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Abstract. Let Y be a smooth compact oriented Riemannian manifold without boundary. Weak limits of graphs of

smooth maps uk : Bn → Y with equibounded Dirichlet integral give rise to elements of the space cart2,1(Bn × Y).

Assume that Y is 1-connected and that its 2-homology group has no torsion. In any dimension n we prove that every

element T in cart2,1(Bn ×Y) with no singular vertical part can be approximated weakly in the sense of currents by

a sequence of graphs of smooth maps uk : Bn → Y with Dirichlet energies converging to the energy of T .

Let Bn be the unit ball in Rn and let Y be a smooth oriented Riemannian manifold of dimension M ≥ 2,
isometrically embedded in RN for some N ≥ 3. We shall assume that Y is compact, connected, without
boundary. In addition, we assume that Y is 1-connected, i.e., π1(Y) = 0, and that its integral 2-homology
group H2(Y) := H2(Y;Z) has no torsion. We also notice that H2(Y; X) = H2(Y)⊗X for X = R,Q.

In this paper we consider sequences of smooth maps uk : Bn → Y with

sup
k

D(uk) < +∞ ,

where D(u) is the Dirichlet integral

D(u) :=
1
2

∫

Bn

|Du|2 dx .

Modulo passing to a subsequence the (n, 2)-currents Guk
, integration over the graphs of uk of n-forms with

at most two vertical differentials, converge to a current T ∈ cart2,1(Bn × Y), see [11] [8] [13] and Sec. 1
below. In order to discuss these currents, we recall the following

Definition 0.1 We say that an integral 2-cycle C ∈ Z2(Y) is of spherical type if its homology class contains
a Lipschitz image of the 2-sphere S2. More precisely, if there exist Z ∈ Z2(Y), R ∈ R3(Y) and a Lipschitz
function φ : S2 → Y such that

C − Z = ∂R , φ#[[ S2 ]] = Z .

We also denote
Hsph

2 (Y) := {[γ] ∈ H2(Y) | ∃φ ∈ Lip(S2,Y) : φ#[[S2 ]] ∈ [γ]}
and we shall also assume that H2(Y)/Hsph

2 (Y) has no torsion.
Currents T ∈ cart2,1(Bn × Y) have the form

T = GuT +
∑

q∈Hsph
2 (Y)

Lq ×Rq + ST,sing ,

where uT is the weak W 1,2 limit of the uk’s, Lq is an integer multiplicity rectifiable current of dimension
n−2 in Bn, Rq is a 2-cycle in q and ST,sing is nonzero only on forms ω with exactly two vertical differentials
and such that dyω 6= 0. Apart from being completely vertical and homologically trivial, otherwise the current
ST,sing can be very wild and essentially any measure in Bn × Y, compare [10].

For every T ∈ cart2,1(Bn×Y), the Dirichlet integral of T , D(T ), turns out to be well defined, see below;
in particular D(Gu) = D(u) if T = Gu. Moreover, see [8] [13], in the vertical homology class of each T in
cart2,1(Bn × Y) there is a representative that minimizes the Dirichlet integral and has the form

T = GuT +
∑

q∈Hsph
2 (Y)

Lq ×Rq , (0.1)
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where Rq is an integral cycle in q. In this case the Dirichlet energy is given by

D(T ) =
1
2

∫

Bn

|Du|2 dx +
∑

q∈Hsph
2 (Y)

M(Lq) ·M(Rq) .

In this paper we show that every current T ∈ cart2,1(Bn×Y) which has the form (0.1) is the weak limit
of a sequence of graphs of smooth maps uk : Bn → Y, i.e., Guk

⇀ T , moreover

D(T ) = inf{ lim inf
k→+∞

D(uk) | {uk} ⊂ C1(Bn,Y) , Guk
⇀ T}

and actually there is a sequence of smooth maps uk : Bn → Y such that

Guk
⇀ T and

1
2

∫

Bn

|Duk|2 dx → D(T ) .

In the case Y = S2, the unit 2-sphere, this density result was first proved in [9] in the case n ≤ 3, see also
[11, Vol. II], and it is new, if n ≥ 4, even in the case Y = S2. Moreover, it was proved in [12], in the case of
dimension n = 2, with no additional hypothesis on the first homotopy group π1(Y), and in [13], in the case
n = 3, by assuming the slightly weaker hypothesis that the Hurewicz homomorphism π2(Y; y0) → H2(Y;Q)
is injective for every y0 ∈ Y. Note that this injectivity condition automatically holds if Y is 1-connected,
by the Hurewicz theorem [17]. We remark that if n ≥ 3 the injectivity assumption on the Hurewicz map
cannot be avoided. In fact, in [13] we showed that if the Hurewicz map is not injective there exist currents
T in cart2,1(B3 ×Y) of the type T = Gu, where u(x) = ϕ(x/|x|) for a suitable smooth map ϕ : ∂B3 → Y,
for which there is a positive constant C such that

D(u) + C ≤ lim inf
k→+∞

D(uk)

for any sequence of smooth maps uk : B3 → Y with Guk
⇀ Gu.

1 Notation and preliminary results

In this section we recall some facts from the theory of Cartesian currents with finite Dirichlet energy. We
refer to [11] and [8] for proofs and details.

Homological facts. Since H2(Y) has no torsion, a condition which automatically holds if dimY = 2,
there are generators [γ1], . . . , [γs], i.e. integral cycles in Z2(Y), such that

H2(Y) =

{
s∑

s=1

ns [γs] | ns ∈ Z
}

,

see e.g. [11], Vol. I, Sec. 5.4.1. Moreover, since H2(Y)/Hsph
2 (Y) has no torsion, we may and do choose the

γs’s in such a way that [γ1], . . . , [γes] generate the spherical homology classes in Hsph
2 (Y) for some s̃ ≤ s.

By de Rham’s theorem the second real homology group is in duality with the second cohomology group
H2

dR(Y), the duality being given by the natural pairing

〈[γ], [ω]〉 := γ(ω) =
∫

γ

ω , [γ]R ∈ H2(Y;R) , [ω] ∈ H2
dR(Y) .

We will then denote by [ω1], . . . , [ωs] a dual basis in H2
dR(Y) so that γs(ωr) = δsr, where δsr denotes the

Kronecker symbols. Also, we may and do assume that ωs is the harmonic form in its cohomology class.

Dn,2-currents. Every differential k-form ω ∈ Dk(Bn×Y) splits as a sum ω =
∑j

j=0
ω(j), j := min(k, M),

where the ω(j)’s are the k-forms that contain exactly j differentials in the vertical Y variables. We denote
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by Dk,2(Bn×Y) the subspace of Dk(Bn×Y) of k-forms of the type ω =
∑2

j=0
ω(j), and by Dk,2(Bn×Y)

the dual space of Dk,2(Bn × Y). Every (k, 2)-current T ∈ Dk,2(Bn × Y) splits as T =
∑2

j=0
T(j),

where T(j)(ω) := T (ω(j)). For example, if u ∈ W 1,2(Bn,Y), i.e., u ∈ W 1,2(Bn,RN ) with u(x) ∈ Y for a.e.
x ∈ Bn, then Gu is an (n, 2)-current in Dn,2(Bn×Y), where in an approximate sense Gu := (Id ./ u)#[[Bn ]],
(Id ./ u)(x) := (x, u(x)), compare [11].

D-norm. For any ω ∈ Dn,2(Bn × Y) and T ∈ Dn,2(Bn × Y) we set

‖ω‖D := max
{
sup
x,y

|ω(0)(x, y)|
1 + |y|2 ,

∫

Bn

sup
y
|ω(1)(x, y)|2 dx ,

∫

Bn

sup
y
|ω(2)(x, y)| dx

}

‖T‖D := sup
{

T (ω) | ω ∈ Dn,2(Bn × Y) , ‖ω‖D ≤ 1
}

.

It is easily checked that ‖T‖D is a norm on {T ∈ Dn,2(Bn × Y) | ‖T‖D < +∞}.

Weak Dn,2-convergence. If {Tk} ⊂ Dn,2(Bn×Y), we say that {Tk} converges weakly in Dn,2(Bn×Y),
Tk ⇀ T , if Tk(ω) → T (ω) for every ω ∈ Dn,2(Bn × Y). The class Dn,2(Bn × Y) is closed under weak
convergence and ‖·‖D is weakly lower semicontinuous. Moreover, if supk ‖Tk‖D < +∞ there is a subsequence
which weakly converges to some T ∈ Dn,2(Bn × Y) with ‖T‖D < +∞.

Boundaries. The exterior differential d splits into a horizontal and a vertical differential d = dx + dy. Of
course ∂xT (ω) := T (dxω) defines a boundary operator ∂x : Dn,2(Bn×Y) → Dn−1,2(Bn×Y). Now, for any
ω ∈ Dn−1,2(Bn×Y), dyω belongs to Dn,2(Bn×Y) if and only if dyω(2) = 0. Therefore, ∂yT makes sense
only as an element of the dual space of Zn−1,2(Bn × Y), where

Zk,2(Bn × Y) := {ω ∈ Dk,2(Bn × Y) | dyω(2) = 0} .

D-graphs. The study of weak limits of sequences of maps with equibounded Dirichlet energy, minimiza-
tion problems and concentration phenomena, see [11], draw the authors of [10] to introduce the subclass
D-graph(Bn × Y) given by the (n, 2)-currents T ∈ Dn,2(Bn × Y) with ‖T‖D < +∞ and such that

T = GuT
+ ST (1.1)

for some function uT ∈ W 1,2(Bn,Y) and some ST ∈ Dn,2(Bn × Y) with ST (0) = ST (1) = 0, i.e. ST

completely vertical, so that

∂xT = 0 on Dn−1,2(Bn × Y) , ∂yT = 0 on Zn−1,2(Bn × Y) . (1.2)

The 2-dimensional case. If n = 2, obviously Dn,2(Bn×Y) = D2(B2×Y) and ∂T is the usual boundary
of currents, whereas M(T ) ≤ c (‖T‖D + 1) for some absolute constant. Consequently, weak limits of
smooth graphs with equibounded Dirichlet energy are integer multiplicity (shortly i.m.) rectifiable currents
in R2(B2 × Y), and D-graph(B2 × Y) ∩ R2(B2 × Y) is closed under weak convergence with equibounded
D-norm. As proved in [10] and [11], every T in D-graph(B2 × Y) ∩R2(B2 × Y) decomposes as

T = GuT
+ ST , ST =

I∑

i=1

δxi × Ci + ST,sing , (1.3)

where δx is the Dirac mass in x, xi ∈ B2, Ci ∈ Z2(Y) are integral cycles with non trivial homology
and ST,sing is a completely vertical, homologically trivial, i.m. rectifiable current supported on a set not
containing {xi} ×Y, i = 1, . . . , I. More precisely, ST,sing(ω) 6= 0 only on forms ω ∈ D2(B2 ×Y) such that
dyω(2) 6= 0. Moreover, see [10] [11], if T is in the sequential weak closure of smooth graphs with equibounded
Dirichlet energies, then every Ci is of spherical type, see Definition 0.1. These facts lead to

Definition 1.1 If n = 2, cart2,1(B2 × Y) denotes the class of i.m. rectifiable currents T in D-graph(B2

×Y) which decompose as in (1.3), where the Ci’s are of spherical type.
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It turns out, see [10] [8], that cart2,1(B2×Y) is closed under weak convergence, with equibounded D-norm,
and contains the weak limits of sequences of smooth graphs with equibounded D-norm.

The n-dimensional case. Denote by π : Rn × RN → Rn and π̂ : Rn × RN → RN the orthogonal
projections onto the first and the second factor, respectively. Let P be an oriented 2-plane in Rn, and

Pt := P +
∑n−2

i=1
tiνi the family of oriented 2-planes parallel to P , t = (t1, . . . , tn−2) ∈ Rn−2, where

span(ν1, . . . , νn−2) is the orthogonal subspace to P . Similarly to the case of normal currents, for every
T ∈ Dn,2(Bn ×Y) with ‖T‖D < +∞ and for Hn−2-a.e. t the slice T π−1(Pt) of T over π−1(Pt) is a well
defined current in D2((Bn ∩ Pt)×Y) with finite D-norm. Moreover, if Tk ⇀ T with equibounded D-norm,
for Hn−2-a.e. t, passing to a subsequence we have Tk π−1(Pt) ⇀ T π−1(Pt) with equibounded D-norm.
Finally, if T ∈ D-graph(Bn×Y), for Hn−2-a.e. t we have T π−1(Pt) ∈ D-graph((Bn∩Pt)×Y). Therefore
in any dimension n it was introduced in [8] the following

Definition 1.2 T is said to be in cart2,1(Bn×Y) if T ∈ D-graph(Bn×Y) and for any 2-plane P and for
Hn−2-a.e. t the 2-dimensional current T π−1(Pt) belongs to cart2,1((Bn ∩ Pt)× Y) .

It turns out that the class cart2,1(Bn × Y) is closed under weak convergence with equibounded D-norms.

Structure of cart2,1(Bn × Y). If T ∈ D-graph(Bn × Y), for any closed 2-form ω ∈ Z2(Y) define the
(n− 2)-currents D(T ;ω) and L(T ;ω) in Bn by setting

D(T ; ω)(φ) := GuT (π#φ ∧ π̂#ω) , L(T ; ω)(φ) := ST (π#φ ∧ π̂#ω)

for every φ ∈ Dn−2(Bn). Then, compare [10] and [11], D(T ; ω) and L(T ; ω) have finite mass, ∂(D(T ; ω) +
L(T ;ω)) = 0 in Dn−3(Bn) and L(T ;ω) only depends on the cohomology class of ω. Finally, setting for
s = 1, . . . , s

Ds(T ) := D(T ;ωs) , Ls(T ) := L(T ;ωs) ,

we have

T = GuT
+

s∑
s=1

Ls(T )× γs on Zn,2(Bn × Y)

for some function uT ∈ W 1,2(Bn,Y). Moreover, if T ∈ cart2,1(Bn ×Y), it is proved in [8] that the Ls(T )’s
are i.m. rectifiable currents in Rn−2(Bn), with Ls(T ) = 0 for s = s̃ + 1, . . . , s. As a consequence, every
T ∈ cart2,1(Bn × Y) decomposes as

T = GuT +
∑

q∈Hsph
2 (Y)

Lq ×Rq on Zn,2(Bn × Y) , (1.4)

where Lq is an i.m. rectifiable current in Rn−2(Bn) and Rq ∈ Z2(Y) is an integral 2-cycle of spherical

type in the homology class q. More precisely, if q =
∑es

s=1
ns[γs], ns ∈ Z, then

Rq =
es∑

s=1

nsγs and Lq = τ(Lq, 1,
−→L ) , (1.5)

where
−→L is a unit simple orienting (n− 2)-vector field and the rectifiable sets Lq are pairwise disjoint.

We finally remark that though the singular vertical part

ST,sing := T −GuT −
es∑

s=1

Ls(T )× γs

is completely vertical and homologically trivial, i.e., ST,sing(ω) = 0 if ω(2) = 0 or ω ∈ Zn,2(Bn × Y), it
is in general non zero on forms ω ∈ Dn,2(Bn × Y) for which dyω(2) 6= 0. However, in [8] it was shown
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that, in any dimension n, solutions of minimum problems ”have” no singular part and, in fact, for every
T ∈ cart2,1(Bn × Y),

T = GuT
+

∑

q∈Hsph
2 (Y)

Lq ×Sq + ST,sing ,

where uT ∈ W 1,2(Bn,Y), Lq ∈ Rn−2(Bn), and Sq ∈ Z2(Y), in the vertical homological class [T ], see below,
there is a current of the form

T = GuT
+

∑

q∈Hsph
2 (Y)

Lq ×Rq ,

where Rq ∈ Z2(Y) is an integral cycle in q, with finite mass.

Vertical homology classes. Let u ∈ W 1,2(Bn,Y). We have ∂Gu(ω) = 0 if ω ∈ Dn−1,2(Bn ×Y) with
ω(2) = 0 or dyω = 0. Setting

Bk,2(Bn × Y) := {ω ∈ Dk,2(Bn × Y) | ∃η ∈ Dk−1,1(Bn × Y) : ω(2) = dyη}

and

Hk,2(Bn × Y) :=
Zk,2(Bn × Y)
Bk,2(Bn × Y)

,

then ∂Gu = 0 on Bn−1,2(Bn×Y) and ∂y∂Gu = 0, whence ∂Gu(ω) depends only on the cohomology class
of ω ∈ Zn−1,2(Bn × Y). As a consequence ∂Gu induces a functional (∂Gu)? on Hn−1,2(Bn ×Y) given by

(∂Gu)?(ω + Bn−1,2) := ∂Gu(ω + Bn−1,2) = ∂Gu(ω) , ω ∈ Zn−1,2 ,

compare [11], Vol. II, Sec. 5.4.1. Therefore, since

Hk,2(Bn × Y) ' Dk−2(Bn)⊗H2
dR(Y) ,

the homology map (∂Gu)? is uniquely represented as an element of the class Dn−3(Bn;H2(Y;R)). More
explicitly, if φ ∈ Dn−3(Bn), we have [(∂Gu)?(φ)] ∈ H2(Y;R) and for s = 1, . . . , s

〈(∂Gu)?(φ), [ωs]〉 = ∂Gu(π#φ ∧ π̂#ωs) ,

〈, 〉 denoting the de Rham duality between H2(Y;R) and H2
dR(Y): in general (∂Gu)? is non-trivial.

Singularities of Sobolev maps. Following [11], Vol. II, Sec. 5.4.2, we set

P(u) := (∂Gu)? ∈ Dn−3(Bn; H2(Y;R)) ,

for each ω ∈ [ω] ∈ H2
dR(Y) we define the current P(u; ω) := ∂π#(Gu π̂#ω) in Dn−3(Bn), so that

P(u; ω)(φ) = ∂Gu(π#φ ∧ π̂#ω) ∀φ ∈ Dn−3(Bn) ,

and for every ω ∈ Z2(Y) the current D(u; ω) := π#(Gu π̂#ω) in Dn−2(Bn), so that

D(u; ω)(φ) = Gu(π#φ ∧ π̂#ω) ∀φ ∈ Dn−2(Bn) .

The following facts hold:

(i) for s = 1, . . . , s̃

P(u;ωs)(φ) = 〈P(u)(φ), [ωs]〉 ,
i.e., P(u; ωs) does not depend on the representative in the cohomology class [ωs];

(ii) ∂ P(u) = 0 and P(u) =
es∑

s=1

P(u; ωs)⊗ [γs], hence it does not depend on the choice of γ1, . . . , γes;
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(iii) ∂ D(u; ω)(φ) = 〈P(u)(φ), [ω]〉 and hence ∂ D(u;ωs) = P(u; ωs) for each representative ωs in [ωs].

Therefore, for any s = 1, . . . , s̃ we can set

Ds(u) := D(u; ωs) , Ps(u) := P(u; ωs) = ∂ Ds(u) Bn . (1.6)

Note that if T = GuT
+ ST ∈ cart2,1(Bn × Y), then Ds(uT ) = Ds(T ) and

Ps(uT ) = −∂ Ls(T ) Bn ∀ s = 1, . . . , s̃ . (1.7)

Finally, we clearly have P(u) = 0 if u is smooth, say Lipschitz, or at least in W 1,3(Bn,Y).

The Dirichlet energy. Following [11], Vol. II, Sec. 1.2, we recall that the parametric polyconvex l.s.c.
envelope of the Dirichlet integrand is the function F : ΛnRn+N → R+

given by

‖ξ‖D := sup{φ(ξ) | φ : ΛnRn+N → R+
, φ linear,

φ(M(G)) ≤ 1
2
|G|2 ∀G ∈ M(N, n)} .

(1.8)

Here M(N,n) denotes the set of N × n real valued matrices G and M(G) is the n-vector in ΛnRn+N

given by

M(G) :=
(

e1 +
N∑

j=1

Gj
1 εj

)
∧ · · · ∧

(
en +

N∑

j=1

Gj
n εj

)
, G =

(
Gj

i

)n,N

i,j=1

(e1, . . . , en) , (ε1, . . . , εN ) being the standard basis in Rn and RN , respectively, so that M(G) identifies
the n-plane graph of G in Rn+N , and in fact yields an orientation to it. The Dirichlet density for maps
u : Bn → Y is then defined by the function F (y, ξ) : RN × ΛnRn+N → R+

given by

F (y, ξ) :=
{ ‖ξ‖D if y ∈ Y and ξ ∈ Λn(Rn × TyY)

+∞ otherwise (1.9)

where TyY is the tangent space to Y at y. The Dirichlet integral is then extended to currents T in
D-graph(Bn × Y) by

D(T ) :=
∫

F (y,
−→
T ) d‖T‖D ,

−→
T being the Radon-Nikodym derivative dT/d‖T‖D. If (1.1) holds one has

D(T ) =
1
2

∫

Bn

|DuT |2 dx +
∫

Bn×Y
F (y,

−→
ST ) d‖ST ‖D . (1.10)

In particular
‖T‖D ≤ cD(T )

for some absolute constant c = c(n). Finally, if A ⊂ Bn is a Borel set we will denote

D(T,A× Y) := D(T A× Y)

and if u ∈ W 1,2(Bn,Y)

D(u,A) :=
1
2

∫

A

|Du|2 dx = D(Gu, A× Y) , D(u) := D(u, Bn) .

In case n = 2, if (1.3) holds we have

D(T ) =
1
2

∫

B2
|DuT |2 dx +

I∑

i=1

M(Ci) + M(ST,sing) .
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In case n ≥ 3, as remarked in the introduction, a part from the case of energy minimizing currents, or of
homological representatives, we do not have an explicit formula for the second term on the righthand side
of (1.10). However, if T = GuT

+
∑

q∈Hsph
2 (Y)

Lq ×Rq, where Rq is an integral cycle in q, we have, see [8],

D(T ) =
1
2

∫

Bn

|DuT |2 dx +
∑

q∈Hsph
2 (Y)

M(Lq) ·M(Rq) . (1.11)

Therefore, writing T as T = GuT +
∑es

s=1
Ls(T )× γs, we have

D(T ) =
1
2

∫

Bn

|DuT |2 dx +
es∑

s=1

M(Ls(T )) ·M(γs) . (1.12)

2 Density of smooth graphs

In this section we prove a strong density result for the Dirichlet energy of maps from n-dimensional domains
into Y. We assume that Y is a smooth, compact, boundaryless, connected, oriented Riemannian manifold
of dimension M ≥ 2, isometrically embedded in RN , N ≥ 3.

Boundary data. Let B̃n be a bounded domain in Rn such that Bn ⊂⊂ B̃n, e.g. B̃n := Bn(0, 2), and
ϕ : B̃n → Y be a given smooth W 1,2 function. In the sequel we will denote

W 1,2
ϕ (B̃n,Y) := {u ∈ W 1,2(B̃n,Y) | u = ϕ on B̃n \B

n}
C1

ϕ(B̃n,Y) := {u ∈ C1(B̃n,Y) | u = ϕ on B̃n \B
n}

cart2,1
ϕ (B̃n × Y) := {T ∈ cart2,1(B̃n × Y) |

(T −Gϕ) (B̃n \B
n
)× RN = 0} .

Theorem 2.1 (Approximation by smooth graphs with prescribed boundary data) Assume that
Y is 1-connected, i.e., π1(Y) = 0, and that the integral 2-homology group H2(Y;Z) has no torsion. Let
ϕ : B̃n → Y be a given smooth map. Also, let T ∈ cart2,1

ϕ (B̃n × Y) be such that

T = GuT +
∑

q∈Hsph
2 (Y)

Lq ×Rq , (2.1)

where Rq is an integral cycle in q. Then there exists a sequence of smooth maps {uk} ⊂ C1
ϕ(B̃n,Y) such

that Guk
⇀ T weakly in Dn,2(B̃n × Y) and

lim
k→+∞

D(uk, B̃n) = D(T, B̃n × Y) .

Theorem 2.2 (Approximation by smooth graphs) Let Y be as in Theorem 2.1 and T ∈ cart2,1(Bn×
Y) be given by (2.1), where Rq is an integral cycle in q. There exists a sequence of smooth maps {uk} ⊂
C1(Bn,Y) such that Guk

⇀ T weakly in Dn,2(Bn × Y) and

lim
k→+∞

D(uk, Bn) = D(T,Bn × Y) .

As already mentioned, Theorems 2.1 and 2.2 have been proved in [13] in case of dimension n = 3, by
adapting the proofs of Theorem 1 in Sec. 4.2.5, and of Theorem 1 in Sec. 4.2.6, respectively, of [11, Vol. II],
where these results are proved in the case n = 3 and Y = S2. We will only give the proof of Theorem 2.1,
since Theorem 2.2 is obtained in a similar way, arguing e.g. as in [13, Thm. 3.2].

Remark 2.3 Arguing as in [11], Vol. II, Sec. 4.2.5, from Theorems 2.1 and 2.2 we obtain the sequential
weak density of smooth maps in W 1,2(Bn,Y) and in W 1,2

ϕ (B̃n,Y); compare [18] for a more general result.
Moreover, due to the lower semicontinuity of the Dirichlet energy w.r.t. the weak convergence in Dn,2, we
immediately obtain the characterization of the lower semicontinuous envelope of the Dirichlet integral of
mappings into a manifold, already proved in [15].
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Minimal connections. Before giving the proof of Theorem 2.1, we recall some further facts.

Definition 2.4 For every n ≥ 3 and Γ ∈ Dn−3(B̃n) with spt Γ ⊂ B
n
, we denote by

mi(Γ) := inf{M(L) | L ∈ Rn−2(B̃n) , sptL ⊂ B
n

, ∂L = Γ}

the integral mass of Γ and by

mr(Γ) := inf{M(D) | D ∈ Dn−2(B̃n) , sptD ⊂ B
n

, ∂D = Γ}

the real mass of Γ. Moreover, in case mi(Γ) < +∞, we say that an i.m. rectifiable current L ∈ Rn−2(B̃n)
is an integral minimal connection of Γ if spt L ⊂ B

n
, ∂L = Γ, and M(L) = mi(Γ).

We recall that by Federer’s theorem [6] if Γ has dimension zero we have mr(Γ) = mi(Γ).

Density results for Sobolev maps. Let R∞2,ϕ(B̃n,Y) denote the set of all the maps u ∈ W 1,2
ϕ (B̃n,Y)

which are smooth except on a singular set Σ(u) of the type

Σ(u) =
r⋃

i=1

Σi , r ∈ N , (2.2)

where Σi is a smooth (n− 3)-dimensional subset of Bn with smooth boundary, if n ≥ 4, and Σi is a point
if n = 3. The following density result appears in [3], see also [16].

Theorem 2.5 For every n ≥ 3 the class R∞2,ϕ(B̃n,Y) is dense in W 1,2
ϕ (B̃n,Y).

By (2.1) every T ∈ cart2,1
ϕ (B̃n × Y) as in Theorem 2.1 decomposes as

T = GuT +
es∑

s=1

Ls(T )× γs on Dn,2(B̃n × Y) . (2.3)

If {uk} ⊂ R∞2,ϕ(B̃n,Y) is such that uk → uT in W 1,2(B̃n,RN ), it readily follows that

lim
k→+∞

M(Ds(uT )− Ds(uk)) = 0 ,

compare [11], Vol. II, Sec. 4.2.5 and Sec. 5.4.2, so that by (1.6) we infer

lim
k→+∞

mr(Ps(uT )− Ps(uk)) = 0 ∀ s = 1, . . . , s̃ .

As a consequence, since P(uk) belongs to Rn−3(B̃n;Hsph
2 (Y)), it follows that P(u) is an (n−3)-dimensional

real flat chain, being the real flat limit of the currents P(uk), and

P(u)(φ) =
es∑

s=1

Ps(u)(φ) [γs] ∈ Hsph
2 (Y;R) ∀φ ∈ Dn−3(B̃n) , (2.4)

where Hsph
2 (Y;R) := Hsph

2 (Y)⊗R. Therefore, in case of dimension n = 3, we obtain that Ps(uT ) is a zero
dimensional integral flat chain, since by Federer’s theorem [6]

lim
k→+∞

mi(Ps(uT )− Ps(uk)) = 0 ∀ s = 1, . . . , s̃ . (2.5)

This is one of the crucial points of the proof in the case n = 3, see [9], [13]. If n ≥ 4, we argue in a
different way, making use of arguments from [15], which go back to [18] and [21]. To this aim, we first recall
the following result of Pakzad-Rivière [18].
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Proposition 2.6 Let Y be 1-connected and let u ∈ R∞2,ϕ(B̃n,Y). Then for every s = 1, . . . , s̃ there exists
an integral current Ls ∈ Rn−2(B̃n), with sptLs ⊂ B

n
, such that

∂Ls = Ps(u) and M(Ls) ≤ C

∫

Bn

|Du|2 dx

for some absolute constant C > 0 independent of u.

In case Y = S2 this property goes back to [4] and is proved in [1] by means of the coarea formula. In [18]
the result is given in terms of polyhedral chains with coefficients in the homotopy group π2(Y). However,
since Y is 1-connected, by the Hurewicz theorem π2(Y) ≈ H2(Y;R) and hence it can be re-stated in terms
of currents in Dn−2(B̃n; H2(Y;R)). Moreover, in [15] we proved the following local version, see [21] for the
case Y = S2.

Proposition 2.7 Let W be a relatively open subset of B
n

such that Ln(∂W ) = 0. Let u, v ∈ R∞2,ϕ(B̃n,Y)
be such that u = v a.e. on B

n \ W . For every s = 1, . . . , s̃ there exists an i.m. rectifiable current
Ls ∈ Rn−2(Bn) with spt Ls ⊂ W such that

∂Ls = Ps(u)− Ps(v) and M(Ls) ≤ C
(
D(u, W ) + D(v, W )

)
.

We now begin with the proof of Theorem 2.1, that we divide in three steps.

Step 1: a strong density result. In the next section we will prove the following density result, which is the
main new contribution of this paper. We denote by sing v the closure of the discontinuity set of a map v.

Theorem 2.8 Under the hypotheses of Theorem 2.1, there exists a sequence {Tk} in cart2,1
ϕ (B̃n×Y) weakly

converging to T in Dn,2(B̃n×Y), with energy D(Tk, B̃n×Y) → D(T, B̃n×Y) as k →∞, such that every
Tk decomposes as

Tk = Guk
+

es∑
s=1

Ls(Tk)× γs on Dn,2(B̃n × Y) ,

where every uk is smooth outside a singular set of zero Lebesgue measure and

Ln(sing uk) = 0 .

Step 2: reduction to finite mass singularities. By Theorem 2.8, we may and will assume that T satisfies
(2.3), where uT ∈ W 1,2

ϕ (B̃n,Y) is smooth outside a set of zero Lebesgue measure, Ln(sing uT ) = 0.
Using the same argument as in [21], there exists a sequence of relatively open sets Wk ⊂ B

n
such that

Ln(∂Wk) = 0, Ln(Wk) < 1/k and

sing(uT ) ⊂ . . . ⊂ Wk+1 ⊂ W k+1 ⊂ Wk ⊂ . . . ⊂ W1 .

Setting Vk := Bn \Wk, then Vk+1 is a neighborhood of Vk and uT is smooth on Vk+1. Therefore, applying
a refined version of Bethuel’s density result, Theorem 2.5, compare [21, Thm. 4], we find the existence of a
sequence {uk} ⊂ R∞2,ϕ(B̃n,Y), strongly converging to uT in W 1,2(B̃n,RN ), such that for every k

uk = uT on Vk and
∫
eBn

(|uk − uT |2 + |Duk −DuT |2) dx <
1
k

.

By applying Proposition 2.7 with u = uk, v = uk+1 and W = Wk, for every s we find L
(k)
s ∈ Rn−2(Bn)

with sptL
(k)
s ⊂ W k such that

∂L(k)
s = Ps(uk)− Ps(uk+1) and M(L(k)

s ) ≤ C
(
D(uk,Wk) + D(uk+1,Wk)

)
.

Since Ln(Wk) → 0 and {uk} strongly converges to uT , possibly passing to a subsequence we may and will
assume that M(L(k)

s ) ≤ 2−k for every k and s. Setting then

Ls
uk,uT

:= −
+∞∑

j=k

L(j)
s , s = 1, . . . , s̃ ,
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since Ps(uk) ⇀ Ps(uT ), we have

∂Ls
uk,uT

= Ps(uT )− Ps(uk) and lim
k→+∞

M(Ls
uk,uT

) = 0 ,

so that (2.5) holds true and Ps(uT ) is an integral flat chain. Now, since T satisfies (2.3), we have

Ps(uT ) = −∂ Ls(T ) ∀ s = 1, . . . , s̃ .

Therefore, setting

Tk := Guk
+

es∑
s=1

(Ls
uk,uT

+ Ls(T ))× γs ,

we obtain that ∂(Ls
uk,uT

+ Ls(T )) = Ps(uk) and hence that Tk ∈ cart2,1
ϕ (B̃n × Y), with

M
(
∂(Ls

uk,uT
+ Ls(T ))

)
= M(Ps(uk)) < +∞

for every s and k, whereas Tk ⇀ T weakly in Dn,2(B̃n ×Y) and D(Tk) → D(T ), by (1.12), as k → +∞.

Step 3: smooth approximating sequence. Since ∂(Ls
uk,uT

+ Ls(T )) = Ps(uk) has finite mass, hence is
rectifiable, we can assume that Ps(uT ) is rectifiable for every s = 1, . . . , s̃. This yields that we may and do
assume

T = GuT
+

∑

q∈Hsph
2 (Y)

Lq ×Rq (2.6)

and by (1.11)
D(T ) = D(uT , B̃n) +

∑

q∈Hsph
2 (Y)

M(Lq) ·M(Rq) < +∞ , (2.7)

where the Lq’s are i.m. rectifiable currents in Rn−2(Bn) with pairwise disjoint supports and finite boundary
mass ∑

q∈Hsph
2 (Y)

M(∂ Lq) < +∞ .

In particular, by the boundary rectifiability theorem [5], the ∂ Lq’s are i.m. rectifiable currents.
Following [11], see also [13], by applying Federer’s strong polyhedral approximation theorem [5], we

approximate T by a sequence of currents as in (2.6), where this time the Lq’s are (n − 2)-dimensional
polyhedral chains. As a consequence, one reduces to approximate dipoles of the type [[∆ ]]×Rq, where [[∆ ]]
is the current integration over an (n − 2)-dimensional simplex of Bn. We omit writing the details of this
final part, since it is an adaptation of similar arguments from [14]. We only sketch the main steps.

We first recall from [12, Prop. 4.5] how to approximate spherical type cycles.

Proposition 2.9 Let C ∈ Z2(Y) be an integral 2-cycle of spherical type and P ∈ Y be a given point. There
exists a family of Lipschitz functions fε : B2 → Y such that fε|∂B2 ≡ P , fε#[[B2 ]] ⇀ C weakly in D2(Y)
as ε → 0 and

D(fε, B
2) ≤ M(C) + ε .

Finally, the 2-cycle Cε := fε#[[B2 ]] does not depend on the choice of P ∈ Y.

Let now ∆ be e.g. given by the convex hull

∆ := co({0Rn , l e1, l e2, . . . , l en−2}) , 0 < l ¿ 1 .

Also, for δ > 0 and 0 < m ¿ 1, let

φm
δ (x) := (x̃, ϕm

δ (y(x̃))x̂) , x̃ := (x1, . . . , xn−2) , x̂ := (xn−1, xn) ,

where ϕm
δ (y) := min{my, δ}, y ≥ 0, and y(x̃) := dist(x̃, ∂∆) is the distance of x̃ from the boundary of the

(n− 2)-simplex ∆. Therefore, Ωm
δ := φm

δ (∆) is a small neighborhood of the simplex ∆ in Bn, and, arguing
in a way similar to [14], and making use of Proposition 2.9, we obtain the following
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Proposition 2.10 Let u : Bn → Y be a W 1,2 map which is smooth in the interior of Ωm0
δ0

, for some fixed
small m0, δ0 > 0. Let C ∈ Z2(Y) be an integral cycle of spherical type. For every ε > 0, 0 < δ < δ0, and
0 < m < m0, there exists a map uε : Bn → Y such that Guε

⇀ Gu + [[∆ ]]×C weakly in Dn,2(Bn ×Y) as
ε → 0+ and

D(uε, B
n) ≤ D(u,Bn) +Hn−2(∆) ·M(C) + ε .

Moreover, uε is smooth in the closure of Ωm
δ , except for the (n − 3)-skeleton of a triangulation of ∆, and

uε ≡ u outside the closure of Ωm
δ .

Applying Proposition 2.10 to any (n − 2)-simplex ∆ of Lq, with C = Rq, we find an approximating
sequence of graphs of maps {uε} ⊂ R∞2,ϕ(B̃n,Y) which are smooth outside a singular set Σε given by the
(n− 3)-skeleton of a triangulation of a polyhedral (n− 2)-chain of Bn. To remove the singular set Σε, we
make use of a variant of a result from [14] that states that in these circumstances, for ε > 0 small enough
there exists a sequence of smooth maps {u(ε)

m } ⊂ C1
ϕ(B̃n,Y) which converges to uε strongly in W 1,2 as

m → +∞. This is the point where, even in dimension n = 3, we make use of the injectivity hypothesis on
the Hurewicz map π2(Y) → H2(Y;Q), together with the condition

∂xGuε = 0 on Dn−1,2(B̃n × Y) , ∂yGuε = 0 on Zn−1,2(B̃n × Y) ,

to remove the singular set Σε, see [13].

3 A strong density result

In this section we prove Theorem 2.8, concluding the proof of Theorem 2.1.

Slicing properties. Denote by Br(x0) the n-dimensional ball centered at x0 and of radius r. Let
T ∈ cart2,1

ϕ (B̃n × Y) be as in Theorem 2.8. For every point x0 ∈ Bn and for a.e. radius r ∈ (0, r0), where
r0 := dist(x0, ∂Bn), the slice

〈T, dx0 , r〉 ,
where dx0(x, y) := |x− x0|, is a Cartesian current in cart2,1(∂Br(x0)×Y). Moreover, due to (1.2) we have

∂(T Br(x0)× Y) = 〈T, dx0 , r〉 , (3.1)

where the boundary of T is to be intended in the sense of Sec. 1. In this case we will say that r is a good
radius for T at x0.
Proof: [Proof of Theorem 2.8] We divide it in six steps.

Step 1: definition of the fine cover Fm. We define a suitable dense subset A of Bn and, for every m ∈ N,
a fine cover Fm of A consisting of closed balls with radii smaller than 1/m. To this aim, in the sequel we
will denote by µs the finite Radon measure on Bn given for every Borel set A ⊂ Bn by

µs(A) :=
∑

q∈Hsph
2 (Y)

M(Rq) · Hn−2(A ∩ Lq) , (3.2)

the Lq’s being the (n− 2)-rectifiable sets such that Lq = τ(Lq, 1, ~L), see (1.5). Since µs is a finite Radon
measure concentrated in the (n− 2)-rectifiable set L,

L :=
⋃

q∈Hsph
2 (Y)

Lq ,

by inner regularity, for every m ∈ N we find a closed subset Jm ⊂ L such that

µs(L \ Jm) <
1
m

. (3.3)
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Let A be the set of points x0 in Bn such that

lim
r→0

µs(Br(x0))
rn−2

= 0 .

We readily infer that A is a dense subset of Bn. Otherwise, the set Bn \A would contain a nonempty open
set, a contradiction since Hn−2+ε(Bn \ A) = 0 for all ε > 0. Moreover, since every point x0 ∈ A does not
belong to L, and Jm is a closed subset of L, there exists a positive radius r(x0), smaller than the distance
of x0 to the boundary ∂Bn, such that for every 0 < r < r(x0)

Br(x0) ∩ Jm = ∅ . (3.4)

We then denote by Fm the union of all the closed balls centered at points x0 ∈ A and with good radii
0 < r < r(x0).

Step 2: covering argument. We apply the following extension of the classical Vitali-Besicovitch covering
theorem, with A and F = Fm as in Step 1, with respect to the Lebesgue measure Ln.

Theorem 3.1 Let A ⊂ Bn be a dense subset of Bn and let F be a fine cover of A made of closed balls
contained in Bn. There is a disjoint countable family G of F such that

Ln
(
Bn \

⋃
G
)

= 0 .

Step 3: approximation on the balls of Gm. In Step 2 we have obtained for every m a disjoint countable
family Gm =

⋃+∞
j=1 Bj of closed balls Bj ⊂ Bn with centers in A. Moreover, if Bj = Br(x0), then (3.4)

and (3.1) hold true, being r a good radius for T at x0.
Following an idea from [15], for any j ∈ N we let

Tj := {T̃ ∈ cart2,1(int(Bj)× Y) : ∂T̃ = 〈T, dx0 , r〉}
denote the class of Cartesian currents in int(Bj)×Y with boundary equal to the boundary of the restriction
T int(Bj)× Y, see (3.1). For any T̃ ∈ Tj let

D(T̃ ) := D(T̃ , int(Bj)× Y) .

Moreover, we let uj := uT |Bj
denote the restriction to Bj of the function uT ∈ W 1,2

ϕ (B̃n,Y) corresponding
to T .

For any ε > 0 we consider the minimum problem

inf{Dε(T̃ ) | T̃ ∈ Tj} , (3.5)

where
Dε(T̃ ) := D(T̃ ) +

1
ε

∫

Bj

|ueT − uj |2 dx ,

ueT ∈ W 1,2(Bj ,Y) being the W 1,2-function corresponding to T̃ . By the closure of the class Tj under the
weak convergence in Dn,2(int(Bj)×Y), and by the lower semicontinuity of T̃ 7→ Dε(T̃ ), we infer that (3.5)
has a solution T j

ε ∈ Tj such that uT j
ε
→ uj in L2(Bj ,RN ) as ε → 0. By [8] we may and do assume that

the singular part ST j
ε ,sing = 0 and that T j

ε decomposes as

T j
ε := Guj

ε
+

es∑
s=1

Ls(T j
ε )× γs ,

where Ls(T j
ε ) ∈ Rn−2(int(Bj)). Possibly taking a sequence εk ↘ 0, we find that T j

ε weakly converges in
Dn,2(int(Bj)× Y) to a current Tj ∈ Tj . The T j

ε ’s being minimizers, we also infer that Tj satisfies

Tj := Guj +
es∑

s=1

Ls(Tj)× γs , (3.6)
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where Ls(T j
ε ) ∈ Rn−2(int(Bj)). In particular, uTj

= uj . Moreover, since

D(T j
ε ) ≤ Dε(T j

ε ) ≤ Dε(Tj) = D(Tj) ,

by the lower semicontinuity of the Dirichlet energy we have

D(Tj) ≤ lim inf
ε→0+

D(T j
ε ) ≤ lim sup

ε→0+
D(T j

ε ) ≤ D(Tj) ,

so that D(T j
ε ) → D(Tj). On the other hand, if T̃ is any Cartesian current in Tj such that ueT = uj , we

clearly have
D(T j

ε ) ≤ Dε(T j
ε ) ≤ Dε(T̃ ) = D(T̃ ) ,

which yields D(Tj) ≤ D(T̃ ), letting ε → 0+. As a consequence, taking T̃ := T int(Bj) × Y, we obtain
that es∑

s=1

M(Ls(Tj)) ·M(γs) ≤
es∑

s=1

M(Ls(T int(Bj)× Y)) ·M(γs) . (3.7)

Step 4: approximation on the whole of Bn. By paying a small amount of energy, we may and do modify
the current T j

ε in Step 3 in such a way that T j
ε weakly converges in Dn,2(int(Bj) × Y) to the restriction

T int(Bj)× Y.
In fact, we notice that by (1.7)

−∂ Ls(Tj) int(Bj) = Ps(uj) = −∂ Ls(T int(Bj)× Y) ,

whereas by the membership to Tj

∂Tj = ∂(T int(Bj)× Y) .

Therefore, since T j
ε ⇀ Tj , letting

T̃ j
ε := T j

ε +
es∑

s=1

(
Ls(T int(Bj)× Y)− Ls(Tj)

)× γs ,

we readily infer that T̃ j
ε belongs to Tj for every ε and that T̃ j

ε weakly converges to T int(Bj) × Y in
Dn,2(int(Bj)×Y) along a sequence {εk}k∈N, possibly depending on j, with εk ↘ 0. Moreover, on account
of (3.7), since by (3.2) es∑

s=1

M(Ls(T int(Bj)× Y)) ·M(γs) = µs(int(Bj)) ,

whereas D(T j
ε ) → D(Tj) and D(Tj) ≤ D(T, int(Bj)× Y), we also obtain that

lim sup
ε→0+

D(T̃ j
ε ) ≤ D(T, int(Bj)× Y) + 2 µs(int(Bj)) . (3.8)

We finally define for every k

Tm
k := T (B̃n \

⋃
Gm)× Y +

+∞∑

j=1

T̃ j
εk

.

Step 5: strong convergence. Due to the membership of T̃ j
εk

to Tj , we readily infer that Tm
k belongs to the

class cart2,1
ϕ (B̃n × Y). The weak convergence of T̃ j

εk
to T int(Bj)× Y yields that Tm

k weakly converges
to T in Dn,2(B̃n × Y). Moreover, the energy estimate (3.8) yields that

lim sup
k→+∞

D(Tm
k , B̃n × Y) ≤ D(T, B̃n × Y) + 2

+∞∑

j=1

µs(int(Bj))
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and hence, by (3.3) and (3.4),

lim sup
k→+∞

D(Tm
k ) ≤ D(T ) +

2
m

∀m ∈ N .

Step 6: conclusion. Now, the W 1,2-function um
k corresponding to Tm

k belongs to W 1,2
ϕ (B̃n × Y) and

coincides with uj
k on each ball Bj , where uj

k denotes the function in W 1,2(Bj ,Y) corresponding to T j
εk

.
Arguing similarly to when proving partial regularity results in [11, Vol. II, Sect. 4.2.9] or [8] to the minimum
problem (3.5), with ε = εk, since

∫
Bj
|ueT − uj |2 dx is a lower order term, it follows that the Sobolev maps

uj
k satisfy the condition

Ln(sing uj
k) = 0 ,

where sing uj
k denotes the closure of the the discontinuity set of uj

k. As a consequence, the functions um
k

are smooth outside the closed subset of B̃n given by Bn \∪Gm, which has zero full measure, plus the union
of the singular sets sing uj

k. Definitively, sing um
k is a closed subset of Bn of null measure Ln(sing um

k ) = 0.
In conclusion, letting m → +∞, a diagonal argument yields the assertion. ¤
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