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Abstract

In this work we explore the preservation of quasiconvexity and ∞-

Poincaré inequality under sphericalization and flattening in the metric

setting. The results developed in [21] show the preservation of Ahlfors

regularity, doubling property and the p-Poincaré inequality for 1 ≤ p <∞
under the sphericalization and flattening transformations provided the un-

derlying metric space is annularly quasicovex. In this work, we propose

a weaker assumption to still preserve quasiconvexity and ∞-Poincaré in-

equality, called radially star-like quasiconvexity (corresponding to spheri-

calization) and meridian-like quasiconvexity (corresponding to flattening)

extending in particular a result in [7] to a wider class of metric spaces and

covering the case p =∞ in [21].
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1 Introduction

The process of obtaining the Riemann sphere from the complex plane, and vice

versa, was generalized in the metric setting by using sphericalization and flatten-

ing. See the work [2] by Buckley and Balogh. These conformal transformations

are dual to each other, and the performance of sphericalization followed by flat-

tening or vice versa results in a metric space that is bi-Lipschitz equivalent to

the original space.

The advantage of considering these transformations comes partly from the

fact that some results in analysis are easier to establish, either for bounded spaces

or for unbounded ones; see for example [19]. Indeed, the paper [5] established

equivalence between unbounded uniform domains and Gromov hyperbolic spaces,

and their technique needed the uniform domain to be unbounded. The paper [19]

used the sphericalization and flattening techniques to transform bounded uniform

domains into unbounded uniform domains, and hence succeeded in extending the

results of [5] to bounded uniform domains. As another example, recently the

paper [1] proposed a notion of prime end boundary for bounded domains in the

metric setting, and such a prime end boundary was the principal focus of the

study of Dirichlet problems in the metric setting in [13]. However, the results in

[13] needed the domain to be bounded. To establish solutions to the Dirichlet

problem for unbounded domains in the metric setting, the thesis [12] used the

procedure of sphericalization to transform the unbounded domain into a bounded

domain, consider the prime end boundary of the resulting bounded domain, and

then pulled back this prime end boundary via flattening to construct the prime

end boundary of the unbounded domain, thus circumventing the problem related

to non-compactness of the boundary.

A very natural problem is therefore to study which geometric properties are

preserved under these transformations. In this work we will focus on the preserva-

tion of ∞-Poincaré inequality and quasiconvexity, a metric property of the space

that ensures that one can connect two points in the space by a curve whose length

is bounded by a universal constant times the distance between the two points.

The geometry of X at small scales is similar to the one of its sphericalized ver-

sion. The differences arise at large scales. For example, local quasiconvexity

is preserved under flattening and sphericalization (see [7, Proposition 4.3.]). In

contrast, as shown in [7, Example 6.2.], (global) quasiconvexity is not gener-
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ally preserved under these deformations. Buckley, Herron and Xie proved in [7]

that, under the additional hypothesis of annularly quasiconvex, quasiconvexity

and annular quasiconvexity are preserved under sphericalization and flattening.

Examples of annularly quasiconvex spaces include upper Ahlfors regular Loewner

spaces (such as Carnot groups and certain Riemannian manifolds with non-

negative Ricci curvature) or complete Ahlfors Q-regular metric measure spaces

supporting a p-Poincaré inequality for some p < Q (see [20]). However, there are

some simple and natural examples of quasiconvex spaces that are not annularly

quasiconvex, but whose sphericalized and flattened versions are still quasiconvex.

The real line, the Euclidean infinite strip R× [−1, 1], and some classes of metric

trees are some examples.

Motivated by these examples, we define a new class of metric spaces that

encompasses annularly quasiconvex spaces and for which quasiconvexity is still

preserved under sphericalization and flattening. We define radially star-like qua-

siconvex spaces related to the process of sphericalization (see Definition 3.1) and

meridian-like quasiconvex spaces linked to the process of flattening (see Defini-

tion 4.1). We will show that these two concepts are duals: a radially star-like

quasiconvex space is meridian-like quasiconvex after sphericalizing, and becomes

again radially star-like quasiconvex when flattenned back. This duality is shown

in Lemmas 4.7 and 4.6. The main results of this paper are Theorem 3.4 and The-

orem 4.10 that study the preservation of quasiconvexity under sphericalization

and flattening, respectively. Examples 3.14 and 4.12 illustrate the sharpness of

the results.

On the other hand, metric spaces endowed with a doubling measure and sup-

porting a Poincaré inequality are nowadays considered a standard class of spaces

when developing a first order differential analysis in a metric measure space set-

ting. See for example [3], [8], [17], [15], [16] or [23] and the references therein.

Li and Shanmugalingam considered the problem of transforming not only the

metric, but also the measure under sphericalization and flattening and showed in

[21] that if (X, d, µ) is a complete annularly quasiconvex metric measure space

with µ doubling and supporting a p-Poincaré inequality for some 1 ≤ p < ∞,

the processes of sphericalization and flattening yield doubling metric measure

spaces supporting a p-Poincaré inequality as well. See [21, Theorem 3.3.5, The-

orem 4.3.3.].
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It is shown in [10] and [11] that supporting an∞-Poincaré inequality is equiv-

alent to∞-thick quasiconvexity and also equivalent to the fact that given any two

points on the space and a null set N , there exists a quasiconvex path γ connect-

ing the two points so that L 1(γ−1(γ ∩ N)) = 0. As a consequence of the two

main theorems, we also prove in Theorems 3.13 and 4.11 the preservation of ∞-

Poincaré inequality under sphericalization and flattening, extending the picture

to the full range 1 ≤ p ≤ ∞ in [21].

The techniques used in the present paper are not straightforward generaliza-

tions of a single technique. One of the key tools used is an analog of the Boman

type chaining arguments as developed in [14] and [4] and used in [21]. However,

these chaining results are developed to deal with integrals of functions and their

gradients; we do not need to deal with functions directly because of the geomet-

ric characterization of ∞-Poincaré inequality. We instead modify the chaining

argument to construct by hand the curves that are quasiconvex and avoid null

sets almost all of the parametric time.

The ongoing work [9] deals with preservation of p-Poincaré inequalities for

1 ≤ p <∞ under sphericalization and flattening under similar hypothesis as the

ones used in the present paper. However, for the case 1 ≤ p < ∞ we need a

stronger version of star-like quasiconvexity than considered in this paper, and

hence the results in [9] are for a smaller class of metric measure spaces.

The work is organized as follows. Section 2 recalls the basic notions needed in

the paper related to metric measure spaces and to sphericalization and flattening.

Section 3 focuses on the preservation of∞-Poincaré inequality and quasiconvexity

under sphericalization while Section 4 focuses on the preservation of those same

properties under flattening.

2 Basic concepts

2.1 Metric measure spaces

Let (X, d) be a metric space. We denote open balls centered at x ∈ X and of

radius r > 0 by B(x, r) := {y ∈ X : d(x, y) < r} and closed balls by B(x, r) :=

{y ∈ X : d(x, y) ≤ r}. For λ > 0, λB denotes the ball concentric with B (with

respect to a predetermined center) but with radius λ-times the radius of B. For

0 < r < R, A(a, r, R) denotes the annulus A(a, r, R) := B(a,R) \B(a, r).
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By a curve in X we mean a continuous map γ : I → X, where I ⊂ R is an

interval. When I = [a, b] for some a, b ∈ R with a < b, the length `d(γ) of γ with

respect to the metric d is defined by

`d(γ) := sup
n−1∑
k=0

d(γ(tk), γ(tk+1)),

where the supremum is taken over all partitions a = t0 < t1 < · · · < tn = b of

the interval [a, b]. A curve γ is rectifiable if `d(γ) < ∞. We simply write `(γ) if

the metric is clear from the context. The image of a curve will be denoted by |γ|.
Given two points x, y ∈ X, γxy denotes a curve connecting x to y.

A metric space (X, d) is C-quasiconvex if there is a constant C ≥ 1 such that

every pair of points x and y in the space can be connected by a curve γ such

that `d(γ) ≤ Cd(x, y). Such a curve is called C-quasiconvex. We say that X is

A-annularly quasiconvex with respect to a base point a ∈ X if for every r > 0,

and for each pair of points x, y ∈ A(a, r/2, r) there is an A-quasiconvex curve γxy

connecting x to y inside the annulus A(a, r/A,Ar). We say that X is annularly

quasiconvex if there exists A ≥ 1 such that X is A-annularly quasiconvex for

every a ∈ X. Notice that being annularly quasiconvex with respect to some a

does not imply that the space is annularly quasiconvex. One can consider for

example the half line X = [0,∞) endowed with the euclidean metric which is

annularly quasiconvex only with respect to a = 0. Annular quasiconvexity was

introduced in [20] and has been further used for example in [7], [18] and [19].

The length function associated to a rectifiable curve γ : [a, b]→ X is sγ : [a, b]→
[0, `(γ)] given by sγ(t) = `(γ|[a,t]). Recall that every rectifiable curve admits a

unique 1-Lipschitz parametrization by the arc-length γs : [0, `(γ)]→ X such that

γ = γs ◦ sγ. The line integral of a Borel function ρ : X → [0,∞] over a rectifiable

path γ is defined via the formula∫
γ

ρ ds :=

∫ `(γ)

0

(ρ ◦ γs)(t)dt.

If ρ ≡ 1, the previous formula gives the length of γ. Given a real-valued function

u in a metric space X, a Borel function g : X → [0,∞] is an upper gradient of u

if |u(x)− u(y)| ≤
∫
γ
gds, for each rectifiable curve γ joining x and y in X.

Let (X, d, µ) be a metric measure space, with µ a Borel measure on X. The

measure µ is doubling if balls have finite positive measure and there is a constant
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Cµ ≥ 1 such that

µ(2B) ≤ Cµµ(B)

for all balls B. Let 1 ≤ p ≤ ∞. We say that (X, d, µ) supports a p-Poincaré

inequality if each ball in X has finite and positive measure and there are constants

C, λ > 0 such that for every open ball B in X, for every measurable function u

on B, and for every upper gradient g of u we have

1

µ(B)

∫
B

|u− uB|dµ ≤ Crad(λB)
( 1

µ(λB)

∫
λB

gpdµ
)1/p

,

if 1 ≤ p <∞, and

1

µ(B)

∫
B

|u− uB|dµ ≤ Crad(λB)‖g‖L∞(λB),

if p = ∞. Here, for arbitrary A ⊂ X with 0 < µ(A) < ∞ we write uA =
1

µ(A)

∫
A
u dµ.

Recall the following characterization of ∞-Poincaré inequality, which is inti-

mately connected to quasiconvexity.

Theorem 2.1. ([10, Theorem 3.1.]) Suppose that X is a locally complete met-

ric space supporting a doubling Borel measure µ. Then the following conditions

are equivalent:

(a) X supports an ∞-Poincaré inequality.

(b) There is a constant C ≥ 1 such that, for every null set N of X, and for every

pair of points x, y ∈ X there is a C-quasiconvex path γ in X connecting x

to y with γ /∈ Γ+
N , that is, L 1(γ−1(γ ∩N)) = 0.

The interested reader can find in [17] a discussion of the recent advances in

the field of analysis on metric measure spaces, including those in [10] and [21]

(see [17, Chapter 14]).

2.2 Sphericalization and flattening

Sphericalization and flattening are conformal deformations that generalize in the

context of metric spaces, the process of obtaining the Riemann sphere from the

Euclidean plane and vice versa. They were introduced by Balogh and Buckley in

[2] and further studied in [7] and [19].
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If X is an unbounded locally compact metric space, one can define its one-

point compactification Ẋ = X ∪ {∞}, where the topology on Ẋ is given by the

union of the topology on X and the collection of all sets that are complements

in Ẋ of compact subsets of X (see for instance, [22, Theorem 29.1]). Recall that

a space X is said to be locally compact if given x in X, there is a neighborhood

V of x such that V is compact.

Fixing a point a ∈ X, one can define a spherical density da on Ẋ, and a

flattening density da on the punctured space Xa = X \ {a}. See the Table 1 for

the precise formulas. As shown in [2], there exist metrics d̂a and d̂a bi-Lipschitz

equivalent to the densities da and da respectively. Since there is no closed formula

for the metrics d̂a and d̂a, we will use for convenience the densities da and da for

defining balls in Ẋ and Xa. Notice that the density function da we use satisfies the

condition of sphericalizing function g(t) = (1 + t)−2 as in [2]. The space (Ẋ, d̂a)

is a bounded metric space with diam(Ẋ) = 1, and is called the sphericalization of

(X, d), while (Xa, d̂a) is an unbounded metric space (if a is non-isolated) called

the flattening of (X, d). As shown in [2], the metric space resulting from flattening

with respect to the point {∞} the (bounded) sphericalized space (Ẋ, d̂a) is bi-

Lipschitz equivalent to the (unbounded) space (X, d), making sphericalization

and flattening dual transformations.

From a technical point of view, one of the main difficulties that one might

encounter is how to transform objects that involve the critical point {∞}. In

complex analysis, we know that we can use Möbius transformations to move

{∞} to any other point and still preserve the same geometric properties. But in

a general metric setting, one has to analyze the critical point {∞} separately.

In the sequel, it will be also useful to know how a curve and its corresponding

length change under the sphericalization and flattening processes. Let γ be a

rectifiable curve in a rectifiably connected unbounded metric space X. Under

sphericalization γ corresponds to γ̇ : [0, `(γ)]→ Ẋ defined by γ̇(t) = γs(t), where

γs is the arc-length parametrization of γ with respect to the original metric d. By

an abuse of notation we will denote the corresponding curve in Ẋ by γ as well.

One can check (see [2, Proposition 2.6]) that γ is rectifiable with respect to the

metric d̂a if it is rectifiable with respect to the original metric d. The formulas

for the length of γ̇ with respect to the metric d̂a and the length in the metric d̂a

of a given a curve γ : [a, b]→ Xa (notice that Xa ⊂ X) are given in the Table 1.
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X Ẋ := X ∪ {∞} a ∈ X Xc := X \ {c} c ∈ X

d da(x, y) =


d(x,y)

[1+d(x,a)][1+d(y,a)]
if x, y ∈ X,

1
1+d(x,a)

if x ∈ X, y =∞,

0 if x =∞ = y.

dc(x, y) =
d(x, y)

d(x, c)d(y, c)

if x, y ∈ Xc

B(x, r) Ba(x, r) Bc(x, r)

`(γ) `da(γ) =

∫ `(γ)

0

1

[1 + d(γs(t), a)]2
ds(t) `dc(γ̇) =

∫ `(γ)

0

1

d(γs(t), c)2
ds(t)

µ µa(A) =

∫
A\{∞}

1

µ(B(a, 1 + d(z, a)))2
dµ(z) µc(A) =

∫
A

1

µ(B(c, d(c, z)))2
dµ(z)

Table 1: Relevant formulas for flattening and sphericalization

If we also consider on X, a Borel-regular measure µ such that measures of

non-empty open sets are positive and measures of bounded sets are finite, we

can construct an induced measure µa on Ẋ and µa on Xa. It was shown in [21,

Proposition 3.6] that if µ is doubling, then so are µa and µa, from which follows in

particular that because Ẋ is bounded, µa(Ẋ) is finite. All the relevant formulas

are gathered in Table 1.

In what follows, for further clarification, the base point in the sphericalization will

be denoted by a ∈ X, and the one in the flattening by c ∈ X. Unless otherwise

stated, the letter C denotes various positive constants whose exact values are not

important for the purposes of this paper, and its value might change even within

a line.
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3 Preservation of quasiconvexity and∞-Poincaré

inequality under sphericalization: radially star-

like quasiconvex spaces

In [7, Section 6] Buckley, Herron and Xie studied the preservation of quasicon-

vexity (and annular quasiconvexity) under sphericalization under the hypothesis

of annular quasiconvexity. In view of the fact that natural examples such as

the real line or a broad class of metric trees are not annularly quasiconvex, our

aim in this section is to introduce a larger class of metric spaces that encom-

passes such examples and whose transformations still preserve properties such as

quasiconvexity or ∞-Poincaré inequality.

To motivate our definition, we go back to star-like domains that appear natu-

rally in complex analysis as sets for which the line segment connecting any point

to a fixed base point lies entirely inside the domain.

A relaxation of the star-likeness property, rough star-likeness, is enjoyed by

some proper geodesic Gromov hyperbolic spaces. A metric space is K-roughly

star-like with respect to a base point a ∈ X, if for every point x ∈ X there

exists some geodesic ray (isometric image in X to [0,∞)) emanating from a

whose distance to x is at most K. This property was first named in [5], although

roughly star-like spaces were called visual in [6]. Bonk, Heinonen and Koskela

in [5] provided a way to transport questions in Gromov hyperbolic spaces to

questions in bounded uniform spaces, and vice versa. In particular, the authors

proved that if a metric space (X, d) is a uniform space, the associated quasi

hyperbolic metric is a proper geodesic Gromov hyperbolic space that is roughly

star-like. On the other hand, if one begins with a (typically unbounded) proper

geodesic roughly star-like Gromov hyperbolic space (X, dH) one can obtain a

bounded uniform domain (X, dε) depending on a sufficiently small parameter

ε > 0. In some sense, the process of flattening-sphericalization pursues a similar

goal, though the uniformization metric dε of [5] is not the same as the metrics

studied in this paper.

The following definition is inspired by roughly star-like spaces, additionally

requiring that the point x is connected to the geodesic ray by a controlled qua-

siconvex curve. Recall here that given two points x, y ∈ X, γxy denotes a curve

connecting x to y.
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Definition 3.1. A space is K-radially star-like quasiconvex with respect to a

base point a ∈ X, if there exist a constant K ≥ 1 and a radius r0 > 0 such that

for every r > r0 and x ∈ A(a, r/2, r), there exist a base-point quasiconvex ray

γa∞, a point y ∈ γa∞ and a quasiconvex curve γxy ⊂ A(a, r/K,Kr) connecting x

to y such that

`(γxy) ≤ Kd(a, y).

Here we say that a ray γ : [0,∞)→ X with γ(0) = a is base-point quasiconvex

if for each z ∈ |γ|, `(γaz) ≤ Cd(a, z), where γaz is the subcurve of γ ending at z.

Figure 1: radially star-like quasiconvexity

Remark 3.2. We remind the reader that our curves are parametrized by arc

length. Therefore, for a curve γ : [0,∞)→ X we have that `(γ|[0,s]) = s.

The following lemma shows that, in a general class of metric spaces, annular

quasiconvexity is stronger than radially star-like quasiconvexity. As mentioned

in the Introduction, R is K-radially star-like quasiconvex but is not annularly

quasiconvex.

Lemma 3.3. Let (X, d) be an unbounded connected complete locally compact

metric space which is annularly quasiconvex with respect to a point a ∈ X. Then

(X, d) is radially star-like quasiconvex with respect to a.

Proof. First observe that a connected annularly quasiconvex space with respect

to a point a ∈ X is quasiconvex. Indeed, let x 6= y and assume d(x, a) ≥ d(y, a).

Let us denote Bi = B(a, 2−ir) for i ∈ N, where r = d(x, a). Because X is
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connected, for each i ∈ N for which X \Bi is non-empty, there exists yi ∈ X such

that d(a, yi) = 2−ir. Set y0 = x. By A-annular quasiconvexity with respect to

the point a ∈ X, for each such i ∈ N, there exists an A-quasiconvex curve γi ⊂ X

connecting yi−1 to yi such that γi ⊂ A(a, 2
−ir
C
, C2−ir). Let N be the positive

integer such that

2−N−1r ≤ d(y, a) < 2−Nr.

Let γ = γ1 ∪ γ2 ∪ · · · ∪ γN ∪ β, where β is an A-quasiconvex curve connecting yN

to y. Then the curve γ connects x to y and

`(γ) ≤
N∑
i=1

`(γi) + `(β) ≤ A

N∑
i=1

d(yi−1, yi) + Ad(yN , y)

≤A
N+1∑
i=1

(2−i+1r + 2−ir) = 3Ar
N+1∑
i=1

2−i = 3Ar(1− 2−N−1) ≤ 3Ad(x, y).

Thus we have that X is quasiconvex with quasiconvexity constant 3A.

We now show that X is radial star-like quasiconvex. To do so, fix a point

z ∈ A(a, r/2, r) for some r > 0. Let {xn}n be a sequence of points converging

to ∞ with x1 = z, that is, lim
n→∞

d(xn, a) = ∞. For each n ∈ N, let γn be a

quasiconvex curve connecting a to xn so that

`(γn) = inf
γ connects a toxn

`(γ).

Observe that a curve constructed in this way is base-point quasiconvex, that is,

for any y ∈ |γaxn |, `(γay) ≤ Cd(a, y), where γay is the subcurve of γaxn ending at y.

Since for every finite closed interval I ⊂ [0,∞), the subcurves γn|I have uniformly

bounded length for any n ∈ N, we can extract, by Arzelá-Ascoli Theorem, a

subsequence {γnk
} converging to a ray γa∞. Observe that γa∞ is base-point

quasiconvex. To finish, for each x ∈ A(a, r/2, r) choose y ∈ γa∞ ∩ A(a, r/2, r)

and construct a quasiconvex curve γxy in the annulus A(a, r/A,Ar) connecting x

to y using the annular quasiconvexity.

In fact, the proof has shown that annular quasiconvexity implies the radially

star-likeness, with radially star-likeness constants independent of the choice of

r0 > 0 one would choose in the definition of radially star-likeness.

We now state the main result of this section, namely, that quasiconvexity is

preserved under sphericalization for radially star-like quasiconvex spaces.
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Theorem 3.4. Let (X, d) be an unbounded complete quasiconvex metric space.

Let a ∈ X be a base point on X, and assume (X, d) is K-radially star-like qua-

siconvex with respect to a for some K ≥ 1. Then (Ẋ, da) is quasiconvex.

Proof. Given x1, x2 ∈ Ẋ, we have to prove that there exists a curve γ connect-

ing x1 and x2 such that `da(γ) ≤ Cda(x1, x2). Notice that in the case when

d(x1, a) ≤ 2r0 and d(x2, a) ≤ 2r0 with r0 as in Definition 3.1, the original and

the sphericalized metric are bi-Lipschitz on the ball B(a, 2Cqr0) where Cq is the

quasiconvexity constant of X, and so we can take a quasiconvex curve γx1x2 with

respect to the metric d connecting x1 and x2, which is also quasiconvex with

respect to the metric da. We now break the remaining parts of the proof into

four different cases: points that are in the same annulus and far away from each

other (Case 1), points that are in the same annulus and close to each other (Case

2), points that lie in different annuli (Case 3) and finally when one of the points

is the point at ∞ (Case 4). The annuli that appear in the proof are considered

with respect to the original metric d.

Fix c′ > 0 such that 0 < c′ < 1/(4Cq) and let x1, x2 ∈ Ẋ. As pointed out

before, we can assume that at least one of x1, x2 is not in the ball B(a, r0).

Before addressing the above four cases, we give the following preliminary

calculations. If γ is a quasiconvex curve in X connecting two points x1 and x2

and lying in the annulus A(a, r/K,Kr) for some r > 0, then whenever w ∈ γ, we

have d(w, a) ≥ r
K
≥ d(x1,a)

K2 , and thus it follows that

`da(γ) =

∫
γ

ds

[1 + d(γ(s), a)]2
≤ `(γ)

[1 + (d(x1, a)/K2)]2

≤ K2r

[1 + d(x1, a)/K2]2
≤ K4da(x1,∞).

(3.5)

Case 1: x1 and x2 are in the same annulus A(a, r/2, r) for some r > r0, with

d(x1, x2) ≥ c′r. Note that by this assumption, neither of x1, x2 is the point ∞,

and by the discussion above, r > 2r0. By the K-radially star-like quasiconvex

property, there exist base-point quasiconvex rays γ1a∞, γ2a∞, points y1 ∈ γ1a∞,

y2 ∈ γ2a∞ and quasiconvex curves γx1y1 , γx2y2 such that

`(γx1y1) ≤ Kd(a, y1) and `(γx2y2) ≤ Kd(a, y2).

Let us show that the concatenation γ = γx1y1 ∪ γ1y1∞ ∪ γ
2
∞y2 ∪ γy2x2 that connects

x1 and x2 satisfies that `da(γ) ≤ Cda(x1, x2). Here, γ1y1∞ is a subcurve of γ1a∞
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with end points y1 and ∞, and γ2y2∞ is the analogous subcurve for y2. By (3.5)

above, we have

`da(γx1y1) ≤ K4da(x1,∞).

On the other hand, since d(x1, x2) ≥ c′r ≥ c′d(x2, a), and d(x2, a) > r0, it

follows that

(1 + r0)d(x2, a) ≥ r0(1 + d(x2, a)). (3.6)

Hence, we have

da(x1, x2) =
d(x1, x2)

[1 + d(a, x1)][1 + d(a, x2)]
≥ c′r

[1 + d(a, x1)][1 + d(a, x2)]

≥ c′ d(x2, a)

1 + d(a, x2)

1

1 + d(a, x1)
≥ c′

r0
1 + r0

da(x1,∞).

(3.7)

Therefore, `da(γx1y1) ≤
K4(1+r0)

c′r0
da(x1, x2). Similarly, we can show that `da(γx2y2) ≤

K4(1+r0)
c′r0

da(x1, x2).

We next obtain a bound for `da(γ1y1∞). By quasiconvexity, `(γay1) ≤ Cd(a, y1),

where γay1 is the subcurve of γ1a∞ ending at y1. Let us choose a sequence of points

{zn}n with with z0 = y1 and zn ∈ γ1a∞ such that `(γ1a∞|[a,zn]) = 2n`(γaz0). For

simplicity, we denote by γznzn+1 the subcurve of γ1a∞ joining zn and zn+1. For

w ∈ γznzn+1 , we have γwa ⊂ γzn+1a, and hence by the base-point quasiconvexity

of γ1a∞,

d(w, a) ≥ 1

C
`(γwa) ≥

1

C
d(zn, a) ≥ 1

C2
`(γazn) ≥ 2n

C2
`(γaz0) ≥

2n

C2
d(a, y1). (3.8)

Hence,

`da(γznzn+1) =

∫
γznzn+1

ds

[1 + d(γ(s), a)]2
≤

`(γznzn+1)

[1 + 2n

C2d(a, y1)]2

≤ 2n`(γaz0)

[1 + 2n

C2d(a, y1)]2
≤ 2nCd(a, y1)

[1 + 2n

C2d(a, y1)]2
.

Notice also that because d(x1, y1) ≤ 2r ≤ 4K d(a, y1),

d(x1, a) ≤ d(x1, y1) + d(y1, a) ≤ (1 + 4K)d(a, y1).

Therefore,

`da(γznzn+1) ≤
2nCd(a, y1)

[1 + 2n

C2d(a, y1)]2
≤ C3(1 +K)

2nd(a, x1)
=

C

2n d(a, x1)
.
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Summing up and using analogs of (3.6) and (3.7), with x1 and x2 switching roles,

we get

`da(γ1y1∞) =
∑
n

`da(γznzn+1) ≤
∑
n

C

2nd(a, x1)
≤ C

d(a, x1)

≤C(r0 + 1)

r0

1

1 + d(a, x1)
≤ C(r0 + 1)2

c′r20
da(x1, x2).

(3.9)

We then have that for some C ≥ 1, `da(γ1y1,∞) + `da(γx1,y1) ≤ Cda(x1, x2).

Similarly, one can prove that `da(γ2y2,∞) + `da(γx2,y2) ≤ Cda(x1, x2). Putting all

these estimates together, we conclude that

`da(γ) = `da(γx1y1) + `da(γ1y1∞) + `da(γ2y2∞) + `da(γx2y2) ≤ Cda(x1, x2).

Case 2: x1 and x2 are in the same annulus A(a, r/2, r) for some r > r0

and d(x1, x2) ≤ c′r. Note again that x1, x2 cannot be equal to ∞. By the

quasiconvexity of X, we can find a Cq-quasiconvex curve γx1x2 connecting x1 and

x2. Because c′ ≤ 1/(4Cq), we have that `(γx1x2) ≤ Cqd(x1, x2) ≤ r/4 and γx1x2

is contained in the annulus A(a, r/4, 2Cqr). Suppose w ∈ γx1x2 , so d(w, x1) ≤
`(γx1x2) ≤ r/4. Then d(w, a) ≥ d(x1, a) − d(w, x1) ≥ r/4. Therefore, we can

estimate the length of γx1x2 under the sphericalized metric as follows:

`da(γx1x2) =

∫
γx1,x2

ds

[1 + d(γ(s), a)]2
≤ `(γx1x2)

(1 + r/4)2
≤ 16Cqd(x1, x2)

(1 + r)2

≤ 16Cqd(x1, x2)

[1 + d(x1, a)][1 + d(x2, a))
≤ 16Cqda(x1, x2).

Case 3: x1 and x2 are in different annuli. Then again we have that x1, x2 6=
∞. We re-name x1 and x2 if necessary so that d(a, x1) < d(a, x2). If 2d(a, x1) >

d(a, x2) and d(x1, a) > r0, let r = d(x2, a) and we can apply Case 1 or Case 2

to prove that there exists a curve γx1x2 connecting x1 to x2 with `a(γx1x2) ≤
Cda(x1, x2). Furthermore, if d(a, x1) ≤ r0, then we can, by the connectivity

of X, find a point x′1 with d(x′1, a) = r0, find a quasiconvex curve connecting

x′1 to x2, and concatenate that curve with the quasiconvex curve connecting x1

to x′1, and obtain a quasiconvex curve connecting x1 to x2. So without loss of

generality, we can also assume that d(a, x1) ≥ r0. Thus we will assume that

2r0 ≤ 2d(a, x1) ≤ d(a, x2).
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We first find estimates for da(x1, x2) as follows:

da(x1, x2) =
d(x1, x2)

[1 + d(x1, a)][1 + d(x2, a)]
≤ d(x1, a) + d(x2, a)

[1 + d(x1, a)][1 + d(x2, a)]

≤ 3

2

d(x2, a)

[1 + d(x1, a)][1 + d(x2, a)]
≤ 3

2

1

1 + d(x1, a)
.

Furthermore, since we can take r0 ≥ 1 in the definition of radial starlikeness, we

also see that

d(x1, x2) ≥ d(x2, a)− d(x1, a) ≥ d(x2, a)/2 ≥ [1 + d(x2, a)]/4.

Therefore,

da(x1, x2) ≥
1

4

1

1 + d(x1, a)
. (3.10)

Let γ1a∞ be a base-point quasiconvex ray from a to ∞ associated with x1

via the radial starlike quasiconvexity of X, and let y1 be a point on this ray

linked to x1 as in the definition of radial star-likeness. Similarly, let γ2a∞ be a

base-point quasiconvex ray from a to∞ associated with x2 via the radial starlike

quasiconvexity of X, and let y2 be a point on this ray linked to x2 as in the

definition of radial star-likeness. We will show that the the concatenation of the

four curves γx1,y1 , γy2,x2 , the subcurve β1 of γ1a∞ with end points y1 and ∞, and

the subcurve β2 of γ2a∞ with end points y2 and ∞, forms the desired quasiconvex

curve (with respect to the metric da) connecting x1 to x2.

First, consider the quasiconvex curve γx1,y1 connecting x1 to y1 and lying in the

annulus A(a, r/K,Kr), where r = d(x1, a), as stipulated in the definition of radial

star-likeness. Then for each point w on that curve, we know that d(w, a) ≥ r/K.

Therefore

`da(γx1,y1) =

∫
γx1,y1

1

[1 + d(w, a)]2
ds(w) ≤ `(γx1,y1)

[1 + r/K]2
≤ C

r

[1 + r/K]2

≤C 1

1 + r/K
≤ C

1 + d(x1, a)
≤ C da(x1, x2).

We used (3.10) to obtain the last inequality in the above chain of inequalities.

Next, we consider the quasiconvex curve γy2,x2 connecting x2 and y2 that lies

in the annulus A(a,R/K,KR) with R = d(x2, a). Then for each point w in that
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curve, we know that d(w, a) ≥ R/K. Hence

`da(γy2,x2) =

∫
γy2,x2

1

[1 + d(w, a)]2
ds(w) ≤ `(γy2,x2)

[1 +R/K]2
≤ C

R

[1 +R/K]2

≤C 1

1 +R/K
≤ C

1 + d(x2, a)
≤ C

1 + d(x1, a)
≤ C da(x1, x2).

We again used (3.10) to obtain the above last inequality.

We finally consider the curves β1 and β2, and set r = d(a, x1), R = d(a, x2).

For non-negative integers i let z1,i be the first point at which β1 intersects X \
B(a, 2ir), and let z2,i be the first point at which β2 intersects X \ B(a, 2iR).

These points break β1 and β2 up into sub-curves β1,i and β2,i, i = 0, 1, · · · . By

the base-point quasiconvexity of γ1a∞ (see Definition 3.1), whenever w is a point

in β1,i, we must have d(a, w) ≥ 2i−1r/K. It follows that

`da(β1,i) =

∫
β1,i

1

[1 + d(w, a)]2
ds(w) ≤ C

`(β1,i)

[1 + 2ir]2
.

By the base-point quasiconvexity again, `(β1,i) ≤ Kd(z1,i, a) ≤ K 2ir. Note that

1 ≤ r0 ≤ d(a, x1) = r. Hence,

`da(β1) =
∑
i

`da(β1,i) ≤ C
∑
i

2ir

[1 + 2ir]2
≤ C

∑
i

2ir

4i r2
≤ C

r
≤ C

1 + d(x1, a)
.

(3.11)

Therefore, using (3.10), we obtain

`da(β1) ≤ C da(x1, x2).

A similar argument for β2, with r replaced by R, gives

`da(β2) ≤
C

1 +R
.

Because in Case 3 we have r < R, we have the desired inequality `da(β2) ≤
C da(x1, x2) as well. Thus the concatenated curve has da-metric length at most

4C da(x1, x2), yielding the desired quasiconvex curve.

Case 4: x1 = ∞ 6= x2. If d(x2, a) ≤ r0, since X is unbounded, there

exists x′ with d(x′, a) = r0. By the radial starlike property and (3.11) (which is

valid for all radial starlike rays and all points on those rays), there is γx′∞ such

that `da(γx′∞) ≤ Cda(x
′,∞). In addition, since x2, x

′ ∈ B̄(a, r0), we have a Cq-

quasiconvex curve γx2x′ with respect to (X, d). By the argument at the beginning

16



of this proof, we can see that γx2x′ is also quasiconvex with respect to (Ẋ, da), so

`da(γx2x′) ≤ Cda(x
′, x2) ≤ Cda(x

′,∞) + da(x2,∞).

Moreover, we have

da(x
′, x2) =

d(x′, x2)

[1 + d(x′, a)][1 + d(x2, a)]
≤ 1

1 + d(x′, a)
+

1

1 + d(x2, a)
≤ 2da(x2,∞),

where the last inequality follows the fact that

da(x
′,∞) =

1

1 + d(x2,∞)
≤ 1

1 + d(x′,∞)
= da(x

′,∞).

Therefore, when we concatenate the curves γx2x′ and γx′∞ to obtain a curve γx2∞

such that `da(γx2∞) ≤ Cd(x2,∞).

If d(x2, a) ≥ r0, by the radial starlike property, we have a quasiconvex ray

γa∞ associated to x2, and y2 be the point on the ray connected to x2. By (3.5)

and (3.11), we have `da(γx2y2) ≤ Cda(x2,∞) and `da(γy2∞) ≤ Cda(x2,∞). There-

fore, we have shown the quasiconvexity of the metric space (Ẋ, da).

Remark 3.12. Example 3.14 will show that if we remove the hypothesis of

radially star-like quasiconvexity, the previous theorem would be false. Notice

also that quasiconvexity cannot be removed either. The space X = [0,∞) ×
{1} ∪ [0,∞)×{−1} ∪ {0}× [−1, 1] together with the inherited Euclidean metric

is radially star-like quasiconvex, not quasiconvex, and (Ẋ, da) is not quasiconvex

as well.

As a consequence of Theorem 3.4 we obtain that ∞-Poincaré inequality is

also preserved under sphericalization for radially star-like quasiconvex spaces.

Theorem 3.13. Let (X, d, µ) be a complete metric space endowed with a doubling

measure µ and supporting an ∞-Poincaré inequality. Let a ∈ X be a base point

on X, and assume (X, d) is K-radially star-like quasiconvex with respect to a for

some K ≥ 1. Then (Ẋ, da, µa) also supports an ∞-Poincaré inequality.

Proof. First notice that the doubling property of µa has been shown in [21, Propo-

sition 3.2.2.]. Then, according to Theorem 2.1 we have to prove that there is a

constant C ≥ 1 such that, for every null set N of Ẋ, and for every pair of points

x, y ∈ Ẋ there is a C-quasiconvex path γ in Ẋ connecting x to y with γ /∈ Γ+
N .
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Given N ⊂ X, we have µ(N) = 0 if and only if µa(N) = 0 (when we consider

N as a subset of Ẋ). Therefore, in the proof, we will not distinguish the null set

N ⊂ X and N ⊂ Ẋ.

Without loss of generality, assume x 6=∞ and da(y,∞) ≤ da(x,∞). As in the

proof of Theorem 3.4, we can assume also that d(y, a) ≥ 2r0 and d(x, a) ≥ r0 ≥ 1

(if d(y, a) ≥ 2r0 and d(x, a) < r0 then we can replace x with a point x′ such that

d(x′, a) = r0).

Since (X, d, µ) is a complete metric space with a doubling measure µ and

supports an ∞-Poincaré inequality, it is in particular C ′-quasiconvex for some

C ′ ≥ 1, so Ẋ is also quasiconvex with respect to the metric da by Theorem 3.4.

Therefore, there is a quasiconvex curve γ with respect to the metric da that

connects x and y. We can decompose γ into sub-curves γi, i = 1, · · · , N , so

that for each i the sub-curve γi lies in an annulus A(a,Ri, 2Ri) with each Ri =

2jid(x, a) > r0, and γ is the concatenation of these curves. Let xi, yi be the end

points of γi. We next choose a finite chain of points xi,1 = xi, xi,2, · · · , xi,Ni
=

yi ∈ γi such that for each j = 1, · · · , Ni,

d(xi,j, xi,j+1) ≤
Ri

KC ′
.

Since (X, d, µ) supports an ∞-Poincaré inequality, there exists βi,j connecting

xi,j and xi,j+1 with `(βi,j) ≤ C ′d(xi,j, xi,j+1) ≤ Ri/K, and βi,j /∈ Γ+
N . Then βi,j

lies in the annulus A(a, CRi, Ri/C). Furthermore, because Ri ≥ r0 ≥ 1, we see

that

da(xi,j, xi,j+1) =
d(xi,j, xi,j+1)

[1 + d(xi,j, a)][1 + d(xi,j+1, a)]
≥ d(xi,j, xi,j+1)

4R2
i

.

Hence

`da(βi,j) =

∫
βi,j

1

[1 + d(w, a)]2
ds(w) ≤

∫ `(βi,j)

0

ds

R2
i

≤ C ′d(xi,j, xi,j+1)

R2
i

≤ Cda(xi,j, xi,j+1).

Furthermore, since xi,j, xi,j+1 are the end points of quasiconvex curves βi,j and

these points lie in γi, we also have

Ni∑
j=1

da(xi,j, xi,j+1) ≤ C`da(γi).
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Setting βi to be the concatenation of the quasiconvex curves βi,j, j = 1, · · · , Ni

and summing over j we obtain

`da(βi) =

Ni∑
j=1

`da(βi,j) ≤ C

Ni∑
j=1

da(xi,j, xi,j+1) ≤ C `da(γi).

Clearly βi 6∈ Γ+
N . It follows that the concatenation γ′ of the curves βi, i =

1, · · · , N , is a curve connecting x to y with

`da(γ′) ≤ C `da(γ) ≤ C da(x, y),

with γ′ 6∈ Γ+
N . This is the desired quasiconvex curve that is not in Γ+

N .

The following example gives a quasiconvex metric measure space endowed

with a doubling measure, which is not radially star-like quasiconvex, supporting

an ∞-Poincaré inequality but whose sphericalized space is not quasiconvex so in

particular does not support an ∞-Poincaré inequality.

Example 3.14. Let us consider a length space X ⊂ R2 (in fact it is a tree)

with initial point a ∈ X, constructed in the following way. Let [a,∞) × {0}
be a geodesic ray and select the points xi, i ≥ 0 from [a,∞) × {0} such that

d(xi, a) = 22i . We can also take an i-th branch emanating from xi, with end

point yi = (22i , 22i+1
). Then we have d(xi, yi) = 22i+1

. So

X = [0,∞)× {0} ∪
⋃
i∈N

{22i} × [0, 22i+1

],

see Figure 2. In what follows [xi, yi] will denote the segment in R2 connecting xi

to yi. Since X is a length space, it is in particular quasiconvex. We now endow

X with the 1-dimensional Hausdorff measure µ = H1, which is doubling. In fact,

it can be shown that (X, d, µ) is Ahlfors 1-regular.

Notice also that the i-th branch of the tree has length 22i+1
, whereas the

distance between a and xi is only 22i , so the ratio between d(xi, yi) and d(xi, a)

would tend to ∞ as i tends to ∞, which violates the assumption of radially

star-like quasiconvexity. On the other hand, (X, d, µ) supports an ∞-Poincaré

inequality. Indeed, according to Theorem 2.1, it is enough to check that for any

null set N ⊂ X and x, y ∈ X, there is a C-quasiconvex path connecting x to y,

with γ /∈ Γ+
N . In this case, we can let γ to be the geodesic connecting x and y.
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Figure 2: A metric tree which is not radially star-like quasiconvex

To finish, we will show that the sphericalized space (Ẋ, da) is not quasiconvex,

so in particular it does not support an ∞-Poincaré inequality. Suppose i < j.

Let yi and yj be the end points of the i-th branch and j-th branch respectively.

We have that

d(yi, yj) = d(yi, xi) + d(xi, xj) + d(xj, yj) = 22i+1

+ 22j − 22i + 22j+1 ≈ 22j+1

and

d(a, yi) = 22i + 22i+1

, d(a, yj) = 22j + 22j+1

.

Therefore,

da(yi, yj) ≈
22j+1

22i+122j+1 =
1

22i+1 .

In order to estimate the length of the curve γ connecting yi and yj, we have to

take into account that γ ⊃ [yi, xi]∪ [xi, xj]∪ [xj, yj]. Denoting by γi = [xi, yi], we

have that

`da(γ) ≥ `da(γi) + `da(γj) ≥
∫ `(γi)

0

ds

[1 + d(γi(s), a)]2
+

∫ `(γj)

0

ds

[1 + d(γj(s), a)]2

=

∫ `(γi)

0

ds

[1 + s+ 22i ]2
+

∫ `(γj)

0

ds

[1 + s+ 22j ]2

=
1

1 + 22i
− 1

1 + 22i + 22i+1 +
1

1 + 22j
− 1

1 + 22j + 22j+1 ≈
1

22i
.

Then,
`da(γ)

da(yi, yj)
≥ 22i+1

C22i
≈ 22i

C
, for all i ≥ 0.

Therefore, we have shown that (Ẋ, da) is not quasiconvex.
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4 Preservation of quasiconvexity and∞-Poincaré

inequality under flattening: meridian-like qua-

siconvex spaces

In this section we introduce a general class of (bounded) metric spaces, meridian-

like quasiconvex spaces, that preserves quasiconvexity and ∞-Poincaré inequali-

ties under the flattening process. Meridian-like quasiconvexity is the dual prop-

erty of radially star-like quasiconvexity: radially star-like quasiconvex spaces be-

come meridian-like quasiconvex after sphericalization, and conversely, we recover

radial star-likeness after flattening meridian-like quasiconvex spaces.

Definition 4.1. A (bounded) metric space is K-meridian-like quasiconvex with

respect to a base point c ∈ X, if there exists a constant K ≥ 1, a point a ∈ X
and a small radius r0 > 0 such that for every x ∈ A(c, r/2, r) with r < r0 there

exist a double base-point quasiconvex curve γac, a point y ∈ γac and a curve

γxy ⊂ A(c, r/K,Kr) connecting x to y such that

`(γxy) ≤ Kd(y, c). (4.2)

By double base-point quasiconvex curve we mean that for any z ∈ |γac|, `(γaz) ≤
Cd(a, z) and `(γcz) ≤ Cd(c, z). Here γaz and γcz denote the subcurves of γac with

end points a and z and c and z respectively.

Remark 4.3. The idea is to choose the point a ∈ X (in Definition 4.1) in

A(c, R/2, R) where R = supz∈X d(c, z). Additionally, when 0 < r � R and

x ∈ B(c, r), we have d(x, a) ≈ d(a, c). Indeed, for x ∈ B(c, r), we have that

2d(a, c) > d(a, c) + d(x, c) ≥ d(a, x) ≥ d(a, c)− d(x, c) ≥ d(a, c)− r ≈ d(a, c).

(4.4)

Observe also that meridian-like quasiconvexity implies that c is not a cut point

of X, that is, X \ {c} is necessarily connected.

The following lemma shows that, for a general class of metric spaces, annular

quasiconvexity is stronger than meridian-like quasiconvexity.

Lemma 4.5. Let (X, d) be a bounded connected complete locally compact metric

space which is annularly quasiconvex with respect to a point c ∈ X. Then (X, d)

is K-meridian-like quasiconvex with respect to c.
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Proof. The proof is similar to the proof of Lemma 3.3. First observe that under

the hypothesis of the Lemma, the space X is quasiconvex (see proof of Lemma

3.3). Given x ∈ A(c, r/2, r), we can find quasiconvex curves γcx and γxa to connect

c to x and x to a respectively. As done in the proof of Lemma 3.3, we now modify

the two curves in each annulus in order to ensure the base-point quasicovexity

property with respect to a and c respectively. After denoting the modified curves

by γ′cx and γ′xa, we can show that the concatenation γ = γ′cx ∪ γ′xa is a double

base-point quasiconvex curve connecting c and a, which exactly passes through

x.

The next two lemmas show that radially star-like quasiconvexity and meridian-

like quasiconvexity are dual properties, with duality given via the sphericaliza-

tion/flattening procedures.

Lemma 4.6. Let (X, d) be an unbounded complete metric space. Let a ∈ X be

a base point on X, and assume (X, d) is K-radially star-like quasiconvex with

respect to the base point a for some K ≥ 1. Then (Ẋ, da) is K ′-meridian-like

quasiconvex with respect to c =∞ for some K ′ ≥ 1.

Proof. For x ∈ X, we know that d(x, a) > r0 if and only if da(x,∞) < 1− r0
1+r0

.

Let x ∈ Ba(∞, 1− r0
1+r0

)\{∞}. By the K-radially star-like quasiconvex property

there exist a base-point quasiconvex ray γa∞, a point y ∈ γa∞ and a quasiconvex

curve γxy connecting x to y in the annulus A(a, d(a, x)/K,Kd(a, x)) such that

`(γxy) ≤ Kd(a, y). Notice that the sphericalization of the ray γa∞ is a base-

point quasiconvex curve in Ẋ connecting c =∞ to a. Indeed, for each z ∈ γa∞,

we denote the segment of γa∞ with end points z and ∞ by γz∞, and note that

`da(γz∞) ≤ Cda(z,∞). We have that (we denote the subcurve of γa∞ with end

points a and w by γaw in the following):

`da(γz∞) =

∫
γz∞

ds

[1 + d(γ(s), a)]2
≤
∫
γz∞

ds

[1 + `(γaγ(s))/K]2
≤ K2

∫ ∞
`(γaz)

dt

(1 + t)2

≤ K2

1 + `(γaz)
≤ K3

1 + d(z, a)
= C da(z,∞),

where in the first inequality we have used the fact that γa∞ is a base-point

quasiconvex ray and the second inequality we have used the fact that γ is arc-

length parametrized.

22



Moreover `da(γxy) ≤ Cda(y, c). Indeed, let r = d(x, a) > r0. Because r/K ≤
d(w, a) ≤ Kr for any w ∈ |γxy| with `(γxy) ≤ Kr, we have that

`da(γxy) =

∫
γxy

ds

(1 + d(γ(s), a))2
≤ Kd(y, a)

(1 + r
K

)2
≤ K3

1 + r
K

≤ K5

1 +Kr
≈ da(y, c).

To finish notice that an annulus A(a, r/2, r) in the original metric is trans-

formed under sphericalization into another annulus comparable to an annulus

A(∞, r′/2, r′) in the sphericalized metric for some r′ > 0.

Lemma 4.7. Let (X, d) be a bounded complete metric space. Let c ∈ X and

assume (X, d) is K-meridian-like quasiconvex with respect to the base point c for

some K ≥ 1. Then (Xc, dc) is K ′-radially star-like quasiconvex with respect to

the point a ∈ X (as in Remark 4.3) for some K ′ ≥ 1.

Proof. Because X is K-meridian-like quasiconvex with respect to a base point

c ∈ X, there exist a constant K ≥ 1, a point a ∈ X and a small radius r0 > 0

such that for every x ∈ A(c, r/2, r) and r < r0, there exist a double base-point

quasiconvex curve γac, a point y ∈ γac connecting a to c and a curve γxy ⊂
A(c, r/K,Kr) connecting x to y such that `(γxy) ≤ Kd(y, c).

Now, we can show that the base-point quasiconvex curve γac is a base-point

quasiconvex ray after flattening. Let z ∈ γac and consider the subcurves γaz

and γzc of γac with starting points a, z and end points z, c respectively. Since

`(γcz) ≤ Kd(z, c) and `(γaz) ≤ Kd(a, z) for any z ∈ γac, it follows that

`dc(γaz) =

∫
γaz

ds

[d(γ(s), c)]2
≤
∫ `(γac)

`(γzc)

K2ds

s2
≤ C

(
1

`(γzc)
− 1

`(γac)

)
≤ C`(γaz)

`(γzc)`(γac)
≤ Cd(a, z)

d(c, z)d(c, a)
= Cdc(a, z).

(4.8)

Next we prove that for x, y and γxy satisfying (4.2), we have `dc(γxy) ≤
Cdc(a, y), for some C ≥ 1 depending on K. See that for w ∈ γxy we have

that d(w, c) ≥ r/K so if r0 is small enough,

`dc(γxy) =

∫
γxy

ds

[d(γ(s), c)]2
≤ C`(γxy)

r2

≤Cd(y, c)

r2
≤ C

d(y, c)

(4.4)

≤ Cdc(a, y).

(4.9)
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To finish, notice that an annulus A(c, r/K,Kr) in the original metric transforms

under flattening into another annulus comparable to an annulus A(a, r′/K ′, K ′r′)

in the flattened metric for some r′ > 0 that depends only on r and K, with K ′

depending solely on K.

Theorem 4.10. Let (X, d) be a bounded complete metric space. Let c ∈ X

be a base point on X, and assume (X, d) is quasiconvex and K-meridian-like

quasiconvex with respect the base point c for some K ≥ 1. Then (Xc, dc) is

quasiconvex.

Recall that ` denotes the length of the original metric and `dc denotes the

length of the flattened metric.

Proof. Since (X, d) is quasiconvex and meridian-like quasiconvex, by Lemma 4.7

we know that (Xc, dc) is radial starlike quasiconvex with respect to a where a is

the second point associated with the notion of meridian-like quasiconvexity.

The idea for the proof of this theorem is similar to the one used in Theorem

3.4. Given x1, x2 ∈ Xc, we have to prove that there exists a curve γ connecting

x1 and x2 such that `dc(γ) ≤ Cdc(x1, x2). Let r0 be as in Definition 4.1.

We divide the proof into five cases: points that are in the same annulus and

far away from each other (Case 1), points that are in the same annulus and close

to each other (Case 2), points lying in different annuli (Case 3) and points lying

outside the ball B(c, r0) (Case 4) and finally one point in the ball B(c, r0) and

another point outside of B(c, r0) (Case 5). In the proof, the annuli are considered

with respect to the original metric d.

Fix c′ > 0 such that 0 < c′ < 1/(4Cq) where Cq is the quasiconvexity constant

of X.

Case 1: x1, x2 are in the annulus A(c, r/2, r) for some r < r0 and d(x1, x2) ≥
c′r. Then we can find two double base-point quasiconvex curves γ1ac, γ

2
ac and points

y1 ∈ γ1ac, y2 ∈ γ2ac and quasiconvex curves γx1y1 , γx2y2 ⊂ A(c, r/K,Kr) satisfying

(4.2). We want to show that the concatenation γ = γx1y1 ∪ γ1y1a ∪ γ
2
ay2
∪ γy2x2 is a

quasiconvex curve in the flattened metric.

Because d(a, x1), d(a, y1), d(a, x2), d(a, y2) and d(x1, x2) are all comparable

to r, we have that

dc(a, x1) ≈ dc(a, y1) ≈ dc(a, x2) ≈ dc(a, y2) ≈ dc(x1, x2).
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Using (4.9), we can estimate `dc(γx1y1) as follows:

`dc(γx1y1) ≤ Cdc(y1, a) ≤ Cdc(x1, x2).

Next, because y1 ∈ B(c,Kr), by (4.8) we have

`dc(γay1) ≤ Cdc(a, y1) ≤ C dc(x1, x2).

Similar arguments give us estimates for `dc(γay2) and `dc(γx2y2) in terms of dc(x1, x2).

Therefore, we have `dc(γ) ≤ Cdc(x1, x2).

Case 2: x1, x2 are in the same annulus A(c, r/2, r), r ≤ r0, and d(x1, x2) ≤ c′r.

By the quasiconvexity of (X, d), we can find a Cq-quasiconvex curve γ connecting

x1, x2. Because c′ < 1/(4Cq), for w ∈ γ, we can get the estimate

d(w, c) ≥ d(x1, c)−d(x1, w) ≥ d(x1, c)−`(γ) ≥ r/2−Cqd(x1, x2) ≥ r/2−r/4 = r/4,

so

`dc(γ) ≤
∫
γ

ds

[d(γ(s), c)]2
≤ 16`(γ)

r2
≤ 16Cqd(x1, x2)

d(x1, c)d(x2, c)
≤ Cdc(x1, x2).

Hence, we have proved quasiconvexity in Case 2.

Case 3: 2d(x1, c) ≤ d(x2, c) ≤ r0. Since by the definition of meridian-

like quasiconvexity we must have d(a, c) ≥ 2r0, and x1, x2 ∈ B(c, r0), we have

d(a, x1) ≈ d(a, c) and d(a, x2) ≈ d(a, c), and hence

dc(x1, x2) =
d(x1, x2)

d(x1, c)d(x2, c)
≥ d(x2, c)− d(x1, c)

d(x1, c)d(x2, c)
≥ 1

d(x1, c)
− 1

d(x2, c)

≥ 1

2d(x1, c)
≥ C−1

d(x1, a)

d(x1, c)d(a, c)
= C−1dc(x1, a).

Similarly, we have dc(x2, a) ≤ Cdc(x1, x2). Therefore, as in Case 1, by (4.8)

and (4.9),

`dc(γ
1
y1a

) ≤ Cdc(y1, a) ≤ Cdc(x1, a) ≤ Cdc(x1, x2),

`dc(γ
2
y1a

) ≤ Cdc(y2, a) ≤ Cdc(x2, a) ≤ Cdc(x1, x2),

`dc(γx1y1) ≤ Cdc(x1, a) ≤ Cdc(x1, x2).

Therefore

`dc(γx2y2) ≤ Cdc(x2, a) ≤ Cdc(x1, x2).

So the concatenation γ = γx1y1 ∪ γ1y1a ∪ γ
2
ay2
∪ γy2x2 is quasiconvex.

25



Case 4: If x1, x2 /∈ B(c, r0), with r0 as in Definition 4.1 and d(x1, x2) ≤
Cqr0/2, the original and the flattened metric are comparable, so we can take a

quasiconvex curve γx1x2 in the original metric connecting x1 and x2, which is also

quasiconvex in the flattened metric.

Case 5: x1 ∈ B(c, r0), x2 /∈ B(c, r0). Let d(x1, c) = r < r0 ≤ d(x2, c).

If d(x1, x2) ≤ c′r0, then as in Case 2, we can find a quasiconvex curve γx1x2

connecting x1 to x2. Since c′ < 1/(4Cq), for z ∈ γx1x2 , d(z, c) ≥ r0−Cqc′r0 ≥ r0/2,

and so

`dc(γx1x2) ≤
∫
γx1x2

ds

[d(γ(s), c)]2
≤ 4`(γx1x2)

r20
≤ 4Cqd(x1, x2)

r20
,

and

dc(x1, x2) =
d(x1, x2)

d(x1, c)d(x2, c)
≥ d(x1, x2)

2r0 × c′r0
.

On the other hand, if d(x1, x2) ≥ c′r0, let x′ ∈ Xc with d(x′, c) = r0. There-

fore, by Case 1 or Case 2 (depending on the distance between x1 and x′), we can

find a quasiconvex curve γx1x′ with respect to the metric dc, and by case 4, we

can find a quasiconvex curve γx′x2 with respect to the metric dc with

`dc(γx1x′) ≤ Cdc(x1, x
′), `dc(γx′x2) ≤ Cdc(x′, x2).

Finally, we only need to show dc(x1, x
′) + dc(x′, x2) ≤ Cdc(x1, x2).

Notice that

dc(x1, x
′) =

d(x1, x
′)

d(x1, c)d(x′, c)
, dc(x2, x

′) =
d(x2, x

′)

d(x2, c)d(x′, c)
, dc(x1, x2) =

d(x1, x2)

d(x2, c)d(x′, c)

and we have d(x′, c) = r0, d(x1, x2) ≥ c′r0, d(x1, c) < r0 ≤ d(x2, c), so we can get

d(x2, x
′)

d(x2, c)d(x′, c)
≤ d(x2, x1) + d(x1, x

′)

d(x2, c)r0
≤ d(x1, x2)

d(x2, c)d(x1, c)
+

d(x1, x
′)

d(x1, c)r0
.

Therefore, we only need to show that

d(x1, x
′)

d(x1, c)r0
≤ C

d(x1, x2)

d(x2, c)d(x1, c)
,

that is, d(x1, x
′)d(x2, c) ≤ Cd(x1, x2)d(x′, c). Since d(x1, x

′) ≤ d(x1, c)+d(x′, c) ≤
2r0 and c′r0 ≤ d(x1, x2) we can obtain

d(x1, x
′)d(x2, c) ≤ d(x1, x

′)[d(x1, x2)+d(x1, c)] ≤ 2r0d(x1, x2)+2r20 ≤ 2Cr0d(x1, x2).

Combining the arguments above, we have proved that dc(x1, x
′) + dc(x′, x2) ≤

dc(x1, x2).
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As a consequence of Theorem 4.10 we obtain that ∞-Poincaré inequality is

also preserved under flattening for meridian-like quasiconvex spaces.

Theorem 4.11. Let (X, d, µ) be a complete bounded metric space endowed with

a doubling measure µ and supporting an ∞-Poincaré inequality. Let c ∈ X be a

base point on X, and assume (X, d) is K-meridian-like quasiconvex with respect to

the base point c for some K ≥ 1. Then (Xc, dc, µc) also supports an ∞-Poincaré

inequality.

Proof. The proof is similar to the proof of Theorem 3.13. In Theorem 4.10, we

have already shown that (Xc, dc) is quasiconvex. Notice also that the doubling

property of µa has been shown in [21, Proposition 4.2.1.]. Now, according to

Theorem 2.1 we need to prove that there is a constant C ≥ 1 such that, for every

null set N of Xc, and for every pair of points x, y ∈ Xc there is a C-quasiconvex

path γ in Xc connecting x to y with γ /∈ Γ+
N . Given N ⊂ X with c /∈ N ,

we have µ(N) = 0 if and only if µc(N) = 0 (if we consider N as a subset of

Xc). Therefore, in the proof, we will not distinguish the null set N ⊂ X and

N ⊂ Xc. Without loss of generality, assume d(y, c) ≤ d(x, c). We can decompose

X into a pairwise disjoint union of annuli A(c, 2−jd(x, c), 2−j+1d(x, c)). Since

(X, d, µ) is a complete metric space with a doubling measure µ and supports

and ∞-Poincaré inequality, then it is C ′-quasiconvex for some C ′ ≥ 1, so there

is a quasiconvex curve γ connecting x and y. Let γi be the subcurve of γ such

that γi ⊂ A(c, Ri, 2Ri) with end points xi and yi, where Ri = 2−jid(x, c), and ji

depends on the index i in the sense that ji is the index of the dyadic annulus

B(c, 2Ri)\B(c, Ri) in which γi is located. Therefore, we need to modify the curve

γ into γ′ such that γ′ /∈ Γ+
N .

Let xi,1 = xi, xi,2, . . . , xi,Ni
= yi be a chain of points in γi such that

d(xi,j, xi,j+1) ≤
Ri

2C ′
.

Since (X, d, µ) supports an ∞-Poincaré inequality, there exists a C ′-quasiconvex

curve βi,j connecting xi,j and xi,j+1 with βi,j /∈ Γ+
N . Since

`(βi,j) ≤ C ′d(xi,j, xi,j+1) ≤ Ri/2,
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βi,j still sits in A(c, Ri/2, 4Ri). We can estimate the dc length of βi,j as follows,

`dc(βi,j) =

∫
βi,j

ds(w)

(d(w, c))2
≤ 4`(βi,j)

R2
i

≤ 4C ′d(xi,j, xi,j+1)

R2
i

≤ 64C ′d(xi,j, di,j+1)

d(xi,j, c)d(xi,j+1, c)
≤ Cdc(xi,j, di,j+1),

the first inequality at the last line above follows the fact that xi,j ∈ A(c, Ri/2, 4Ri).

In addition, let βi be the concatenation of βi,j, then we have

`dc(βi) =
∑
j

`dc(βi,j) ≤
∑
j

Cdc(xi,j, xi,j+1) ≤ C`dc(γi).

Hence, let γ′ be the concatenation of βi, then we have

`dc(γ
′) =

∑
i

`dc(βi) ≤ C
∑
i

`dc(γi) ≤ Cdc(x, y).

Therefore, we have shown that γ′ is a quasiconvex curve connecting x and y with

γ′ /∈ Γ+
N . By applying Theorem 2.1, we have shown that (Xc, dc, µc) supports an

∞-Poincaré inequality.

Example 4.12. Observe that we cannot remove the hypothesis of meridian-like

quasiconvexity from Theorem 4.10 or Theorem 4.11. This example is considered

in [2, Example 3.6.] as a metric space that fails to have a reverse scape property.

Let ai = 1
(i+1)!

and bi = 1
i!
, i = 2, 3, . . . , and set

X = [0, 1]× {0} ∪
∞⋃
i=1

{ai} × [0, bi] ⊂ R2,

whereX is endowed with the length metric on R2 and the 1-dimensional Hausdorff

measure µ. Let c = (0, 0) be the point to be moved to ∞, and denote xi =

(ai, 0), yi = (ai, bi), a = (1, 0). We can see that |yi−xi||xi−c| = (i+1)!
i!

= i+ 1→∞, so X

is not meridian-like quasiconvex. We want to show that (X, d, µ) supports an∞-

Poincaré inequality, but (Xc, dc, µc) does not. First, one can show that (X, d, µ)

is Ahlfors 1-regular. Since X is a length space, it is in particular quasiconvex.

However, the flattened space (Xc, dc, µc) is not quasiconvex. Let i < j. Then

d(yi, c) =
1

i!
+

1

(i+ 1)!
, d(yj, c) =

1

j!
+

1

(j + 1)!
,

and

d(yi, yj) =
1

i!
+

1

j!
+

1

(i+ 1)!
− 1

(j + 1)!
≈ 1

i!
.
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Then we can get

dc(yi, yj) =
d(xi, xj)

d(xi, c)d(xj, c)
≈

1
i!
1
i!

1
j!

= j!.

On the other hand, since (X, d, µ) is a tree, every geodesic curve γ connecting yi

to yj is of the form [xi, yi]∪ [xi, xj]∪ [xj, yj]. We only need to estimate `dc([xj, yj]).

`dc([xj, yj]) =

∫
[xj ,yj ]

dw

(d(w, c))2
=

∫ 1
j!

0

dt

( 1
(j+1)!

+ t)2
=

1
1

(j+1)!

− 1
1

(j+1)!
+ 1

j!

=(j + 1)!− (j + 1)!

j + 2
≈ (j + 1)!.

Therefore, since `dc (γ)
dc(yi,yj)

≈ (j+1)!
j!
≈ j+ 1→∞ when j →∞, so (Xc, dc, µc) is not

quasiconvex and so cannot support an ∞-Poincaré inequality.
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