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Abstract. We study the isoperimetric problem in H-type groups and Grushin

spaces, emphasizing a relation between them. We prove existence, symmetry and

regularity properties of isoperimetric sets, under a symmetry assumption that de-

pends on the dimension.

1. Introduction

Let M be a manifold, V be a volume, and P a perimeter measure on M . For a

regular set E ⊂M , P (E) is the area of the boundary ∂E. The isoperimetric problem

relative to V and P consists in studying existence, symmetries, regularity and, if

possible, classifying the minimizers of the problem

min
{
P (E) : E ∈ A such that V (E) = v

}
, (1.1)

for a given volume v > 0 and for a given family of admissible sets A . Minimizers of

(1.1) are called isoperimetric sets.

In space forms (Euclidean space, sphere and hyperbolic space) with their natural

volume and perimeter, isoperimetric sets are precisely metric balls. In Rn with vol-

ume e−|x|
2
L n and perimeter e−|x|

2
H n−1, isoperimetric sets are half-spaces. This is

the Gaussian isoperimetric problem, the model of the current research direction on

isoperimetric problems with density. A different way to wheight perimeter is by a

surface tension, i.e., by the support function τ : Sn−1 → [0,∞) of a convex body

K ⊂ Rn with 0 ∈ int(K), τ(ν) = supx∈K〈x, ν〉. Namely, one can consider

P (E) =

∫
∂E

τ(νE)dH n−1, νE outer normal to ∂E.

The isoperimetric problem for this perimeter and with V = L n is known as Wulff

problem and isoperimetric sets are translates and dilates of the set K.

In a different approach, the perimeter of a Lebesgue measurable set E ⊂ Rn is

defined via a system X = {X1, . . . , Xh}, h ≥ 2, of self-adjoint vector fields in Rn,
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Xj = −X∗j ,

PX(E) = sup
{∫

E

h∑
i=1

Xiϕi(x) dx : ϕ ∈ C1
c (Rn;Rh), max

x∈Rn
|ϕ(x)| ≤ 1

}
. (1.2)

This definition is introduced and studied systematically in [6]. The perimeter PX is

known as X-perimeter (horizontal, sub-elliptic, or sub-Riemannian perimeter). One

important example is the Heisenberg perimeter, that is subject of intensive research

in connection with Pansu’s conjecture on the shape of isoperimetric sets (see [11],

[13], [14], [12], [8]) and in connection with the regularity problem of minimal surfaces.

In this paper, we study perimeters that are related to the Heisenberg perimeter.

Namely, we study the isoperimetric problem in H-type groups and in Grushin spaces.

1) H-type groups. Let h = h1 ⊕ h2 be a stratified nilpotent real Lie algebra of

dimension n ≥ 3 and step 2. Thus we have h2 = [h1, h1]. We fix on h a scalar

product 〈·, ·〉 that makes h1 and h2 orthogonal. The Kaplan mapping is the mapping

J : h2 → End(h1) defined via the identity

〈JY (X), X ′〉 = 〈Y, [X,X ′]〉, (1.3)

holding for all X,X ′ ∈ h1 and Y ∈ h2. The algebra h is called an H-type algebra if

for all X,X ′ ∈ h1 and Y ∈ h2 there holds

〈JY (X), JY (X ′)〉 = |Y |2〈X,X ′〉, (1.4)

where |Y | = 〈Y, Y 〉1/2. We can identify h with Rn = Rh × Rk, h1 with Rh × {0},
and h2 with {0} × Rk, where h ≥ 2 and k ≥ 1 are integers. In fact, h is an even

integer. We can also assume that 〈·, ·〉 is the standard scalar product of Rn. Using

exponential coordinates, the connected and simply connected Lie group of h can be

identified with Rn. Denoting points of Rn as (x, y) ∈ Rn = Rh × Rk, the Lie group

product · : Rn × Rn → Rn is of the form (x, y) · (x′, y′) = (x + x′, y + y′ + Q(x, x′)),

where Q : Rh × Rh → Rk is a bilinear skew-symmetric mapping. Let Q`
ij ∈ R be the

numbers

Q`
ij = 〈Q(ei, ej), e`〉, i, j = 1, . . . , h, ` = 1, . . . , k,

where ei, ej ∈ Rh and e` ∈ Rk are the standard coordinate versors. An orthonormal

basis of the Lie algebra of left-invariant vector fields of the H-type group (Rn, ·) is

given by

Xi =
∂

∂xi
−

k∑
`=1

h∑
j=1

Q`
ijxj

∂

∂y`
, i = 1, . . . , h,

Yj =
∂

∂yj
, j = 1, . . . , k.

(1.5)

We denote by PH(E) = PX(E) the perimeter of a set E ⊂ Rn defined as in (1.2),

relatively to the system of vector fields X = {X1, . . . , Xh}. The vector fields Y1, . . . , Yk
are not considered.
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2) Grushin spaces. Let Rn = Rh × Rk, where h, k ≥ 1 are integers and n = h + k.

For a given real number α > 0, let us define the vector fields in Rn

Xi =
∂

∂xi
, i = 1, . . . , h,

Yj = |x|α ∂

∂yj
, j = 1, . . . , k,

(1.6)

where |x| is the standard norm of x. We denote by Pα(E) = PX(E) the perimeter

of a set E ⊂ Rn defined as in (1.2) relatively to the system of vector fields X =

{X1, . . . , Xh, Y1, . . . , Yk}. We call Pα(E) the α-perimeter of E.

We study the isoperimetric problem in the class of x-spherically symmetric sets in

H-type groups and Grushin spaces. These two problems are related to each other.

We say that a set E ⊂ Rh × Rk is x-spherically symmetric if there exists a set

F ⊂ R+ × Rk, called generating set of E, such that

E =
{

(x, y) ∈ Rn : (|x|, y) ∈ F
}
.

We denote by Sx the class of L n-measurable, x-spherically symmetric sets.

Starting from the x-spherical symmetry, we can prove that the class of sets in-

volved in the minimization (1.1) can be restricted to a smaller class of sets with more

symmetries (see Section 3). Using this additional symmetry, we can implement the

concentration-compactness argument in order to have the existence of isoperimetric

sets. In Carnot groups, the existence is already known, see [7]. In Grushin spaces,

the existence is less clear because x-translations do not preserve α-perimeter.

In fact, we have existence of isoperimetric sets that are x- and y-Schwartz symmet-

ric, i.e., of the form

E = {(x, y) ∈ Rn : |y| < f(|x|)}, (1.7)

for some function f : (0, r0) → R+, r0 > 0, which is called the profile function of

E. The profile function has the necessary regularity to solve a second order ordinary

differential equation expressing the fact that the boundary of E has a certain “mean

curvature” that is constant. This differential equation can be partially integrated and,

for the profile function of a minimizer, it can be expressed in the following equivalent

way:

f ′(r)√
r2α + f ′(r)2

=
k − 1

rh−1

∫ r

0

s2α+h−1

f(s)
√
s2α + f ′(s)2

ds− κ

h
r, for r ∈ (0, r0), (1.8)

where h, k are the dimensional parameters, α > 0 is the real parameter in the Grushin

vector fields (1.6) (in H-type groups we have α = 1), and κ > 0 is a real parameter

(the “mean curvature”) related to perimeter and volume.

In H-type groups, the Haar measure is the Lebesgue measure. Moreover, Lebesgue

measure and H-perimeter are homogeneous with respect to the anisotropic dilations

(x, y) 7→ δλ(x, y) = (λx, λ2y), λ > 0.
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In fact, for any measurable set E ⊂ Rn and for all λ > 0 we have L n(δλ(E)) =

λQL n(E) and PH(δλ(E)) = λQ−1PH(E), where the number Q = h + 2k is the

homogenous dimension of the group. Then, the isoperimetric ratio

IH(E) =
PH(E)Q

L n(E)Q−1

is homogeneous of degree 0 and the isoperimetric problem (1.1) can be formulated in

scale invariant form. In the following, by a vertical translation we mean a mapping

of the form (x, y) 7→ (x, y + y0) for some y0 ∈ Rk.

Theorem 1.1. In any H-type group, the isoperimetric problem

min
{
IH(E) : E ∈ Sx with 0 < L n(E) <∞

}
(1.9)

has solutions and, up to a vertical translation and a null set, any isoperimetric set is of

the form (1.7) for a function f ∈ C([0, r0])∩C1([0, r0))∩C∞(0, r0), with 0 < r0 <∞,

satisfying f(r0) = 0, f ′ ≤ 0 on (0, r0), and solving equation (1.8) with α = 1 and

κ = QPH(E)
(Q−1)L n(E)

.

Isoperimetric sets are, in fact, C∞-smooth sets away from y = 0. Removing the

assumption of x-spherical symmetry is a difficult problem that is open even in the

basic example of the 3-dimensional Heisenberg group.

For the special dimension h = 1, we are able to prove the x-symmetry of isoperi-

metric sets for α-perimeter. Lebesgue measure and α-perimeter are homogeneous

with respect to the group of anisotropic dilations

(x, y) 7→ δλ(x, y) = (λx, λ1+αy), λ > 0.

In fact, for any measurable set E ⊂ Rn and for all λ > 0 we have L n(δλ(E)) =

λdL n(E) and Pα(δλ(E)) = λd−1PH(E), where d = h + k(1 + α). Then, the isoperi-

metric ratio

Iα(E) =
Pα(E)d

L n(E)d−1

is homogeneous of degree 0.

Theorem 1.2. Let α > 0, h = 1, k ≥ 1 and n = 1 + k. The isoperimetric problem

min
{
Iα(E) : E ⊂ Rn L n-measurable with 0 < L n(E) <∞

}
(1.10)

has solutions and, up to a vertical translation and a null set, any isoperimetric set is of

the form (1.7) for a function f ∈ C([0, r0])∩C1([0, r0))∩C∞(0, r0), with 0 < r0 <∞,

satisfying f(r0) = 0, f ′ ≤ 0 on (0, r0), and solving equation (1.8) with h = 1 and

κ = dPα(E)
(d−1)L n(E)

.

In particular, for h = 1 isoperimetric sets are x-symmetric. When h ≥ 2 we need to

assume the x-spherical symmetry.
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Theorem 1.3. Let α > 0, h ≥ 2, k ≥ 1 and n = h+ k. The isoperimetric problem

min
{
Iα(E) : E ∈ Sx with 0 < L n(E) <∞

}
(1.11)

has solutions and, up to a vertical translation and a null set, any isoperimetric set is of

the form (1.7) for a function f ∈ C([0, r0])∩C1([0, r0))∩C∞(0, r0), with 0 < r0 <∞,

satisfying f(r0) = 0, f ′ ≤ 0 on (0, r0), and solving equation (1.8) with κ = dPα(E)
(d−1)L n(E)

.

In the special case k = 1, equation (1.8) can be integrated and we have an explicit

formula for isoperimetric sets. Namely, with the normalization κ = h – that implies

r0 = 1, – the profile function solving (1.8) gives the isoperimetric set

E =
{

(x, y) ∈ Rn : |y| <
∫ π/2

arcsin |x|
sinα+1(s) ds

}
. (1.12)

This formula generalizes to dimensions h ≥ 2 the results of [10]. When k = 1

and α = 1, the profile function satisfying the final condition f(1) = 0 is f(r) =
1
2

(
arccos(r) + r

√
1− r2

)
, r ∈ [0, 1]. This is the profile function of the Pansu’s ball in

the Heisenberg group.

In Section 2, we prove various representation formulas for the perimeter of smooth

and symmetric sets. In particular, we show that for x-spherically symmetric sets we

have the identity PH(E) = Pα(E) with α = 1. This makes Theorem 1.1 a special

case of Theorem 1.3.

In Section 3, we prove the rearrangement theorems. We show that when h = 1 the

isoperimetric problem with no symmetry assumption can be reduced to x-symmetric

sets. When h ≥ 2, we show that the x-spherical symmetry can be improved to the

x-Schwartz symmetry. We also study perimeter under y-Schwartz rearrangement.

The equality case in this rearrangement does not imply that, before rearrangement,

the set is already y-Schwartz symmetric because the centers of the x-balls may vary.

However, for isoperimetric sets the centers are constant, see Proposition 5.4. To prove

this, we use the regularity of the profile function (see Section 5).

The existence of isoperimetric sets is established in Section 4 by the concentration-

compactness method. Here, we borrow some ideas from [5] and we also use the

isoperimetric inequalities (with nonsharp constants) obtained in [6], [2], and [3].

Finally, in Section 5 we deduce the differential equation for the profile function, we

use minimality to derive its equivalent version (1.8), and we establish some elementary

properties of solutions.

2. Representation and reduction formulas

In this section, we derive some formulas for the representation of H- and α-

perimeter of smooth sets and of sets with symmetry. For any open set A ⊂ Rn

and m ∈ N, let us define the family of test functions

Fm(A) =

{
ϕ ∈ C1

c (A;Rm) : max
(x,y)∈A

|ϕ(x, y)| ≤ 1

}
.
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2.1. Relation between H-perimeter and α-perimeter. Let X1, . . . , Xh be the

generators of an H-type Lie algebra, thought of as left-invariant vector fields in Rn as

in (1.5). For an open set E ⊂ Rn with Lipschitz boundary, the Euclidean outer unit

normal NE : ∂E → Rn is defined at H n−1-a.e. point of ∂E. We define the mapping

NE
H : ∂E → Rh

NE
H = (〈NE, X1〉, . . . , 〈NE, Xh〉).

Here, 〈·, ·〉 is the standard scalar product of Rn and Xi is thought of as an element

of Rn with respect to the standard basis ∂1, . . . , ∂n.

Proposition 2.1. If E ⊂ Rn is a bounded open set with Lipschitz boundary then the

H-perimeter of E in Rn is

PH(E) =

∫
∂E

|NE
H (x, y)| dH n−1, (2.1)

where H n−1 is the standard (n− 1)-dimensional Hausdorff measure in Rn.

Proof. The proof of (2.1) is standard and we only sketch it. The inequality

PH(E) ≤
∫
∂E

|NE
H (x, y)| dH n−1

follows by the Cauchy-Schwarz inequality applied to the right hand side of the identity∫
E

h∑
i=1

Xiϕi dxdy =

∫
∂E

〈NE
H , ϕ〉dH n−1,

that holds for any ϕ ∈ Fh(Rn).

The opposite inequality follows by approximatingNE
H/|NE

H | with functions in Fh(Rn).

In fact, by a Lusin-type and Titze-extension argument, for any ε > 0 there exists

ϕ ∈ Fh(Rn) such that∫
∂E

〈NE
H , ϕ〉dH n−1 ≥

∫
∂E

|NE
H (x, y)| dH n−1 − ε.

�

The outer normal NE can be split in the following way

NE = (NE
x , N

E
y ) with NE

x ∈ Rh and NE
y ∈ Rk.

For any α > 0, we call the mapping NE
α : ∂E → Rn

NE
α = (NE

x , |x|αNE
y ) (2.2)

the α-normal to ∂E. The same argument used to prove (2.1) also shows that

Pα(E) =

∫
∂E

|NE
α (x, y)| dH n−1, (2.3)

for any set E ⊂ Rn with Lipschitz boundary.

Remark 2.2. Formulas (2.1) and (2.3) hold also when ∂E is H n−1-rectifiable.
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Proposition 2.3. For any x-spherically symmetric set E ∈ Sx there holds PH(E) =

Pα(E) with α = 1.

Proof. By a standard approximation, using the results of [4], it is sufficient to prove

the claim for smooth sets, e.g., for a bounded set E ⊂ Rn with Lipschitz boundary.

By (2.1) and (2.3), the claim PH(E) = Pα(E) with α = 1 reads

PH(E) =

∫
∂E

√
|NE

x |2 + |x|2|NE
y |2dH n−1, (2.4)

where NE = (NE
x , N

E
y ) ∈ Rh × Rk is the unit Euclidean normal to ∂E. By the

representation formula (2.1), we have

PH(E) =

∫
∂E

( h∑
i=1

〈Xi, N
E〉2
)1/2

dH n−1,

where, by (1.5), for any i = 1, . . . , h

〈Xi, N
E〉2 =

(
NE
xi
−

k∑
`=1

h∑
j=1

Q`
ijxjN

E
y`

)2

= (NE
xi

)2 − 2NE
xi

k∑
`=1

h∑
j=1

Q`
ijxjN

E
y`

+
( k∑
`=1

h∑
j=1

Q`
ijxjN

E
y`

)2

,

and thus

h∑
i=1

〈Xi, N
E〉2 = |NE

x |2 − 2
k∑
`=1

h∑
i,j=1

Q`
ijxjN

E
xi
NE
y`

+
h∑
i=1

k∑
`,m=1

h∑
j,p=1

Q`
ijQ

m
ipxjxpN

E
y`
NE
ym .

(2.5)

Since the set E is x-spherically symmetric, the component NE
x of the normal sat-

isfies the identity

NE
x =

x

|x|
|NE

x |. (2.6)

The bilinear form Q : Rh × Rh → Rk is skew-symmetric, i.e., we have Q(x, x′) =

−Q(x′, x) for all x, x′ ∈ Rh or, equivalently, Q`
ij = −Q`

ji. Using (2.6), it follows that

for any ` = 1, . . . , k we have

h∑
i,j=1

Q`
ijxjN

E
xi

=
|NE

x |
|x|

h∑
i,j=1

Q`
ijxixj = 0. (2.7)

Next, we insert into identity (1.4), that defines an H-type group, the vector fields

X = X ′ =
h∑
i=1

xiXi, Y =
k∑
j=1

NE
yj
Yj,

where x ∈ Rh, NE
y = (NE

y1
, . . . , NE

yk
), and Xi, Yj are the orthonormal vector fields

in (1.5). After some computations that are omitted, using the definition (1.3) of the
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Kaplan mapping, we obtain the identity

k∑
`,m=1

h∑
i,j,p=1

Q`
ijQ

m
ipN

E
y`
NE
ymxjxp = |x|2|NE

y |2. (2.8)

From (2.5), (2.7), and (2.8) we deduce that

h∑
i=1

〈Xi, N
E〉2 = |NE

x |2 + |x|2|NE
y |2,

and formula (2.4) follows. �

2.2. α-Perimeter for symmetric sets. Thanks to Proposition 2.3, from now on

we will consider only α-perimeter.

We say that a set E ⊂ Rn = Rh × Rk is x- and y-spherically symmetric if there

exists a set G ⊂ R+ × R+ such that

E =
{

(x, y) ∈ Rn : (|x|, |y|) ∈ G
}
.

We call G the generating set of E. In the following we will use the constant

chk = hkωhωk,

where ωm = L m({x ∈ Rm : |x| < 1}), for m ∈ N.

Proposition 2.4. Let E ⊂ Rn be a bounded open set with finite α-perimeter that is

x- and y-spherically symmetric with generating set G ⊂ R+ × R+. Then we have:

Pα(E) = chk sup
ψ∈F2(R+×R+)

∫
G

(
sk−1∂r

(
rh−1ψ1

)
+ rh−1+α∂s

(
sk−1ψ2

))
drds. (2.9)

In particular, if E has Lipschitz boundary then we have:

Pα(E) = chk

∫
∂G

|(NG
r , r

αNG
s )|rh−1sk−1 dH 1(r, s), (2.10)

where NG = (NG
r , N

G
s ) ∈ R2 is the outer unit normal to the boundary ∂G ⊂ R+×R+.

Proof. We prove a preliminary version of (2.9). We claim that if E is of finite α-

perimeter and x-spherically symmetric with generating set F ⊂ R+ × Rk, then we

have:

Pα(E) = hωh sup
ψ∈F1+k(R+×Rk)

∫
F

(
∂r
(
rh−1ψ1

)
+ rh−1+α

k∑
j=1

∂yjψ1+j

)
drdy = Q(F ),

(2.11)

where Q is defined via the last identity. For any test function ψ ∈ F1+k(R+ × Rk)

we define the test function ϕ ∈ Fn(Rn)

ϕ(x, y) =

(
x

|x|
ψ1(|x|, y), ψ2(|x|, y), . . . , ψ1+k(|x|, y)

)
for |x| 6= 0, (2.12)
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and ϕ(0, y) = 0. For any i = 1, . . . , h, j = 1, . . . , k, and x 6= 0, we have the identities

∂xiϕi(x, y) =

(
1

|x|
− x2

i

|x|3

)
ψ1(|x|, y) +

x2
i

|x|2
∂rψ1(|x|, y),

∂yjϕh+j(x, y) = ∂yjψ1+j(|x|, y),

and thus, the α-divergence defined by

divαϕ(x, y) =
h∑
i=1

∂ϕi(x, y)

∂xi
+ |x|α

k∑
j=1

∂ϕh+j(x, y)

∂yj
(2.13)

satisfies

divαϕ(x, y) =
h− 1

|x|
ψ1(|x|, y) + ∂rψ1(|x|, y) + |x|α

k∑
j=1

∂yjψ1+j(|x|, y). (2.14)

For any y ∈ Rk we define the section F y =
{
r > 0 : (r, y) ∈ F

}
. Using Fubini-

Tonelli theorem, spherical coordinates in Rh, the symmetry of E, and (2.14) we obtain∫
E

divαϕ dxdy =

∫
Rk

∫
F y

∫
|x|=r

(
h− 1

r
ψ1 + ∂rψ1 + rα

k∑
j=1

∂yjψ1+j

)
dH h−1(x)drdy

= hωh

∫
Rk

∫
F y
rh−1

(
h− 1

r
ψ1 + ∂rψ1 + rα

k∑
j=1

∂yjψ1+j

)
drdy

= hωh

∫
F

∂r(r
h−1ψ1) + rα+h−1

k∑
j=1

∂yjψ1+j drdy.

(2.15)

Because ψ is arbitrary, this proves the inequality ≥ in (2.11).

We prove the opposite inequality when E ⊂ Rn is an x-symmetric bounded open

set with smooth boundary. The unit outer normal NE = (NE
x , N

E
y ) is continuously

defined on ∂E. At points (0, y) ∈ ∂E, however, we have NE
x (0, y) = 0 and thus

NE
α (0, y) = 0. For any ε > 0 we consider the compact setK =

{
(x, y) ∈ ∂E : |x| ≥ δ

}
,

where δ > 0 is such that Pα(E; {|x| = δ}) = 0 and∫
∂E\K

|NE
α (x, y)| dH n−1 < ε. (2.16)

Let H ⊂ R+ × Rk be the generating set of K. By standard extension theorems,

there exists ψ ∈ F1+k(R+ × Rk) such that

ψ(r, y) =
(NF

r (r, y), rαNF
y (r, y))

|(NF
r (r, y), rαNF

y (r, y)|
for (r, y) ∈ H.

The mapping ϕ ∈ Fn(Rn) introduced in (2.12) satisfies

ϕ(x, y) =
NE
α (x, y)

|NE
α (x, y)|

, for (x, y) ∈ K. (2.17)
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Then, by identity (2.15), the divergence theorem, (2.17), (2.16), and (2.3) we have

Q(F ) ≥
∫
F

(
∂r
(
rh−1ψ1

)
+ rh−1+α

k∑
j=1

∂yjψ1+j

)
drdy

=

∫
E

divαϕdxdy =

∫
∂E

〈ϕ,NE
α 〉 dH n−1

=

∫
K

|NE
α (x, y)| dH n−1 +

∫
∂E\K

〈ϕ,NE
α 〉 dH n−1

≥ Pα(E)− 2ε.

This proves (2.11) when ∂E is smooth. The general case follows by approximation.

Let E ⊂ Rn be a set of finite α-perimeter and finite Lebesgue measure that is x-

symmetric with generating set F ⊂ R+ × Rk. By [4, Theorem 2.2.2], there exists a

sequence (Ej)j∈N such that each Ej is of class C∞

lim
j→∞

L n(Ej∆E) = 0 and lim
j→∞

Pα(Ej) = Pα(E).

Each Ej can be also assumed to be x-spherically symmetric with generating set Fj ⊂
R+ × Rk. Then we also have

lim
j→∞

L 1+k(Fj∆F ) = 0.

By lower semicontinuity and (2.11) for the smooth case, we have

Q(F ) ≤ lim inf
j→∞

Q(Fj) = lim
j→∞

Pα(Ej) = Pα(E).

This concludes the proof of (2.11) for any set E with finite α-perimeter.

The general formula (2.9) for sets that are also y-spherically symmetric can be

proved in a similar way and we can omit the details.

Formula (2.10) for sets E with Lipschitz boundary follows from (2.9) with the same

argument sketched in the proof of Proposition 2.3. �

2.3. α-Perimeter in the case h = 1. When h = 1 there exists a change of coordi-

nates that transforms α-perimeter into the standard perimeter (see [10] for the case

of the plane h = k = 1). Let n = 1 + k and consider the mappings Φ,Ψ : Rn → Rn

Ψ(x, y) =

(
sgn(x)

|x|α+1

α + 1
, y

)
and Φ(ξ, η) =

(
sgn(ξ)|(α + 1)ξ|

1
α+1 , η

)
.

Then we have Φ ◦Ψ = Ψ ◦ Φ = IdRn .

Proposition 2.5. Let h = 1 and n = 1 +k. For any measurable set E ⊂ Rn we have

Pα(E) = sup
{∫

Ψ(E)

divψ dξdη : ψ ∈ Fn(Rn)
}
. (2.18)

Proof. First notice that the supremum in the right hand side can be equivalently

computed over all vector fields ψ : Rn → Rn in the Sobolev space W 1,1
0 (Rn;Rn) such

that ‖ψ‖∞ ≤ 1.
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For any ϕ ∈ Fn(Rn), let ψ = ϕ ◦ Φ. Then for any j = 1, . . . , k = n− 1, we have

∂ξψ1(ξ, η) = ∂ξ
(
ϕ1 ◦ Φ

)
(ξ, η) = |(α + 1)ξ|−

α
α+1∂xϕ1(Φ(ξ, η)),

∂ηjψ1+j(ξ, η) = ∂ηj
(
ϕ1+j ◦ Φ

)
(ξ, η) = ∂yjϕ1+j(Φ(ξ, η)).

(2.19)

In particular, we have ψ ∈ W 1,1
0 (Rn;Rn) and ‖ψ‖∞ ≤ 1. Then, the standard diver-

gence of ψ satisfies

divψ(ξ, η) = |(α + 1)ξ|−
α
α+1 divαφ(Φ(ξ, η)).

The determinant Jacobian of the change of variable (x, y) = Φ(ξ, η) is

| det JΦ(ξ, η)| = |(α + 1)ξ|−
α
α+1 . (2.20)

and thus we obtain∫
E

divαϕ(x, y) dxdy =

∫
Ψ(E)

divαϕ(Φ(ξ, η))| det JΦ(ξ, η)| dξdη

=

∫
Ψ(E)

divψ(ξ, η) dξdη.

(2.21)

The claim follows.

�

3. Rearrangements

In this section, we prove various rearrangement inequalities for α-perimeter in Rn.

We consider first the case h = 1. In this case, there are a Steiner type rearrangement

in the x-variable and a Schwartz rearrangement in the y variables that reduce the

isoperimetric problem in Rn to a problem for Lipschitz graphs in the first quadrant

R+ × R+. Then we consider dimensions h ≥ 2, where we can rearrange sets in Rh

that are already x-spherically symmetric.

3.1. Rearrangement in the case h = 1. Let h = 1 and n = 1 + k. We say

that a set E ⊂ Rn is x-symmetric if (x, y) ∈ E implies (−x, y) ∈ E; we say that

E is x-convex if the section Ey = {x ∈ R : (x, y) ∈ E} is an interval for every

y ∈ Rk; finally, we say that E is y-Schwartz symmetric if for every x ∈ R the section

Ex = {y ∈ Rk : (x, y) ∈ E} is an (open) Euclidean ball in Rk centered at the origin.

Theorem 3.1. Let h = 1 and n = 1 + k. For any set E ⊂ Rn such that Pα(E) <

∞ and 0 < L n(E) < ∞ there exists an x-symmetric, x-convex, and y-Schwartz

symmetric set E∗ ⊂ Rn such that Pα(E∗) ≤ Pα(E) and L n(E∗) = L n(E).

Moreover, if Pα(E∗) = Pα(E) then E is x-symmetric, x-convex and there exist

functions c : [0,∞) → Rk and f : [0,∞) → [0,∞] such that for L 1-a.e. x ∈ R we

have

Ex = {y ∈ Rk : |y − c(|x|)| < f(|x|)}. (3.1)
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Proof. By Proposition 2.5, the set F = Ψ(E) ⊂ Rn satisfies P (F ) = Pα(E), where P

stands for the standard perimeter in Rn. We define the measure µ on Rn

µ(F ) =

∫
F

|(α + 1)ξ|−
α
α+1 dξdη. (3.2)

Then, by (2.20) we also have the identity µ(F ) = L n(E).

We rearrange the set F using Steiner symmetrization in direction ξ. Namely, we

let

F1 = {(ξ, η) ∈ Rn : |ξ| < L 1(F η)/2},
where F η = {ξ ∈ R : (ξ, η) ∈ F}. The set F1 is ξ-symmetric and ξ-convex. By

classical results on Steiner symmetrization we have P (F1) ≤ P (F ) and the equality

P (F1) = P (F ) implies that F is ξ-convex: namely, a.e. section F η is (equivalent to)

an interval.

The µ-volume of F1 is

µ(F1) =

∫
F1

|(α + 1)ξ|−
α
α+1dξdη =

∫
Rk

(∫
F η1

|(α + 1)ξ|−
α
α+1dξ

)
dη.

For any measurable set I ⊂ R with finite measure, the symmetrized set I∗ =

(−L 1(I)/2,L 1(I)/2) satisfies the following inequality (see [10], page 361)∫
I

|ξ|−
α
α+1dξ ≤

∫
I∗
|ξ|−

α
α+1dξ. (3.3)

Moreover, if L 1(I∆I∗) > 0 then the inequality is strict. This implies that µ(F1) ≥
µ(F ) and the inequality is strict if F is not equivalent to an ξ-symmetric and ξ-convex

set.

We rearrange the set F1 using Schwartz symmetrization in Rk, namely we let

F2 =
{

(ξ, η) ∈ Rn : |η| <
(L k(F ξ

1 )

ωk

) 1
k
}
.

By classical results on Schwartz rearrangement, we have P (F2) ≤ P (F1) and the

equality P (F2) = P (F1) implies that a.e. section F ξ
1 is an Euclidean ball

F ξ
1 = {η ∈ Rk : |η − d(|ξ|)| < %(|ξ|)} (3.4)

for some d(|ξ|) ∈ Rk and %(|ξ|) ∈ [0,∞]. By Fubini-Tonelli theorem, the µ-volume is

preserved:

µ(F2) =

∫
R
|(α + 1)ξ|−

α
α+1L k(F ξ

2 )dξ =

∫
R
|(α + 1)ξ|−

α
α+1L k(F ξ

1 )dξ = µ(F1). (3.5)

Recall that δλ(x, y) = (λx, λα+1y). The set E∗ = δλ(Φ(F2)), with λ > 0 such that

L n(E∗) = L n(E), satisfies the claims in the statement of the theorem. In fact, we

have 0 < λ ≤ 1 because

L n(Φ(F2)) = µ(F2) = µ(F1) ≥ µ(F ) = L n(E),

and then, by the scaling property of α-perimeter we have

Pα(E∗) = λd−1Pα(Φ(F2)) ≤ Pα(Φ(F2)) = P (F2) ≤ P (F1) ≤ P (F ) = Pα(E).
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This proves the first part of the theorem.

If Pα(E∗) = Pα(E) then we have P (F2) = P (F1) and λ = 1. From the first

equality we deduce that the sections F ξ
1 are of the form (3.4) and claim (3.1) holds

with c(|x|) = d
(
|x|α+1/(α + 1)

)
and f(|x|) = %

(
|x|α+1/(α + 1)

)
. From λ = 1 we

deduce that

µ(F ) = L n(E) = L n(E∗) = L n(Φ(F2)) = µ(F2) = µ(F1),

and thus F is ξ-symmetric and ξ-convex. The same holds then for E.

�

3.2. Rearrangement in the case h ≥ 2. We prove the analogous of Theorem 3.1

when h ≥ 2. We need to start from a set E ⊂ Rn that is x-spherically symmetric

E = {(x, y) ∈ Rn : (|x|, y) ∈ F}

for some generating set F ⊂ R+ × Rk.

By the proof of Proposition 2.4, see (2.11), we have the identity Pα(E) = Q(F ),

where

Q(F ) = hωh sup
ψ∈F1+k(R+×Rk)

∫
F

(
∂r
(
rh−1ψ1

)
+ rh−1+α

k∑
j=1

∂yjψ1+j

)
drdy. (3.6)

Our goal is to improve the x-spherical symmetry to the x-Schwartz symmetry. A

set E ⊂ Rn is x-Schwartz symmetric if for all y ∈ Rk we have

Ey = {x ∈ Rh : (x, y) ∈ E} = {x ∈ Rh : |x| < %(y)}

for some function % : Rk → [0,∞]. To obtain the Schwartz symmetry, we use the

radial rearrangement technique introduced in [8].

Theorem 3.2. Let h ≥ 2, k ≥ 1 and n = h + k. For any set E ⊂ Rn that is

x-spherically symmetric and such that Pα(E) < ∞ and 0 < L n(E) < ∞ there

exists an x- and y-Schwartz symmetric set E∗ ⊂ Rn such that Pα(E∗) ≤ Pα(E) and

L n(E∗) = L n(E).

Moreover, if Pα(E∗) = Pα(E) then E is x-Schwartz symmetric and there exist

functions c : [0,∞)→ Rk and f : [0,∞)→ [0,∞] such that, up to a negligible set, we

have

E = {(x, y) ∈ Rn : |y − c(|x|)| < f(|x|)}. (3.7)

Proof. Let F ⊂ R+ × R be the generating set of E. We define the volume of F via

the following formula

V (F ) = ωh

∫
F

rh−1drdy = L n(E).

We rearrange F in the coordinate r using the linear density rh−1+α that appears,

in (3.6), in the part of divergence depending on the coordinates y. Namely, we define
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the function g : Rk → [0,∞] via the identity

1

h+ α
g(y)h+α =

∫ g(y)

0

rh−1+αdr =

∫
Fy

rh−1+αdr, (3.8)

and we let

F ] =
{

(r, y) ∈ R+ × Rk : 0 < r < g(y)
}
.

We claim that Q(F ]) ≤ Q(F ) and V (F ]) ≥ V (F ), with equality V (F ]) = V (F )

holding if and only if F ] = F , up to a negligible set.

For any open set A ⊂ R+ × Rk, we define

Q0(F ;A) = sup
ψ∈F1(A)

∫
F

∂r
(
rh−1ψ

)
drdy,

Qj(F ;A) = sup
ψ∈F1(A)

∫
F

rh−1+α∂yjψ drdy, j = 1, . . . , k.

(3.9)

The open sets mappings A 7→ Qj(F ;A), j = 0, 1, . . . , k, extend to Borel measures.

For any Borel set B ⊂ Rk and j = 0, 1, . . . , k, we define the measures

µj(B) = Qj(F ;R+ ×B),

µ]j(B) = Qj(F
];R+ ×B).

By Step 1 and Step 2 of the proof of Theorem 1.5 in [8], see page 106, we have

µ]j(B) ≤ µj(B) for any Borel set B ⊂ Rk and for any j = 0, 1, . . . , k. It follows that

the vector valued Borel measures µ = (µ0, . . . , µk) and µ] = (µ]0, . . . , µ
]
k) satisfy

|µ]|(Rk) ≤ |µ|(Rk),

where | · | denotes the total variation. This is equivalent to Q(F ]) ≤ Q(F ).

We claim that for any y ∈ Rk we have

1

h
g(y)h =

∫
F ]y

rh−1 dr ≥
∫
Fy

rh−1 dr, (3.10)

with strict inequality unless F ]
y = Fy up to a negligible set. From (3.10), by Fubini-

Tonelli theorem it follows that V (F ]) ≥ V (F ) with strict inequality unless F ] = F

up to a negligible set. By (3.8), claim (3.10) is equivalent to(
(h+ α)

∫
Fy

rh−1+αdr
) 1
h+α ≥

(
h

∫
Fy

rh−1dr
) 1
h
, (3.11)

and this inequality holds for any measurable set Fy ⊂ R+, for any h ≥ 2, and α > 0, by

Example 2.5 in [8]. Moreover, we have equality in (3.11) if and only if Fy = (0, g(y)).

Let E]
1 ⊂ Rn be the x-Schwartz symmetric set with generating set F ]. Then we

have

L n(E]
1) = V (F ]) ≥ V (F ) = L n(E),

with strict inequality unless F ] = F . Then there exists 0 < λ ≤ 1 such that the set

E] = δλ(E
]
1) satisfies L n(E]) = L n(E). Since λ ≤ 1, we also have

Pα(E]) = λd−1Pα(E]
1) ≤ Pα(E]

1) = Q(F ]) ≤ Q(F ) = Pα(E).
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If Pα(E]) = Pα(E) then it must be λ = 1 and thus F ] = F , that in turn implies

E] = E, up to a negligible set.

Now the theorem can be concluded applying to E] a Schwartz rearrangement in

the variable y ∈ Rk. This rearrangement is standard, see the general argument in [9].

The resulting set E∗ ⊂ Rn satisfies Pα(E∗) ≤ Pα(E) and also the other claims in the

theorem.

�

4. Existence of isoperimetric sets

In this section, we prove existence of solutions to the isoperimetric problem for

α-perimeter and H-perimeter. When h ≥ 2, we prove the existence of solutions in

the class of x-spherically symmetric sets. The proof is based on a concentration-

compactness argument.

For any set E ⊂ Rn and t > 0, we let

Ex
t− = {(x, y) ∈ E : |x| < t} and Ex

t = {(x, y) ∈ E : |x| = t} ,
Ey
t− = {(x, y) ∈ E : |y| < t} and Ey

t = {(x, y) ∈ E : |y| = t} .
(4.1)

We also define

vxE(t) = H n−1(Ex
t ), (4.2)

and

vyE(t) =

∫
Eyt

|x|αdH n−1. (4.3)

In the following, we use the short notation {|x| < t} = {(x, y) ∈ Rn : |x| < t} and

{|y| < t} = {(x, y) ∈ Rn : |y| < t}.

Proposition 4.1. Let E ⊂ Rn be a set with finite measure and finite α-perimeter.

Then for a.e. t > 0 we have

Pα(Ex
t−) = Pα(E;Ex

t−) + vxE(t) and Pα(Ey
t−) = Pα(E;Ey

t−) + vyE(t). (4.4)

Proof. We prove the claim for Ey
t−. Let {φε}ε>0 be a standard family of mollifiers in

Rn and let

fε(z) =

∫
E

φε(|z − w|)dw, z ∈ Rn.

Then fε ∈ C∞(Rn) and fε → χE in L1(Rn) for ε → 0. Therefore, by the coarea

formula we also have, for a.e. t > 0 and possibly for a suitable infinitesimal sequence

of ε’s,

lim
ε→0

∫
{|y|=t}

|fε − χE|dH n−1 = 0. (4.5)

Since E has finite α-perimeter, the set {t > 0 : Pα(E; {|y| = t}) > 0} is at most

countable, and thus

Pα(E; {|y| = t}) = 0 for a.e. t > 0. (4.6)
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We use the notation ∇αfε = (X1fε, . . . , Xhfε, Y1fε, . . . Ykfε), where Xi, Yj are the

vector fields (1.6). By the divergence Theorem, for any ϕ ∈ C1
c (Rn,Rn) we have∫

{|y|<t}
fε(z)divαϕ(z) dz =

∫
{|y|<t}

(
divα(fεϕ)− 〈∇αfε, ϕ〉

)
dz

= −
∫
{|y|=t}

fε(z)|x|α〈N,ϕ(z)〉dH n−1 −
∫
{|y|<t}

〈∇αfε, ϕ〉dz,

(4.7)

where N = (0,−y/|y|) is the inner unit normal of {|y| < t}. For any t > 0, we have

lim
ε→0

∫
{|y|<t}

fε(z)divαϕ(z) dz =

∫
Eyt−

divαϕ(z) dz, (4.8)

and, for any t > 0 satisfying (4.5),

lim
ε→0

∫
{|y|=t}

fε(z)|x|α〈N,ϕ(z)〉dH n−1 =

∫
Eyt

|x|α〈N,ϕ(z)〉dH n−1. (4.9)

On the other hand, we claim that

lim
ε→0

∫
{|y|<t}

〈∇αfε, ϕ〉dz =

∫
{|y|<t}

{ h∑
i=1

ϕidµ
xi
E +

k∑
`=1

ϕh+`|x|αdµy`E
}
, (4.10)

where µxiE and µy`E are the distributional partial derivatives of χE, that are Borel

measures on Rn, because E has finite α-perimeter. For the coordinate y`, we have∫
{|y|<t}

ϕh+`(z)|x|α∂y`fε(z)dz =

∫
{|y|<t}

ϕh+`(z)|x|α
∫
E

∂y`φε(|z − w|)dw dz

= −
∫
{|y|<t}

ϕh+`(z)|x|α
∫
E

∂η`φε(|z − w|)dw dz

=

∫
{|y|<t}

ϕh+`(z)|x|α
∫
Rn
φε(|z − w|)dµy`E (w) dz

=

∫
Rn

∫
{|y|<t}

ϕh+`(z)|x|αφε(|z − w|)dz dµy`E (w),

where we let w = (ξ, η) ∈ Rh × Rk. By (4.6), the measure µy`E is concentrated on

{|y| 6= t}. It follows that

lim
ε→0

∫
Rn

∫
{|y|<t}

ϕh+`(z)|x|αφε(|z − w|)dz dµy`E (w) =

∫
{|η|<t}

ϕh+`(w)|ξ|αdµy`E (w).

This proves (4.10).

Now, from (4.7)–(4.10) we deduce that∫
E∩{|y|<t}

divαϕ(z) dz = −
∫
E∩{|y|=t}

|x|α〈N,ϕ(z)〉dH n−1

−
∫
{|y|<t}

{ h∑
i=1

ϕidµ
xi
E + |x|α

k∑
`=1

ϕh+`dµ
y`
E

}
,

(4.11)
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and the claim follows by optimizing the right hand side over ϕ ∈ Fn(Rn).

�

Proposition 4.2. Let E ⊂ Rn be a set with finite measure and finite α-perimeter.

For a.e. t > 0 we have Pα(Ex
t−) ≤ Pα(E) and Pα(Ey

t−) ≤ Pα(E).

Proof. The proof is a calibration argument. Notice that

Pα(Ey
t−) = Pα(Ey

t−; {|y| < t}) + Pα(Ey
t−; {|y| ≥ t})

= Pα(E; {|y| < t}) + Pα(Ey
t−; {|y| = t}).

Let t > 0 be such that Pα(E; {|y| = t}) = 0; a.e. t > 0 has this property, see (4.6). It

is sufficient to show that

Pα(Ey
t−; {|y| = t}) ≤ Pα(E; {|y| ≥ t}) = Pα(E; {|y| > t}).

The function ϕ(x, y) = (0,−y/|y|) ∈ Rn, |y| 6= 0, has negative divergence:

divαϕ(x, y) = −|x|α
k∑
`=1

( 1

|y|
− y2

`

|y|3
)

= −(k − 1)|x|α

|y|
≤ 0.

As in the proof of (4.11), we have

0 ≥
∫
E∩{|y|>t}

divαϕdz =

∫
Eyt

|x|αdH n−1 −
∫
{|y|>t}

|x|α
k∑
`=1

ϕh+`dµ
y`
E

≥
∫
E∩{|y|=t}

|x|αdH n−1 − Pα(E; {|y| > t}).

By the representation formula (2.3), we obtain

Pα(Ey
t−; {|y| = t}) =

∫
Eyt

|x|αdH n−1 ≤ Pα(E; {|y| > t}).

This ends the proof. �

We prove the existence of isoperimetric sets assuming the validity of the follow-

ing isoperimetric inequality, holding for any L n-measurable set E ⊂ Rn with finite

measure

Pα(E) ≥ CL n(E)
d−1
d (4.12)

for some geometric constant C > 0, see [6], [2], and [3]. By the homogeneity properties

of Lebesgue measure and α-perimeter, we can define the constant

CI = inf{Pα(E) : L n(E) = 1 and E ∈ Sx, if h ≥ 2}. (4.13)

Only when h ≥ 2 we are adding the constraint E ∈ Sx. We have CI > 0 by the

validity of (4.12) for some C > 0. Our goal is to prove that the infimum in (4.13) is

attained.

Theorem 4.3. Let h, k ≥ 1 and n = h + k. There exists an x- and y-Schwartz

symmetric set E ⊂ Rn realizing the infimum in (4.13).
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Proof. Let (Em)m∈N be a minimizing sequence for the infimum in (4.13), with the

additional assumption that the sets involved in the minimization are x-spherically

symmetric when h ≥ 2. Namely,

L n(Em) = 1 and Pα(Em) ≤ CI

(
1 +

1

m

)
, m ∈ N. (4.14)

By Theorems 3.1 and 3.2, we can assume that every set Em is x- and y-Schwartz

symmetric. We claim that the minimizing sequence can be also assumed to be in a

bounded region of Rn.

Fix m ∈ N and let E = Em. For any t > 0 such that (4.4) holds we consider the

set Ex
t− = E ∩ {|x| < t} ∈ Sx.

We apply the isoperimetric inequality (4.12) with the constant CI > 0 in (4.13) to

the sets Ex
t− and E \ Ex

t−, and we use Proposition 4.1:

CIL
n(Ex

t−)
d−1
d ≤ Pα(Ex

t−) = Pα(E; {|x| < t}) + vxE(t)

CI(1−L n(Ex
t−))

d−1
d ≤ Pα(E \ Ex

t−) = Pα(E; {|x| > t}) + vxE(t).
(4.15)

As in (4.2), we let vxE(t) = H n−1(Ex
t ). Adding up the two inequalities we get

CI(L
n(Ex

t−)
d−1
d + (1−L n(Ex

t−))
d−1
d ) ≤ Pα(E) + 2vxE(t). (4.16)

The function g : [0,∞) → R, g(t) = L n(Ex
t−) is continuous, (0, 1) ⊂ g([0,∞)) ⊂

[0, 1], and it is increasing. In particular, g is differentiable almost everywhere. For

any t > 0 such that Pα(E; {|x| = t}) = 0, also the standard perimeter vanishes,

namely P (E; {|x| = t}) = 0. With the vector field ϕ = (x/|x|, 0), and for t < s

satisfying Pα(E; {|x| = t}) = Pα(E; {|x| = s}) = 0, we have∫
Exs−\Ext−

h− 1

|x|
dz =

∫
Exs−\Ext−

divϕdz

= H n−1(Ex
s )−H n−1(Ex

t ) +

∫
∂∗E∩{s<|x|<t}

〈ϕ, νE〉dH n−1.

This implies that

lim
s→t

H n−1(Ex
s ) = H n−1(Ex

t ),

with limit restricted to s satisfying the above condition, and thus

g′(t) = lim
s→t

1

s− t

∫ s

t

H n−1(Ex
τ ) dτ = H n−1(Ex

t ). (4.17)

At this point, by (4.14), inequality (4.16) gives

CI

(
g(t)

d−1
d + (1− g(t))

d−1
d − 1− 1

m

)
≤ 2g′(t). (4.18)

The function ψ : [0, 1] → R, ψ(s) = s
d−1
d + (1 − s)

d−1
d − 1 is concave, it attains

its maximum at s = 1/2 with ψ(1/2) = 2
1
d − 1, and it satisfies ψ(s) = ψ(1 − s),

ψ(0) = ψ(1) = 0. By (4.18) we have

g′(t) ≥ CI
2

(
ψ(g(t))− 1

m

)
≥ CI

4
ψ(g(t)) +

CI
4

(
ψ(g(t))− 2

m

)
, (4.19)
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for almost every t ∈ R and every m ∈ N. Provided that m ∈ N is such that

2/m ≤ maxψ = 21/d − 1, we show that there exist constants 0 < am < bm <∞ such

that inequality (4.19) implies the following:

g′(t) ≥ CI
4
ψ(g(t)) for a.e. t ∈ [am, bm]. (4.20)

In fact, by continuity of g and ψ, and by symmetry of ψ with respect to the line

{s = 1/2}, for m large enough, there exist 0 < am < bm <∞ such that

0 < g(am) = 1− g(bm) <
1

2
and ψ(g(am)) = ψ(g(bm)) =

2

m
.

By concavity of ψ and monotonicity of g, it follows that ψ(g(t)) ≥ 2
m

for every

t ∈ [am, bm], and (4.20) follows. As m→∞ we have g(bm)→ 1, that implies

lim
m→∞

bm = sup{b > 0 : g(b) < 1} > 0.

Moreover, as m → ∞ we also have g(am) → 0. Since the set E is x-Schwartz

symmetric, there holds g(a) > 0 for all a > 0. Therefore, we deduce that am → 0.

We infer that, for m large enough, we have am < bm/2. Integrating inequality

(4.20) on the interval [bm/2, bm], we find

bm
2
≤ 4

CI

∫ bm

bm/2

g′(t)

ψ(g(t))
dt ≤ 4

CI

∫ g(bm)

g(bm/2)

1

ψ(s)
ds ≤ 4

CI

∫ 1

0

1

ψ(s)
ds = `1. (4.21)

We consider the set Êm = Ex
bm−. By (4.21), Êm is contained in the cylinder

{|x| < 2`1} and, by Proposition 4.2, it satisfies Pα(Êm) ≤ Pα(Em). Define the set

E†m = δλm(Êm), where λm ≥ 1 is chosen in such a way that L n(Ê†m) = 1; namely, λm
is the number

λm =
( 1

L n(Êm)

) 1
d
,

where

L n(Êm) = L n(Em ∩ {|x| < bm}) = g(bm) = 1− g(am). (4.22)

By concavity of ψ, for 0 < s < 1/2 the graph of ψ lays above the straight line

through the origin passing through the maximum (1/2, ψ(1/2)), i.e., ψ(s) > 2(21/d −
1)s. Therefore, since g(am) < 1/2 and ψ(g(am)) = 2/m, then

g(am) ≤ 1

m(21/d − 1)
,

and thus

λm ≤
( 1

1− 1
m(21/d−1)

)1/d

=
( m

m− 1
21/d−1

)1/d

.
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By homogeneity of α-perimeter,

Pα(E†m) = λd−1
m Pα(Êm) ≤ λd−1

m Pα(Em) ≤ λd−1
m CI

(
1 +

1

m

)
≤ CI

(
1 +

1

m

)( m

m− 1
21/d−1

) d−1
d
.

In conclusion, (E†m)m∈N is a minimizing sequence for CI and, for m large enough, it

is contained in the cylinder {|x| < `}, where ` = 21/d+1`1.

Now we consider the case of the y-variable. We start again from (4.15) for the

sets Ey
t− for t > 0. Now the set E can be assumed to be contained in the cylinder

{|x| < `}. In this case, we have

vyE(t) =

∫
Eyt

|x|α dH n−1 ≤ `αH n−1(Ey
t ) = `αg′(t).

So inequality (4.16) reads

CI

(
g(t)

d−1
d + (1− g(t))

d−1
d − 1− 1

m

)
≤ 2`αg′(t). (4.23)

Now the argument continues exactly as in the first case. The conclusion is that there

exists a minimizing sequence (Em)m∈N for (4.13) and there exists ` > 0 such that we

have:

i) L n(Em) = 1 for all m ∈ N;

ii) Pα(Em) ≤ CI(1 + 1/m) for all m ∈ N;

iii) Em ⊂ {(x, y) ∈ Rn : |x| < ` and |y| < `} for all m ∈ N;

iv) Each Em is x- and y-Schwartz symmetric.

By the compactness theorem for sets of finite α-perimeter (see [6] for a general

statement that covers our case), there exists a set E ⊂ Rn of finite α-perimeter which

is the L1-limit of (a subsequence of) the sequence (Em)m∈N. Then we have

L n(E) = lim
m→∞

L n(Em) = 1.

Moreover, by lower semicontinuity of α-perimeter

Pα(E) ≤ lim inf
m→∞

Pα(Em) = CI .

The set E is x- and y-Schwartz symmetric, because these symmetries are preserved

by the L1-convergence. This concludes the proof. �

5. Profile of isoperimetric sets

In Theorem 4.3, we proved existence of isoperimetric sets, in fact in the class of

x-spherically symmetric sets when h ≥ 2. By the characterization of the equality case

in Theorems 3.1 and 3.2, any isoperimetric set E is x-Schwartz symmetric and there

are functions c : [0,∞)→ Rk and f : [0,∞)→ [0,∞) such that

E = {(x, y) ∈ Rn : |y − c(|x|)| < f(|x|)}. (5.1)
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The function f is decreasing. We will prove in Proposition 5.4 that, for isoperimetric

sets, the function c is constant.

We start with the characterization of an isoperimetric set E with constant function

c = 0. Let F ⊂ R+ × R+ be the generating set of E

E = {(x, y) ∈ Rn : (|x|, |y|) ∈ F}.

The set F is of the form

F = {(r, s) ∈ R+ × R+ : 0 < s < f(r), r ∈ (0, r0)}, (5.2)

where f : (0, r0)→ (0,∞) is a decreasing function, for some 0 < r0 ≤ ∞.

By the regularity theory of Λ-minimizers of perimeter, the boundary ∂E is a C∞

hypersurface where x 6= 0. We do not need the general regularity theory, and we prove

this fact in our case by an elementary method that gives also the C∞-smoothness of

the function f in (5.2).

5.1. Smoothness of f . We prove that the boundary ∂F ⊂ R+×R+ is the graph of

a smooth function s = f(r).

We rotate clockwise by 45 degrees the coordinate system (r, s) ∈ R2 and we call

the new coordinates (%, σ); namely, we let

r =
σ + %√

2
, s =

σ − %√
2
.

There exist −∞ ≤ a < 0 < b ≤ ∞ and a function g : (a, b) → R such that the

boundary ∂F ⊂ R+ × R+ is a graph σ = g(%); namely, we have

∂F =
{(
r(%), s(%)

)
=
(g(%) + %√

2
,
g(%)− %√

2

)
: % ∈ (a, b)

}
.

Since the function f is decreasing, the function g is 1-Lipschitz continuous.

By formula (2.10) and by the standard length formula for Lipschitz graphs, the

α-perimeter of E is

Pα(E) = chk

∫ b

a

√
s′2 + r2αr′2 rh−1sk−1 d%,

where chk = hkωhωk. On the other hand, the volume of E is

L n(E) = chk

∫ b

a

(∫ g(%)

|%|

(
σ + %√

2

)h−1(
σ − %√

2

)k−1

dσ

)
d%.

For ε ∈ R and ψ ∈ C∞c (a, b), let gε = g + εψ and let Fε ⊂ R+ × R+ be the subgraph

in σ > |%| of the function gε. The set Eε ⊂ Rn with generating set Fε has α-perimeter

p(ε) = Pα(Eε)

= chk

∫ b

a

√
(s′ + εψ′)2 + (r + εψ)2α(r′ + εψ′)2(r + εψ)h−1(s+ εψ)h−1 d%,
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and volume

v(ε) = L n(Eε) = chk

∫ b

a

(∫ g(%)+εψ(%)

|%|

(
σ + %√

2

)h−1(
σ − %√

2

)k−1

dσ

)
d%.

Since E is an isoperimetric set, we have

0 =
d

dε

p(ε)d

v(ε)d−1

∣∣∣∣
ε=0

=
dpd−1p′vd−1 − pd(d− 1)vd−2v′

v2d−2

∣∣∣∣
ε=0

,

that gives

p′(0)− Chkαv′(0) = 0, where Chkα =
d− 1

d

Pα(E)

L n(E)
. (5.3)

After some computations, we find

p′(0) = chk

∫ b

a

{(r2αr′ − s′)ψ′ + 2αr2α−1r′2ψ√
s′2 + r2αr′2

+

+
√
s′2 + r2αr′2

[h− 1

r
+
k − 1

s

]
ψ
}
rh−1sk−1 d%,

(5.4)

and

v′(0) = chk

∫ b

a

rh−1sk−1ψ d%. (5.5)

From (5.3), (5.4), and (5.5) we deduce that g is a 1-Lipschitz function that, via the

auxiliary functions r and s, solves in a weak sense the ordinary differential equation

d

d%

(
rh−1sk−1 r2αr′ − s′√

s′2 + r2αr′2

)
= rh−1sk−1

{ 2αr2α−1r′2√
s′2 + r2αr′2

+

+
√
s′2 + r2αr′2

[h− 1

r
+
k − 1

s

]
− Chkα

}
.

(5.6)

By an elementary argument that is omitted, if follows that g ∈ C∞(a, b).

We claim that for all % ∈ (a, b) there holds g′(%) 6= −1. By contradiction, assume

that there exists %̄ ∈ (a, b) such that g′(%̄) = −1, i.e., r′(%̄) = 0 and s′(%̄) = −
√

2.

Inserting these values into the differential equation (5.6) we can compute g′′(%̄) as a

function of g(%̄); namely, we obtain

g′′(%̄) = 2α+1 2(h− 1)−
√

2Chkαr(%̄)

r(%̄)2α+1
. (5.7)

Now there are three possibilities:

(1) g′′(%̄) < 0. In this case, g is strictly concave at %̄ and this contradicts the fact

that E is y-Schwartz symmetric.

(2) g′′(%̄) > 0. In this case, g′ is strictly increasing at %̄ and since g′(%̄) = −1

this contradicts the fact the g is 1-Lipschitz, equivalently, the fact that E is

x-Schwartz symmetric.

(3) g′′(%̄) = 0. In this case, the value of g at %̄ is, by (5.7),

g(%̄) = −%̄+

√
2(h− 1)

Chkα
. (5.8)
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The function ĝ(%) = −% +

√
2(h− 1)

Chkα
, % ∈ R, is the unique solution to the

ordinary differential equation (5.6) with initial conditions g(%̄) given by (5.8)

and g′(%̄) = −1. It follows that g = ĝ and this contradicts the boundedness

of the isoperimetric set; namely, the fact that isoperimetric sets have finite

measure.

This proves that g′(%) 6= −1 for all % ∈ (a, b).

5.2. Differential equations for the profile function. By the discussion in the

previous section, the function f appearing in the definition of the set F in (5.2) is in

C∞(0, r0). The function f is decreasing, f ′ ≤ 0. By formula (2.10), the perimeter of

the set E with generating set F is

Pα(E) = chk

∫ r0

0

√
f ′(r)2 + r2α rh−1f(r)k−1dr, (5.9)

and the volume of E is

L n(E) =
chk
k

∫ r0

0

rh−1f(r)kdr. (5.10)

As in the previous subsection, for ψ ∈ C∞c (0, r0) and ε ∈ R, we consider the pertur-

bation f + εψ and we define the set

Eε =
{

(x, y) ∈ Rn : |y| < f(|x|) + εψ(|x|)
}
.

Then we have

p(ε) = Pα(Eε) = chk

∫ r0

0

√
(f ′ + εψ′)2 + r2α (f + εψ)k−1rh−1dr,

v(ε) = L n(Eε) =
chk
k

∫ r0

0

(f + εψ)krh−1dr,

and from these formulas we compute the first derivatives at ε = 0:

p′(0) = chk

∫ r0

0

[ fk−1f ′√
f ′2 + r2α

ψ′ + (k − 1)fk−2
√
f ′2 + r2αψ

]
rh−1 dr,

v′(0) = chk

∫ r0

0

fk−1ψ rh−1 dr.

The minimality equation (5.3) reads∫ r0

0

( f ′fk−1√
f ′2 + r2α

ψ′ +
[
(k − 1)fk−2

√
f ′2 + r2α − Chkαfk−1

]
ψ
)
rh−1 dr = 0. (5.11)

Integrating by parts the term with ψ′ and using the fact that ψ is arbitrary, we deduce

that f solves the following second order ordinary differential equation:

− d

dr

(
rh−1 f ′fk−1√

f ′2 + r2α

)
+ rh−1

[
(k − 1)

√
f ′2 + r2α fk−2 − Chkαfk−1

]
= 0. (5.12)
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The normal form of this differential equation is

f ′′ =
αf ′

r
+ (f ′

2
+ r2α)

(
k − 1

f
− (h− 1)

f ′

r2α+1

)
− Chkα

(f ′2 + r2α)
3
2

r2α
, (5.13)

and it can be rearranged in the following ways:

∂

∂r

( f ′
rα

)
= (f ′

2
+ r2α)

(k − 1

frα
− (h− 1)

f ′

r3α+1

)
− Chkα

(f ′2 + r2α)
3
2

r3α

= rα
(( f ′

rα

)2

+ 1
)(k − 1

f
− (h− 1)

rα+1

f ′

rα

)
− Chkα

(( f ′
rα

)2

+ 1
) 3

2
.

(5.14)

With the substitution

z = sin arctan
( f ′
rα

)
=

f ′√
r2α + f ′2

, (5.15)

equation (5.14) transforms into the equation

(rh−1z)′ = rα+h−1k − 1

f

√
1− z2 − Chkαrh−1. (5.16)

We integrate this equation on the interval (0, r). When h > 1 we use the fact that

rh−1z = 0 at r = 0. When h = 1 we use the fact that z has a finite limit as r → 0+.

In both cases, we deduce that there exists a constant D ∈ R such that

z(r) = r1−h
∫ r

0

sα+h−1k − 1

f

√
1− z2 ds− Chkα

h
r +Dr1−h. (5.17)

Inserting (5.15) into (5.17), we get

f ′√
r2α + f ′2

= r1−h
∫ r

0

s2α+h−1 k − 1

f
√
s2α + f ′2

ds− Chkα
h

r +Dr1−h. (5.18)

If h ≥ 2, from (5.18) we deduce that D = 0. In fact, the left-hand side of (5.18) is

bounded as r → 0+, while the right-hand side diverges to ±∞ according to the sign

of D 6= 0. In the next section, we prove that D = 0 also when h = 1, provided that

f is the profile of an isoperimetric set.

Remark 5.1 (Computation of the solution when k = 1). When k = 1 and D = 0,

equation (5.18) reads
f ′√

r2α + f ′2
= −Chkα

h
r.

and this is equivalent to

f ′(r) = − Chkαr
α+1√

h2 − C2
hkαr

2
, r ∈ [0, r0). (5.19)

Without loss of generality we can assume that r0 = 1 and this holds if and only if

Chkα = h. Integrating (5.19) with f(1) = 0 we obtain the solution

f(r) =

∫ 1

r

sα+1

√
1− s2

ds =

∫ π/2

arcsin r

sinα+1(s) ds.
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This is the profile function for the isoperimetric set when k = 1 in (1.12).

5.3. Proof that D = 0 in (5.18). We prove that D = 0 in the case h = 1. We assume

by contradiction that D 6= 0. For a small parameter s > 0, let fs : [0, r0) → R+ be

the function

fs(r) =

{
f(s) for 0 < r ≤ s

f(r) for r > s,

and define the set

Es =
{

(x, y) ∈ Rn : |y| < fs(|x|)
}
.

Recall that the isoperimetric ratio is Iα(E) = Pα(E)d/L n(E)d−1. We claim that for

s > 0 small, the difference of isoperimetric ratios

Iα(Es)−Iα(E) =
Pα(Es)

d

L n(Es)d−1
− Pα(E)d

L n(E)d−1

=
Pα(Es)

dL n(E)d−1 − Pα(E)dL n(Es)
d−1

L n(Es)d−1L n(E)d−1

(5.20)

is strictly negative.

The α-perimeter of Es is

Pα(Es) = chk

∫ ∞
0

√
f ′s

2 + r2αfk−1
s rh−1 dr

= chk

[
f(s)k−1

∫ s

0

rα+h−1 dr +

∫ ∞
s

√
f ′2 + r2αfk−1 rh−1 dr

]
= Pα(E) + chk

∫ s

0

[
rαf(s)k−1 −

√
f ′2 + r2αfk−1

]
rh−1 dr,

and its volume is

L n(Es) =
chk
k

∫ ∞
0

fks r
h−1 dr =

chk
k

(∫ s

0

f(s)krh−1 dr +

∫ ∞
s

f(r)k rh−1 dr
)

= L n(E) +
chk
k

∫ s

0

(
f(s)k − f(r)k

)
rh−1 dr,

so, by elementary Taylor approximations, we find

L n(E)d−1Pα(Es)
d =

= L n(E)d−1
{
Pα(E) + chk

∫ s

0

[
rαf(s)k−1 −

√
f ′2 + r2αfk−1

]
rh−1 dr

}d
= L n(E)d−1

{
Pα(E)d + dchkPα(E)d−1

(∫ s

0

[
rαf(s)k−1 −

√
f ′2 + r2αfk−1

]
rh−1 dr

)
+R1(s)

}
,
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where R1(s) is a higher order infinitesimal as s→ 0, and

Pα(E)dL n(Es)
d−1 = Pα(E)d

{
L n(E) +

chk
k

∫ s

0

(
f(s)k − f(r)k

)
rh−1 dr

}d−1

= Pα(E)d
{

L n(E)d−1 +
chk(d− 1)

k
L n(E)d−2

∫ s

0

(
f(s)k − f(r)k

)
rh−1 dr +R2(s)

}
,

where R2(s) is a higher order infinitesimal as s→ 0. The difference is thus

∆(s) = P (Es)
dL n(E)d−1 − Pα(E)dL n(Es)

d−1

= chkPα(E)dL n(E)d−1
{
d
A(s)

Pα(E)
− (d− 1)

B(s)

kL n(E)

}
,

where we let

A(s) =

∫ s

0

[
rαf(s)k−1 −

√
f ′2 + r2αfk−1

]
rh−1 dr +R1(s)

B(s) =

∫ s

0

(
f(s)k − f(r)k

)
rh−1 dr +R2(s).

Now we let h = 1 and we observe that the differential equation (5.17) or its equiv-

alent version (5.18) imply that

lim
r→0+

f ′(r)

rα
= D.

So for D 6= 0 and, in fact, for D < 0 (because f is decreasing) we have

lim
s→0+

A(s)

sα+h
= f(0)k−1 1−

√
D2 + 1

α + h
< 0,

and

lim
s→0+

B(s)

sα+h
= 0.

It follows that for s > 0 small there holds

∆(s)

sh+α
= f(0)k−1 1−

√
D2 + 1

α + h
dchkPα(E)d−1L n(E)d−1 + o(1) < 0.

Then E is not an isoperimetric set. This proves that D = 0.

5.4. Initial and final conditions for the profile function. In this section, we

study the behavior of f at 0 and r0.

Proposition 5.2. The profile function f of an x- and y-Schwartz symmetric isoperi-

metric set E ⊂ Rn satisfies f ∈ C∞(0, r0) ∩ C([0, r0]) for some 0 < r0 < ∞, f ′ ≤ 0,

f(r0) = 0, it solves the differential equation (5.18) with D = 0, and

lim
r→r−0

f ′(r) = −∞ and lim
r→0+

f ′(r)

rα+1
= −Chkα

h
.
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Proof. By Remark 5.1, it is sufficient to prove that r0 <∞ when k > 1. Assume by

contradiction that r0 =∞. In this case, it must be

lim
r→∞

f(r) = 0, (5.21)

otherwise the set E with profile f would have infinite volume.

For ε > 0 and M > 0, let us consider the set

KM =
{
r ≥M : f ′(r) ≥ −ε

}
.

Recall that in our case we have f ′ ≤ 0. The set KM is closed and nonempty for any

M . If KM = ∅ for some M , then this would contradict (5.21).

Let r̄ ∈ KM . From (5.13) we have

f ′′(r̄) = −αε
r̄

+ r̄2αk − 1

f(r̄)
− Chkα

(ε2 + rr̄2α)3/2

r̄2α

≥ 1

2
M2α k − 1

f(M)
> 0,

(5.22)

provided that M is large enough. We deduce that there exists δ > 0 such that

f ′(r) ≥ −ε for all r ∈ [r̄, r̄ + δ). This proves that KM is open to the right. It follows

that it must be KM = [M,∞). This proves that

lim
r→∞

f ′(r) = 0,

and this in turn contradicts (5.22).

Now we have r0 <∞ and we also have

L = lim
r→r−0

f(r) = 0.

If it were L > 0, then the isoperimetric set would have a “vertical part”. We would

get a contradiction by the argument at point (3) at the end of Section 5.1.

We claim that

lim
r→r−0

f ′(r) = −∞.

For M > 0 and 0 < s < r0, consider the set

Ks =
{
s ≤ r < r0 : f ′(r) ≥ −M

}
.

By contradiction assume that there exists M > 0 such that Ks 6= ∅ for all 0 < s < r0.

If r̄ ∈ Ks, we have as above f ′′(r̄) ≥ 1
2
(k − 1)s2α/f(s) > 0. We deduce that there

exists s < r0 such that 0 ≥ f ′(r) ≥ −M for all r ∈ [s, r0). From (5.13), we deduce

that there exists a constant C > 0 such that

f ′′(r) ≥ C

f(r)
.

Multiplying by f ′ ≤ 0 and integrating the resulting inequality we find

f ′(r)2 ≤ 2C log |f(r)|+ C0,

for some constant C0 ∈ R. This is a contradiction because lim
r→r−0

log |f(r)| = −∞.
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By Section 5.2, we have D = 0 in (5.18). In this case, by (5.17) we can compute

the limit

lim
r→0+

f ′(r)

rα+1
= lim

r→0+
−Chkα

h
+ r−h

∫ r

0

sα+h−1k − 1

f

√
1− z2 ds = −Chkα

h
.

This ends the proof. �

Remark 5.3. The Cauchy Problem for the differential equation (5.13), with the initial

conditions f(0) = 1 and f ′(0) = 0 has a unique decreasing solution on some interval

[0, δ], with δ > 0, in the class of functions f ∈ C1([0, δ]) ∩ C∞((0, δ]) such that

lim
r→0+

f ′(r)

rα+1
= −Chkα

h
.

This can be proved using the Banach fixed point Theorem with the norm

‖f‖ = max
r∈[0,δ]

|f(r)|+ max
r∈[0,δ]

|f ′(r)|
rα+1

.

From Theorem 4.3 and Proposition 5.2, there exists a value of the constant Chkα > 0

such that the maximal decreasing solution of the Cauchy Problem has a maximal

interval [0, r0] such that f(r0) = 0.

5.5. Isoperimetric sets are y-Schwartz symmetric. To conclude the proof of

Theorems 1.1–1.3 we are left to show that for an isoperimetric set E of the type (5.1),

the function c of the centers is constant.

Proposition 5.4. Let h, k ≥ 1 and n = h+ k. Let E ⊂ Rn be a set of the form

E = {(x, y) ∈ Rn : |y − c(|x|)| < f(|x|)}

for measurable functions c : [0,∞) → Rk and f : [0,∞) → [0,∞]. If E is an

isoperimetric set for the problem (4.13) then the function c is constant.

Proof. If E is isoperimetric, then also its y-Schwartz rearrangement E∗ = {(x, y) ∈
Rn : |y| < f(|x|)} is an isoperimetric set, see Theorems 3.1 and 3.2. Then, by

Proposition 5.2, we have f ∈ C∞(0, r0) ∩ C([0, r0]) with f(r0) = 0 and f ′ ≤ 0. In

particular, f ∈ Liploc(0, r0). We claim that c ∈ Liploc(0, r0).

Since E is x-Schwartz symmetric, for any 0 < r1 < r2 < r0 we have the inclusion

{y ∈ Rk : |y − c(r2)| ≤ f(r2)} ⊂ {y ∈ Rk : |y − c(r1)| ≤ f(r1)}.

Assume c(r2) 6= c(r1) and let ϑ = c(r2)− c(r1)/|c(r2)− c(r1)|. Then we have

c(r2) + ϑf(r2) ∈ {y ∈ Rk : |y − c(r1)| ≤ f(r1)},

and therefore

|c(r2)− c(r1)|+ f(r2) = |c(r2) + ϑf(r2)− c(r1)| ≤ f(r1).

This implies that c is locally Lipschitz on (0, r0).

Let F ⊂ R+ × Rk be the generating set of E:

E = {(x, y) ∈ Rn : (|x|, y) ∈ F}.
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By the discussion above, the set E and thus also the set F have locally Lipschitz

boundary away from a negligible set. By the representation formula (2.11), we have

Pα(E) = Q(F ) = hωh

∫
∂F

√
N2
r + r2α|Ny|2 rh−1 dH k,

where (Nr, Ny) ∈ R1+k is the unit normal to ∂F in R+ × Rk, that is defined H k

almost everywhere on the boundary. By the coarea formula (see [1]) we also have

Q(F ) = hωh

∫ ∞
0

rh−1

∫
∂Fr

√
N2
r + r2α|Ny|2√

1−N2
r

dH k−1 dr,

where ∂Fr = ∂{y ∈ Rk : (r, y) ∈ F} = {y ∈ Rk : |y − c(r)| = f(r)}.
A defining equation for ∂F is |y − c(r)|2 − f(r)2 = 0. From this equation, we find

Nr = − 〈y − c, c′〉+ ff ′√
(〈y − c, c′〉+ ff ′)2 + |y − c|2

,

Ny =
y − c√

(〈y − c, c′〉+ ff ′)2 + |y − c|2
,

and thus, by translation and scaling in the inner integral,

Q(F ) = hωh

∫ ∞
0

rh−1

∫
|y−c(r)|=f(r)

√{〈y − c(r), c′(r)〉
f(r)

+ f ′(r)
}2

+ r2α dH k−1(y) dr

= hωh

∫ ∞
0

rh−1f(r)k−1

∫
|y|=1

√{
〈y, c′(r)〉+ f ′(r)

}2
+ r2α dH k−1(y) dr.

For any r > 0, the function Φ : Rh → R+

Φ(z) =

∫
|y|=1

√(
〈y, z〉+ f ′(r)

)2
+ r2α dH k−1(y)

is strictly convex. This follows from the strict convexity of t 7→
√
r2α + t2. The func-

tion Φ is also radially symmetric because the integral is invariant under orthogonal

transformations. It follows that Φ attains the minimum at the point z = 0 and that

this minimum point is unique.

Denoting by F ∗ the generating set of E∗, we deduce that if c′ is not 0 a.e., then

we have the strict inequality Pα(E∗) = Q(F ∗) < Q(F ) = Pα(E), and E is not

isoperimetric. Hence, c is constant and this concludes the proof.

�
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