(R1 ∪ CR2 ) denote the collection of

all m-dimensional faces of rectangles in ΛRε (R1 ∪ CR2 ) and ΛR∗ε,m(R1 ∪ CR2 ) will be the set of the

elements of ΛRε,m(R1∪CR2 ) which are not contained in ∂(R1∪CR2 ). We also let SRε,m(R1∪CR2 ) :=⋃
ΛRε,m(R1 ∪ CR2 ) be the m-skeleton of order ε in R1 ∪ CR2 . Then the following theorem is an

immediate consequence of Theorem 2.4:

Theorem 2.5. Let r > 0 and E be a compact subset of R such that Hd(E) < +∞ and R ⊂ Bx0,r.
There exists a map Φε,E ∈ D(x0, r) satisfying the following properties:

(1) Φε,E(x) = x for x ∈ Rn \ (R1 ∪ CR2 );

(2) Φε,E(x) = x for x ∈ SRε,d−1(R1 ∪ CR2 );

(3) Φε,E(E ∩ (R1 ∪ CR2 )) ⊂ SRε,d(R1 ∪ CR2 ) ∪ ∂(R1 ∪ CR2 );

(4) Φε,E(T ) ⊂ T for every T ∈ ΛRε,m(R1 ∪ CR2 ), with m = d, ..., n;

(5) either Hd(Φε,E(E) ∩ T ) = 0 or Hd(Φε,E(E) ∩ T ) = Hd(T ), for every T ∈ ΛR∗ε,d(R
1);

(6) Hd(Φε,E(E ∩ T )) ≤ k1Hd(E ∩ T ) for every T ∈ ΛRε (R1 ∪ CR2 );

where k1 depends only on n, d and `n/`1 (but not on ε).

Note that this time the constant k1 depends also from the ratio `n/`1. In the sequel we will
apply this construction only to rectangles where this ratio is between 1 and 4: 1 ≤ `n/`1 ≤ 4,
thus obtaining a constant k1 actually depending just on n and d.

3. Proof of Theorem 1.3

Proof of Theorem 1.3. Up to extracting subsequences we can assume the existence of a Radon
measure µ on Rn \H such that

µj
∗
⇀ µ , as Radon measures on Rn \H , (3.1)
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where µj = Hd Kj . We set K = sptµ \H and divide the argument in several steps.

Step one: We show the existence of θ0 = θ0(n, d) > 0 such that

µ(Bx,r) ≥ θ0 ωdrd , x ∈ sptµ and r < dx := dist(x,H). (3.2)

To this end, it is sufficient to prove the existence of β = β(n, d) > 0 such that

µ(Qx,l) ≥ β ld , x ∈ sptµ and l < 2dx/
√
n .

Let us assume by contradiction that there exist x ∈ sptµ and l < 2dx/
√
n such that

µ(Qx,l)
1
d

l
< β.

We claim that this assumption, for β chosen sufficiently small depending only on d and n, implies
that for some l∞ ∈ (0, l)

µ(Qx,l∞) = 0, (3.3)

which is a contradiction with the property of x to be a point of sptµ. In order to prove (3.3),
we assume that µ(∂Qx,l) = 0, which is true for a.e. l.

To prove (3.3), we construct a sequence of nested cubes Qi = Qx,li such that, if β is
sufficiently small, the following holds:

(i) Q0 = Qx,l;
(ii) µ(∂Qx,li) = 0;

(iii) setting mi := µ(Qi) then:

m
1
d
i

li
< β;

(iv) mi+1 ≤ (1− 1
k1

)mi, where k1 is the constant in Theorem 2.4 (6);

(v) (1− 4εi)li ≥ li+1 ≥ (1− 6εi)li, where

εi :=
1

kβ

m
1
d
i

li
(3.4)

and k = max{6, 6/(1− (k1−1k1
)
1
d )} is a universal constant.

(vi) limimi = 0 and limi li > 0.

Following [DS00], we are going to construct the sequence of cubes by induction: the cube Q0

satisfies by construction hypotheses (i)-(iii). Suppose that cubes until step i are already defined.

Setting mj
i := Hd(Kj ∩Qi), we cover Qi with the family Λεili(Qi) of closed cubes with edge

length εili as described in Section 2 and we set Ci1 and Ci2 for the corresponding sets defined in
(2.5). We define Qi+1 to be the internal cube given by the construction, and we note that Ci2
and Qi+1 are non-empty if, for instance,

εi =
1

kβ

m
1
d
i

li
<

1

k
≤ 1

6
,

which is guaranteed by our choice of k. Observe moreover that Ci1 ∪ Ci2 is a strip of width at
most 2εili around ∂Qi, hence the side li+1 of Qi+1 satisfies (1− 4εi)li ≤ li+1 < (1− 2εi)li.

Now we apply Theorem 2.4 to Qi with E = Kj and ε = εili, obtaining the map Φi,j =
Φεili,Kj . We claim that, for every j sufficiently large,

mj
i ≤ k1(m

j
i −m

j
i+1) + oj(1). (3.5)
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Indeed, since (Kj) is a minimizing sequence, by the definition of good class we have that

mj
i ≤ mi + oj(1) ≤ Hd (Φi,j (Kj ∩Qi)) + oj(1)

= Hd (Φi,j (Kj ∩Qi+1)) +Hd
(
Φi,j

(
Kj ∩ (Ci1 ∪ Ci2)

))
+ oj(1)

≤ k1Hd
(
Kj ∩ (Ci1 ∪ Ci2)

)
+ oj(1) = k1(m

j
i −m

j
i+1) + oj(1).

The last inequality holds because Hd (Φi,j (Kj ∩Qi+1)) = 0 for j large enough: otherwise, by

property (5) of Theorem 2.4, there would exist T ∈ Λ∗εili,d(Qi+1) such that Hd(Φi,j(Kj ∩ T )) =

Hd(T ). Together with property (ii), this would imply

ldi ε
d
i = Hd(T ) ≤ Hd (Φi,j (Kj) ∩Qi) ≤ k1Hd (Kj ∩Qi) ≤ k1mj

i → k1mi

and therefore, substituting (3.4),
mi

kdβd
≤ k1mi,

which is false if β is sufficiently small (mi > 0 because x ∈ spt(µ)). Passing to the limit in j in
(3.5) we obtain (iv):

mi+1 ≤
k1 − 1

k1
mi. (3.6)

Since li+1 ≥ (1 − 4εi)li, we can slightly shrink the cube Qi+1 to a concentric cube Q′i+1 with
l′i+1 ≥ (1− 6εi)li > 0, µ(∂Q′i+1) = 0 and for which (iv) still holds, just getting a lower value for
mi+1. With a slight abuse of notation, we rename this last cube Q′i+1 as Qi+1.

We now show (iii). Using (3.6) and condition (iii) for Qi, we obtain

m
1
d
i+1

li+1
≤
(
k1 − 1

k1

) 1
d m

1
d
i

(1− 6εi)li
<

(
k1 − 1

k1

) 1
d β

1− 6εi
.

The last quantity will be less than β if(
k1 − 1

k1

) 1
d

≤ 1− 6εi = 1− 6

kβ

m
1
d
i

li
. (3.7)

In turn, inequality (3.7) is true because (iii) holds for Qi, provided we choose k ≥ 6/
(
1 − (1 −

1/k1)
1
d

)
. Furthermore, estimating ε0 < 1/k by (iii) and (v), we also have εi+1 ≤ εi.

We are left to prove (vi): limimi = 0 follows directly from (iv); regarding the non degeneracy
of the cubes, note that

l∞
l0

:= lim inf
i

li
l0
≥
∞∏
i=0

(1− 6εi) =
∞∏
i=0

1− 6

kβ

m
1
d
i

li


≥
∞∏
i=0

1− 6m
1
d
0

kβl0
∏i−1
h=0(1− 6εh)

(
k1 − 1

k1

) i
d


≥
∞∏
i=0

(
1− 6

k(1− 6ε0)i

(
k1 − 1

k1

) i
d

)
,

where we used εh ≤ ε0 in the last inequality. Since ε0 < 1/k, the last product is strictly positive,
provided

k >
6

1−
(
k1−1
k1

) 1
d

,

which is guaranteed by our choice of k. We conclude that l∞ > 0, which ensures claim (3.3).
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Step two: We fix x ∈ sptµ \H, and prove that

r 7→ µ(Bx,r)

rd
is increasing on (0, dx). (3.8)

The proof is a straightforward adaptation of the corresponding one in [DGM14, Theorem 2],
and amounts to prove a differential inequality for the function f(r) := µ(Bx,r). In turn, this
inequality is obtained in a two step approximation: first one exploits the rectifiability of the
minimizing sequence (Kj) and property (1.1) to compare Kj with the cone competitor Cx,r(Kj),
see (2.2). The comparison, a priori, is only allowed with elements of P(H), so for almost every
r < dx the following holds:

fj(r) = Hd(Kj)−Hd(Kj \Bx,r) ≤ m0 + oj(1)−Hd(Kj \Bx,r)

≤ oj(1) + inf
K′∈P(H)

Hd(K ′)−Hd(Kj \Bx,r) ≤ oj(1) + inf
K′∈P(H)

K′\Bx,r=Kj\Bx,r

Hd(K ′ ∩Bx,r),

where fj(r) := Hd(Kj ∩Bx,r). Nevertheless, Kj can be compared with its cone competitor, up
to an error infinitesimal in j, thanks to Lemma 2.3. We recover

inf
K′∈P(H)

K′\Bx,r=Kj\Bx,r

Hd(K ′ ∩Bx,r) ≤ oj(1) +Hd(Cx,r(Kj) ∩Bx,r)

≤ oj(1) +
r

d
Hd−1(Kj ∩ ∂Bx,r) = oj(1) +

r

d
f ′j(r) .

One then passes to the limit in j and obtains the desired monotonicity formula. We refer to
[DGM14, Theorem 2] for the conclusion of the proof of (3.8).

Step three: By (3.2) and (3.8), the d-dimensional density of the measure µ, namely:

θ(x) = lim
r→0+

f(r)

ωdrd
≥ θ0 ,

exists, is finite and positive µ-almost everywhere. Preiss’ Theorem 2.1 implies that µ = θHd K̃
for some countably Hd-rectifiable set K̃ and some positive Borel function θ. Since K is the
support of µ, then Hd(K̃ \K) = 0. On the other hand, by differentiation of Hausdorff measures,

(3.2) yields Hd(K \ K̃) = 0. Hence K is d-rectifiable and µ = θHd K.

Step four: We prove that θ(x) ≥ 1 for every x ∈ K such that the approximate tangent space to
K exists (thus, Hd-a.e. on K). For further use (see step 7 below) we actually prove a slightly
more general results: θ(x) ≥ 1 for every x ∈ K \H such that there exists a sequence rk ↓ 0 for
which

µx,rk
rdk

∗
⇀ θ(x)Hd π , as k → +∞ (3.9)

where π is a d-dimensional plane. Here the measures µx,r are defined as µx,r(A) = µ(x + rA)
for every Borel set A.

Let us assume without loss of generality that x = 0 and π = {xd+1 = ... = xn = 0}. Note
that µx,r are supported on (K−x)/r and that (3.9) and the lower density estimates (3.2) imply

that the support of µx,rk has to converge in the Kuratowski sense to the support of Hd π. In
particular, for every ε > 0, there are infinitely many small ρ > 0 such that

K ∩Bρ ⊂
{
y ∈ Rn : |yd+1|, ..., |yn| <

ε

100
ρ
}
. (3.10)

Let us now assume, by contradiction, that θ(0) < 1. Thanks to (3.8) and (3.10) we can slightly
tilt ρ to find r > 0 and α < 1 such that µ(∂Qr) = 0 and

µ(Qr)

rd
≤ α < 1, K ∩ (Qr \Rr,εr) = ∅ , (3.11)
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where Rr,εr is defined as in (2.1). In particular, since µj are weakly converging to µ, we get that
for j ≥ j(r)

µj(Qr)

rd
≤ α < 1 and µj(Qr \Rr,εr) = oj(1), (3.12)

We now wish to clear the small amount of mass appearing in the complement of Rr,εr: we
achieve this by repeatedly applying Theorem 2.5. We set Qr ∩ {xd+1 ≥ ε

2 r} =: R, and we

apply Theorem 2.5 to this rectangle with E = K0
j := Kj , obtaining the map ϕ1,j . We recall

that the obtained constant k1 for the area bound is universal, since it depends on the side
ratio of R, which is bounded from below by 1 and from above by 4, provided ε small enough.
We set K1

j := ϕ1,j(K
0
j ) and repeat the argument with Qr ∩ {xd+1 ≤ − ε

2 r} =: R and E := K1
j ,

obtaining the map ϕ2,j . We again set K2
j := ϕ2,j(K

1
j ) and iterate this procedure to the rectangles

Qr ∩ {xd+2 ≥ ε
2 r}, ..., Qr ∩ {xn ≤ −

ε
2 r}. After 2(n− d) iteration, we set

K
2(n−d)
j := ϕ2(n−d),j ◦ ... ◦ ϕ1,j(Kj).

We are going to use the cube Qr(1−
√
ε) because, taking ε small enough, then

√
ε > 4Cε, where

C > 1 is the side ratio considered before. This allows us to claim that

Hd(K2(n−d)
j ∩ (Qr(1−

√
ε) \Rr(1−√ε),6εr)) = 0. (3.13)

Otherwise there would exist a d-face of a smaller rectangle T ⊂ (Qr \Rr,εr) such that

Hd(K2(n−d)
j ∩ T ) = Hd(T ) ≥ εdrd ,

which would lead to the following contradiction for j large:

εdrd ≤ Hd(T ) ≤ Hd
(
K

2(n−d)
j ∩ (Qr \Rr,εr)

)
≤ k2(n−d)1 Hd (Kj ∩ (Qr \Rr,εr)) = oj(1).

In particular, we cleared any measure on every slab

n⋃
i=d+1

{
3εr < |xi| < (1−

√
ε)
r

2

}
∩Qr(1−√ε).

We want now to construct a map P ∈ D(0, r), collapsing Rr(1−
√
ε),6εr onto the tangent plane.

To this end, for x ∈ Rn, x = (x′, x′′) with x′ ∈ Rd and x′′ ∈ Rn−d, we set

‖x′‖ := max{|xi| : i = 1, . . . , d} ‖x′′‖ := max{|xi| : i = d+ 1, . . . , n} (3.14)

and we define P as follows:

P (x) =

{(
x′, g(‖x′‖) (‖x

′′‖−3εr)+
1−6ε

x′′

‖x′′‖ + (1− g(‖x′‖))x′′
)

if max{‖x′‖, ‖x′′‖} ≤ r/2
Id otherwise,

(3.15)

where g : [0, r/2]→ [0, 1] is a compactly supported cut off function such that

g ≡ 1 on [0, r(1−
√
ε)/2] and |g′| ≤ 10/r

√
ε .

It is not difficult to check that P ∈ D(0, r) and that LipP ≤ 1 + C
√
ε, for some dimensional

constant C.
We now set K̃j := P (K

2(n−d)
j ), which verifies, thanks to (3.13),

Hd
(
K̃j ∩

(
Q(1−

√
ε)r \Qd(1−√ε)r

))
= 0 (3.16)
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and

Hd
(
K̃j ∩

(
Qr \Qr(1−√ε)

))
≤ (1 + C

√
ε)dHd

(
K

2(n−d)
j ∩

(
Qr \Qr(1−√ε)

))
≤ (1 + C

√
ε)k

2(n−d)
1 Hd

(
Kj ∩

(
Qr \ (Qr(1−

√
ε) ∪Rr,εr)

))
+ (1 + C

√
ε)Hd

(
Kj ∩

(
Rr,εr \Qr(1−√ε)

))
≤ oj(1) + (1 + C

√
ε)Hd

(
Kj ∩

(
Rr,εr \Qr(1−√ε)

))
,

(3.17)

where in the last inequality we have used (3.12). Moreover, by using (3.11), (3.12) and (3.16),
we also have that, for ε small and j large:

Hd(K̃j ∩Qdr(1−√ε))
rd(1−

√
ε)d

=
Hd(K̃j ∩Qr(1−√ε))

rd(1−
√
ε)d

≤ (1 + C
√
ε)
Hd(K2(n−d)

j ∩Qr)
rd

≤ (1 + C
√
ε)
Hd(Kj ∩Qr) + oj(1)

rd

≤ α+ oj(1) < 1.

(3.18)

As a consequence of (3.18) and the compactness of K̃j , there exist y′j ∈ Qd(1−√ε)r and δj > 0

such that, if we set yj := (y′j , 0), then

K̃j ∩Bd
yj ,δj

= ∅ and Bd
yj ,δj
⊂ Qd(1−√ε)r. (3.19)

After the last deformation, our set K̃j ∩Qr(1−√ε) is contained in the tangent plane and we want

to use the property (3.19) to collapse K̃j ∩ Qr(1−√ε) into
(
∂Qd

(1−
√
ε)r

)
× {0}n−d. To this end,

for every j ∈ N let us define the following Lipschitz map:

ϕj(x) =

{(
x′ + z′j,x, x

′′) if x ∈ Rr(1−√ε),r
x otherwise,

with

z′j,x := min

1,

∣∣∣x′ − y′j∣∣∣
δj

 (r − 4‖x′′‖)+
r

γj,x(x′ − y′j),

where γj,x > 0 is such that x′+ γj,x(x′− y′j) ∈ ∂Qd(1−√ε)r×{0}
n−d and ‖x′′‖ is defined in (3.14).

One can easily check that ϕj ∈ D(0, r). Moreover, setting ϕj(K̃j) =: K ′j , we have that

K ′j \Qr = Kj \Qr

and

Hd(K ′j ∩Qr(1−√ε)) = 0, (3.20)

thanks to (3.16), since

Hd
(
∂Qd(1−

√
ε)r × {0}

n−d
)

= 0.

Since P(H) is a good class, by (1.1) there exists a sequence of competitors (Jj)j∈N ⊂ P(H) such

that Jj \ B0,r = Kj \ B0,r and Hd(Jj) = Hd(K ′j) + oj(1). Hence, thanks to (3.17) and (3.20),
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we get

Hd(Kj)−Hd(Jj) ≥ Hd(Kj)−Hd(K ′j)− oj(1) = Hd(Kj ∩Qr)−Hd(K ′j ∩Qr)− oj(1)

≥ Hd
(
Kj ∩Qr(1−√ε)

)
+Hd

(
Kj ∩ (Rr,εr \Qr(1−√ε))

)
+

− oj(1)− (1 + C
√
ε)Hd

(
Kj ∩ (Rr,εr \Qr(1−√ε))

)
≥ Hd

(
Kj ∩Qr(1−√ε)

)
− C
√
εHd

(
Kj ∩ (Rr,εr \Qr(1−√ε))

)
− oj(1).

Passing to the limit as j →∞ and using (3.1), (3.2) and (3.11), we get

lim inf
j
Hd(Kj) ≥ lim inf

j
Hd(Jj) + µ(Qr(1−

√
ε))− C

√
εrd

≥ lim inf
j
Hd(Jj) + (θ0(1−

√
ε)d − C

√
ε)rd.

Since, for ε small, this is in contradiction with Kj be a minimizing sequence, we finally conclude
that θ(0) ≥ 1.

Step five: We now show that θ(x) ≤ 1 for every x ∈ K such that the approximate tangent
space to K exists. Again, for further purposes, we will actually show that θ(x) ≤ 1 for every
x ∈ K \H such that (3.9) holds. Arguing by contradiction, we assume that θ(x) = 1 + σ > 1.
As usually, we assume that x = 0 and π = {y : yd+1, ..., yn = 0}. By the monotonicity of the
density established in Step 2, for every ε > 0 we can find r > 0 such that

K ∩Qr ⊂ Rr,εr , 1 + σ ≤ µ(Qr)

rd
≤ 1 + σ + ε σ. (3.21)

Since Hd Kj converges to µ we have

Hd(Kj ∩Qr) >
(

1 +
σ

2

)
rd , Hd((Kj ∩Qr) \Rr,εr) <

σ

4
rd. ∀j ≥ j0(r) , (3.22)

Consider the map P : Rn → Rn ∈ D(0, r) with LipP ≤ 1 + C
√
ε defined in (3.15), which

collapses Rr(1−
√
ε),εr onto the tangent plane. By exploiting the fact that P(H) is a good class,

we find that

Hd(Kj ∩Qr)− oj(1) ≤ Hd(P (Kj ∩R(1−
√
ε)r,εr))︸ ︷︷ ︸

I1

+Hd(P (Kj ∩ (Rr,εr \R(1−
√
ε)r,εr)))︸ ︷︷ ︸

I2

+Hd(P (Kj ∩ (Qr \Rr,εr)))︸ ︷︷ ︸
I3

.

By construction, I1 ≤ rd, while, by (3.22),

I3 ≤ (LipP )dHd(Kj ∩ (Qr \Rr,εr)) < (1 + C
√
ε)d

σ

4
rd .

Hence, as j →∞, (
1 +

σ

2

)
rd ≤ rd + lim inf

j→∞
I2 + (1 + C

√
ε)d

σ

4
rd ,

that is, (1

2
− (1 + C

√
ε)d

4

)
σ ≤ lim inf

j→∞

I2
rd
. (3.23)

By (3.21), we finally estimate that

lim sup
j→∞

I2 ≤ (1 + C
√
ε)d µ(Qr \Q(1−

√
ε)r)

≤ (1 + C
√
ε)d
(

(1 + σ + εσ)− (1 + σ)(1−
√
ε)d
)
rd. (3.24)
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By choosing ε sufficiently small, (3.23) and (3.24) provide the desired contradiction. In partic-
ular, by combining this with the previous step we deduce that θ = 1 for every x such that K
admits an approximate tangent space at x, that is for Hd almost every x. Classical argument
in measure theory then implies that µ = Hd K.

Step six: We now show that the canonical density one rectifiable varifold associated to K is
stationary in Rn \H. In particular, applying Allard’s regularity theorem, see [Sim83, Chapter
5], we will deduce that there exists an Hd-negligible closed set Σ ⊂ K such that Γ = K \Σ is a
real analytic manifold. Since being a stationary varifold is a local property, to prove our claim
it is enough to show that for every ball B ⊂⊂ Rn \H we have

Hd(K) ≤ Hd(φ(K)) (3.25)

whenever φ is a diffeomorphism such that spt{φ − Id} ⊂ B. Indeed, by exploiting (3.25) with
φt = Id + tX, X ∈ C1

c (B) we deduce the desired stationarity property.
To prove (3.25) we argue as in [DGM14, Theorem 7]. Given ε > 0 we can find δ > 0 and a

compact set K̂ ⊂ K ∩B with Hd((K \ K̂)∩B) < ε such that K admits an approximate tangent

plane π(x) at every x ∈ K̂,

sup
x∈K̂

sup
y∈Bx,δ

|∇φ(x)−∇φ(y)| ≤ ε , sup
x∈K̂

sup
y∈K̂∩Bx,δ

d(π(x), π(y)) < ε , (3.26)

where d is a distance on G(d), the d-dimensional Grassmanian. Moreover, denoting by Sx,r the
set of points in Bx,r at distance at most ε r from x+ π(x), then K ∩Bx,r ⊂ Sx,r for every r < δ

and x ∈ K̂. By Besicovitch covering theorem we can find a finite disjoint family of closed balls
{Bi} with Bi = Bxi,ri ⊂ B ⊂⊂ Rn \H, xi ∈ K̂, and ri < δ, such that Hd(K̂ \

⋃
iBi) < ε. By

exploiting the construction of Step four, we can find j(ε) ∈ N and maps Pi : Rn → Rn with
Lip (Pi) ≤ 1 + C

√
ε and Pi = Id on Bc

i , such that, for a certain Xi ⊂ Si = Sxi,ε ri ,

Pi(Xi) ⊂ Bi ∩ (xi + π(xi)) ,

Hd
(
Pi
(
(Kj ∩Bi) \Xi

))
≤ C

√
ε ωd r

d
i , ∀j ≥ j(ε) .

(3.27)

Denoting with Jπd the d-dimensional tangential jacobian with respect to the plane π and by

JKd the one with respect to K and exploiting (3.26), (3.27), the area formula and that ωd r
d
i ≤

Hd(K ∩Bi) (by the monotonicity formula), and setting αi = Hd((K \ K̂) ∩Bi), we get

Hd(φ(Pi(Kj ∩Xi))) =

∫
Pi(Kj∩Xi)

J
π(xi)
d φ(x) dHd(x) ≤ (J

π(xi)
d φ(xi) + ε)ωd r

d
i

≤ (J
π(xi)
d φ(xi) + ε)Hd(K ∩Bi) ≤ (J

π(xi)
d φ(xi) + ε) (Hd(K̂ ∩Bi) + αi)

≤
∫
K̂∩Bi

(JKd φ(x) + 2ε) dHd(x) + ((Lipφ)d + ε)αi

= Hd(φ(K̂ ∩Bi)) + 2εHd(K̂ ∩Bi) + ((Lipφ)d + ε)αi ,
(3.28)

where in the last identity we have used the area formula and the injectivity of φ. Since Pi = Id
on Bc

i , φ = Id on Bc, Bi ⊂ B and the balls Bi are disjoint, the map φ̃ which is equal to φ on
B \ ∪iBi, equal to the identity on Bc and equal to φ ◦ Pi on Bi is well defined. Moreover, by
(3.28), we get

Hd(φ̃(Kj)) ≤ Hd(φ(K)) + Cε

where C depends only on K. By exploiting the definition of good class, we get that

Hd(K) ≤ Hd(φ̃(Kj)) + oj(1) ≤ Hd(φ(K)) + Cε+ oj(1).

Letting j →∞ and ε→ 0 we obtain (3.25).
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Step seven: We finally address the dimension of the singular set. Recall that, by monotonicity,
the density function

Θd(K,x) = lim
r→0

Hd(K ∩Bx,r)
ωdrd

is everywhere defined in Rn \ H and equals 1 Hd-almost everywhere in K. Fixing x ∈ K and
a sequence rk ↓ 0, the monotonicity formula, the stationarity of Hd K and the compactness
theorem for integral varifolds [All72, Theorem 6.4] imply that (up to subsequences)

Hd
(
K − x
rk

)
⇀ V locally in the sense of varifolds, (3.29)

where

(a) V is a stationary integral varifold: in particular Θd(‖V ‖, y) ≥ 1 for y ∈ spt(V );
(b) V is a cone, namely (δλ)#V = V , where δλ(x) = λx, λ > 0;

(c) Θd(‖V ‖, 0) = Θd(K,x) ≥ Θd(‖V ‖, y) for every y ∈ Rn.

Recall that the tangent varifold V depends (in principle) on the sequence (rk). We denote
by TanVar(K,x) the (nonempty) set of all possible limits V as in (3.29), varying among all
sequences along which (3.29) holds. Given a cone W we set

Spine(W ) := {y ∈ Rn : Θd(‖W‖, y) = Θd(‖W‖, 0)}. (3.30)

By [Alm00, 2.26], Spine(W ) is a vector subspace of Rn, see also [Whi97, Theorem 3.1]. We can
stratify K in the following way: for every k = 0, . . . , n we let

Ak := {x ∈ K : for all V ∈ TanVar(K,x), dim Spine(V ) ≤ k}.

Clearly A0 ⊂ · · · ⊂ Ad = · · · = An; moreover the following holds: dimHAk ≤ k, see [Alm00, 2.28]
and [Whi97, Theorem 2.2]. In order to prove our claim, we need to show that Ad\Ad−1 ⊂ K \Σ,
where Σ, as in Step six. To this end we note that the monotonicity formula for stationary
varifolds implies that if W is a d-dimensional stationary cone with dim Spine(W ) = d, then
‖W‖ = Θd(‖W‖, 0)Hd π for some d-dimensional plane 1 π. In particular since every x ∈
Ad \ Ad−1 admits at least one flat tangent varifold, for every such x there exists a sequence rk
satisfying

Hd K − x
rk

→ mHd π ;

moreover m = Θd(K,x) by (c). But then, the very same proof of Step five above implies that
Θd(K,x) = 1. Thus every x ∈ Ad \Ad−1 satisfies the hypotheses of Allard’s regularity Theorem
[All72, Regularity Theorem, Section 8], implying that K ∩Qx, r

2
is a real analytic submanifold.

Equivalently x 6∈ Σ and this concludes the proof.
�

4. Proof of Theorems 1.5 and 1.8

In this Section we prove Theorem 1.5 and 1.8. With Theorem 1.3 at hand, the proofs are
quite similar to the corresponding ones in [DGM14] (see Theorems 4 and 7 there), hence we
limit ourselves to provide a short sketch underlying only the main differences.

Proof of Theorem 1.5. We start by proving that F(H, C) is a good class in the sense of Definition

1.2: let K̃ ∈ F(H, C), x ∈ K̃, r ∈ (0,dist(x,H)) and ϕ ∈ D(x, r). We show that ϕ(K̃) ∈ F(H, C)

1Indeed up to a rotation spt(W ) = Spine(W )× Γ, where Γ is a cone in Rn−d. If Γ 6= {0} then Θd(‖W‖, 0) >
Θd(‖W‖, y) for any y ∈ Spine(W ) \ {0}, which contradicts (3.30).
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arguing by contradiction: assume that γ(Sn−d) ∩ ϕ(K̃) = ∅ for some γ ∈ C and, without loss of

generality, suppose also that γ(Sn−d)∩ (K̃ \Bx,r) = ∅. By Definition 1.1 there exists a sequence

(ϕj) ⊂ D(x, r) such that lim
j
‖ϕj − ϕ‖C0 = 0.

Since γ(Sn−d) is compact and ϕj = Id outside Bx,r, for j sufficiently large γ(Sn−d)∩ϕj(K̃) = ∅;
moreover ϕj is invertible, hence ϕ−1j

(
γ(Sn−d)

)
∩ K̃ = ∅. But the property for ϕj of being

isotopic to the identity implies ϕ−1j ◦ γ ∈ C, which contradicts K̃ ∈ F(H, C). This proves (a).

Given a minimizing sequence (Kj) ⊂ F(H, C) which consists of rectifiable sets, we can
therefore find a set K with the properties stated in Theorem 1.3. In order to conclude (b),
namely that K ∈ F(H, C), we refer to [DGM14, Theorem 4(b)]: the proof is the same.

�

Proof of Theorem 1.8. As already observed in Remark 1.7, A(H,K0) is a good class and we

can therefore apply Theorem 1.3. We thus know that Hd Kj
∗
⇀ µ = Hd K and that K is

a smooth set away from H and from a relatively closed set Σ of dimension less or equal than
(d− 1). The conclusion of the proof can now be obtained by repeating verbatim Steps 4 and 6
in the proof of Theorem 7 in [DGM14].

�
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