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Abstract

We link covering spaces with the theory of functions of bounded variation,
in order to study minimal networks in the plane and Plateau’s problem without
fixing a priori the topology of solutions. We solve the minimization problem in
the class of (possibly vector-valued) BV functions defined on a covering space
of the complement of an (n−2)-dimensional compact embedded Lipschitz man-
ifold S without boundary. This approach has several similarities with Brakke’s
“soap films” covering construction. The main novelty of our method stands
in the presence of a suitable constraint on the fibers, which couples together
the covering sheets. In the case of networks, the constraint is defined using a
suitable subset of transpositions of m elements, m being the number of points
of S. The model avoids all issues concerning the presence of the boundary S,
which is automatically attained. The constraint is lifted in a natural way to
Sobolev spaces, allowing also an approach based on Γ-convergence.

Introduction

In its earliest and simplest formulation, Plateau’s problem consists in finding a sur-
face Σ in the ambient space R3, spanning a fixed reference smooth loop S, and
minimizing the area. As it is well known, several models have been proposed to
solve the mathematical questions related to this problem (and to its generalizations
in Rn, for n ≥ 2), depending on the definition of surface, boundary, and area: para-
metric and non parametric solutions, homology classes, integer rectifiable currents,
varifolds, just to name a few. General references are for instance [?], [22], [24], [21],
[9]; we refer the reader to [7] for a brief overview on the Plateau’s problem. In
connection with what we are going to discuss, we also mention the recent paper [8],
where the authors, extending in a different setting some results of [12], look for a
solution of Plateau’s problem, minimizing the (n− 1) – dimensional Hausdorff mea-
sure in the class of relatively closed subsets of Rn \ S, with nonempty intersection
with every loop having unoriented linking number with S equal to 1.
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In this paper we link the coverings with the theory of (possibly vector-valued)
functions of bounded variation and Γ-convergence, in order to solve the problem
of minimal networks in the plane, and to find an embedded solution to Plateau’s
problem, without fixing a priori the topology of solutions. This work has several
similarities with the “soap films” covering space model, set up in [5] by Brakke as a
new original approach to Plateau’s problem in codimension one.

Our model mathematically reproduces the physical structure of an interface sep-
arating two (or more) phases. In this respect, for instance in case of two phases, it
is useful to merge Plateau’s problem in an n-dimensional (n = 3 being the physical
case) manifold, which is a covering space of the open set

M := Ω \ S,

where Ω ⊂ Rn is usually a bounded connected Lipschitz open set containing the
(n − 2)-dimensional compact embedded Lipschitz manifold S withouth boundary.
In the model of [5], mathematically reproducing the physical structure of soap films
made of two layers with a thin liquid region between them, how to choose the
covering is part of the model construction, and it can lead to different solutions.
Then, one has to select some connected components of a pair covering space of M
in order to pair the sheets and to set up the minimization problem in terms of a
suitable notion of currents mass. Again, the choice of the pair covering space is part
of the model construction.

In this work, we approach the problem without making use of pair covering
spaces, which can be considered as a first simplification of the model. Typical
situations that we shall consider are:

- n = 2, S ⊂ R2 a set of m-distinct points, and an m-sheeted covering space of
M ; the case m = 3 is already interesting, and related to the Steiner graphs
(when m ≥ 3, taking a two-sheeted covering space does not lead to any inter-
esting conclusion). See Figures 1, 3 and 6.

- n = 3, S ⊂ R3 a link, and a two-sheeted covering space, see Figure 2. This
leads to the Plateau’s problem.

Our explicit construction of the covering, denoted by (YΣ, πΣ,M ), requires a suitable
pair of cuts Σ = (Σ,Σ′), where Σ and Σ′ are (n− 1)-dimensional compact Lipschitz
manifolds (not necessarily connected), having S as topological boundary (Definitions
1.2 and 1.3). The construction is made by “cut and paste”, with the use of local
parametrizations, which suggest the natural way to endow YΣ with the Euclidean
metric. The metric aspects here play a role; as it will be clear from the discussion,
we cannot confine ourselves to a purely topological construction of the covering (see
Remark 1.4).

Let m ≥ 2 be the number of sheets of YΣ, and let V ⊂ Rm−1 be the set of vertices
of a regular simplex. Our idea is to minimize the total variation |Du|(YΣ) among
all BV functions u : YΣ → V , satisfying the following constraint on the fibers: for
j = 1, . . . ,m, denote by vj(u) the restriction of u to the j-th sheet of the covering
(Definition 1.8); then we require that

vj(u) = τ j−1 ◦ v1(u), j = 1, . . . ,m, (0.1)
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for a transposition τ of V of order m and independent of j. Roughly speaking,
condition (0.1) means that u “behaves” the same way on each covering sheet, the
only difference consisting in a fixed transposition of the elements of V having order
m. For instance, if y ∈ YΣ is a jump point of u, then u has to jump at all points of
the same fiber of y. Figure 4 shows an example where m = 3 and condition (0.1) is
violated.

When m = 2 and V = {±1}, condition (0.1) is equivalent to require∑
πΣ,M (y)=x

u(y) = 0, for a.e. x ∈M, (0.2)

so that u takes opposite values on (the two) points of the same fiber. To have an idea
of the geometric meaning of the total variation we are considering, it is useful to look
at the elementary Example 1.10, which refers to the case m = 3. The usefulness of
constraint (0.1) stands in the possibility of study the minimization problem handling
with standard BV -functions defined on open subsets of Rn. We also remark that
(0.1) forces the boundary datum S to be attained (Corollary 2.17); this represents a
difference with the approach of [5], where it may happen that the boundary S is not
fully covered by a solution. See also Figure 5 for an explicit example (in dimension
n = 2) where the two methods lead to different solutions.

What we call a constrained covering solution with boundary S will be (Definition
2.18) the projection via πΣ,M of the jump set of a minimizer. Existence of minimizers
is proved in Theorem 2.15.

In Theorem 2.7 we prove that the constrained covering solutions are independent
of Σ.1 In some sense, this is due to the fact that, working on the covering space, all
information about the exact location of the cuts becomes irrelevant, since changing
the cuts corresponds just to an isometry on the covering space. Once more, the
constraint (0.1) plays a crucial role; for instance, it forces the minimum value to
be strictly positive (Lemma 2.16). Perhaps, the most remarkable among its conse-
quences is that all issues about the definition of “boundary” on S are avoided. It
seemed to us not immediate to derive the constraint on the fibers from the approach
of [5].

This paper is divided as follows: in Section 1 we define the family of admissible
cuts, and the space BV (YΣ;V ). For u ∈ BV (YΣ;V ), j = 1, . . . ,m, and j′ =
m + 1, . . . , 2m, the functions vj(u), vj′(u) are defined in (1.10), and coincide with
u read in the various charts of the atlas used to parametrize YΣ. Then, for any
admissible pair of cuts Σ, the minimization problem is set up in Section 2, on the
space

BVconstr(YΣ;V ) :=
{
u ∈ BV (YΣ;V ) : u satisfies (0.1)

}
.

Regularity of constrained covering solutions is based on the well – established regu-
larity theory for isoperimetric sets and minimizing clusters (see for instance [17] and
references therein). Then, in Section 3, we lift the constraint on the fibers to the
class of Sobolev functions on YΣ, showing in Proposition 3.1 that our formulation
naturally leads to a Γ-convergence result. In Section 4.1 we exploit the case n = 2,
namely when S consists of m ≥ 2 distinct points, and we show that a constrained
covering solution coincides with the Steiner graph over S. In Section 4.2 we test the

1See [5, Proposition 12.1] for a similar result.
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model in the case of the standard Plateau’s problem in R3: in Theorem 4.3 we show
that, at least when 2 < n < 8, our model is equivalent to solving Plateau’s problem
using the theory of integral currents modulo 2 [10]. Finally, in the Appendix we
present a standard abstract construction of a covering space of M , which we show
to be isometric with YΣ. The construction is performed avoiding the definition of
admissible cuts.

We expect that our model could be generalized in a nontrivial way in various
directions; in particular, to more general choices of S (for instance, taking as S the
set of all 1-dimensional edges of a polyhedron). In this spirit, we briefly discuss in
Section 4.3 the case when S is the one-skeleton of a tetrahedron (n = 3 and m = 4),
and, by adapting an argument in [4], we give a regularity result2 (Proposition 4.9)
in the sense of Almgren’s (M, 0, r)-minimal sets [1], [26].

1 BV functions on coverings

Notation. Let n ≥ 2. We denote by Hn−1 the Euclidean (n − 1) – dimensional
Hausdorff measure in Rn. We let | · | be the Euclidean norm. For any x, x′ ∈ Rn,
we denote by x · x′ the scalar product between x and x′. We also let Sn−1 := {x ∈
Rn : |x| = 1}; for r > 0 and x ∈ Rn, we set Br(x) := {y ∈ Rn : |y − x| < r} and
Br := Br(0). For any F ⊆ Rn, we denote by F the closure of F in Rn.

Throughout this paper, Ω ⊆ Rn denotes a nonempty connected open set. Unless
otherwise specified, we let S ⊂ Ω be a boundaryless, compact, embedded, smooth
submanifold of dimension n− 2, not necessarily connected nor oriented.

We define the base set as
M := Ω \ S, (1.1)

which is path connected.

Example 1.1. Typical choices will be:

- n = 2, and S a finite number m of distinct points;

- n = 3, and S a tame link (that is, a finite number of disjoint closed embedded
smooth space curves).

In this paper we shall perform a different covering construction depending on
the dimension n. Indeed, apart from the construction in Section 4.3, our covering
space will consist of m := m(n) sheets, where

m :=

{
cardinality of S if n = 2,
2 if n > 2.

(1.2)

The family of admissible cuts is defined distinguishing between the following two
alternatives. We shall say that an (n−1)-dimensional submanifold Σ ⊂ Ω is Lipschitz
provided that, locally around any of its points, Σ is the graph of a Lipschitz function
defined on a suitable (n− 1)-orthonormal frame.

2See also [5, Theorem 10.2] for a similar result.
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Definition 1.2 (Admissible cuts, n = 2). Let n = 2, and S := {p1, . . . , pm}. We
denote by Cuts(Ω, S) the set of all Σ := ∪m−1

i=1 Σi ⊂ Ω where:

- for i = 1, . . . ,m− 1, Σi is a Lipschitz simple curve, starting at pi and ending
at pi+1;

- if m > 2, then Σi ∩ Σi+1 = {pi+1} for i = 1, . . . ,m− 2;

- Σi∩Σl = ∅ for any i = 1, . . . ,m−2, and l = 1, . . . ,m−1 such that l 6= i, i+1.

We also denote by Cuts(Ω, S) the set of all pairs Σ := (Σ,Σ′) such that:

(i) Σ,Σ′ ∈ Cuts(Ω, S), and Σ ∩ Σ′ = S;

(ii) for m > 2, and for any i = 2, . . . ,m − 1, let Ci be a sufficiently small disk
centered at pi, and denote by xi (resp. yi) the intersection of Ci with Σi−1

(resp. with Σi+1). Then, there exists an arc of Ci connecting xi and yi, and
not intersecting Σ′ = ∪m−1

j=1 Σ′j.

Roughly speaking, condition (ii) in Definition 1.2 means that Σ lies from one
side of Σ′ locally around S.

M

p1 p2

p3

Σ′1

Σ1

I2

I1

O

Σ2

Σ′2

Figure 1: The base set M = Ω\S, when n = 2, m = 3, Ω is a rectangle, and S = {p1, p2, p3}.
In the figure, an example of admissible pair of cuts is shown.

Definition 1.3 (Admissible cuts, n > 2). Let n > 2. We denote by Cuts(Ω, S)
the set of all (n − 1)-dimensional compact embedded Lipschitz submanifolds Σ ⊂ Ω
having S as topological boundary.

We also let Cuts(Ω, S) be the set of all pairs Σ := (Σ,Σ′) such that Σ,Σ′ ∈
Cuts(Ω, S), and Σ ∩ Σ′ = S.

Referring to Definitions 1.2-1.3, we call the elements of Cuts(Ω, S) (resp. of
Cuts(Ω, S)) admissible cuts (resp. admissible pairs of cuts). When n > 2, we shall
always suppose that Cuts(Ω, S) and Cuts(Ω, S) are nonempty. A typical situa-
tion is when S is the topological boundary of some (n− 1) – dimensional, compact,
embedded, orientable, smooth submanifold Σ ⊂ Ω.3

3 Indeed, the orientability of Σ gives a unit normal vector field on Σ \ S— hence, in particular,

5



S

Σ′

Σ

Figure 2: An example of admissible pair of cuts in the case S ⊂ R3 is a circle. In the figure,
Σ is a closed half-sphere, while Σ′ is a portion of cylinder over S, with the addiction of the
lower base.

Remark 1.4. An m-sheeted covering of M can be constructed in a standard way
[16, p.147] using a single orientable cut Σ ∈ Cuts(Ω, S), by suitably identifying m
copies of Ω \ Σ. This construction is perhaps more intuitive than the one based on
(1.5) and corresponds, essentially, to the case in which Σ and Σ′ coincide. However,
in order to rigorously define the covering, one needs to slightly separate the “faces”
of Σ. Since our minimization problem (see (2.2) below) depends on the metric on
the covering space, we find more convenient to use the construction via admissible
pairs of cuts. However, it is worth noticing that, concretely, it will be enough to
deal with only one of the two cuts of the pair Σ.

1.1 “Cut and paste” construction of the covering

In this section we explicitly construct the covering (YΣ, πΣ,M ) quoted in the in-
troduction. As a consequence, we shall end up with local parametrizations which
naturally bring the Euclidean metric on YΣ.

Let n ≥ 2 and m be as in (1.2). Let Σ = (Σ,Σ′) ∈ Cuts(Ω, S). We consider m
disjoint copies of the open sets

D := Ω \ Σ, D′ := Ω \ Σ′, (1.3)

which we denote respectively by

(D, j), j = 1, . . . ,m, (D′, j′), j′ = m+ 1, . . . , 2m. (1.4)

Points in the space

X :=
m⋃
j=1

(D, j) ∪
2m⋃

j′=m+1

(D′, j′)

are identified as follows. For i = 1, . . . ,m − 1, let Ii be the bounded open set
enclosed by Σi and Σ′i; set also O := Ω \ ∪m−1

i=1 Ii. Let x, x′ ∈ M , j ∈ {1, . . . ,m},

a direction to follow in order to “enlarge” the cut, separating its two faces. The construction
is standard (in the case n = 3, it is given for instance in [16, p.147]). Necessary and sufficient
conditions for the existence of this (n− 1)-dimensional orientable submanifold can be found in [27].
When n = 3, and S is a tame link, there exists [23, Theorem 4, p.120] an embedded orientable
surface, called Seifert surface, whose boundary is S.
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and j′ ∈ {m+ 1, . . . , 2m}; then (x, j) ∼ (x′, j′) if and only if x = x′, and one of the
following conditions holds:{

j ≡ j′ (mod m), x = x′ ∈ O,
j ≡ j′ − i (mod m), x = x′ ∈ Ii, i = 1, . . . ,m− 1.

(1.5)

Of course, any point is also identified with itself. See Figures 1-3 for an example in
the case n = 2, m = 3.

Then ∼ is an equivalence relation, and the quotient space4

YΣ := X/ ∼

is endowed with the quotient topology given by the projection π̃ : X → YΣ induced
by ∼. We set π : (x, j) ∈ X 7→ x ∈M , and we denote by

πΣ,M : YΣ →M (1.6)

the projection πΣ,M (π̃(x, j)) := x, for any (x, j) ∈ X . This latter map is well defined,
since if (x, j) ∼ (x′, j′), then πΣ,M (π̃(x, j)) = x = x′ = πΣ,M (π̃(x′, j′)). Therefore,
we have the following commutative diagram:

X eπ //
π

  B
BB

BB
BB

B YΣ

πΣ,M

��
M

(1.7)

Definition 1.5 (Local parametrizations). We set

Ψj : D → π̃
(
(D, j)

)
, Ψj := π̃ ◦

(
π|(D,j)

)−1
, j = 1, . . . ,m,

Ψj′ : D′ → π̃
(
(D′, j′)

)
, Ψj′ := π̃ ◦

(
π|(D′,j′)

)−1
, j′ = m+ 1, . . . , 2m.

(1.8)

The covering space5 YΣ admits a natural structure of differentiable manifold,
with 2m local parametrizations Ψj , Ψj′ given by (1.8).

Remark 1.6. For j ∈ {1, . . . ,m} and j′ ∈ {m+ 1, . . . , 2m}, we have

Ψ−1
j′ ◦Ψj = id = Ψ−1

j ◦Ψj′ on D ∩D′,

where id is the identity map on D∩D′. The pair (YΣ, πΣ,M ) is an m-sheeted covering
of M . Notice that ∪mj=1Ψj(D) = YΣ \ π −1

Σ,M (Σ \ S).

Remark 1.7 (Non-zero thickness wires). Our covering construction applies
without modifications to the (simpler) case of a base domain M := Ω \ C, where
C ⊂ Ω is a thin open neighborhood of S.

4 YΣ depends on the choice of Ω; for notational simplicity we shall not indicate such a dependence.
5Since S has been removed, YΣ is not branched.
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1.2 Total variation on the m-sheeted covering

The covering space YΣ is an n-dimensional connected orientable smooth non com-
plete manifold; it is endowed with a natural volume measure µ, which is the push-
forward LN# of the n-dimensional Lebesgue measure Ln in M via the maps (1.8).
More specifically, let E ⊆ YΣ be a Borel set. Then we can write E as the union of
the following 2m disjoint Borel sets6

E ∩ π̃((D, j)), j = 1, . . . ,m, E ∩ π̃((Σ \ S, j′)), j′ = m+ 1, . . . , 2m, (1.9)

and we set

µ(E) :=
m∑
j=1

Ψj#Ln(E ∩ π̃((D, j))) =
m∑
j=1

Ln(πΣ,M (E ∩ π̃((D, j)))).

For k ∈ N, k ≥ 1, we set L1(YΣ; Rk) := L1
µ(YΣ; Rk) and L1

loc(YΣ; Rk) := L1
µloc

(YΣ; Rk).
The relevant case in this paper will be

k := m− 1,

where we recall that m is defined in (1.2).

Definition 1.8 (The functions vh(u)). Let u : YΣ → Rk. For j = 1, . . . ,m and
j′ = m+ 1, . . . , 2m, we let vj(u) : D → Rk, vj′(u) : D′ → Rk be the maps defined by

vj(u) := u ◦Ψj , vj′(u) := u ◦Ψj′ . (1.10)

Clearly, if u ∈ L1(YΣ; Rk) then vj(u) ∈ L1(D; Rk), vj′(u) ∈ L1(D′; Rk).
By construction (recall (1.5)), we have

vj(u) = vj′(u) in O if j ≡ j′ (mod m), (1.11)

vj(u) = vj′(u) in Ii if j ≡ j′ − i (mod m), i = 1, . . . ,m− 1. (1.12)

Let Ω be bounded. Our aim is to define the total variation of a function u ∈
L1(YΣ; Rk). We say that u is in BVµ(YΣ; Rk) =: BV (YΣ; Rk) if its distributional
gradient7 Du : η ∈ (C1

c (YΣ))k 7→ −
∫
YΣ

∑k
l=1 ul∇ηl dµ ∈ Rn is a bounded (k × n)-

matrix of Radon measures on YΣ. Let us denote by |Du| the total variation measure
of Du [2]; we recall [2, Proposition 1.47] that, for any open subset E ⊆ YΣ, we have

|Du|(E) = sup

{
k∑
l=1

∫
E
ul divηl dµ : η ∈

(
C1
c (E; Rn)

)k
, ||η||∞ ≤ 1

}
, (1.13)

which is L1(YΣ) – lower semicontinuous.
6Notice that Σ′ does not appear in (1.9). Choosing D′ in place of D amounts in considering Σ′

in place of Σ and does not change the subsequent discussion.
7Let φ ∈ C1

c (YΣ). For i = 1, . . . , n, let ei be the i – th element of the canonical basis of Rn. Then
∇iφ(y) := limh→0 h

−1
`
φ(Ψ1(πΣ,M (y) + hei))− φ(y)

´
is well – defined for every y ∈ eπ((D, 1)). Sim-

ilarly for other points in YΣ. We set ∇φ := (∇1φ, . . . ,∇nφ). For Φ := (φ1, . . . , φn) ∈ C1
c (YΣ; Rn),

we set divΦ :=
Pn
i=1∇iφi.
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Remark 1.9 (Representation of the total variation, I). Let u ∈ BV (YΣ; Rk)
and E ⊆ YΣ be a Borel set. Then

|Du|(E) =
m∑
j=1

|Dvj(u)|
(
πΣ,M

(
E ∩ π̃((D, j))

))

+
2m∑

j′=m+1

|Dvj′(u)|
(
πΣ,M

(
E ∩ π̃((Σ \ S, j′))

))
.

(1.14)

In order to prove (1.14), let us first assume E ⊆ π̃((D, 1)) is open. Then, recalling
(1.13), we have

|Du|(E) = sup

{
k∑
l=1

∫
Ψ−1

1 (E)
(v1(u))l divηl dLn : η ∈

(
C1
c (Ψ−1

1 (E); Rn)
)k
, ||η||∞ ≤ 1

}
= |Dv1(u)|(Ψ−1

1 (E)) = |Dv1(u)|(πΣ,M (E)),
(1.15)

which gives (1.14). From (1.15) and [2, Proposition 1.43], we get (1.14) for every
Borel set E ⊆ YΣ contained in a single chart. The general case follows by the
splitting in (1.9).

Example 1.10. Let n = 2, m = 3, S = {p1, p2, p3}, Σ = Σ1 ∪Σ2 and Σ′ = Σ′1 ∪Σ′2
be as in Figure 1. For j = 1, 2, 3, fix αj , βj ∈ R2, and let u ∈ BV (YΣ; R2) be such
that, for every j = 1, 2, 3, vj(u) is equal to αj inside a disk B ⊂ M of radius r > 0
compactly contained in O (or in I1, or in I2) and βj outside. Then, from (1.14), it
follows

|Du|(YΣ) =
3∑
j=1

|Dvj(u)|(B ∩D) +
6∑

j′=4

|Dvj′(u)|(Σ \ S)

=2πr
3∑
j=1

|βj − αj |+H1(Σ)
3∑

j,l=1
j<l

|βl − βj |.
(1.16)

On the other hand, if B is centered at a point of Σ \ S, and B ∩ Σ′ = ∅, then

|Du|(YΣ) =2πr
3∑
j=1

|βj − αj |+H1(Σ ∩B)
3∑

j,l=1
j<l

|αl − αj |

+
(
H1(Σ)−H1(Σ ∩B)

) 3∑
j,l=1
j<l

|βl − βj |.

(1.17)

In particular, if α1, α2, α3 are the vertices of an equilateral triangle in R2 having side
of length `, and if β1 := α2, β2 := α3, β3 := α1,8 both (1.16) and (1.17) reduce to

3`
(

2πr +H1(Σ)
)
.

8With this choice, and letting V = {α1, α2, α3}, u belongs to BVconstr(YΣ;V ), see Definition
2.1) in the next section.
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(D, 1) (D′, 4)

(D′, 6)

(D′, 5)

(D, 3)

(D, 2)

Figure 3: The triple covering space YΣ, for M as in Figure 1. A dashed curve denotes
that an admissible cut has been removed. In the picture, some examples of admissible
neighbourhoods are shown. Identifications are meant by using the same grey level and shape.
Note that a complete counterclockwise (small) turn around any point of S corresponds to
move one sheet forward in YΣ. Moreover, m = 3 turns around a point of S correspond to a
single turn in YΣ.
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2 The constrained minimum problem

Let ` > 0, and let V := {α1, . . . , αm} ⊂ Rm−1 be such that

|αj − αl| = `, j, l = 1, . . . ,m, j 6= l.

We define

BV (YΣ;V ) :=
{
u ∈ BV (YΣ; Rm−1) : u(x) ∈ V µ – a.e. in YΣ

}
.

We denote by
T (V )

the set of all maps τ : V → V such that, for h ∈ {1, . . . ,m− 1} coprime with m,

τ(αj) = αl where l ≡ j + h (mod m), j ∈ {1, . . . ,m}.

For τ ∈ T (V ), define τ0 := id in V , and τ l := τ ◦ (τ)l−1, for positive l ∈ N. Notice
that m coincides with the smallest positive integer κ such that τκ = id (we call τ a
transposition of V of order m).

Definition 2.1 (Constrained BV functions on coverings). We denote by

BVconstr(YΣ;V )

the set of all u ∈ BV (YΣ;V ) for which there exists τ ∈ T (V ) such that

vj(u) = τ j−1 ◦ v1(u), j = 1, . . . ,m. (2.1)

Remark 2.2. In view of (1.11) and (1.12), the constraint (2.1) is equivalent to
require vj′(u) = τ j

′−1 ◦ vm+1(u), for j′ = m+ 1, . . . , 2m.

To have an idea of the meaning of the constraint (2.1) in the case m = 3, the
reader may refer to Figure 4.

Our constrained minimization problem, which in principle could depend on the
choice of Σ, can be now stated as follows:

A Ω
constr(S,Σ) := inf

{
|Du|

(
YΣ

)
: u ∈ BVconstr(YΣ;V )

}
. (2.2)

The independence of A Ω
constr(S,Σ) of Σ will be shown in Corollary 2.8.

Remark 2.3. When m = 2, we fix the choice ` := 2 and V := {±1}, so that

BVconstr(YΣ; {±1}) =
{
u ∈ BV (YΣ) : |u| = 1, v1(u) = −v2(u)

}
.

Clearly u ∈ BVconstr(YΣ; {±1}) if and only if u ∈ BV (YΣ; {±1}) and∑
πΣ,M (y)=x

u(y) = 0. (2.3)

Notice that the sum in (2.3) contains only 2 terms.
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(D, 1)

{u = α1}

(D, 2)

{u = α2}

{u = α3}
(D, 3)

{u = α3}

{u = α2}

Figure 4: A function u ∈ BV (YΣ;V ) \ BVconstr(YΣ;V ), where YΣ is the covering space in
Figure 3. Notice that we need to specify the values of u just on the three charts drawn in
the picture.

The functional in (2.2) attains the same value when evaluated at u and at τ ◦ u,
for any τ ∈ T (V ). By virtue of the constraint, A Ω

constr(S,Σ) will turn out to be
strictly positive (see Theorem 2.15 below).

Remark 2.4 (Unbounded open sets). Let Ω be unbounded. Then, instead of
(2.2), we shall consider the minimization problem

A Ω
constr(S,Σ) := inf

{
|Du|(YΣ) : u ∈ BV loc

constr(YΣ;V )
}
, (2.4)

where

BV loc
constr(YΣ;V ) :=

{
u ∈ L1

loc(YΣ;V ) : |Du|(E) <∞, E ⊂ YΣ open rel. compact,

∃ τ ∈ T (V ) s.t. vj(u) = τ j−1 ◦ v1(u), j = 1, . . . ,m
}
.

We notice that the previous discussion (in particular, formula (1.14)) still holds true
when Ω is unbounded.

The next observation shows a difference between our model and the model in
[5], while Remark 2.6 seems to suggest a model closer to the one in [5].

Remark 2.5 (Monotonicity with respect to the base domain). Let Ω, Ω′ ⊆
Rn be connected open sets, such that Ω ⊆ Ω′. Then

A Ω
constr(S,Σ) ≤ A Ω′

constr(S,Σ). (2.5)

Indeed, let us assume that Ω′ is bounded (the case in which Ω or Ω′ are unbounded
being similar). For Σ ∈ Cuts(Ω, S) ⊆ Cuts(Ω′, S), let us denote by Y ′Σ the covering
space of M ′ := Ω′ \ S. It is natural to see YΣ as a subset of Y ′Σ, so that, for any
u ∈ BVconstr(Y ′Σ;V ), we have u|YΣ ∈ BVconstr(YΣ;V ). In particular, |Du|(YΣ) ≤
|Du|(Y ′Σ), which gives (2.5).

Remark 2.6 (A Dirichlet-type formulation). By slightly modifying the space
BVconstr(YΣ;V ), it is possible to set up a minimization problem such that the mini-
mum value decreases when the base domain becomes larger (the opposite of (2.5)).
Let Ω,Ω′ ⊂ Rn be connected open sets, such that Ω ⊆ Ω′ and Ω′ \Ω 6= ∅. Fix α ∈ V ,
and let Σ ∈ Cuts(Ω, S) ⊆ Cuts(Ω′, S). Let us consider the following Dirichlet-type
problem:

BΩ
constr(S,Σ,Ω

′) := inf{|Du|(Y ′Σ) : u ∈ BVconstr(Y ′Σ;V ), v1(u) = α in Ω′ \ Ω}.

Then, the larger is Ω, the smaller is the value of BΩ
constr(S,Σ,Ω

′).
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2.1 Independence of the admissible pair of cuts

In this section we show that constrained – covering solutions are independent of
admissible cuts. Our proof of Theorem 2.7 relies on general facts in coverings’
theory, which we recall in the Appendix. Nevertheless, at least when m = 2, it
is possibile to give a different proof which is independent of the abstract covering
construction performed at the end of this paper.

For any u ∈ BVconstr(YΣ;V ), let Ju ⊂ YΣ be the set of approximate jump points9

of u in YΣ.

Theorem 2.7. Let Ω be bounded. Let Σ ∈ Cuts(Ω, S), and let u ∈ BVconstr(YΣ;V ).
Then, for any Σ̂ ∈ Cuts(Ω, S), there exists û ∈ BVconstr(YbΣ;V ) such that

πΣ,M (Ju) = πbΣ,M (Jbu). (2.6)

Proof. Let f : YΣ → YbΣ be the homeomorphism defined in (A.5). We set û : YbΣ → V
as

û := u ◦ f−1.

By definition of f , it follows that u ∈ BVconstr(YbΣ;V ), and Jbu = f(Ju). Hence

πbΣ,M (Jbu) = πbΣ,M (f(Ju)) = πΣ,M (Ju),

where in the last equality we have made use of (A.5).

Corollary 2.8 (Independence). The value A Ω
constr(S,Σ) in (2.2) is independent

of Σ ∈ Cuts(Ω, S).

Proof. We consider the case in which Ω is bounded, the unbounded case being simi-
lar. Let Σ, Σ̂ ∈ Cuts(Ω, S). Let umin ∈ BVconstr(YΣ;V ) be such that A Ω

constr(S,Σ) =
m`Hn−1(πΣ,M (Jumin)). Let û ∈ BVconstr(YbΣ;V ) be the function given by Theorem
2.7, applied with u = umin. Then, by (2.12) and (2.6), we have

A Ω
constr(S, Σ̂) ≤ m`Hn−1(πbΣ,M (Jbu)) = m`Hn−1(πΣ,M (Jumin)) = A Ω

constr(S,Σ).

Arguing similarly for the converse inequality, we get A Ω
constr(S, Σ̂) = A Ω

constr(S,Σ).

In accordance with Corollary 2.8, we set

A Ω
constr(S) := A Ω

constr(S,Σ).

Corollary 2.9 (Upper bound). We have

A Ω
constr(S) ≤ m` inf

{
Hn−1(Σ) : Σ ∈ Cuts(Ω, S)

}
. (2.7)

9 Here we follow [2, Definition 3.67, p.163]. Let y ∈ Ψ1(D, 1), x := πΣ,M (y), and let r > 0
be such that Br(x) is contained in D. Given a unit vector ν ∈ Rn, set Br(y) := Ψ1(Br(x)),
B+
r,ν(y) := {y′ ∈ Br(y) : (πΣ,M (y′)−x) · ν > 0}, B−r,ν(y) := {y′ ∈ Br(y) : (πΣ,M (y′)−x) · ν < 0}.

Now, we say that y is an approximate jump point of u if there exist a unit vector ν ∈ Rn, and two
distinct α, β ∈ V satisfying limr→0+ r−n

R
B+
r,ν(y)

|u − α| dµ = 0 = limr→0+ r−n
R
B−r,ν(y)

|u − β| dµ.

Similarly we proceed when y belongs to the other covering sheets.
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Proof. Let τ ∈ T (V ). Let u be the τ -constrained lift of v (Definition 2.10 below),
with v identically equal to some α ∈ V . Then (2.9) holds, and (2.7) follows.

In Sections 4.1 and 4.2 we shall prove that, when m = 2, n ≤ 7, and Ω = Rn,
(2.7) holds as an equality (see Corollary 4.2 and Theorem 4.6). Notice that, by the
regularity of area minimizing currents modulo 2 [25, Theorem 6.2.1], the infimum
on the right hand side of (2.7) is a minimum, provided n ≤ 7.

2.2 Existence of minimizers

Concerning functions defined on the base set, clearly BV (M ;V ) = BV (Ω;V ). More-
over

BV (Ω;V ) = BV (D;V ),

so that any v ∈ BV (D;V ) (or more generally any v ∈ BV (Ω\C;V ), with C a finite
union of cuts) can be considered also as a BV function in Ω, whose total variation
in general may increase by a contribution due to the two traces of v on Σ (more
generally on C). In the following, we denote by

Jv ⊂ Ω

the set of approximate jump points of v considered as a function in BV (Ω;V ). The
next definition will be of frequent use in the sequel.

Definition 2.10 (Constrained lift). Let v ∈ BV (D;V ), and let τ ∈ T (V ). Then
the function defined as

u := τ j−1 ◦ v ◦Ψ−1
j in Ψj(D), j = 1, . . . ,m, (2.8)

is in BVconstr(YΣ;V ), and v1(u) = v. We call u the τ -constrained lift of v.

In particular, when v is identically equal to some α ∈ V , we have

πΣ,M (Ju) = Σ \ S, (2.9)

for every τ ∈ T (V ).

Lemma 2.11 (Splitting of the projection of the jump). Let Σ = (Σ,Σ′) ∈
Cuts(Ω, S), and let u ∈ BVconstr(YΣ;V ). Then

πΣ,M (Ju) =
(
Jv1(u) \ (Σ \ S)

)
∪
(
Jvm+1(u) ∩ (Σ \ S)

)
. (2.10)

Proof. Let us split Ju as the union of the following 2m disjoint sets:

Ju ∩ π̃((D, j)), j = 1, . . . ,m, Ju ∩ π̃((Σ \ S, j′)), j′ = m+ 1, . . . , 2m. (2.11)

By the constraint (2.1), for each j = 2, . . . ,m (resp. for each j′ = m+2, . . . , 2m), to
each point in Ju ∩ π̃((D, j)) (resp. in Ju ∩ π̃((Σ \S, j′))) there corresponds a unique
point in Ju ∩ π̃((D, 1)) (resp. in Ju ∩ π̃((Σ \S,m+ 1))), belonging to the same fiber,
and viceversa. Hence

πΣ,M (Ju) = πΣ,M

(
Ju ∩ π̃((D, 1))

)
∪ πΣ,M

(
Ju ∩ π̃((Σ \ S,m+ 1))

)
.

By definition of Ju, Jv1(u), Jvm+1(u), using also the local parametrizations Ψ1, Ψm+1,
it follows that πΣ,M

(
Ju ∩ π̃((D, 1))

)
= Jv1(u) \ (Σ \S), and πΣ,M

(
Ju ∩ π̃((Σ \S,m+

1))
)

= Jvm+1(u) ∩ (Σ \ S), and (2.10) follows.

14



The next lemma seems to be consistent with [5, Lemma 10.1].

Lemma 2.12 (Representation of the total variation on the covering, II).
Let Σ = (Σ,Σ′) ∈ Cuts(Ω, S), and let u ∈ BVconstr(YΣ;V ). Then

|Du|(YΣ) =m`
(
Hn−1(Jv1(u) \ Σ) +Hn−1(Jvm+1(u) ∩ Σ)

)
=m`Hn−1(πΣ,M (Ju)).

(2.12)

Proof. Recall the splitting in (1.14), with the choice E := YΣ. By (1.11), we have

|Dvj(u)|(D) = |Dv1(u)|(D), j = 1, . . . ,m,
|Dv′j(u)|(Σ) = |Dvm+1(u)|(Σ), j′ = m+ 1, . . . , 2m.

(2.13)

By [2, Theorem 3.84], we have

|Dv1(u)|(D) = `Hn−1(Jv1(u) \Σ), |Dvm+1(u)|(Σ) = `Hn−1(Jvm+1(u) ∩Σ). (2.14)

Substituting (2.14) into (1.14), and recalling (2.13), we get the first equality in
(2.12). The second equality is now a consequence of (2.10).

Remark 2.13. From formula (2.12), we see that |Du|(YΣ) is indeed independent
of the orientation of Σ.

Corollary 2.14 (Compactness). Let Ω be bounded with Lipschitz boundary. Let
(uh)h∈N ⊂ BVconstr(YΣ;V ) be such that suph∈N |Duh|(YΣ) < +∞. Then there exist
u ∈ BVconstr(YΣ;V ) and a subsequence of (uh)h∈N converging to u in L1(YΣ; Rm−1).

Proof. Let v1(uh) ∈ BV (D;V ) = BV (Ω;V ) be as in (1.10). From (1.14) and (2.13)
we have

sup
h∈N
|Dv1(uh)|(Ω) = sup

h∈N

[
|Dv1(uh)|(D) + |Dv1(uh)|(Σ)

]
≤ 1
m

sup
h∈N
|Duh|(YΣ) + `Hn−1(Σ) < +∞.

Since Ω is a bounded Lipschitz domain, there exists v ∈ BV (Ω;V ) such that, up
to a not relabelled subsequence, v1(uh) → v in L1(Ω; Rk). The proof is completed,
letting u be defined as in (2.8).

We are now in the position to show that problem (2.2) has a solution; a key
result is represented by Lemma 2.16 below.

Theorem 2.15 (Existence of minimizers). Let Ω be a bounded connected open
set with Lipschitz boundary. Let Σ ∈ Cuts(Ω, S). Then A Ω

constr(S) is a minimum,
and A Ω

constr(S) > 0.

Proof. By the lower semicontinuity of the total variation, also recalling Corollary
2.14, existence of minimizers for problem (2.2) follows by direct methods. Positivity
of A Ω

constr(S) follows from (2.16) below, with the choice A := Ω.

The next lemma shows, in particular, that in the fibers over any open subset of Ω
containing a loop around a point of S, the jump set of any function in BVconstr(YΣ;V )
has strictly positive Hn−1 – measure. We stress that this is due just to the constraint
(2.1).
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Lemma 2.16 (Non-constancy). Let A ⊆ Ω be a nonempty connected open set
such that π −1

Σ,M (A\S) does not consist of m connected components. Then, for every
u ∈ BVconstr(YΣ;V ),

Hn−1
(
A ∩ πΣ,M (Ju)

)
> 0. (2.15)

Moreover, if A is bounded with Lipschitz boundary, then

inf
{
Hn−1

(
A ∩ πΣ,M (Ju)

)
: u ∈ BVconstr(YΣ;V )

}
> 0. (2.16)

Proof. In order to show (2.15), suppose by contradiction that there exists u ∈
BVconstr(YΣ;V ) such that

Hn−1
(
A ∩ πΣ,M (Ju)

)
= 0. (2.17)

Applying (2.10) to (2.17), we get

0 = Hn−1(A ∩ (Jv1(u) \ Σ)) +Hn−1(A ∩ Jvm+1(u) ∩ Σ). (2.18)

Now, consider the (connected open) set AS := A \ S. Applying (1.14) with the
choice E := π−1

Σ,M (AS), we get

|Du|(π −1
Σ,M (AS)) =m |Dv1(u)|

(
πΣ,M (π −1

Σ,M (AS) ∩ π̃((D, 1)))
)

+m |Dvm+1(u)|
(
πΣ,M (π −1

Σ,M (AS) ∩ π̃(Σ \ S,m+ 1)))
)

=m |Dv1(u)|
(
AS \ Σ

)
+m |Dvm+1(u)|

(
AS ∩ Σ

)
=m`

(
Hn−1(A ∩ (Jv1(u) \ Σ)) +Hn−1(A ∩ Jvm+1(u) ∩ Σ)

)
,

(2.19)

which, coupled with (2.18), implies |Du|(π −1
Σ,M (AS)) = 0. Then10 u is constant

on each connected component of π −1
Σ,M (AS). By the assumption on A, there exists

at least one connected component of π −1
Σ,M (AS), not contained in a single covering

sheet. This contradicts the validity of the constraint (2.1), proving (2.15).
Now, let us suppose, still by contradiction, that there exists a sequence (uh)h ⊂

BVconstr(YΣ;V ) such that limh→+∞Hn−1
(
A∩πΣ,M (Juh)

)
= 0. For h ∈ N, set ûh :=

uh|
π −1
Σ,M

(AS)
. In particular, reasoning as above, |Dûh|(π −1

Σ,M (AS)) = m`Hn−1(A ∩

πΣ,M (Juh)). Let us apply Corollary 2.14, replacing Ω with A. Then, up to a not
relabelled subsequence, there exists û ∈ BVconstr(π −1

Σ,M (AS);V ) such that ûh → u in
L1(π −1

Σ,M (AS);V ), and by lower semicontinuity,

|Dû|(π −1
Σ,M (AS)) ≤ lim inf

h→+∞
|Dûh|(π −1

Σ,M (AS)) = m` lim
h→+∞

Hn−1
(
A∩πΣ,M (Juh)

)
= 0.

Hence û is constant on π −1
Σ,M (AS), a contradiction with (2.15).

As a further consequence of Lemma 2.16, the boundary datum S is covered by
any constrained function in the covering space. In Theorem 4.3, using also (2.21)
below, we shall prove that equality holds in (2.20) when 2 < n ≤ 7 and u is a
minimizer.

10 See [2, Proposition 3.2]; this constancy result can be generalized to our setting, considering first
the case in which a connected open set E ⊆ YΣ is contained in a single chart, and then reasoning
for each connected component of E ∩ eπ((D, 1)), E ∩ eπ((D′,m+ 1)).
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Corollary 2.17. Let Ω be bounded (resp. unbounded), and let u ∈ BVconstr(YΣ;V )
(resp. u ∈ BV loc

constr(YΣ;V )). Then

S ⊆ πΣ,M (Ju) \ πΣ,M (Ju). (2.20)

Proof. The relation S ∩ πΣ,M (Ju) = ∅ is trivial, recall also (2.10). Now, suppose
by contradiction that there exists a point p ∈ S \ πΣ,M (Ju). Take an open ball
B centered at p, with B ⊂ Ω \ πΣ,M (Ju), and apply Lemma 2.16 with the choice
A := B. Then, since A ∩ πΣ,M (Ju) = ∅, we end up with a contradiction with
(2.15).

In view of Lemma 2.12, we give the following definition.

Definition 2.18 (Constrained – covering solutions). Let Ω be bounded with Lip-
schitz boundary and let umin be a minimizer of problem (2.2). We call

πΣ,M (Jumin)

a constrained – covering solution (in Ω) with boundary S.

A similar definition is given when Ω is unbounded, assuming existence of umin

minimizing (2.4).

Remark 2.19. No topological restrictions on πΣ,M (Jumin) are required.

Recalling Remark 1.6, we observe that the proof of analytic regularity for the
reduced boundary of minimizing clusters [17] applies in our setting. Indeed, since
the classical arguments (such as monotonicity formula, excess decay, tilt lemma) are
local, they can be symmetrically reproduced on the m sheets of the covering space,
thus respecting the constraint on the fibers. In particular, the following results hold.

Theorem 2.20 (Regularity, n = 2). Let Ω ⊂ R2 be a bounded connected open set
with Lipschitz boundary (resp. an unbounded connected open set) , and let umin be
a minimizer of (2.2) (resp. of (2.4)). Then Jumin, and hence, πΣ,M (Jumin), is the
union of finitely many segments. Moreover, for each singular point x of πΣ,M (Jumin)
there exist exactly three segments of πΣ,M (Jumin) having x as one of their endpoints,
and meeting at x at 2π

3 -angles. Moreover,

πΣ,M (Jumin) \ πΣ,M (Jumin) ⊆ S ∪ ∂Ω. (2.21)

Proof. We can confine ourselves to the proof of (2.21). Recalling Lemma 2.11, we
have (

πΣ,M (Jumin) \ πΣ,M (Jumin)
)
∩D =

(
Jv1(umin) \ Jv1(umin

)
)
∩D. (2.22)

By the regularity of local minimizing clusters, Jv1(umin)∩D coincides with the relative
boundary in D of the set ∪α∈V {v1(umin) = α}. In particular, Jv1(umin) ∩ D is
relatively closed in D, which by (2.22) implies(

πΣ,M (Jumin) \ πΣ,M (Jumin)
)
∩D = ∅.

Similarly we argue on D′, and (2.21) follows.
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The proof of the regularity result in the case m = 2 is analogous, so that we
omit the details.

Theorem 2.21 (Regularity, m = 2). Let Ω ⊂ Rn be a bounded connected open
set with Lipschitz boundary (resp. an unbounded connected open set), and let umin

be a minimizer of (2.2) (resp. of (2.4)). Then Jumin, and hence πΣ,M (Jumin), is an
analytic submanifold, possibly excepting for a set of Hausdorff dimension at most
n− 8. Moreover, (2.21) holds.

3 Regularization

The interest in using V -valued BV functions in the context of covering spaces is
substantiated by a Γ – convergence [6] result.

Let us first consider the case m = 2. Let Ω be bounded with Lipschitz boundary.
The main idea is to lift the constraint (2.1) onto the Sobolev space H1(YΣ) := {u ∈
L2
µ(YΣ) : Du ∈ L2

µ(YΣ; Rn)}. Recalling Remark 2.3, we set

H1
constr(YΣ) :=

{
u ∈ H1(YΣ) :

∑
πΣ,M (y)=x

u(y) = 0 for a.e. x ∈M
}
. (3.1)

For ε ∈ (0, 1), let us consider the functionals Fε : L1(YΣ)→ [0,+∞], defined as

Fε(u) :=
∫
YΣ

[
ε|∇u|2 +

1
ε

(1− u2)2

]
dµ if u ∈ H1

constr(YΣ),

and extended to +∞ in L1(YΣ) \H1
constr(YΣ).

Proposition 3.1 (Γ – convergence, m = 2). Assume n ≥ 2 and m = 2. If
(uεh)h ⊂ L1(YΣ) is such that suph Fεh(uεh) < +∞, then there exist u ∈ L1(YΣ) and
a subsequence of (uεh)h converging to u in L1(YΣ). Moreover,

(
Γ(L1(YΣ))− lim

ε→0+
Fε
)
(u) =

{
c0
2 |Du|(YΣ), if u ∈ BVconstr(YΣ; {±1}),
+∞, otherwise in L1(YΣ),

where c0 := ξ(1)− ξ(−1), and ξ(t) := 2
∫ t

0 |1− s
2| ds.

Proof. The proof of the equicoerciveness statement is standard (see, e.g., [18]). The
Γ − lim inf inequality follows using the lower semicontinuity of the total variation,
and the fact that the constraint (2.3) is closed under almost everywhere convergence
in YΣ. The Γ− lim sup construction follows by recalling that the local parametriza-
tions of YΣ are the identity (Remark 1.6); in order to get the validity of the con-
straint in (3.1), it is sufficient to use the standard construction, since the optimal
one-dimensional profile is odd (hence, the corresponding recovering sequence is in
H1

constr(YΣ)). See [18] for the details.

Now, let us conclude this section with the case n = 2 and m = 3. Let V :=
{α1, α2, α3} ⊂ R2 be the set of vertices of an equilateral triangle, centered at the
origin. With a slight abuse of notation, it is natural to identify T (V ) with {2π

3 ,
4π
3 },
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see (3.3) below. The idea is now to lift the constraint (2.1) onto the Sobolev space
H1(YΣ; R2) := {u ∈ L2

µ(YΣ; R2) : Du ∈ L2
µ(YΣ; R2 × R2)}, by asking that

∃ θ ∈
{2π

3
,
4π
3

}
s.t. vj(u) = ei(j−1)θ ◦ v1(u), j = 1, 2, 3, (3.2)

and then setting

H1
constr(YΣ; R2) :=

{
u ∈ H1(YΣ; R2) : (3.2) holds

}
. (3.3)

where, for θ ∈ [0, 2π), eiθ : R2 → R2 is the counterclockwise rotation of angle θ.
Let W : R2 → [0,+∞) be a triple-well potential with superlinear growth at

infinity, and such that W−1(0) = V . We assume also that11

W (eiθx) = W (x), x ∈ R2, θ ∈
{2π

3
,
4π
3

}
. (3.4)

For ε ∈ (0, 1), let us consider the functionals Gε : L1(YΣ; R2)→ [0,+∞], defined as

Gε(u) :=
∫
YΣ

[
ε|∇u|2 +

1
ε
W (u)

]
dµ if u ∈ H1

constr(YΣ; R2),

and extended to +∞ in L1(YΣ; R2) \H1
constr(YΣ; R2).

Proposition 3.2 (Γ – convergence, m = 3). Assume n = 2 and m = 3. If
(uεh)h ⊂ L1(YΣ; R2) is such that suphGεh(uεh) < +∞, then there exist u ∈ L1(YΣ; R2)
and a subsequence of (uεh)h converging to u in L1(YΣ; R2). Moreover, there ex-
ists the Γ(L1(YΣ; R2))-limit of (Gε)ε as ε → 0+, which is finite just on functions
u ∈ BVconstr(YΣ;V ), and it equals |Du|(YΣ) up to a positive multiplicative constant
depending only on W .

Proof. Again, the proof of the equicoerciveness statement is standard (see, e.g., [3]).
Let (uε)ε ⊂ H1

constr(YΣ; R2) be such that (Gε(uε))ε is equibounded, and uε → u in
L1(YΣ; R2) for some u ∈ L1(YΣ; R2). Then W (u) = 0 a.e. in YΣ, or equivalently
u(x) ∈ V a.e. in YΣ. The fact that u satisfies (2.1) for some τ ∈ T (V ) follows at
once by the constraint in (3.3). The Γ − lim inf inequality is now a consequence of
the lower semicontinuity of the total variation.

Let us sketch the proof of the Γ − lim sup construction, which is a slight mod-
ification of the one provided in [3]. Without loss of generality, we can assume
u ∈ BVconstr(YΣ;V ), and πΣ,M (Ju) contained in the union of a finite number of seg-
ments. For small ε > 0, consider an ε-tubular neighbourhood Tε ⊂ Ω of πΣ,M (Ju);
let also Zε ⊂ Tε be the Lipschitz open set containing the triple junctions, such that
πΣ,M (Zε) =

⋂3
j=1{|dj | < ε}, where, for every j = 1, 2, 3, dj denotes a signed distance

from {u = αj}. Then, we construct a map uε ∈ H1(YΣ; R2) so that:

- uε = u in YΣ \ π−1
Σ,M (Tε),

- in π−1
Σ,M (Tε \ Zε), uε realizes the transition between the two corresponding

zeroes of W , along suitable optimal profiles which depend only on W (see [3]);

11For instance, one could consider the choice W (x) :=
Q3
j=1 |x− αj |

2.
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- uε in π−1
Σ,M (Zε) is defined by interpolating the trace of uε on ∂π−1

Σ,M (Zε) with
zero (the barycenter of V ) along the segments starting at the triple junction.

Here we notice that, since u ∈ BVconstr(YΣ;V ), and thanks to the simmetry assump-
tion (3.4) on W , uε satisfies (3.2), and therefore uε ∈ H1

constr(YΣ; R2). Moreover, the
contribution to Gε(uε) on π−1

Σ,M (Zε) is of order ε. Then the statement follows.

Remark 3.3. Proposition 3.2 can be extended to the case m ≥ 3, combining the
standard tools in [3] (which actually hold for every m ≥ 2).

4 Constrained covering solutions when n = 2, 3

4.1 Minimal networks in the plane

In this section we exploit the case n = 2, m ≥ 2, and S := {p1, . . . , pm} ⊂ Ω, with
pj 6= pl for any j, l = 1, . . . ,m, j 6= l.

Theorem 4.1. Assume that

dist(S, ∂Ω) > inf{H1(Σ) : Σ ∈ Cuts(Ω, S)}. (4.1)

Then πΣ,M (Jumin) is connected.

Proof. By contradiction, suppose that there exist two disjoint nonempty sets C1, C2,
relatively closed in πΣ,M (Jumin), and such that C1∪C2 = πΣ,M (Jumin). By Theorem
2.20, for each j = 1, 2, Cj consists of segments (possibly meeting at triple junctions);
moreover, by virtue of (4.1), also recalling (2.12) and (2.7), we have Cj ∩ ∂Ω = ∅.
Set Sj := Cj ∩ S, for j = 1, 2. Note that

Sj 6= ∅, j = 1, 2. (4.2)

Indeed, suppose by contradiction that (for example) S1 = ∅; then, by (2.21), C1 \
C1 ⊂ ∂Ω, and therefore there exists a connected open set A ⊂ Ω such that Ω∩∂A ⊆
C1, and A ∩ S = ∅. Thanks to Theorem 2.7, it is not restrictive to assume also
that A ∩ Σ = ∅. Now, it is immediate to modify v1(umin) inside A so that it does
not jump anymore on Ω∩ ∂A. Taking any constrained-lift of the modified function,
minimality of umin is contradicted, proving (4.2).

Let us choose now two tubular neighborhoods T , U of C1, so that T ⊂⊂ U ,

(U \ T ) ∩ πΣ,M (Jumin) = ∅, (4.3)

and T ∩C2 = ∅. In particular, there must be j ∈ {1, . . . ,m} such that Σj connects a
point of S1 with a point of S2. Therefore, π−1

Σ,M (U \T ) does not consist of m distinct
connected components, so that, applying Lemma 2.16 with the choice A := U \ T ,
we get a contradiction with (4.3).

Corollary 4.2. Assume (4.1). Then πΣ,M (Jumin) is a Steiner graph12 connecting
the points of S.

12See, e.g., [11].
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Proof. Let C ⊂ Ω be a Steiner graph connecting the points of S. By Theorems 2.20-
4.1, H1(πΣ,M (Jumin)) ≤ H1(C). On the other hand, fix any Σ ∈ Cuts(Ω, S) such
that Σ ∩ C = S. Then, define v ∈ BV (Ω;V ) so that: for j = 1, . . . ,m− 1, v := αj
on the connected open set whose boundary contains Σj , and is contained in Σj ∪C;
v := αm elsewhere in Ω. Finally, consider the τ -contrained lift u ∈ BVconstr(YΣ;V )
of v, where τ(j) := j − 1 (mod m). By construction, πΣ,M (Ju) = C, and the
statement follows.

In order to get Corollary 4.2, we cannot avoid condition (4.1), see Figure 5 for a
counterexample when m = 2. This is another difference with respect to the model
proposed in [5]: in our model the boundary of Ω is “wettable” in principle, and
therefore, in order to avoid a minimizer to touch ∂Ω, we need a condition of the
form (4.1) (see also Remark 2.6).

Σ

p1 p2

Σ

p1 p2

{u = 1}

{u = −1}

Ψ1(D) MΨ2(D)

Σ

p1 p2

{u = −1}

{u = 1}

Figure 5: Let Ω be the “bean-shaped” domain in the picture, let S := {p1, p2}, and let
Σ ∈ Cuts(Ω, S) be the dashed curve. The two pictures on the left show the constrained
covering solution, while the right picture shows the solution of [5].

4.2 Plateau’s problem

In this section we exploit the case n = 3, hence m = 2, so that YΣ is a double-
covering space of M .

Let S ⊂ R3 be a tame link. Let Ω ⊂ R3 be bounded with Lipschitz boundary,
and Σ ∈ Cuts(Ω, S). Let umin ∈ BVconstr(YΣ; {±1}) be a minimizer of problem
(2.2). By Theorem 2.21, πΣ,M (Jumin) is an embedded analytic surface in M . We ask
now whether πΣ,M (Jumin) \πΣ,M (Jumin) coincides with S (compare with (2.21)). To
this aim, we need an assumption, analogous to (4.1), in order to avoid components
of πΣ,M (Jumin) touching ∂Ω; roughly speaking, we have to show that “long thin”
hairs reaching the boundary of Ω cannot occur in a constrained double – covering
solution.

Theorem 4.3 (Attaining the boundary condition). Let 2 ≤ n ≤ 7. Let r̄ > 0
be such that S ⊂ Br̄. There exists R > r̄ such that, if Ω ⊃ BR, then any minimizer
umin ∈ BVconstr(YΣ; {±1}) of problem (2.2) satisfies

πΣ,M (Jumin) \ πΣ,M (Jumin) = S. (4.4)

Proof. Fix Σ = (Σ,Σ′) ∈ Cuts(Br̄, S) ⊂ Cuts(Ω, S). Set

A (r) := A Br
constr(S), r ≥ r̄,

and let ur ∈ BVconstr(Y r
Σ; {±1}) be a minimizer of problem (2.2) for Ω = Br; here,

Y r
Σ denotes the double covering space of the base set Br \ S.
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By (2.5), A (·) is nondecreasing; in addition, it is bounded (see (2.7)). Set
ε := 4Hn−1(Σ)−A (r̄) ≥ 0, so that by (2.7),

A (r)−A (r̄) ≤ ε, r ≥ r̄. (4.5)

Write A (r) = 4Hn−1(πΣ,M (Jur)∩Br̄) + 4t(r, r̄), where t(r, r̄) := Hn−1(πΣ,M (Jur) \
Br̄). Since πΣ,M (Jur) ∩Br̄ is a competitor for the computation of A (r̄), we have

A (r̄) ≤4Hn−1(πΣ,M (Jur) ∩Br̄)
≤4Hn−1(πΣ,M (Jur) ∩Br̄) + 4 t(r, r̄) = A (r).

(4.6)

Coupling (4.5) and (4.6), we get

4t(r, r̄) ≤ A (r)−A (r̄) ≤ ε, r ≥ r̄. (4.7)

Suppose ε = 0. Then, by (4.7), we have Hn−1(πΣ,M (Jur) \ Br̄) = 0, which, by the
assumption 2 ≤ n ≤ 7 and Theorem 2.21, implies that the constrained double –
covering solution does not reach ∂Br, for any r > r̄. Then the statement follows,
taking an arbitrary R > r̄.
Suppose ε > 0, and let r > r̄ be such that

(
πΣ,M (Jur) \Br̄

)
∩ ∂Br 6= ∅. By

the assumption 2 ≤ n ≤ 7 and Theorem 2.21, there exists x ∈ (πΣ,M (Jur) \ Br̄) ∩
∂B(r+r̄)/2. Take δ ∈ (0, (r− r̄)/2). By the lower density estimate for local minimizers
of the perimeter functional (see for instance [17, Theorem 21.11]), we have

cnδ
n−1 ≤ 4Hn−1(πΣ,M (Jur) ∩Bδ(x)) ≤ 4t(r, r̄) ≤ ε, (4.8)

for some positive constant cn depending only on n. Inequalities (4.8) hold for each
δ ∈ (0, (r − r̄)/2); this is possible only if r ≤ rε := r̄ + 2(ε/cn)

1
n−1 . Hence, taking

R > rε, the assertion follows.

Now, we compare the constrained double – covering solutions with other classical
notions of solutions to Plateau’s problem.

Remark 4.4 (Area-minimizing currents). Let n = 3, and assume that Ω con-
tains the closed convex envelope of S. Let Tmin be a rectifiable two-current [10]
solving Plateau’s problem with boundary S in the sense of currents. By [19, The-
orem 5.6], the support of Tmin is contained in Ω; moreover, by [14], it is an em-
bedded, orientable smooth surface Σmin ⊂ Ω up to the boundary S. In particular,
Σmin ∈ Cuts(Ω, S). Hence, by (2.7)

A Ω
constr(S) ≤ 4 M(Tmin), (4.9)

where M(Tmin) is the mass of Tmin.
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It is worth noticing that there is not an absolute positive constant c ∈ (0, 4],
satisfying

A Ω
constr(S) ≥ cM(Tmin) (4.10)

for any S. As a counterexample, let B̂1 := {x ∈ R3 : x2
1 + x2

2 < 1, x3 = 0}, let
S := ∂B̂1, and, for ε > 0, let Ω := (1+ ε)B̂1× (−2, 2). As admissible pair of cuts, we
take as Σ the closure of B̂1, and Σ′ := {x ∈ R3 : x2

1+x2
2 ≤ 1, x3 = −

√
1− x2

1 − x2
2}.

Now, let v ∈ BV (Ω; {±1}) be defined as v(x1, x2, x3) := 1 if x3 > 0, and −1
elsewhere. Finally, let u ∈ BVconstr(YΣ; {±1}) be the constrained lift of v. Then,
recalling (2.12), it is immediate to verify that

A Ω
constr(S) ≤ |Du|(YΣ)

4
= π

(
(1 + ε)2 − 1

)
→ 0 as ε→ 0+.

At the same time, the minimal mass in the sense of currents is π (the area of B̂1),
independently of ε.

Another (not rigorous but more intuitive) example of the failure of inequality
(4.10) can be obtained taking as S the boundary of a very thin Möbius band: in
this case a surface similar to the Möbius band is expected to be the double covering
solution with boundary S, while the support of the minimal current is expected to
be approximately a double disk.

Remark 4.5 (Disk-type area-minimizers). Let n = 3 and suppose that S is
connected. Recalling (4.9) and the results in [21], [9], we have

A Ω
constr(S) ≤ 4 min{area(X) : X ∈ H1(D; R3), X spans S}, (4.11)

where D ⊂ R2 is the unit disk, area(X) :=
∫

D |∂x1X∧∂x2X| dx1 dx2, and the meaning
of “X spans S” is given for instance in [9]. We observe that (4.11) can be obtained
independently of (4.9), by reproducing the proof of Theorems 2.7 and 4.6.

Now, we show that, when n < 8, constrained double – covering solutions give an
equivalent way to solve Plateau’s problem in the sense of integral currents modulo
2 [10].

Theorem 4.6 (Area-minimizing integral currents mod 2). Let 2 ≤ n ≤ 7,
and let Ω be as in Theorem 4.3. Let umin ∈ BVconstr(YΣ; {±1}) be a minimizer of
problem (2.2). Then πΣ,M (Jumin) can be seen as an integral current modulo 2 with
boundary S, and A Ω

constr(S) coincides with 4M2(T2,min), where M2 is the mass and
T2,min is a mass-minimizing integral current modulo 2 having boundary S.

Proof. By Theorems 2.21 and 4.3, πΣ,M (Jumin) is an embedded analytic hypersurface
satisfying (4.4). In particular, πΣ,M (Jumin) can be considered as the support of an
integral current modulo 2 having S as boundary support. This gives

A Ω
constr(S) = 4Hn−1(πΣ,M (Jumin)) ≥ 4 M2(T2,min).

The converse inequality follows from the interior regularity of minimal integral cur-
rents modulo 2 [25, Theorem 6.2.1] and Corollary 2.9, since the area-minimizing
current mod 2 with boundary S belongs to Cuts(Ω, S).
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Remark 4.7. Let n ≥ 2. Recalling Theorem 2.21 and Lemma 2.16, we have

A Ω
constr(S) ≥ 4 inf

{
Hn−1(K) : K ⊂M rel. closed, K ∩ ρ(S1) 6= ∅

for every S-simple link ρ ∈ C(S1;M)
}
,

(4.12)

where, according to [12, p.4], ρ is said an S-simple link if link(ρ;C) = 1 for some
connected component C of S, and link(ρ;C ′) = 0 for all connected components C ′

of S \ C.13 The right hand side of (4.12) has been recently investigated in [12] and
[8], for more general choices of S.

We notice that, in general, we cannot expect the inequality in (4.12) to be an
equality. A counterexample, with n = 2 and m = 6, is obtained taking S as the
set of (six) vertices of two triangles, as in Figure 6. Then the right hand side of
(4.12) is attained by the union of G1 and G2, the two Steiner graphs corresponding
to the triangles. On the other hand, by Theorem 4.1, A Ω

constr(S) is strictly larger
than H1(G1) +H1(G2).

MM

G2G1

Figure 6: Let S be the set of vertices of two triangles, which are sufficiently far one from
the other. In the left picture, the constrained covering solution is shown, in the case Ω = R2.
Notice that A R2

constr(S) is strictly larger than the length of the two Steiner graphs drawn in
the right picture.

4.3 The tetrahedron

We end this section coming back to the m-sheeted covering construction given in
Section 1, for a possible interesting extension in dimension n = 3. As for the case
of minimal networks, Example 4.8 below shows that the covering construction has
essentially to be chosen depending on the solution that one would like to obtain.
In our present case, we aim to design a covering construction giving, possibly, the
solution obtained by J. Taylor in [26].

13Here, link(ρ;C) denotes the linking number [15] between ρ ∈ C(S1;M) and a boundaryless
compact embedded Lipschitz (n− 1)-dimensional submanifold C ⊂M .
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Example 4.8. Let S ⊂ R3 be the one-skeleton of a regular tetrahedron T centered
at 0 (here, Ω can be thought of as a large ball containing S). Referring to Figure 7,
let us denote by Fj the (closed) facet of T opposite to the vertex pj , for j = 1, 2, 3.
We now aim to define a 4-sheeted, “cut and paste” covering of M := Ω \ S following
the procedure described in Section 1.1. To this aim, we take as family Cuts(Ω,S) of
admissible cuts the collection of all Σ = ∪3

j=1Σj ⊂ Ω such that:

- for j = 1, 2, 3, Σj is a 2-dimensional compact embedded Lipschitz submanifold,
having the edges of Fj as topological boundary;

- for j, l = 1, 2, 3, j 6= l, Σj ∩ Σl equals the intersection of the topological
boundaries of Fj and Fl.

Clearly, the easiest example of an element of Cuts(Ω, S) is given by ∪3
j=1Fj . Then,

we select the family Cuts(Ω,S) of admissible pairs of cuts as the collection of all
pairs Σ := (Σ,Σ′) such that Σ,Σ′ ∈ Cuts(Ω, S), and Σ ∩ Σ′ = S; moreover, as in
Definition 1.2-(ii), we require Σ to “lie on one side” of Σ′ locally around S.

Fix now Σ = (Σ,Σ′) ∈ Cuts(Ω,S). Then, the covering (YΣ, πΣ,M) is obtained
identifying four copies of the open sets D := Ω \ Σ, D′ := Ω \ Σ′ as in (1.5) (with
the choice m = 4). Namely, assuming for simplicity Σ = ∪3

j=1Fj , crossing the
facet Fj coming from Ω \ T (resp. from T ) corresponds to moving j-sheets forward
(resp. backward) in the covering, for j = 1, 2, 3. Finally, the minimization problem
can be set up as in Section 2; here, V := {α1, . . . , α4} ⊂ R3 is the set of vertices of
a regular tetrahedron centered at 0 (not necessarily equal to T ). Existence of min-
imizers in the class BVconstr(YΣ;V ) follows by adapting the arguments in Theorem
2.15.14 Concerning regularity of minimizers, and referring to [1] for the notion of
(1, δ)-restricted sets, we can state the following result.

Proposition 4.9. Let umin ∈ BVconstr(YΣ;V ) be a minimizer of problem (2.2). Let
x ∈ πΣ,M(Jumin), and let r > 0 be such that Br(x) ⊆ Ω. Then πΣ,M(Jumin) ∩ Br(x)
is (1, δ)-restricted with respect to Ω \Br(x), for any δ ∈ (0, r).

Proof. Fix a perturbation ϕ ∈ Lip(Ω; Ω) of the identity, compactly supported in
Br(x). Using the same construction as in [4, Theorem 2], we define a function
v∗ ∈ BV (Ω;V ) such that

v∗ = v1(umin) outside Br(x), Jv∗ ∩Br(x) = ϕ(Jv1(umin) ∩Br(x)). (4.13)

Let τ ∈ T (V ) be such that vj(umin) = τ j−1 ◦ v1(umin), for j = 2, 3, 4. Then, we
define u∗ ∈ BVconstr(YΣ;V ) as the τ -constrained lift of v∗. The statement now
follows recalling [4, Corollary 1], (4.13), and using the minimality of umin.

Assume that there exists r > 0 such that dist(πΣ,M(Jumin), ∂Ω) > r. Then, as a
consequence of Proposition 4.9, and by the general theory of Almgren’s minimal sets
[1], we get that πΣ,M(Jumin) is (M, 0, r)-minimal. Figure 7 represents a minimizer
umin ∈ BVconstr(YΣ;V ) of problem (2.2), where Σ := ∪3

j=1Fj , and Σ′ lies in Ω \ T
(the cut Σ′ is not drawn in the picture). More precisely, let v ∈ BV (Ω;V ) be such
that: v := α1 in Ω \ T and in the tetrahedron with vertices 0, p1, p2, p3; v := α2 in

14It is possible to check that, up to a homeomorphism, the covering construction is independent
of the chosen admissible pair of cuts.

25



the tetrahedron with vertices 0, p1, p2, p4; v := α3 in the tetrahedron with vertices
0, p1, p3, p4; v := α4, in the tetrahedron with vertices 0, p2, p3, p4. Let also τ ∈ T (V )
be the transposition such that τ(j) := j + 1, for j = 1, 2, 3. Then, umin is defined as
the τ -constrained lift of v, recall Definition 2.10. By construction, u does not jump
on the fiber of the facets Fj ’s. Notice that πΣ,M(Jumin) = int(T )∩C, where C is the
(infinite) cone over S, and it coincides with the solution provided by [26].

p4

p2

p1

p3

{u = α2}

{u = α4}

{u = α3}

{u = α1}

0

(D, 1)

{u = α3}

{u = α1}

{u = α4}

{u = α2}

(D, 2)

{u = α4}

{u = α2}

{u = α1}

{u = α3}

(D, 3)

{u = α1}

{u = α3}

{u = α2}

{u = α4}

(D, 4)

Figure 7: A minimizer u ∈ BVconstr(YΣ;V ), when S is the one-skeleton of a regular tetra-
hedron centered at 0. The picture refers to the choice Σ := ∪3

j=1Fj . The copies of the facet
F2 have been coloured in grey to denote that they have been removed from the covering
sheets drawn in the figure.

A Appendix: an abstract covering construction

In this appendix we give an alternative construction of the covering of M built
up in Section 1. The construction is standard (see, e.g., [13], [16]), and has the
advantage to avoid all issues about the definition of admissible cuts. Setting up the
minimization problem on the covering space MH below could have an independent
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interest; we have preferred to use the “cut and paste” construction (and next proving
independence of the cuts) in order to deal with a more “handy” formula (like (2.12))
for the total variation of a BV function defined on the covering space.

Let Ω, S, M , and m be as in Section 1. Fix x0 ∈ M , and set Cx0([0, 1];M) :=
{γ ∈ C

(
[0, 1];M

)
: γ(0) = x0}. For γ ∈ Cx0([0, 1];M), let [γ] be the class of paths

in Cx0([0, 1];M) which are homotopic to γ with fixed endpoints. We recall that the
universal covering of M is the pair (M̃, p), where M̃ :=

{
[γ] : γ ∈ Cx0([0, 1];M)

}
and p : [γ] ∈ M̃ 7→ p([γ]) := γ(1) ∈ M . A basis for the topology of M̃ is given by
the family {[γλ] : [γ] ∈ M̃, γ(1) ∈ B open ball, λ ∈ C([0, 1];B), λ(0) = γ(1)}.

Let π1(M,x0) be the first fundamental group of M with base point x0 ∈M , and
let

H := {[ρ] ∈ π1(M,x0) : link(ρ;S) ≡ 0 (mod m)}.

Remark A.1. H is a (normal) subgroup of π1(M,x0) of index m.

For γ ∈ Cx0([0, 1];M), set γ̄(t) := γ(1 − t) for all t ∈ [0, 1]. Associated with H,
we can consider the following equivalence relation ∼H on M̃ : for [γ], [λ] ∈ M̃ ,

[γ] ∼H [λ] ⇐⇒ γ(1) = λ(1), link(γλ̄;S) ≡ 0 (mod m).

We denote by [γ]H the equivalence class of [γ] ∈ M̃ induced by ∼H , and we set

MH := M̃/ ∼H .

Letting p̃H : M̃ → MH be the projection induced by ∼H , we endow MH with the
corresponding quotient topology. We set pH,M : [γ]H ∈ MH 7→ γ(1) ∈ M , so that
we have the following commutative diagram

M̃
epH //
p

!!C
CC

CC
CC

C MH

pH,M

��
M

(A.1)

and the pair (MH , pH,M ) is a covering of M , see [13, Proposition 1.36].
Let (Y, πY ) be a covering of M , and let y0 ∈ π−1

Y (x0). By (πY )∗ : π1(Y, y0) →
π1(M,x0) we denote the homomorphism defined as (πY )∗([%]) := [πY ◦ %]. By [13,
Proposition 1.36], we have

(pH,M )∗(π1(MH , [x0]H)) = H. (A.2)

Proposition A.2. Let Σ ∈ Cuts(Ω, S). Then YΣ and MH are homeomorphic.

Proof. Recall the notation in Section 1.1. By [13, p. 28], it is not restrictive to assume
that x0 ∈ O. Let y0 ∈ π−1

Σ,M (x0), and let [%] ∈ π1(YΣ, y0). By [13, Proposition 1.36],
since H and (πΣ,M )∗

(
π1(YΣ, y0)

)
have the same index, the statement follows if we

are able to prove that (πΣ,M )∗([%]) ∈ H, or equivalently that

link(πΣ,M ◦ %;S) ≡ 0 (mod m), (A.3)

where m is given in (1.2).
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Let us first consider the case n = 2. Notice that

link(πΣ,M ◦ %;S) =
m∑
j=1

link(πΣ,M ◦ %; pj), (A.4)

and, for any j = 1, . . . ,m, link(πΣ,M ◦%; pj) equals the number of times that πΣ,M ◦%
turns around pj , a counterclockwise (resp. clockwise) turn around pj being counted
with positive (resp. negative) sign. By construction (see for instance Figure 3 when
m = 3), any counterclockwise (resp. clockwise) turn of πΣ,M ◦ % around a point in
S corresponds to moving one sheet forward (resp. backward) in YΣ. Thus, the sum
in the right hand side of (A.4) is equal to the number of sheets visited by the loop
% until it comes back to y0. It is now clear that this number can be only a multiple
of m, proving (A.3).

The case n > 2 is even simpler, since we have m = 2, and (A.3) follows noticing
that [%] can change sheet in YΣ just an even number of times.

Let Σ, Σ̂ ∈ Cuts(Ω, S). By Proposition A.2, and by general results in coverings
theory [13], there exists a homeomorphism f : YΣ → YbΣ such that

πΣ,M = πbΣ,M ◦ f. (A.5)

The map f is defined by path-lifting. More precisely, fix x0 ∈ M , and let y0 ∈ YΣ,
ŷ0 ∈ YbΣ be such that πΣ,M (y0) = x0 = πbΣ,M (ŷ0). Let y ∈ YΣ, and let γ ∈
C([0, 1];YΣ) be such that γ(0) = y0, γ(1) = y. Then, f(y) ∈ YbΣ is defined as the
ending point of the lift of πΣ,M ◦ γ to YbΣ, starting at ŷ0.
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