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Abstract. In this survey we present the new techniques developed for proving existence of

optimal sets when one minimizes functionals depending on the eigenvalues of the Dirichlet

Laplacian with a measure constraint, the most important being:

min
{
λk(Ω) : Ω ⊂ RN , |Ω| = 1

}
.

In particular we sketch the main ideas of some recent works, which allow to extend the now

classic result by Buttazzo and Dal Maso to RN .

1. Introduction

The aim of this note is to report some recent existence results for classical shape opti-

mization problems involving eigenvalues of the Dirichlet Laplacian. More precisely, we consider

minimization problems of the following form:

min {λk(Ω) : Ω ∈ A}, (1.1)

where k ∈ N, λi denotes the ith eigenvalue of the Dirichlet Laplacian (counted with multiplicity)

and A is the class of admissible shapes. A natural choice for this class, that we use in Section 3

and 4, is:

A :=
{

Ω ⊂ RN , quasi-open, |Ω| ≤ 1
}
, (1.2)

where | · | denotes the Lebesgue measure in RN , N ∈ N. We need to have a bound on the

measure of admissible sets, otherwise the monotonicity of Dirichlet eigenvalues would trivialize

the problem; moreover the bound on the measure is taken less or equal to 1 only for simplicity:

with every other positive constant the setting is unchanged. Then, since eigenvalues are de-

creasing with respect to set inclusion, it is equivalent to consider the problem with the equality

constraint. An alternative (less common) choice, instead of the measure constraint, is a bound

on the perimeter, which was studied only recently in [18]. The choice of quasi-open1 sets is made

in order to get compactness with a suitable topology and will be enlightened in Section 2. At

last, one can consider also shapes contained in (see Section 2) or containing (see Section 5) a

(quasi-)open bounded set.

Optimization problems like (1.1) naturally arise in the study of many physical phenomena,

e.g. heat diffusion or wave propagation inside a domain Ω ⊂ RN , and the literature is very wide

(see [9, 21, 23, 13] for an overview), with many works in the last few years. Problem (1.1) in the

class (1.2) was studied first by Lord Rayleigh in his treatise The theory of sound of 1877 (see [28])

and he conjectured the ball to be the optimal set when k = 1. This was proved by Faber [19]

1Quasi-open sets are superlevels of Sobolev functions.
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and Krahn [24, 25] in the 1920s, using techniques based on spherical decreasing rearrangements.

From that result the case k = 2 follows with little additional effort: Krahn [24, 25] and Szegö [29]

proved two disjoint equal balls of half measure each to be optimal. The situation for k ≥ 3

becomes more complicate and it is not known what are the optimal shapes, yet. The only other

functionals of eigenvalues for which the optimal shape is known are λ1/λ2 and λ2/λ3; Ashbaugh

and Benguria (see [2]) proved that the minimizers are the unit ball and two equal disjoint balls

of half measure each respectively.

Since the search for explicit optimal shapes did not give other results, it is natural to study

at least whether a minimizer for (1.1) exists, and this subject turns out to be a difficult one,

too. It is natural to attack an existence problem using the direct method of the Calculus of

Variations. One first difficulty in order to apply it in this setting consists in finding a suitable

notion of convergence for sets, which “behaves well” with respect to eigenvalues of Dirichlet

Laplacian. More important, one needs also to find out how to suitably choose the class of

admissible sets. It is immediately clear that the convergence in measure (or L1 convergence of

the characteristic functions) does not fit well, since it neglects sets of positive capacity: as an

example one can consider a ball and the same ball minus a radius (in R2), which are the same

set for this topology, but have different Dirichlet eigenvalues.

The search for a “right” notion of convergence in this setting was a main problem for many

years. In the 1980s Dal Maso and Mosco (see [16, 17]) proposed the notion of γ-convergence,

which has the “good” property that Dirichlet eigenvalues are continuous with respect to it. This

was the main tool used by Buttazzo and Dal Maso in 1993 (see [14]) for proving a fundamental

existence result for a very general class of functions of eigenvalues, in the class of quasi-open sets

inside a fixed bounded box. More precisely, they fix D ⊂ RN bounded and open, and consider

F : Rk → R a functional increasing in each variable and lower semicontinuous (l.s.c.). Then

there exists a minimizer for the problem

min {F (λ1(Ω), . . . , λk(Ω)) : Ω ⊂ D, quasi-open, |Ω| ≤ 1}. (1.3)

The above result gives a definitive answer to the existence problem for a very general class

of spectral functionals in a bounded ambient space (actually it is sufficient to suppose D to have

finite measure). We give the main ideas of the proof of this result in Section 2, together with

some preliminaries about γ-convergence. The extension of the result by Buttazzo and Dal Maso

to generic domains in RN is a non trivial topic, because minimizing sequences, in principle, could

have a significant portion of volume moving to infinity.

A first partial result in the direction of an extension to unbounded domains was obtained

by Bucur and Henrot in 2000 (see [11]); they proved the existence of a minimizer for λ3, using

a concentration-compactness argument (see [6]). Moreover they showed that, given k ≥ 1, if

there exists a bounded minimizer for λj for all j = 1, . . . , k − 1, then there exists a minimizer

for λk (and more in general for Lipschitz functionals of the first k eigenvalues). Unfortunately

this boundedness hypothesis was not known even for λ3, till Dorin Bucur in a very recent paper

(see [5]) was able to study the regularity of energy shape subsolutions. Employing techniques
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coming from the theory of free boundaries, it is possible to prove boundedness and finiteness of

the perimeter for this class of sets, stable with respect to internal perturbations. Since optimal

sets for (1.1) can be proved to be energy shape subsolutions, the existence of a minimizer for λk

for all k ∈ N follows easily from the result by Bucur and Henrot. We present the ideas behind

the proof of these results in Section 3.

In the same period another independent proof of existence of a solution for problem (1.3) in

RN , with F satisfying the same hypotheses as in the result by Buttazzo and Dal Maso, was given

by Mazzoleni and Pratelli (see [27]). Their idea consists in showing that, given a minimizing

sequence for the problem

min
{
F (λ1(Ω), . . . , λk(Ω)) : Ω ⊂ RN , quasi-open, |Ω| ≤ 1

}
, (1.4)

it is then possible to find a new one made of sets with diameter bounded by a constant depending

only on k,N (but not on the particular functional) and with all the first k eigenvalues not

increased. This argument, roughly speaking, works because sets with long “tails” can not have

the first k eigenvalues very small. Moreover, with minor changes in the proof, it is also possible

to deduce that every minimizer for (1.4) is bounded, provided that F is weakly strictly increasing

(see [26]). This more “direct” method is presented in Section 4.

In recent years the existence of optimal sets was studied also for another kind of shape

optimization problem (among sets with a measure constraint) involving eigenvalues of Dirichlet

Laplacian: when there is an internal obstacle, that is,

min
{
λk(Ω) : D ⊂ Ω ⊂ RN , quasi-open, |Ω| ≤ 1

}
, (1.5)

where D is a fixed quasi-open box with |D| ≤ 1. Bucur, Buttazzo and Velichkov in [10], using a

concentration-compactness argument similar to the one in [6], proved existence of a solution for

k = 1, gave a characterization of the cases when k ≥ 2 and provided a partial regularity result

for the solutions. In Section 5 we deal with the main ideas of their work.

The results exposed above give a quite complete understanding for the problem of existence

of minimizers for spectral functionals involving eigenvalues of the Dirichlet Laplacian with a

measure constraint. On the other hand the study of the regularity of solutions is still a main

subject of research, both in the bounded (see [4]) and in the unbounded case (see the recent

work [12]). In particular it is not known in general whether the minimizers for λk are open sets

and not only quasi-open. This is one major open problem in spectral shape optimization.

It is also possible to consider minimization problems like (1.1) with perimeter constraint

instead of volume constraint. This kind of problem was studied in the recent paper by De

Philippis and Velichkov [18], where they prove that there exists a minimizer for

min
{
λk(Ω) : Ω ⊂ RN , measurable, P (Ω) ≤ 1

}
.

They use techniques to some extent analogous to those used by Bucur in [5], combining a concen-

tration compactness argument and the study of the regularity for perimeter shape subsolutions.
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The perimeter constraint turns out to have a better regularizing effect than the volume con-

straint. In fact De Philippis and Velichkov are able to give many informations about regularity

of optimal shapes: first of all the optimal shapes are open, so the above problem can be for-

mulated among open sets. Moreover every optimal set Ω is bounded, has finite perimeter and

its boundary ∂Ω is C1,α for all α ∈ (0, 1), outside a closed set of Hausdorff dimension at most

N − 8.

2. Preliminaries and existence in a bounded box

First of all we need to recall some basic tools, which you can find in more detail in the

books [9, 21, 23]. We define the Sobolev space H1
0 (Ω) as

H1
0 (Ω) =

{
u ∈ H1(RN ) : cap({u 6= 0} \ Ω) = 0

}
, (2.1)

where for every E ⊂ RN the capacity of E is defined as

cap(E) = min
{
‖v‖2H1(RN ) : v ∈ H1(RN ), v ≥ 1 a.e. in a neighborhood of E

}
.

Then, given a function u ∈ H1
0 (Ω), its quasi-continuous representative is defined as

ũ(x) := lim
r→0
−
ˆ
Br(x)

u(y) dy.

Since outside a set of zero capacity every point is Lebesgue for u (see [23] for example), then the

quasi-continuous representative is defined up to zero capacity and we identify every H1 function

with its quasi-continuous representative.

A set Ω is called quasi-open if for all ε > 0 there exists an open set Ωε such that cap (Ωε∆Ω) <

ε; for example superlevels of H1 functions are quasi-open sets. Moreover, given a bounded open

box D, we call RΩ the resolvent operator for the Dirichlet Laplacian, that is,

RΩ : L2(D)→ L2(D), RΩ(f) := arg min

{
1

2

ˆ
D
|Du|2 −

ˆ
D
uf, u ∈ H1

0 (Ω)

}
,

for all f ∈ L2(D). The definition above can be extended also to capacitary2 measures:

Rµ(f) := arg min

{
1

2

ˆ
D
|Du|2 +

ˆ
D
u2 dµ−

ˆ
D
uf, u ∈ H1

0 (Ω) ∩ L2
µ(D)

}
.

When f = 1, RΩ(1) =: wΩ is called torsion function and it is an important tool for proving

existence results. In particular wΩ is the solution of{
−∆w = 1 in Ω,

w ∈ H1
0 (Ω),

and hence a minimizer for the so called torsion energy functional

E(Ω) := min
u∈H1

0 (Ω)

{
1

2

ˆ
D
|Du|2 −

ˆ
D
u

}
.

After that, given a sequence of quasi-open sets contained in D, (Ωn)n∈N, we say that Ωn γ-

converge to a quasi-open set Ω ⊂ D as n → ∞ when wΩn ⇀ wΩ in H1
0 (D). Moreover Dal

2A Borel measure µ is called capacitary if, for every set E, cap (E) = 0 implies µ(E) = 0.
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Maso and Mosco proved (see [16, 17]) that the convergence above implies for all f ∈ L2(D)

RΩn(f) → RΩ(f) in L2(D), hence also RΩn → RΩ in the operator norm L(L2(D)) and hence

the full spectrum converges. Thus eigenvalues of the Dirichlet Laplacian are continuous with

respect to γ-convergence. Unfortunately, γ is a rather strong convergence and it is not compact

in the class A(D) = {Ω ⊂ D, quasi-open, |Ω| ≤ 1}; it is then necessary to weaken it, in order

to apply the direct method of the calculus of variations to problem (1.3). A natural choice is

the following.

A sequence Ωn ∈ A(D) is said to weak γ-converge to a domain Ω ∈ A(D) if wΩn ⇀ w in

H1
0 (D) as n → ∞, with Ω := {w > 0}. Note that w coincide with wΩ = RΩ(1) if and only

if the convergence is γ and not only weak γ. More precisely, for some capacitary measure µ,

w = Rµ(1): in fact we can say that the γ-convergence is compact in the class of capacitary

measures, where a set Ω corresponds to the following measure:

∞Ω(E) =

{
+∞ if cap (E \ Ω) > 0,

0 if cap (E \ Ω) = 0.

A well known example of a sequence of quasi-open sets γ-converging to a measure which is not

a quasi-open set is due to Cioranescu and Murat [15].

Buttazzo and Dal Maso used the compactness properties of the weak γ-convergence and

the lower semicontinuity of Dirichlet eigenvalues with respect to it for proving a very general

existence result.

Theorem 2.1 (Buttazzo–Dal Maso). Let D ⊂ RN be a bounded, open set and F : Rk → R be

a functional increasing in each variable and lower semicontinuous (l.s.c.). Then there exists a

minimizer for the problem

min {F (λ1(Ω), . . . , λk(Ω)) : Ω ⊂ D, quasi-open, |Ω| ≤ 1}. (2.2)

First of all, the weak γ-convergence is built in order to be compact in the class A(D) and

so a minimizing sequence converges, up to subsequences. Then it is easy to see that the weak

γ-convergence is l.s.c. with respect to the Lebesgue measure, so the constraint |Ω| ≤ 1 is satisfied

by the limit of a weak γ-converging sequence of sets. It is then necessary to study the lower

semicontinuity of the weak γ-convergence with respect to eigenvalues and this turns out to be a

crucial point in the argument by Buttazzo and Dal Maso for proving Theorem 2.1. The following

proposition gives a positive answer, for a (quite large) class of functionals.

Proposition 2.2. A functional J : A(D)→ R non decreasing with respect to set inclusion is γ

l.s.c if and only if it is weak γ l.s.c..

The hypothesis on the functional J to be nondecreasing with respect to set inclusion is quite

strong, but it is satisfied by eigenvalues of the Dirichlet Laplacian and hence also by increasing

functions of them. Thus the above Proposition can be applied in the hypothesis of Theorem 2.1.

The proof of Proposition 2.2 is based on the following (non trivial) key points, whose proof relies

also on the maximum principle for the Dirichlet Laplacian.
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a) If wΩn converge weakly in H1
0 (D) to w and vn ∈ H1

0 (Ωn) converge weakly in H1
0 (D) to

v, then v ∈ H1
0 ({w > 0}).

b) Let Ωn ⊂ D be quasi-open sets such that wΩn converge weakly in H1
0 (D) to w ∈ H1

0 (Ω)

for some quasi-open set Ω ⊂ D. Then there exist a subsequence (not relabeled) and a

sequence of quasi-open sets Ω̃n that γ-converge to Ω satisfying Ωn ⊂ Ω̃n ⊂ D.
Then the Buttazzo and Dal Maso Theorem follows easily from Proposition 2.2 using the

direct method of the Calculus of Variations. Given a minimizing sequence (Ωn) of quasi-open sets

for problem (1.3), by the compactness of the weak γ-convergence we can extract a subsequence

(not relabeled) that weak γ-converges to a quasi-open set Ω ∈ A(D). Using the properties of

the weak γ-convergence highlighted above, the hypotheses on F and Proposition 2.2, we have

that

|Ω| ≤ lim inf
n→∞

|Ωn| ≤ 1, F (λ1(Ω), . . . , λk(Ω)) ≤ lim inf
n→∞

F (λ1(Ωn), . . . , λk(Ωn)),

thus Ω is an optimal set for (1.3).

Remark 2.3. In the hypotheses of Theorem 2.1, it is sufficient to suppose that D ⊂ RN has

finite measure, so that the embedding H1(D) ↪→ L2(D) remains compact (see [8]).

3. Concentration compactness and subsolutions

The main problem in extending the result by Buttazzo and Dal Maso to (quasi-)open sets

of RN is the lack of compactness of the embedding H1(RN ) ↪→ L2(RN ). The concentration-

compactness principle by P.L. Lions (see [22]) tries to focus on “how” the embedding H1(RN ) ↪→
L2(RN ) can be non compact. In the case of sets Bucur (see [6]) rearranged the principle in the

following way, ruling out the vanishing case.

Theorem 3.1 (Lions, Bucur). Let (Ωn)n ⊂ RN be a sequence of quasi-open sets with |Ωn| ≤ 1

for all n ≥ 1. Then there exists a subsequence (not relabeled) such that one of the following

situations occur:

1) Compactness. There exist yn ∈ RN and a capacitary measure µ such that Ryn+Ωn →
Rµ in L(L2(RN )).

2) Dichotomy. There exist Ωi
n, i = 1, 2 such that |Ωi

n| > 0, d(Ω1
n,Ω

2
n) → ∞ and ‖RΩn −

RΩ1
n∪Ω2

n
‖L2(RN ) → 0 as n→∞.

Thanks to the concentration compactness argument above, it is easy to prove the following

partial existence result (see [11]) for the unbounded case.

Theorem 3.2 (Bucur–Henrot). For k ≥ 2 if there exists a bounded minimizer for λ1, . . . , λk in

the class A(RN ), then there exists at least a minimizer for λk+1 in A(RN ).

In particular this provides existence of a minimizer for the problem:

min
{
λ3(Ω) : Ω ⊂ RN , quasi-open, |Ω| ≤ 1

}
, (3.1)

since the minimizers for λ1 and λ2 are respectively a ball and two balls, which are bounded.

The idea of the proof of Theorem 3.2 is quite simple. Given a minimizing sequence for λk+1 in
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A(RN ), made of bounded sets Ωn, if compactness occur, existence follows directly considering the

regular set3 Ωµ of the limit measure (see [21, Theorem 5.3.3]). On the other hand, if dichotomy

happens, then Ω1
n ∪ Ω2

n is also a minimizing sequence. But it is thus possible to see that the

sequence (Ωi
n)n must be minimizing for some lower eigenvalue in the class A(RN ), with different

measure constraints: c1, c2 > 0 such that c1 + c2 ≤ 1. Hence, up to translations, a minimizer

for λk+1 will be the union of the two minimizers corresponding to some lower eigenvalues. Note

that if we do not know that there exists a bounded minimizer for every lower eigenvalue, it is

not possible to consider the union of two of them, since in principle one can be dense in RN .

Since not even the boundedness of a minimizer for λ3 was known, Bucur studied the link

between this kind of shape optimization problems and free boundary problems, in order to be

able to apply also in this framework the powerful techniques developed by Alt and Caffarelli

(see [1]) and later implemented in the study of the energy of the Dirichlet Laplacian by Briançon,

Hayouni and Pierre (see [3]).

First of all we need to be able to deal with measurable sets A, with |A| < ∞ (we call M
the class of such sets), so we define the Sobolev-like space

H̃1
0 (A) :=

{
u ∈ H1(RN ) : u = 0 a.e. on RN \A

}
. (3.2)

It is well known (see [18] for a more detailed discussion of those spaces) that there exists a

quasi-open set ωA ⊆ A such that

H1
0 (ωA) = H̃1

0 (A),

hence for functionals decreasing with respect to set inclusion (e.g. single eigenvalues) it is equiv-

alent to solve problem (1.4) in the class of quasi-open sets with the classical definition of Sobolev

space (2.1), or in the family of measurable sets associated to H̃1
0 .

Then it is possible to endow the family of measurable sets with a distance induced by γ-

convergence:

dγ(A,B) :=

ˆ
RN
|wA − wB|, A,B ∈M,

where we considered the torsion functions in H1(RN ) extended to zero: wΩ = 0 in RN \ Ω.

The most important notion in order to link shape optimization problems with free boundary

problems is the one of shape subsolution.

Definition 3.3. We say that a set A ∈M is a local shape subsolution for a functional F : M→
R if there exist δ > 0 and Λ > 0 such that

F(A) + Λ|A| ≤ F(Ã) + Λ|Ã|, ∀ Ã ⊂ A, dγ(A, Ã) < δ.

Roughly speaking, a shape subsolution is a set that is optimal with respect to internal

perturbations. Bucur (see [5]) proved a very powerful regularity result for shape subsolution of

the torsion energy functional

E(A) := min
u∈H̃1

0 (A)

{
1

2

ˆ
RN
|Du|2 −

ˆ
RN

u

}
.

3The regular set Ωµ of a measure µ is the largest (in the sense of inclusion q.e.) countable union of sets of

finite (µ-)measure.



8 DARIO MAZZOLENI

Theorem 3.4. Let A be a local shape subsolution (with constants δ,Λ) for the torsion energy

E. Then it is bounded, with diam(A) ≤ C(|A|, δ,Λ), has finite perimeter and its fine interior

has the same measure of A.

The proof of the theorem for the finite perimeter part is based on controlling the term´
{0≤wA≤ε} |DwA|

2, while the boundedness and the inner density estimate come from the following

Alt-Caffarelli type estimate: there exist r0, C0 > 0 such that for all r ≤ r0

sup
B2r(x)

wA ≤ C0r implies u = 0 in Br(x).

The next key point in Bucur’s argument consists in linking the minimizers of eigenvalues

of Dirichlet Laplacian with shape subsolution of the energy. We consider the minimization

problem, equivalent to (1.4) up to choose Λ > 0 small enough (for a detailed discussion about

this equivalence, see [3]),

min
{
F (λ1(A), . . . , λk(A)) + Λ|A| : A ⊂ RN , quasi-open

}
, (3.3)

for a functional F : Rk → R which satisfies the following Lipschitz-like condition for some positive

αi, i = 1, . . . , k:

F (x1, . . . , xk)− F (y1, . . . , yk) ≤
k∑
i=1

αi(xi − yi), ∀xi ≥ yi, i = 1, . . . , k. (3.4)

Theorem 3.5. Assume that A is a solution of (3.3), then it is a local shape subsolution for the

energy problem.

The proof is based on [7, Theorem 3.4], which assures, for all k ∈ N, the existence of a

constant ck(A) such that: ∣∣∣∣ 1

λk(Ã)
− 1

λk(A)

∣∣∣∣ ≤ ck(A)dγ(A, Ã).

Then, up to choose δ small enough and Ã ⊆ A with dγ(Ã, A) < δ, it follows

Λ(|A| − |Ã|) ≤ F (λ1(Ã), . . . , λk(Ã))− F (λ1(A), . . . , λk(A)) ≤
∑
i

αi(λi(Ã)− λi(A))

≤
∑
i

αic
′
i(E(Ã)− E(A)) ≤ K(E(Ã)− E(A)),

with a constant K depending on c′i = c′i(A, δ, i) and αi, for i = 1, . . . , k.

Now a straightforward application of Theorem 3.4, together with Theorem 3.2, gives the

main existence result.

Theorem 3.6 (Bucur). If the functional F satisfies the Lipschitz-like condition (3.4), then

problem (3.3) has at least a solution for every k ∈ N. Moreover every optimal set is bounded

and has finite perimeter.

In particular there exists a solution for the problem

min
{
λk(Ω) : Ω ⊂ RN quasi-open, |Ω| ≤ 1

}
,
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for all k ∈ N. We highlight here that, to our knowledge, it is not known yet if the above

problem admits solutions in the class of open sets. It is possible to give slightly different proof of

Theorem 3.6 that does not use the concentration-compactness principle, but only the regularity

of energy shape subsolutions. This proof is due to Bozhidar Velichkov and it has never appeared

on a published paper, to our knowledge.

Remark 3.7 (Velichkov). Let (Ωn)n≥1 be a minimizing sequence for problem (3.3), with |Ωn| <
∞ for all n ∈ N, and then we consider, for all n ∈ N, the minimum problem

min {F (λ1(Ω), . . . , λk(Ω)) + Λ|Ω| : Ω ⊂ Ωn},

for some Λ > 0 sufficiently small. Theorem 2.1 by Buttazzo and Dal Maso assures that there

exists a solution Ω∗n, but this is also a subsolution and hence by Theorem 3.4 it has diameter

uniformly bounded, depending only on k,N . Hence we have a new minimizing sequence Ω∗n
uniformly bounded to which it is possible to apply again Theorem 2.1, thus obtaining existence

for problem (3.3).

4. How to choose an uniformly bounded minimizing sequence

In this section we aim to provide the main ideas of the proof of the existence theorem

presented by Mazzoleni and Pratelli in [27], which uses an “elementary” method that requires

neither a concentration-compactness argument nor regularity of shape subsolutions.

Theorem 4.1. Let k,N ∈ N and F : Rk → R be a functional increasing in each variable and

l.s.c., then there exists a (bounded) minimizer for the problem

min
{
F (λ1(Ω), . . . , λk(Ω)) : Ω ⊂ RN , quasi-open, |Ω| ≤ 1

}
. (4.1)

More precisely the diameter of the optimal set is controlled by a constant depending only on k,N

(and not on the particular functional F ).

The proof is based on the following Proposition, which gives the possibility to consider

minimizing sequences for (4.1) with uniformly bounded diameters, which means that we can

employ Buttazzo-Dal Maso Theorem.

Proposition 4.2. If Ω ⊂ RN is an open set with unit volume, there exists another open set of

unit volume, Ω̂, contained in cube of side R = R(k,N) and such that

λi(Ω̂) ≤ λi(Ω), ∀ i = 1, . . . , k.

From Proposition 4.2, Theorem 4.1 follows easily: in fact, given a minimizing sequence

(Ωn)n∈N made of open sets with unit volume, it is sufficient to take the corresponding sequence

(Ω̂n)n∈N, which is again minimizing and then to apply Theorem 2.1 by Buttazzo and Dal Maso

to it.

On the other hand the proof of Proposition 4.2 is quite delicate: we give here below the

main ideas of how it is carried on. In particular, given Ω open and with unit volume, we focus
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on its left “tail”, that is, the set

Ωl
t :=

{
x ∈ Ω : x1 < t

}
,

for a t such that
∣∣Ωl

t

∣∣ = m̂, for a suitably choosen m̂, very small but fixed (depending only on

k,N). Then it is possible to find a new set Ω̂ with bounded tail and the first k eigenvalues

lowered. We need some notations: for all t ≤ t we define:

Ωr
t := {x ∈ Ω : x1 > t} , Ωt :=

{
(x2, . . . , xN ) ∈ RN−1 : (t, x2, . . . , xN ) ∈ Ω

}
,

ε(t) := HN−1(Ωt), m(t) =

ˆ t

−∞
ε(s) ds, δ(t) :=

k∑
i=1

ˆ
Ωt

|Dui(t, x2, . . . , xN )|2 dHN−1.

For all t ≤ t it is possible to compare the first k eigenvalues of Ω with those of Ω̃(t) := Ωr
t ∪Q(t),

which is obtained by “cutting” the “tail” at level t and adding a suitable small cylinder Q(t) of

height σ(t) = ε(t)
1

N−1 (see Figure 1).

Q(t)
Ω

Ωr
t

σ

Figure 1. A set Ω with the cylinder Q(t) (shaded).

Using the min-max principle for eigenvalues one obtains

λi(Ω̃(t)) ≤ λi(Ω) + C(k,N)ε(t)
1

N−1 δ(t), ∀i = 1, . . . , k,

if ε(t), δ(t) ≤ ν, for some constant ν = ν(k,N). After rescaling Ω̃(t) to unit volume, being

Ω̂(t) := |Ω̃(t)|−
1
N Ω̃(t), it is possible to prove that for a suitable constant C = C(k,N), exactly

one of the following conditions hold.

1) max {ε(t), δ(t)} > ν.

2) (1) does not hold and m(t) ≤ C(ε(t) + δ(t))ε(t)
1

N−1 .

3) (1) and (2) do not hold and for all i = 1, . . . , k, λi(Ω̂(t)) < λi(Ω). Moreover if m(t) ≥ m̂,

then there exist η = η(k,N) such that λi(Ω̂(t)) < λi(Ω)− η for all i = 1, . . . , k.

In order to conclude the boundedness of the “tail”, we define

t̂ := sup
{
t ≤ t : condition (3) holds for t

}
,
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with the usual convention that t̂ = −∞ if condition (3) is false for every t ≤ t. We consider the

following subsets of (t̂, t)

A : =
{
t ∈ (t̂, t̄) : condition (1) holds for t

}
,

B : =
{
t ∈ (t̂, t̄) : condition (2) holds for t and m(t) > 0

}
,

and it is possible to prove that |A| + |B| ≤ C(k,N), since in this case we obtain a differential

equation, regarding the measure of the “tail”, since for a.e. t ∈ R m′(t) = ε(t),

m′(t) ≥ 1

C
m(t)

N−1
N ,

and an analogous one about
´ t
−∞ δ(s) ds.

Then, if t̂ = −∞, that is, only case (1) or (2) happen, the set Ω has itself a bounded “tail”.

On the other hand, if t̂ > −∞, we pick a t? ∈ [t̂−1, t̂] for which condition (3) holds and consider

U1 := Ω̂(t?).

If m(t?) < m̂, then we have that λi(U1) < λi(Ω) for all i = 1, . . . , k and U1 has a bounded “tail”,

so we have concluded. Instead, if m(t?) ≥ m̂, the stronger estimate λi(U1) < λi(Ω) − η holds

for all i = 1, . . . , k, but possibly U1 has not bounded “tail”. Hence we iterate the procedure, by

applying the whole construction to U1 and thus finding U2 which either has bounded “tail”, or

it satisfies λi(U2) < λi(Ω)− 2η for all i = 1, . . . , k. After l steps, if we have not concluded yet,

there is Ul such that

λi(Ul) < λi(Ω)− lη, ∀ i = 1, . . . , k.

Since we can reduce to consider sets with λk(Ω) ≤M (see [27, Appendix]), the inequality above

is impossible if lη ≥ M : as a consequence, the iteration must stop after less than M/η steps,

thus finding a set with bounded “tail” and with the first k eigenvalues lowered.

The same procedure can be performed with small changes also for the “inner” part of the

set, that is, Ωi := {(x, y) ∈ Ω : m̂ ≤ |Ω−(x)| ≤ 1− m̂} and to the right tail. Then one can apply

the same arguments in all the other coordinate directions. This concludes Proposition 4.2.

At this point, Theorem 4.1 does not guarantee that every minimizer is bounded, in fact

a constant functional satisfies the hypothesis of the Theorem, but it can not have minimizers

uniformly bounded! With a necessary additional assumption on the functional F , in [26] was

proved the following.

Theorem 4.3. In the hypotheses of Theorem 4.1, if the functional F is also weakly strictly

increasing, that is,

∀xi < yi, ∀i = 1, . . . , k, F (x1, . . . , xk) < F (y1, . . . , yk),

then all the minimizers for problem (4.1) have diameter bounded by a constant depending only

on k,N .

The proof is carried out improving Proposition 4.2. More precisely, given a sequence of

open sets with unit measure that γ-converge to a minimum Ω for problem (4.1), then either,
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up to pass to a subsequence, diam(Ωn) ≤ C(k,N), or there exist (Ω̂(tn))n open sets with unit

measure (obtained with a “cutting” procedure as above) such that

λi(Ω̂(tn)) < λi(Ω)− η(k,N), ∀ i = 1, . . . , k.

Hence in this last case,

inf
n

{
F
(
λ1(Ω(tn)), . . . , λk(Ω(tn))

)}
< F (λ1(Ω), . . . , λk(Ω)),

which is absurd.

Remark 4.4. The main differences in the existence results in RN described in this Section and

in the previous one are the following:

• Bucur’s proof gives the important information that all minimizers have finite perimeter,

while this property can not be easily deduced from the approach by Mazzoleni and Pratelli;

• On the other hand, the result by Bucur applies to “Lipschitz” functionals of the first k

eigenvalues (more precisely satisfying condition (3.4)), while the method by Mazzoleni

and Pratelli requires the functionals only to be increasing in each variables and l.s.c..

Remark 4.5. As we have already highlighted, the regularity issue for problem (4.1) is a difficult

one and it is not completely understood yet, to our knowledge. In the recent work [12] it is proved

that optimal sets are open for a very special class of functional, among which λ1(·) + · · ·+λk(·).
Moreover it is shown that an optimal set for λk(·) admits an eigenfunction, corresponding to the

kth eigenvalue, which is Lipschitz continuous in RN , but this does not assure the openness.

5. The case of internal constraint

In this section we present the approach used in [10] in order to give some existence results

for problem (1.5) with an internal constraint, where D is a quasi-open set with |D| ≤ 1, possibly

unbounded. The main point in order to prove existence results for such problems is the following

concentration-compactness principle, inspired by Theorem 3.1, in the case of inner constraints.

We remark that the main changes are in the “compactness” case, where there are no more

translations.

Theorem 5.1. Let (Ωn)n be a sequence of quasi-open sets in RN , each of them containing a

given quasi-open set D, with |Ωn| ≤ 1 for all n ≥ 1. Then there exists a subsequence (not

relabeled) such that one of the following situations occur:

1) Compactness. There exists a capacitary measure µ such that RΩn → Rµ in L(L2(RN ))

and moreover D ⊂ Ωµ.

2) Dichotomy. There exist Ωi
n, i = 1, 2 such that lim infn→∞ |Ωi

n| > 0, d(Ω1
n,Ω

2
n) → ∞

and ‖RΩn − RΩ1
n∪Ω2

n
‖L2(RN ) → 0 as n → ∞. Moreover lim supn→∞ |Ω1

n ∩D| = 0 or

lim supn→∞ |Ω2
n ∩D| = 0.

From the above concentration-compactness principle it is possible to prove the following

existence result (see [10]). First of all we need to introduce, for m ≥ 0, the value

λ∗k(m) := inf {λk(Ω) : Ω quasi-open, |Ω| ≤ m}.
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Theorem 5.2. Let D be a quasi-open set with |D| ≤ 1. For k ∈ N we define

αk := inf
{
λk(Ω) : D ⊂ Ω ⊂ RN , quasi-open, |Ω| ≤ 1

}
. (5.1)

If k = 1 the problem has at least a solution.

For k ≥ 2 one of the following assertions holds:

a) Problem (1.5) has a solution;

b) There exists l ∈ {1, . . . , k − 1} and an admissible quasi-open set Ω such that αk =

λk−l(Ω) = λ∗l (1− |Ω|);
c) There exists l ∈ {1, . . . , k − 1} such that αk = λ∗l (1− |D|) > λk−l(D).

Clearly in case b) and c) we do not have existence of a solution in general. Something

more can be said with stronger hypotheses on D and it will be stated later. Now we sketch

the proof of Theorem 5.2 for the case k = 1. Let (Ωn)n≥1 be a minimizing sequence such that

lim infn→∞ |Ωn| is minimal (clearly the value must be strictly positive). Following Theorem 5.1,

if we are in the compactness situation, there is a subsequence (not relabeled) that γ-converges

to a capacitary measure µ. The set Ωµ := {Rµ(1) > 0} is admissible and thus it is a solution.

On the other hand, if dichotomy occurs, we get a contradiction. We may assume that λ1(Ω1
n ∪

Ω2
n) = λ1(Ω1

n), since the two sets have positive distance, and clearly the sequence (Ω1
n ∪D)n is

also minimizing. Then only two situations can happen:

(1) Either lim infn→∞ |Ω1
n ∪D| < lim infn→∞ |Ωn|;

(2) Or limn→∞ |Ω2
n \D| = 0.

Case (1) contradicts the fact that (Ωn)n is the minimal minimizing sequence. Also case (2) is

impossible, since it implies d(Ω1
n, {0})→∞, otherwise the measure of D would be infinite. Hence

|Ω1
n ∩D| → 0 and consider the ball B with measure equal to lim supn |Ω1

n|: B ∪D is a solution

for every position of B, and when B intersects (but not cover) some connected component of D

we have the contradiction.

The proof of the case k ≥ 2 follows from similar ideas. One takes again (Ωn)n a minimizing

sequence with minimal lim inf |Ωn| and if there is compactness one gets immediately the existence

of a solution. If dichotomy happens, then we can suppose

|Ω1
n| → α1, |Ω2

n| → α2, |Ω1
n ∩D| → 0,

and (up to subsequences) we can take the maximal l ∈ {1, . . . , k − 1} for which one of the

following holds:

• |λk(Ωn)− λk−l(Ω2
n)| → 0 and λl(Ω

1
n) ≤ λk−l(Ω2

n) ≤ λl+1(Ω1
n),

• |λk(Ωn)− λl(Ω1
n)| → 0 and λk−l(Ω

2
n) ≤ λl(Ω1

n) ≤ λk−l+1(Ω2
n).

It is clear that case (b) of the thesis follows from the first one and case (c) follows from the

second one. With an easy induction argument one can now conclude.

The next result highlight that stronger hypotheses lead to a good improvement.

Theorem 5.3. In the hypotheses of Theorem 5.2, if moreover we ask the set D to be bounded,

then also the cases (b) and (c) of Theorem 5.1 lead to the existence of a solution.
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Moreover in [10] are proved also some regularity properties of solutions of (5.1). In partic-

ular, if k = 1, |D| < 1 and D is quasi-connected4, all the minimizers are open sets even if D is

only quasi-open.
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