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Abstract. We prove quantitative estimates for flows of vector fields subject to anisotropic regu-
larity conditions: some derivatives of some components are (singular integrals of) measures, while
the remaining derivatives are (singular integrals of) integrable functions. This is motivated by the
regularity of the vector field in the Vlasov-Poisson equation with measure density. The proof ex-
ploits an anisotropic variant of the argument in [19, 13] and suitable estimates for the difference
quotients in such anisotropic context. In contrast to regularization methods, this approach gives
quantitative estimates in terms of the given regularity bounds. From such estimates it is possible
to recover the well posedness for the ordinary differential equation and for Lagrangian solutions to
the continuity and transport equations.

1. Introduction

1.1. Ordinary differential equations with non smooth vector field. Given a smooth vector
field b : [0, T ]× RN → RN , the flow of b is the smooth map X : [0, T ]× RN → RN satisfying

dX

ds
(s, x) = b(s,X(s, x)) , s ∈ [0, T ] ,

X(0, x) = x .

In the last years much attention has been devoted to the study of flows associated to vector fields
that are not smooth (in particular, less than Lipschitz in the space variable). In this context, the
correct notion of flow is that of regular Lagrangian flow, loosely speaking an “almost-everywhere
flow which (almost) preserves the Lebesgue measure” (see Definition 3.1 for the precise definition).

Existence, uniqueness and stability of the regular Lagrangian flow have been proven by DiPerna
and Lions [22] for Sobolev vector fields, and by Ambrosio [2] for vector fields with bounded variation,
in both cases under suitable bounds on the divergence of the vector field. Both results make use of
the connection with the well posedness of the continuity equation

∂tu+ div (bu) = 0 ,

which in turn is analyzed thanks to the theory of renormalized solutions. We address the interested
reader to [4, 5, 17, 21] for a detailed presentation of these results and for further references.

1.2. Quantitative estimates for the ordinary differential equation. An alternative and
more direct approach has been introduced in [19]. Many of the ODE results in [22] can be derived
with simple a priori estimates, directly at Lagrangian level, by studying a functional measuring an
“integral logarithmic distance” between flows.
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In detail, given two regular Lagrangian flows X and X̄ associated to a vector field b, the idea is
to consider the functional

Φδ(s) =

∫
log

ˆ

1 +
|X(s, x)− X̄(s, x)|

δ

˙

dx , (1.1)

where δ > 0 is a given parameter (which will be optimized in the course of the proof) and the
integration is performed on a suitable compact set.

It is immediate to derive the following lower estimate, for a given γ > 0:

Φδ(s) ≥
∫
{|X−X̄|≥γ}

log
´

1 +
γ

δ

¯

dx = LN ({|X − X̄|≥ γ}) log
´

1 +
γ

δ

¯

,

that is, the measure of the superlevels of the difference between two regular Lagrangian flows is
upper estimated by

Φδ(s)

log
`

1 + γ
δ

˘ . (1.2)

A strategy for proving uniqueness if therefore deriving upper bounds on the functional Φδ(s) which
blow up in δ slower than log p1/δq as δ → 0.

Differentiating in time the functional and using the ordinary differential equation we obtain

Φ′δ(s) ≤
∫
|b(X)− b(X̄)|
δ + |X − X̄|

dx ≤
∫

min

{
2‖b‖∞
δ

;
|b(X)− b(X̄)|
|X − X̄|

}
dx . (1.3)

In [19] it has been noted that the estimate of the difference quotients in terms of the maximal
function

|b(X)− b(X̄)|
|X − X̄|

À MDb(X) +MDb(X̄) ,

together with the strong estimate for the maximal function (2.7), imply an upper bound on Φδ(s)
independent of δ. This allowed in [19] the proof of existence, uniqueness, stability (with an effective
rate), compactness, and mild regularity for the regular Lagrangian flow associated to a vector field
with Sobolev regularity W 1,p, with p > 1. We note in passing that the rate obtained in these
estimates has been recently proven to be sharp (see [1]).

The case p = 1 (and the more general case of vector fields with bounded variation) was left open
in the above analysis due to the failure of the strong estimate (2.7): only the weak estimate (2.8) is
available for p = 1. This case has been studied in [13] exploiting interpolation techniques in weak
Lebesgue spaces. The weak estimate on the second term in the minimum in (1.3) is interpolated
with the (degenerating in δ) L∞ estimate on the first term in the minimum. This gives an upper
bound of the form

Φδ(s) À ‖Db‖L1 log

ˆ

1

δ

˙

. (1.4)

This estimate is on the critical scale discriminating uniqueness. Therefore we have to play with
constants: up to an L2-remainder, the L1-norm of Db can be assumed to be arbitrarily small (we
exploit here equi-integrability bounds on Db). This allows to re-gain smallness in (1.2) (notice that
the L2 part can be treated as in [19]).

For this reason the analysis in [13] is not able to address the case when Db is a measure (i.e., the
case of a vector field with bounded variation). On the other hand, by considering smooth maximal
functions instead of classical ones, and by exploiting more sophisticated tools from harmonic anal-
ysis, the case in which Db is a singular integral of an L1 functional can be treated with the same
strategy. This extends the case b ∈ W 1,1 and is relevant for some applications to nonlinear PDEs
(see [8, 9]). Results of existence, uniqueness, stability (with an effective rate), and compactness
follows as in [19]. We refer to [5] and to the introduction of [13] for a more detailed presentation.
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1.3. A split case and the main result of the present paper. As mentioned above, the analysis
in [13] is not able to include the case when Db is a measure (or a singular integral of a measure).
However, in situations originating from models in mathematical physics, the vector field is endowed
with a particular structure, and just some of the derivatives are singular integrals of measures, while
the remaining derivatives are more regular.

For instance, the Vlasov-Poisson equation{
∂tf + v · ∇xf + E(t, x) · ∇vf = 0 ,

E(t, x) = −γ∇xU(t, x) , −∆xU(t, x) = ρ(t, x) =
∫
f(t, x, v) dv

is a (nonlinear) transport equation with vector field b(t, x, v) = (v,E(t, x)). If we look at the case
when the space density ρ is a measure, it turns out that DxE is a singular integral of a measure,
while all other derivatives of the vector field enjoy better regularity. However, we are not able to
consider the case of f a measure in x, v, that has been studied in [29, 26], since the characteristics
are defined only almost everywhere.

This motivates the setting of the present paper. We we write RN = Rn1 ×Rn2 with coordinates
x1 and x2, and split analogously the vector field according to b = (b1, b2). Roughly speaking, we
consider the case in which D1b2 is a singular integral (in Rn1) of a measure, while D1b1, D2b1 and
D2b2 are singular integrals (in Rn1) of integrable functions:

Db =

ˆ

S ∗ L1 S ∗ L1

S ∗M S ∗ L1

˙

(in fact our assumptions are slightly more general: see assumption (R2) in Section 4). Compared
to [13], we are able to consider a situation in which some entries of the differential matrix Db are
measures. (From a PDE point of view, related contexts have been considered in [24, 25]).

The idea, analogous to the anisotropic regularization of [10, 2], is to “weight” differently the two
(groups of) directions, according to the different degrees of regularity. In our context, this can be
done by considering, instead of (1.1), a functional depending on two parameters δ1 and δ2, with
δ1 ≤ δ2, namely

Φδ1,δ2(s) =

∫
log

ˆ

1 +

ˇ

ˇ

ˇ

ˇ

ˆ

|X1(s, x)− X̄1(s, x)|
δ1

,
|X2(s, x)− X̄2(s, x)|

δ2

˙ˇ

ˇ

ˇ

ˇ

˙

dx . (1.5)

Following the same strategy as before (estimate of the difference quotients and interpolation in the
minimum in (1.3)), we derive the following bound, which replaces (1.4) in this context:

Φδ1,δ2(s) À

„

δ1

δ2
‖D1b2‖M+

δ2

δ1
‖D2b1‖L1+‖D1b1‖L1+‖D2b2‖L1



log

ˆ

1

δ2

˙

.

We need to gain some “smallness” in criterion (1.2). Observe that ‖D2b1‖L1 , ‖D1b1‖L1 and
‖D2b2‖L1 can be assumed to be small, by the same equi-integrability argument as in [13]. This
is however not the case for ‖D1b2‖M. But we can exploit the presence of the coefficient δ1/δ2

multiplying this term: both δ1 and δ2 have to be sent to zero, but we can do this with δ1 � δ2.
One relevant technical point in the proof is the estimate for the anisotropic difference quotients

showing up when differentiating (1.5). We need an estimate of the form:

|f(x)− f(y)|À
ˇ

ˇ

ˇ

ˇ

ˆ

x1 − y1

δ1
,
x2 − y2

δ2

˙ˇ

ˇ

ˇ

ˇ

”

U(x) + U(y)
ı

. (1.6)

This is complicated by the fact that, as in the classical case, one expects to use a maximal function
in x1 and x2 in order to estimate the difference quotients, but however this would not match (in
terms of persistence of cancellations) with the presence of a singular integral in the variable x1 only.
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This is resolved in Section 5 by the use of tensor products of maximal functions, and will result in
the proof of (1.6) together with a bound of the form

‖U‖≤ δ1‖D1f‖+δ2‖D2f‖ .
This is the plan how to obtain the proof of our main Theorem 6.1, containing the fundamental

estimate for the distance between two regular Lagrangian flows associated to vector fields under the
regularity assumption (R2). As recalled in Section 6 we obtain as a corollary of Theorem 6.1 exis-
tence, uniqueness, stability (with an effective rate) and compactness for regular Lagrangian flows,
and well posedness for Lagrangian solutions to the continuity and transport equations. Applications
to the Vlasov-Poisson equation will be detailed in [8]. See also [3], where similar arguments have
been applied to the study of the Vlasov-Poisson equation, also exploiting the notion of maximal
regular flow.

Acknowledgment. This research has been partially supported by the SNSF grants 140232 and
156112.

2. Background material

This section is devoted to recalling some classical definitions and results from harmonic analysis.
Most of the results below are stated without proofs, for which we refer to [27]. The proofs of the
more specific results and additional comments can be found in [13].

2.1. Weak Lebesgue spaces and equi-integrability. We will denote by Ld the d-dimensional
Lebesgue measure and by Br(x) the open ball or radius r > 0 centered at x ∈ Rd, shortened to Br
in case the center of the ball is the origin of Rd.

Definition 2.1. Let u be a measurable function on Ω ⊂ Rd. For 1 ≤ p <∞, we set

|||u|||pMp(Ω)= sup
λ>0
{λpLd({x ∈ Ω : |u(x)|> λ})}

and define the weak Lebesgue space Mp(Ω) as the space consisting of all such measurable functions
u : Ω→ R with |||u|||Mp(Ω)<∞. For p =∞, we set M∞(Ω) = L∞(Ω).

Let us remark that the quantity |||·|||pMp(Ω) is not a norm, therefore we have chosen the notation

with the three vertical bars, different from the usual one for the norm.
The following lemma shows that we can interpolate M1 and Mp, with p > 1, obtaining a bound

on the L1 norm, which depends logarithmically on the Mp norm.

Lemma 2.2 (Interpolation). Let u : Ω 7→ [0,+∞) be a nonnegative measurable function, where
Ω ⊂ Rd has finite measure. Then for every 1 < p <∞, we have the interpolation estimate

||u||L1(Ω)≤
p

p− 1
|||u|||M1(Ω)

«

1 + log

˜

|||u|||Mp(Ω)

|||u|||M1(Ω)
Ld(Ω)

1− 1
p

¸ff

,

and analogously for p =∞

||u||L1(Ω)≤ |||u|||M1(Ω)

«

1 + log

˜

||u||L∞(Ω)

|||u|||M1(Ω)
Ld(Ω)

¸ff

.

We also recall the classical definition of equi-integrability.

Definition 2.3 (Equi-integrability). Let Ω be an open subset of Rd. We say that a bounded family
{ϕi}i∈I ⊂ L1(Ω) is equi-integrable if the following two conditions hold:

(i) For any ε > 0 there exists a Borel set A ⊂ Ω with finite measure such that
∫

Ω\A|ϕi| dx ≤ ε
for any i ∈ I;
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(ii) For any ε > 0 there exists δ > 0 such that, for every Borel set E ⊂ Ω with with Ld(E) ≤ δ,
there holds

∫
E |ϕi| dx ≤ ε for any i ∈ I.

The Dunford-Pettis theorem ensures that a bounded family in L1(Ω) is relatively compact for
the weak L1 topology if and only if it is equi-integrable. Also, a sequence un ∈ L1(Rd) converges
to u in L1(Rd) if and only if it is equi-integrable and un converges to u locally in measure. The
following lemma can be proved with elementary tools.

Lemma 2.4. Consider a family {ϕi}i∈I ⊂ L1(Ω) which is bounded in L1(Ω) and fix 1 < p ≤ ∞.
Then this family is equi-integrable if and only if for every ε > 0, there exists a constant Cε and a
Borel set Aε ⊂ Ω with finite measure such that for every i ∈ I one can write

ϕi = ϕ1
i + ϕ2

i ,

with
‖ϕ1

i ‖L1(Ω)≤ ε and spt (ϕ2
i ) ⊂ Aε, ‖ϕ2

i ‖Lp(Ω)≤ Cε for all i ∈ I.

2.2. Singular integrals. We briefly summarize the classical Calderón-Zygmund theory of singular
integrals.

Definition 2.5. We say that K is a singular kernel on Rd if

(1) K ∈ S ′(Rd) and K̂ ∈ L∞(Rd),
(2) K|Rd\{0}∈ L1

loc(Rd \ {0}) and there exists a constant A ≥ 0 such that∫
|x|>2|y|

|K(x− y)−K(x)|dx ≤ A

for every y ∈ Rd.

We now state a classical result that allows the extension of (the convolution with) a singular
kernel to an operator on Lp spaces.

Theorem 2.6 (Calderón-Zygmund). Let K be a singular kernel and define

Su = K ∗u for u ∈ L2(Rd)
in the sense of multiplication in the Fourier variable. Then for every 1 < p <∞ we have the strong
estimate

‖Su‖Lp(Rd)≤ CN,p(A+ ||K̂||L∞)||u||Lp(Rd) u ∈ Lp ∩ L2(Rd) , (2.1)

and for p = 1 the weak estimate

|||Su|||M1(Rd)≤ CN (A+ ||K̂||L∞)||u||L1(Rd) u ∈ L1 ∩ L2(Rd) . (2.2)

In addition, the operator S can be extended to the whole Lp(Rd) for any 1 < p <∞ with values
in Lp(Rd), still satisfying (2.1). For p = 1, the operator S extends to the whole L1(Rd) to an

operator SM
1

with values in M1(Rd), still satisfying (2.2). However, a function in M1(Rd) is in
general not integrable, therefore it does not define a distribution. Notice that, for u ∈ L1(Rd), we
can define a tempered distribution SD ∈ S ′(Rd) by the formula

〈SDu, ϕ〉 = 〈u, S̃ϕ〉 for every ϕ ∈ S(Rd), (2.3)

where S̃ is the singular integral operator associated to the kernel K̃(x) = K(−x). The same holds

for u a finite measure in Rd. The two operators SM
1

and SD are different and cannot be identified.
Since F : L1(Rd)→ L∞(Rd) is bounded, and by definition we have K̂ ∈ L∞(Rd), the definition in
(2.3) is equivalent to the definition in Fourier variables

zSDu = K̂û .
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We also recall a particular class of singular kernels:

Definition 2.7. A kernel K is a singular kernel of fundamental type in Rd if the following prop-
erties hold:

(1) K|Rd\{0}∈ C1(Rd \ {0}),
(2) There exists a constant C0 ≥ 0 such that

|K(x)|≤ C0

|x|d
x ∈ Rd \ {0} , (2.4)

(3) There exists a constant C1 ≥ 0 such that

|∇K(x)|≤ C1

|x|d+1
x ∈ Rd \ {0} , (2.5)

(4) There exists a constant A1 ≥ 0 such that
ˇ

ˇ

ˇ

ˇ

ˇ

∫
R1<|x|<R2

K(x)dx

ˇ

ˇ

ˇ

ˇ

ˇ

≤ A1 for every 0 < R1 < R2 <∞. (2.6)

In particular, these conditions are sufficient to extend the function defined on Rd \ {0} to a
singular kernel K on Rd, unique up to addition of a multiple of a Dirac delta at the origin, and
which satisfies the estimates in Definition 2.5.

2.3. Maximal functions. We now recall the classical maximal function.

Definition 2.8. Let u ∈ L1
loc(Rd). The maximal function of u is defined as

Mu(x) = sup
ε>0

∫
Bε(x)

|u(y)|dy

for every x ∈ Rd.

The maximal function Mu is finite almost everywhere for u ∈ Lp(Rd), for every 1 ≤ p ≤ ∞. For
every 1 < p ≤ ∞ we have the strong estimate

‖Mu‖Lp(Rd)≤ Cd,p||u||Lp(Rd) , (2.7)

with only the weak estimate for p = 1

|||Mu|||M1(Rd)≤ Cd||u||L1(Rd) . (2.8)

2.4. The smooth maximal function and cancellations. Given two singular kernels of funda-
mental type K1 and K2, with bounded and smooth Fourier transform, we consider the associated
singular integral operators S1 and S2. The composition S2 ◦ S1 is still a singular integral operator

S, associated to a singular kernel K characterized by pK = xK2
xK1. In general, composing two weak

estimates (as in (2.2)) is not well defined. However, there are cancellations in the convolution
K2∗K1 (that is, in the composition of the two singular integral operators), which allow us to
define S2 ◦S1. A very important result is that we can compose a special class of maximal functions
with a singular integral operator, yielding a composition operator that is bounded L1 → M1 and
L2 → L2.

We consider a maximal function that is “smaller” than the classical maximal function, in order
to allow cancellations with the singular integral operator. Here the absolute value is outside the
integral, instead of inside. The result after taking smooth averages is a maximal function that is
“smoother” than the classical maximal function.



LAGRANGIAN FLOWS FOR VECTOR FIELDS WITH ANISOTROPIC REGULARITY 7

Definition 2.9 (Smooth maximal function). Given a family of functions {ρν}ν ⊂ L∞c (Rd), for
every function u ∈ L1

loc(Rd) we define the {ρν}-maximal function of u as

M{ρν}(u)(x) = sup
ν

sup
ε>0

ˇ

ˇ

ˇ

ˇ

∫
Rd
ρνε(x− y)u(y)dy

ˇ

ˇ

ˇ

ˇ

= sup
ν

sup
ε>0

|(ρνε ∗ u)(x)| ,

where as usual

ρνε(x) =
1

εd
ρν

´x

ε

¯

.

In the case when u is a distribution, we take a smooth family {ρν}ν ⊂ C∞c (Rd) and define in the
distributional sense

M{ρν}(u)(x) = sup
ν

sup
ε>0

|〈u, ρνε(x− ·)〉| .

The importance of this class of maximal functions is that it is possible to define the composition
M{ρν}S with a singular integral operator, which is impossible with the usual maximal function.
The following theorem has been proved in [13].

Theorem 2.10. Let K be a singular kernel of fundamental type and let S be the associated singular
integral operator. Let {ρν}ν ⊂ L∞(Rd) be a family of kernels such that

spt ρν ⊂ B1 and ‖ρν‖L1(Rd)≤ Q1 for every ν.

Assume that for every ε > 0 and every ν there holds

‖pεdK(ε·)q∗ρν‖Cb(Rd) ≤ Q2 for every ε > 0 and for every ν.

Then we have the following estimates.

(1) There exists a constant Cd, depending on the dimension d only, such that

|||M{ρν}(Su)|||M1(Rd)≤ Cd
´

Q2 +Q1(C0 + C1 + || pK||∞
¯

||u||L1(Rd)

for every u ∈ L1 ∩ L2(Rd). If {ρν} ⊂ C∞c (Rd), and u is a finite measure on Rd, then the
same estimate holds, where Su is defined as a distribution SDu:

|||M{ρν}(Su)|||M1(Rd)≤ Cd
´

Q2 +Q1(C0 + C1 + || pK||∞
¯

||u||M(Rd) .

(2) If Q3 = supν ||ρν ||L∞(Rd) is finite, then there exists Cd, depending on the dimension d only,
such that

‖M{ρν}(Su)‖L2(Rd)≤ CdQ3‖ pK‖∞‖u‖L2(Rd)

for every u ∈ L2(Rd).

3. Regular Lagrangian flows

As mentioned in the Introduction, we will deal with flows of non-smooth vector fields. The
adequate notion of flow in this context is that of regular Lagrangian flow. Given a vector field
b(s, x) : (0, T )× RN → RN , we assume the following growth condition:

(R1) The vector field b(s, x) can be decomposed as

b(s, x)

1 + |x|
= b̃1(s, x) + b̃2(s, x) ,

with
b̃1 ∈ L1((0, T );L1(RN )) and b̃2 ∈ L1((0, T );L∞(RN )) .

Given a vector field satisfying (R1), we codify in the following definition of regular Lagrangian
flow the notion of “almost everywhere flow which almost preserves the Lebesgue measure”.
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Definition 3.1 (Regular Lagrangian flow). If b is a vector field satisfying (R1), then for fixed
t ∈ [0, T ), a map

X ∈ C([t, T ]s;L
0
loc(RNx )) ∩ B([t, T ]s; logLloc(RNx ))

is a regular Lagrangian flow in the renormalized sense relative to b starting at t if we have the
following:

(1) The equation

∂spβ(X(s, x))q= β′(X(s, x))b(s,X(s, x))

holds in D′((t, T ) × RN ), for every function β ∈ C1(RN ;R) that satisfies |β(z)|≤ C(1 +
log(1 + |z|)) and |β′(z)|≤ C

1+|z| for all z ∈ RN ,

(2) X(t, x) = x for LN -a.e x ∈ RN ,
(3) There exists a constant L ≥ 0 such that

∫
RN ϕ(X(s, x))dx ≤ L

∫
RN ϕ(x)dx for all measurable

ϕ : RN → [0,∞).

We will usually refer to the constant L in Definition 3.1(3) as the compressibility constant of
the flow. We have denoted by L0

loc the space of measurable functions endowed with the local
convergence in measure, and by B the space of bounded functions.

We define the sublevel of the flow as

Gλ = {x ∈ RN : |X(s, x)|≤ λ for almost all s ∈ [t, T ]} . (3.1)

The following lemma gives an estimate for the decay of the superlevels of a regular Lagrangian
flow.

Lemma 3.2. Let b : (0, T )×RN → RN be a vector field satisfying (R1) and let X : [t, T ]×RN → RN
be a regular Lagrangian flow relative to b starting at time t, with compressibility constant L. Then
for all r, λ > 0

LN (Br \Gλ) ≤ g(r, λ) ,

where the function g depends only on L, ‖b̃1‖L1((0,T );L1(RN )) and ‖b̃2‖L1((0,T );L∞(RN )) and satisfies

g(r, λ) ↓ 0 for r fixed and λ ↑ ∞.

Indeed the regular Lagrangian flow X has a logarithmic summability, and this clarifies the class
of renormalization functions β considered in Definition 3.1(1). See [13] for the proof.

4. Regularity assumptions and the anisotropic functional

We wish to consider a regularity setting of the vector field b(t, x) in which the (weak) regularity
has a different character with respect to different directions in space. We split RN as RN = Rn1×Rn2

with variables x1 ∈ Rn1 and x2 ∈ Rn2 . We denote by D1 = Dx1 the derivative with respect to
the first n1 variables x1, and by D2 = Dx2 the derivative with respect to the last n2 variables x2.
Accordingly, we denote b = (b1, b2)(s, x1, x2). For X(s, x1, x2) a regular Lagrangian flow associated
to b we denote X = (X1, X2)(s, x1, x2).

We are going to assume that D1b2 is “less regular” than D1b1, D2b1, D2b2: the derivative D1b2 is
a singular integral of a measure, whereas the other derivatives are singular integrals of L1 functions.
This is made precise as follows:

(R2) We assume that

Db =

ˆ

D1b1 D2b1
D1b2 D2b2

˙

=

ˆ

γ1S1p γ2S2q
γ3S3m γ4S4r

˙

, (4.1)
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where the sub-matrices have the representation

i, j ∈ {1, . . . , n1} : i ∈ {1, . . . , n1}, j ∈ {n1 + 1, . . . , n2} :

(D1b1)ij =
m∑
k=1

γ1i
jk(s, x2)S1i

jkp
i
jk(s, x1) (D2b1)ij =

m∑
k=1

γ2i
jk(s, x2)S2i

jkq
i
jk(s, x1)

i ∈ {n1 + 1, . . . , n2}, j ∈ {1, . . . , n1} : i ∈ {n1 + 1, . . . , n2}, j ∈ {n1 + 1, . . . , n2} :

(D1b2)ij =
m∑
k=1

γ3i
jk(s, x2)S3i

jkm
i
jk(s, x1) (D2b2)ij =

m∑
k=1

γ4i
jk(s, x2)S4i

jkr
i
jk(s, x1) .

In the above assumptions we have that:
– S1i

jk, S
2i
jk, S

3i
jk, S

4i
jk are singular integral operators associated to singular kernels of fun-

damental type in Rn1 ,
– the functions pijk, q

i
jk, r

i
jk belong to L1((0, T );L1(Rn1)),

– mi
jk ∈ L1((0, T );M(Rn1)),

– the functions γ1,i
jk , γ

2,i
jk , γ

3,i
jk , γ

4,i
jk belong to L∞((0, T );Lq(Rn2)) for some q > 1.

We have denoted by L1((0, T );M(Rn1)) the space of all functions t 7→ µ(t, ·) taking values in
the space M(Rn1) of finite signed measures on Rn1 such that∫ T

0
‖µ(t, ·)‖M(Rn1 ) dt <∞ .

Remark 4.1. The assumption on the functions γ1,i
jk , γ

2,i
jk , γ

3,i
jk , γ

4,i
jk could be relaxed to L∞((0, T );Lqloc(R

n2)).

This would require the use of a localized maximal function.

We will additionally assume that

(R3)

b ∈ Lploc([0, T ]× RN ) for some p > 1.

As mentioned in the Introduction, the proof of our main result will exploit an anisotropic func-
tional (already provisionally introduced in (1.5)), which extends the functional (1.1) to the regu-
larity setting under investigation. Let A be the constant N ×N matrix

A = Diag (δ1, . . . , δ1, δ2, . . . , δ2) . (4.2)

A acts on vectors in RN by a dilation of a factor δ1 on the first n1 coordinates, and of a factor δ2

on the last n2 coordinates: A(x1, x2) = (δ1x1, δ2x2).
Given X(t, x1, x2) and sX(t, x1, x2) regular Lagrangian flows associated to b and b̄ respectively,

we denote by Gλ and sGλ the sublevels of X and sX defined as in (3.1). The proof of our main
theorem (see Theorem 6.1) is based on the study of the following anisotropic functional:

Φδ1,δ2(s) =

∫
Br∩Gλ∩ sGλ

log
`

1 +
ˇ

ˇA−1
“

X(s, x1, x2)− sX(s, x1, x2)
‰ˇ

ˇ

˘

dx . (4.3)

5. Estimates of anisotropic difference quotients

In this section we first recall the classical estimate for the difference quotients of a BV function,
and then recover an analogous “anisotropic” version of this result for vector fields in the regularity
setting of (R2). This will be a key tool in order to estimate the functional (4.3).
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Lemma 5.1. If u ∈ BV (Rd), then there exists an Ld-negligible set N ⊂ Rd such that

|u(x)− u(y)|≤ Cd|x− y|
´

(MDu)(x) + (MDu)(y)
¯

for every x, y ∈ Rd \ N , where Du is the distributional derivative of u, represented by a measure.

It turns out that an analogous result holds for functions whose derivatives are singular integrals
of measures. The following result has been proved in [13]. The smooth maximal function in
Definition 2.9 plays an important role in this estimate.

Proposition 5.2. Let f ∈ L1
loc(Rd) and assume that for every j = 1, . . . , d we have

∂jf =

m∑
k=1

Rjkgjk

in the sense of distributions, where Rjk are singular integral operators of fundamental type in Rd
and gjk ∈M(Rd) for j = 1, . . . , d and k = 1, . . . ,m, and Rjkgjk is defined in the sense of tempered

distributions. Then there exists a nonnegative function V ∈ M1(Rd) and an Ld-negligible set
N ⊂ Rd such that for every x, y ∈ Rd \ N there holds

|f(x)− f(y)|≤ |x− y|
´

V (x) + V (y)
¯

,

where V is given by

V := V(R, g) =
d∑
j=1

m∑
k=1

M{Υξ,j , ξ∈Sd−1}(Rjkgjk) .

In the above proposition Υξ,j , for ξ ∈ Sd−1 and j = 1, . . . , d, is a family of smooth functions
explicitly constructed in the course of the proof.

Remark 5.3. Theorem 2.10 implies that the operator g 7→ V(R, g) is bounded L2 → L2 and
M→M1.

In the following three subsections we prove similar estimates in the anisotropic context.

5.1. Split regularity: the isotropic estimate. Given {γν(x1)}ν ⊂ C∞c (Rn1), {ρσ(x2)}σ ⊂
C∞c (Rn2) and u ∈ S ′(RN ) we define

M{γν⊗ρσ}u(x) = sup
ε>0

sup
ν,σ
|(γν(x1)ρσ(x2))ε∗u(x)|= sup

ε>0
sup
ν,σ

ˇ

ˇ

ˇ

ˇ

ˆ

1

εN
γν

´ x1

εn1

¯

ρσ
´ x2

εn2

¯

˙

∗u(x)

ˇ

ˇ

ˇ

ˇ

.

(5.1)
We first of all prove an isotropic estimate in a regularity context related to (R2).

Lemma 5.4. Let f : RN → R be a function such that for each j = 1, . . . , N we have

∂jf =

m∑
k=1

(Rjkgjk)(x1)γjk(x2) , (5.2)

where Rjk are singular integrals of fundamental type in Rn1, gjk ∈M(Rn1) and γjk ∈ Lq(Rn2), for

some q > 1. Then there exists a nonnegative function V : RN → [0,∞) and an LN -negligible set
N ⊂ RN such that for every x, y ∈ RN \ N

|f(x)− f(y)|≤ |x− y|
´

V (x) + V (y)
¯

.
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The function V is given by

V := V(R, γ, g) =

N∑
j=1

m∑
k=1

M{Υξ,j⊗Ῡξ,j}(γjkRjkgjk) , (5.3)

for suitable smooth compactly supported functions Υξ,j and Ῡξ,j, which will be introduced in the
proof.

Proof. We adapt the proof of Proposition 5.2 to the current regularity setting. The difficulty is
that a smooth maximal function in RN composed with the singular kernel on Rn1 does not enjoy
suitable bounds, and so we use a tensor product of smooth functions, as in (5.1).

Let w = (w1, w2) ∈ RN , and let {ej}j be the standard basis for RN . We denote {w1}j =
(w1, 1, . . . , 1) · ej and {w2}j = (1, . . . , 1, w2) · ej . Define the families of functions

Υξ,j(w1) = h1
´

ξ1
2 − w1

¯

{w1}j

Ῡξ,j(w2) = h2
´

ξ2
2 − w2

¯

{w2}j ,

where hi ∈ C∞c (Rni) with
∫
Rni h

idxi = 1 and ξ ∈ SN−1. Let hr = 1
rN
h1( ·r )h2( ·r ), set r = |x − y|,

and write

f(x)− f(y) =

∫
RN

hr

ˆ

z − x+ y

2

˙

(f(x)− f(z))dz +

∫
RN

hr

ˆ

z − x+ y

2

˙

(f(z)− f(y))dz .

We assume that f , γjk and gjk are smooth and compute the following:∫
RN

hr

ˆ

z − x+ y

2

˙

(f(x)− f(z))dz

= −
N∑
j=1

∫
RN

∫ 1

0
hr

ˆ

z − x+ y

2

˙

∂jf(x+ t(z − x))(z · ej − x · ej) dtdz .

After the change of variable −t(z − x) 7→ w we get

=

N∑
j=1

∫
RN

∫ 1

0
hr

ˆ

x− y
2
− w

t

˙

∂jf(x− w)
w · ej
tN+1

dtdw

= r

N∑
j=1

∫
RN

∫ 1

0

1

tN
hr

ˆ

x− y
2
− w

t

˙

w · ej
tr

∂jf(x− w) dtdw

= r
N∑
j=1

m∑
k=1

∫ 1

0

« ∫
Rn1

1

tn1
h1
r

ˆ

x1 − y1

2
− w1

t

˙{w1

tr

}j
Rjkgjk(x1 − w1) dw1

×
∫

Rn2

1

tn2
h2
r

ˆ

x2 − y2

2
− w2

t

˙{w2

tr

}j
γjk(x2 − w2) dw2

ff

dt

= r
N∑
j=1

m∑
k=1

∫ 1

0

„

1

tn1
h1
r

ˆ

x1 − y1

2
− w1

t

˙{w1

tr

}j ∗
w1

Rjkgjk(w1)



(x1)

×
„

1

tn2
h2
r

ˆ

x2 − y2

2
− w2

t

˙{w2

tr

}j ∗
w2

γjk(w2)



(x2) dt .
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Denoting Υξ,j
ε (w1) = 1

εn1 Υξ,j
`

w1
ε

˘

and Ῡξ,j
ε (w2) = 1

εn2 Ῡξ,j
`

w2
ε

˘

, this expression equals

r

N∑
j=1

m∑
k=1

∫ 1

0
[Υ

x−y
|x−y| ,j

tr ∗
1
Rjkgjk] (x1) [Ῡ

x−y
|x−y| ,j

tr ∗
2
γjk] (x2) dt,

and so
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∫
RN

hr

ˆ

z − x+ y

2

˙

(f(x)− f(z))dz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

≤ |x− y|
N∑
j=1

m∑
k=1

∫ 1

0
|[Υ

x1−y1
|x−y| ,j

tr ∗
1
Rjkgjk] (x1) [Ῡ

x2−y2
|x−y|
tr ∗

2
γjk] (x2)| dt

≤ |x− y|
N∑
j=1

m∑
k=1

∫ 1

0
sup
ε>0

sup
ξ
|[Υξ,j

ε ∗
1
Rjkgjk] (x1) [Ῡξ,j

ε ∗
2
γjk] (x2)| dt

= |x− y|
N∑
j=1

m∑
k=1

M{Υξ,j⊗Ῡξ,j}(γjkRjkgjk)(x) = |x− y|V (x) .

This proves the statement in the smooth case. By a similar approximation argument as in [13], we
conclude this holds for functions of the type in (5.2). �

5.2. Split regularity: the anisotropic estimate. We now modify Lemma 5.4 to obtain an
estimate in which distances are measured “anisotropically” through the matrix A defined in (4.2).
In the next lemma we will use the following notation:

ǧij(x1) = gjk(δ1x1) , γ̌ij(x2) = γij(δ2x2) ,

where with gjk(δ1x1) we denote the measure on Rn1 defined through

〈gjk(δ1x1), ϕ(x1)〉 = δ−n1
1 〈gij(y1), ϕ(y1/δ1)〉 , ϕ ∈ C∞c (Rn1) .

Moreover, Rδ1jk denotes the singular integral operator in Rn1 associated to the kernel Kδ1
jk, where

Kδ1
jk(x1) = δn1

1 Kij(δ1x1) . (5.4)

Lemma 5.5. Let f : RN → R be a function in L1
loc(RN ) such that for each j = 1, . . . , N we have

that ∂jf is as in (5.2). Let A be the matrix defined in (4.2). Then there exists a nonnegative
function U : RN → [0,∞), such that for LN -a.e. x, y ∈ RN ,

|f(x)− f(y)|≤ |A−1[x− y]|
´

U(x) + U(y)
¯

,

where (with the notation above)

U(x) = U(R, γ, g)(x) =

N∑
j=1

m∑
k=1

[M{Υξ,j⊗Ῡξ,j}(R
δ1
jkǧjkγ̌jkAjj)](A

−1x) .

Proof. Define the following rescaled vector field. For each z ∈ RN , define

f̌(z) = f(Az) .

Now Df̌ is related to Df by the following:

∂j f̌(z) = ∂jf(Az)Ajj =

m∑
k=1

γjk(δ2z2)Rjkgjk(δ1z1)Ajj .
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We now apply Lemma 5.4. This gives the existence of a function V ∈M1
loc(RN ) to estimate the

difference quotient of f̌ :

|f̌(z)− f̌(w)|≤ |z − w|(V (z) + V (w)) , (5.5)

with V given by

V (z) = V(R, γ, g) =
N∑
j=1

m∑
k=1

M{Υξ,j⊗Ῡξ,j}

´

γjk(δ2z2)Rjkgjk(δ1z1)
¯

Ajj . (5.6)

With a change of variable we can verify that

(Rjkgjk)(δ1z1) = (Rδ1jkǧjk)(z1) .

Thus we can rewrite (5.6) as

V (z) =

N∑
j=1

m∑
k=1

[M{Υξ,j⊗Ῡξ,j}(R
δ1
jkǧjkγ̌jkAjj)](z) . (5.7)

By letting U(x) = V (A−1x) the proof is concluded. �

Remark 5.6. In order to treat the case of a function with gradient given by the singular integral
in RN of a measure, that is

∂jf =

m∑
k=1

Rjkgjk , (5.8)

with Rjk singular integrals of fundamental type in RN and gjk ∈ M(RN ), one should consider the
function

U(x) = U(R, g)(x) =
N∑
j=1

m∑
k=1

[M{Υξ,j}R
A
jk(gjk(A·))Ajj)](A−1x) ,

where RAij is the singular integral operator corresponding to the kernel

KA
ij (x) = |detA|Kij(Ax)

and A is the diagonal matrix defined in (4.2). This would however give a more singular estimate
in Lemma 5.7 below, and would therefore be useless for the proof of Theorem 6.1.

On the other hand it is possible to treat the case Rij = δ in (5.8), since the Dirac delta “does
not see the dilation”. This would correspond to the case of a vector field b = (b1, b2) such that b2
is BV in x1 and W 1,1 in x2, and b1 is W 1,1 in both x1 and x2, the situation of [10]. This will be
presented in [7].

5.3. Split regularity: operator bounds. We finally establish suitable estimates on the norms
of the operator defined in Lemma 5.5.

Lemma 5.7. Let U(R, γ, g) be as in Lemma 5.5. Then for any 1 < p <∞ we have

|||U(R, γ, g)|||M1(Ωr)≤ Cr,p,m

¨

˝δ1

n1∑
j=1

m∑
k=1

||γjk||Lp(Rn2 )||gjk||M(Rn1 )+δ2

N∑
j=n1+1

m∑
k=1

||γjk||Lp(Rn2 )||gjk||M(Rn1 )

˛

‚ ,

where Ωr = B1
r ×B2

r ⊂ Rn1 × Rn2, and

||U(R, γ, g)||Lp(RN )≤ Cp

¨

˝δ1

n1∑
j=1

m∑
k=1

||γjk||Lp(Rn2 )||gjk||Lp(Rn1 )+δ2

N∑
j=n1+1

m∑
k=1

||γjk||Lp(Rn2 )||gjk||Lp(Rn1 )

˛

‚ .
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The constants Cr,p,m and Cp also depends on the singular integral operators Rjk in (5.2) and on
the space dimension. The first constant Cr,p,m also depend on the integer m in (5.2).

Proof. Let us start with the estimate in M1. We define B̌1
r = B1

r/δ1
, B̌2

r = B2
r/δ2

and Ω̌r = B̌1
r × B̌2

r .

Consider first the measure of the superlevels of U(x): changing variable via the linear transformation
z = A−1x we obtain

LN ({x ∈ Ωr : |U(x)|> λ}) = LN ({x ∈ Ωr : |V (A−1x)|> λ})
= δn1

1 δn2
2 L

N ({z ∈ Ω̌r : |V (z)|> λ}) ,

where V is as before given by

V (z) = δ1

n1∑
j=1

m∑
k=1

[M{Υξ,j⊗Ῡξ,j}(R
δ1
jkǧjkγ̌jk)](z)

+ δ2

n1∑
j=n1+1

m∑
k=1

[M{Υξ,j⊗Ῡξ,j}(R
δ1
jkǧjkγ̌jk)](z)

(5.9)

(compare with (5.7) and split the sum for 1 ≤ j ≤ n1 and n1 + 1 ≤ j ≤ n1 + n2).

Remembering that |||f(x1, x2)|||M1
x1x2
≤
∥∥∥|||f(x1, x2)|||M1

x1

∥∥∥
L1
x2

we estimate for fixed j = 1, . . . , N

as follows:

δn1
1 δn2

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m∑
k=1

[M{Υξ,j⊗Ῡξ,j}(R
δ1
jkǧjkγ̌jk)](z)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

M1(Ω̌r)

≤ Cm δn1
1 δn2

2

m∑
k=1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
M{Υξ,j}(R

δ1
jkǧjk)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

M1(B̌1
r )

∥∥∥M{Ῡξ,j}γ̌jk∥∥∥
L1(B̌2

r )

≤ Cm[Ln2(B̌2
r )]1−1/p δn1

1 δn2
2

m∑
k=1

‖ǧjk‖M(Rn1 )

∥∥∥M{Ῡξ,j}γ̌jk∥∥∥
Lp(B̌2

r )

≤ Cr,p,m δ−n2+n2/p
2 δn1

1 δn2
2

m∑
k=1

‖ǧjk‖M(Rn1 ) ‖γ̌jk‖Lp(Rn2 )

= Cr,p,m

m∑
k=1

‖gjk‖M(Rn1 ) ‖γjk‖Lp(Rn2 ) .

In the above chain of inequalities we have used the fact that the norm of Rδ1jk as singular integral

operator coincides with the norm of Rjk as singular integral operator.
Recalling (5.9) we immediately obtain the first inequality claimed in the lemma. The second one

follows with a simile argument, using the continuity if the operator

ǧjk 7→ Rδ1jkǧjk

from Lp(Rn1) into itself. �

6. The fundamental estimate for flows: main theorem and corollaries

Our main theorem is the following:

Theorem 6.1. Let b and b̄ be two vector fields satisfying assumption (R1), and assume that b also
satisfies assumptions (R2) and (R3). Fix t ∈ [0, T ) and let X and X̄ be regular Lagrangian flows
starting at time t associated to b and b̄ respectively, with compressibility constants L and L̄. Then
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the following holds. For every γ > 0 and r > 0 and for every η > 0 there exist λ > 0 and Cγ,r,η > 0
such that

Ln
`

Br ∩ {|X(s, ·)− X̄(s, ·)|> γ}
˘

≤ Cγ,r,η||b− b̄||L1((0,T )×Bλ)+η

for all s ∈ [t, T ]. The constants λ and Cγ,r,η also depend on:

• The equi-integrability in L1((0, T );L1(Rn1)) of p, q, r, as well as the norm in L1((0, T );M(Rn1))
of m (where p, q, r and m are associated to b as in (R2)),
• The norms of the singular integral operators S·ijk, as well as the norms in L∞((0, T );Lq(Rn2))

of γ·ijk (associated to b as in (R2))),

• The norm in Lp((0, T )×Bλ) of b,
• The L1((0, T );L1(RN )) +L1((0, T );L∞(RN )) norms of the decompositions of b and b̄ as in

(R1),
• The compressibility constants L and L̄.

From this fundamental estimate, the various corollaries regarding the well posedness of the
regular Lagrangian flow and of Lagrangian solutions to the continuity and transport equations
follow with the same proofs as in Sections 6 and 7 in [13]. In particular, we obtain:

• Uniqueness of the regular Lagrangian flow associated to a vector field satisfying (R1), (R2)
and (R3),
• Stability (with an explicit rate) for a sequence Xn of regular Lagrangian flows associated to

vector fields bn, that converge in L1
loc([0, T ]×RN ) to a vector field satisfying (R1), (R2) and

(R3), under the assumption that the decompositions of bn in (R1) and the compressibility
constants of Xn satisfy uniform bounds,
• Compactness for a sequence Xn of regular Lagrangian flows associated to vector fields bn

satisfying (R1), (R2) and (R3) with suitable uniform bounds,
• Existence of a regular Lagrangian flow associated to a vector field satisfying (R1), (R2)

and (R3) and such that [div b]− ∈ L1((0, T );L∞(RN )),
• If a vector field b satisfies (R1), (R2) and (R3) and div b ∈ L1((0, T );L∞(RN )), then

there exists a unique forward and backward regular Lagrangian flow associated to b, which
satisfies the usual group property, and the Jacobian of the flow is well defined,
• Lagrangian solutions to the continuity and transport equations with a vector field b satis-

fying (R1), (R2) and (R3) and div b ∈ L1((0, T );L∞(RN )) are well defined and stable.

7. Proof of the fundamental estimate (Theorem 6.1)

The proof of Theorem 6.1 makes use of the integral functional

Φδ1,δ2(s) =

∫
Br∩Gλ∩ sGλ

log
`

1 +
ˇ

ˇA−1
“

X(s, x1, x2)− sX(s, x1, x2)
‰
ˇ

ˇ

˘

dx

already defined in (4.3). In the following proof we assume δ1 ≤ δ2.
In order to improve the readability of the following (many) estimates, we will use the notation

“À” to denote an estimate up to a constant only depending on absolute constants and on the
bounds assumed in Theorem 6.1, and the notation “Àλ” to mean that the constant could also
depend on the truncation parameter λ. We will however write explicitly the norm of the measure
m, in order to make the reader aware of its role in the estimates.
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Step 1: Differentiating Φδ1,δ2. We start by differentiating the integral functional with respect to
time:

Φ′δ1,δ2(s) ≤
∫

Br∩Gλ∩ sGλ

|A−1[b(s,X(s, x1, x2))−sb(s, sX(s, x1, x2))]|
1 + |A−1[X(s, x1, x2)− sX(s, x1, x2)]|

dx .

For simplicity, we drop the notation X(s, x1, x2), setting X(s, x1, x2) = X and sX(s, x1, x2) = sX.
We estimate

Φ′δ1,δ2(s) ≤
∫

Br∩Gλ∩ sGλ

|A−1[b(s, sX)−sb(s, sX)]|dx+

∫
Br∩Gλ∩ sGλ

|A−1[b(s,X)− b(s, sX)]|
1 + |A−1[X − sX]|

dx .

After a change in variable along the flow sX in the first integral, and noting that δ1 ≤ δ2, we further
obtain

Φ′δ1,δ2(s) ≤
sL

δ1
||b(s, ·)−sb(s, ·)||L1(Bλ)

+

∫
Br∩Gλ∩ sGλ

min

{
|A−1[b(s,X)− b(s, sX)]|, |A

−1[b(s,X)− b(s, sX)]|
|A−1[X − sX]|

}
dx .

(7.1)

Step 2: Decomposing the minimum. We consider the second element of the minimum. We have

A−1[b(s,X)− b(s, sX)] =

ˆ

b1(s,X)− b1(s, sX)

δ1
,
b2(s,X)− b2(s, sX)

δ2

˙

,

and therefore

|A−1[b(s,X)− b(s, sX)]|
|A−1[X − sX]|

À
1

δ1

|b1(s,X)− b1(s, sX)|
|A−1[X − sX]|

+
1

δ2

|b2(s,X)− b2(s, sX)|
|A−1[X − sX]|

. (7.2)

Step 3: Definition of the functions Up, Uq, Um and Ur. We aim at estimating the difference quotients
in (7.2). We apply Lemma 5.5 and (with a slight extension of the notation) we obtain that

|b1(s, x)− b1(s, x̄)|
|A−1[x− x̄]|

≤ U(S1, S2, γ1, γ2, p, q)(x) + U(S1, S2, γ1, γ2, p, q)(x̄) =: Up,q(x) + Up,q(x̄)

and

|b2(s, x)− b2(s, x̄)|
|A−1[x− x̄]|

≤ U(S3, S4, γ3, γ4,m, r)(x) + U(S3, S4, γ3, γ4,m, r)(x̄) =: Um,r(x) + Um,r(x̄)

for a.e. x and x̄ ∈ RN and s ∈ [t, T ].
It is immediate from the definition of the operator U that it is subadditive in its entries. Therefore

we can further estimate

Up,q(x) = U(S1, S2, γ1, γ2, p, q)(x) ≤ U(S1, γ1, p)(x) + U(S2, γ2, q)(x) =: Up(x) + Uq(x)

and

Um,r(x) = U(S3, S4, γ3, γ4,m, r)(x) ≤ U(S3, γ3,m)(x) + U(S4, γ4, r)(x) =: Um(x) + Ur(x)

for a.e. x ∈ RN , implying that

|b1(s, x)− b1(s, x̄)|
|A−1[x− x̄]|

≤ Up(x) + Uq(x) + Up(x̄) + Uq(x̄) (7.3)

and
|b2(s, x)− b2(s, x̄)|
|A−1[x− x̄]|

≤ Um(x) + Ur(x) + Um(x̄) + Ur(x̄) (7.4)

for a.e. x and x̄ ∈ RN and s ∈ [t, T ].
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Step 4. Splitting of the quotient. Let Ω = (t, τ)×Br ∩Gλ∩ sGλ ⊂ RN+1. We return to the estimate
in (7.1) of Step 1. For any τ ∈ [t, T ] we integrate this expression over s ∈ (t, τ), and recall (7.2) to
get

Φδ1,δ2(τ) À
sL

δ1
||b(s, ·)−sb(s, ·)||L1((t,τ)×Bλ)

+

∫
Ω

min

{
|A−1[b(s,X)− b(s, sX)]|, 1

δ1

|b1(s,X)− b1(s, sX)|
|A−1[X − sX]|

+
1

δ2

|b2(s,X)− b2(s, sX)|
|A−1[X − sX]|

}
dxds

=
sL

δ1
||b(s, ·)−sb(s, ·)||L1((t,τ)×Bλ)+rΦδ1,δ2(τ) .

(7.5)

We analyze the term rΦδ1,δ2(τ). Using the estimates in (7.3) and (7.4) in Step 3, we can write

rΦδ1,δ2(τ) À

∫
Ω

min

{
|A−1[b(s,X)− b(s, sX)]|, 1

δ1

|b1(s,X)− b1(s, sX)|
|A−1[X − sX]|

}
dxds

+

∫
Ω

min

{
|A−1[b(s,X)− b(s, sX)]|, 1

δ2

|b2(s,X)− b2(s, sX)|
|A−1[X − sX]|

}
dxds

≤
∫

Ω
min

{
|A−1[b(s,X)− b(s, sX)]|, 1

δ1

`

(Up + Uq)(s,X) + (Up + Uq)(s, sX)
˘

}
dxds

+

∫
Ω

min

{
|A−1[b(s,X)− b(s, sX)]|, 1

δ2

`

(Um + Ur)(s,X) + ((Um + Ur))(s, sX)
˘

}
dxds .

(7.6)

Step 5. Decomposition of the functions Up, Uq and Ur. We further decompose the functions Up, Uq

and Ur exploiting the equi-integrability of p, q and r.
We apply the equi-integrability Lemma 2.4 in L1 + Lq, with the same 1 < q ≤ ∞ as in the

assumption on the functions γ in (R2). Given ε > 0, we find Cε > 0, a Borel set Aε ⊂ (0, T )×Rn1

with finite measure and decompositions

pijk = (pijk)
1 + (pijk)

2 =: p1 + p2 ,

qijk = (qijk)
1 + (qijk)

2 =: q1 + q2

and

rijk = (rijk)
1 + (rijk)

2 =: r1 + r2 ,

so that

‖p1‖L1((0,T )×Rn1 )≤ ε , ‖q1‖L1((0,T )×Rn1 )≤ ε , ‖r1‖L1((0,T )×Rn1 )≤ ε ,

‖p2‖Lq((0,T )×Rn1 )≤ Cε , ‖q2‖Lq((0,T )×Rn1 )≤ Cε , ‖r2‖Lq((0,T )×Rn1 )≤ Cε ,
and

spt (p2) ⊂ Aε , spt (q2) ⊂ Aε , spt (r2) ⊂ Aε .
We then decompose the functions Up, Uq and Ur from Step 3 as

Up = U(S1, γ1, p) ≤ U(S1, γ1, p1) + U(S1, γ1, p2) =: U1
p + U2

p ,

Uq = U(S2, γ2, q) ≤ U(S2, γ2, q1) + U(S2, γ2, q2) =: U1
q + U2

q

and

Ur = U(S4, γ4, r) ≤ U(S4, γ4, r1) + U(S4, γ4, r2) =: U1
r + U2

r .
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Applying Lemma 5.7 to U1
p and U2

p we get

|||U1
p |||M1((0,T )×Bλ) Àλ δ1||γ1||L∞((0,T );Lq(Rn2 ))||p1||L1((0,T )×Rn1 )) Àλ δ1ε ,

‖U2
p ‖Lq((0,T )×Bλ) À δ1||γ1||L∞((0,T );Lq(Rn2 ))||p2||Lq((0,T )×Rn1 ) À δ1Cε .

(7.7)

We have a similar estimate for Uq and Ur:

|||U1
q |||M1((0,T )×Bλ) Àλ δ2ε , |||U1

r |||M1((0,T )×Bλ)Àλ δ2ε ,

‖U2
q ‖Lq((0,T )×Bλ) À δ2Cε , ‖U2

r ‖Lq((0,T )×Bλ)À δ2Cε .
(7.8)

Note that we cannot apply such a decomposition to Um, since it is defined as the operator U
acting on a measure rather than integrable function. We only have the bound

|||Um|||M1((0,T )×Bλ)Àλ δ1||m||L1((0,T );M(Rn1 )) . (7.9)

We further split the minima according to this decomposition:

rΦδ1,δ2(τ) À

∫
Ω

min

{
|A−1[b(s,X)− b(s, sX)]|, 1

δ2
(Um(s,X) + Um(s, sX))

}
dxds

+

∫
Ω

min

{
|A−1[b(s,X)− b(s, sX)]|, 1

δ2
(U1

r (s,X) + U1
r (s, sX))

}
dxds

+

∫
Ω

min

{
|A−1[b(s,X)− b(s, sX)]|, 1

δ2
(U2

r (s,X) + U2
r (s, sX))

}
dxds

+

∫
Ω

min

{
|A−1[b(s,X)− b(s, sX)]|, 1

δ1
((U1

p + U1
q )(s,X) + (U1

p + U1
q )(s, sX))

}
dxds

+

∫
Ω

min

{
|A−1[b(s,X)− b(s, sX)]|, 1

δ1
((U2

p + U2
q )(s,X) + (U2

p + U2
q )(s, sX))

}
dxds

=

∫
Ω
ϕ1(s,X, sX) +

∫
Ω
ϕ2(s,X, sX) +

∫
Ω
ϕ3(s,X, sX) +

∫
Ω
ϕ4(s,X, sX) +

∫
Ω
ϕ5(s,X, sX) .

(7.10)

Step 6. Estimating the functions ϕj. Let Ω′ = (t, τ)× Bλ ⊂ RN+1. We estimate the first element
of each minima in Lp: changing variables along the flows we obtain

‖ϕj(s,X, sX)‖Lp(Ω)≤
L1/p + sL1/p

δ1
‖b‖Lp(Ω′) À

1

δ1
(7.11)

for every j = 1, . . . , 5.
We now consider the second elements of the minima. Let us start with ϕ1. Changing variable

along the flows and using (7.9) we obtain

|||ϕ1(s,X, sX)|||M1(Ω) ≤
1

δ2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇUm(s,X) + Um(s, sX)
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

M1(Ω)

À
1

δ2
|||Um|||M1(Ω′) Àλ

δ1

δ2
||m||L1((0,T );M(Rn1 )) .

(7.12)

Consider ϕ2. Using (7.8) we obtain

|||ϕ2(s,X, sX)|||M1(Ω) ≤
1

δ2
|||U1

r (s,X) + U1
r (s, sX)|||M1(Ω)

À
1

δ2
|||U1

r |||M1(Ω′) Àλ ε .

(7.13)
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For ϕ3 and ϕ5 we neglect the first element of the minimum, since we have directly an estimate
on the L1(Ω) norm. Using (7.8) we obtain

‖ϕ3(s,X, sX)‖L1(Ω) ≤
1

δ2
‖U2

r (s,X) + U2
r (s, sX)‖L1(Ω)

À
1

δ2
||U2

r ||L1(Ω′) Àλ Cε .

(7.14)

Similarly, using (7.7) and (7.8), we estimate ϕ5 as follows:

||ϕ5(s,X, sX)||L1(Ω) ≤
1

δ1
||(U2

p + U2
q )(s,X) + (U2

p + U2
q )(s, sX)||L1(Ω)

À
1

δ1
||(U2

p + U2
q )||L1(Ω′) Àλ

δ2

δ1
Cε .

(7.15)

Finally, using (7.7) and (7.8), we estimate ϕ4:

|||ϕ4(s,X, sX)|||M1(Ω) ≤
1

δ1
|||(U1

p + U1
q )(s,X) + (U1

p + U1
q )(s, sX)|||M1(Ω)

À
1

δ1
|||(U1

p + U1
q )|||M1(Ω′)

Àλ
δ1ε+ δ2ε

δ1
Àλ

δ2

δ1
ε .

(7.16)

Step 7. Interpolation. We now apply the Interpolation Lemma 2.2 to estimate the L1(Ω) norms of
ϕ1, ϕ2 and ϕ4.

Using (7.11) and (7.12) we obtain

‖ϕ1(s,X, sX)‖L1(Ω)Àλ
δ1

δ2
‖m‖

„

1 + log

ˆ

δ2

δ2
1‖m‖

˙

. (7.17)

Proceeding similarly and using (7.11), (7.13) and (7.16) we obtain

||ϕ2(s,X, sX)||L1(Ω)Àλ ε

„

1 + log

ˆ

1

δ1ε

˙

(7.18)

and

||ϕ4(s,X, sX)||L1(Ω)Àλ
δ2

δ1
ε

„

1 + log

ˆ

1

δ2ε

˙

. (7.19)

Finally, we sum all the terms in (7.10). Using (7.17), (7.18), (7.14), (7.19) and (7.15), and setting
δ1

δ2
= α, we get:

Φδ1,δ2(τ) Àλ
1

δ1
||b(s, ·)−sb(s, ·)||L1(Bλ×(t,τ))

+ α‖m‖
„

1 + log

ˆ

1

δ1α‖m‖

˙

+ ε

„

1 + log

ˆ

1

δ1ε

˙

+ Cε

+
ε

α

„

1 + log

ˆ

1

δ2ε

˙

+
1

α
Cε .

(7.20)
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Step 8. The final estimate. By definition of Φδ1,δ2 , given γ > 0 we estimate

Φδ1,δ2(τ) ≥
∫
Br∩{|X(τ,x)− sX(τ,x)|>γ}∩Gλ∩ sGλ

log

ˆ

1 +
γ

δ2

˙

dx

= log

ˆ

1 +
γ

δ2

˙

LN
´

Br ∩ {|X(τ, x)− sX(τ, x)|> γ} ∩Gλ ∩ sGλ

¯

.

(7.21)

This implies that

LN (Br ∩ {|X(τ, x)− sX(τ, x)|> γ}) ≤
Φδ1,δ2(τ)

log
´

1 + γ
δ2

¯ + LN (Br \Gλ) + LN (Br \ sGλ) . (7.22)

Combining (7.20) and (7.22) we obtain

LN (Br∩{|X(τ, x)− sX(τ, x)|> γ})

≤ Cλ

{ 1
δ1
‖b−sb‖L1

log
´

1 + γ
δ2

¯ +
α‖m‖

”

1 + log
´

1
δ1α‖m‖

¯ı

log
´

1 + γ
δ2

¯ +
ε
”

1 + log
´

1
δ1ε

¯ı

log
´

1 + γ
δ2

¯

+

ε
α

”

1 + log
´

1
δ2ε

¯ı

log
´

1 + γ
δ2

¯ +
1
αCε

log
´

1 + γ
δ2

¯ +
Cε

log
´

1 + γ
δ2

¯

}
+ LN (Br \Gλ) + LN (Br \ sGλ)

=: 1) + 2) + 3) + 4) + 5) + 6) + 7) + 8) .

(7.23)

Fix η > 0. By Lemma 3.2, we can choose λ > 0 large enough so that 7) + 8) ≤ 2η/7. Choose
α small enough so that 2) ≤ η/7. Then choose ε < α2 small enough so that 3) + 4) ≤ 2η/7, since
these terms are uniformly bounded as δ1, δ2 → 0 and for all ε > 0.

Now λ and ε (and therefore Cε) are fixed. Also α is fixed, but δ1 and δ2 are free to be chosen so
long as the ratio equals α. Hence, we now choose δ2 small enough, in particular depending on Cε,
so that 5) + 6) ≤ 2η/7. This fixes all parameters.

Setting

Cγ,r,η =
Cλ

δ1 log(1 + γ
δ2

)

we have proven our statement. �
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(UMR 8050), CNRS, UPEM, UPEC, F-77454, Marne-la-Vallée, France

E-mail address: francois.bouchut@u-pem.fr

Gianluca Crippa, Departement Mathematik und Informatik, Universität Basel, Rheinsprung 21,
CH-4051, Basel, Switzerland

E-mail address: gianluca.crippa@unibas.ch


