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Abstract. We estimate the sector of analyticity of not necessarily sym-
metric submarkovian semigroups generated by second order elliptic opera-
tors in divergence form or by Ornstein-Uhlenbeck operators. A lower bound
for the angle θp of the sector of analyticity in Lpµ is given by the formula

cot θp =

√
(p− 2)2 + p2(cot θ2)2

2
√
p− 1

.

If the semigroup is symmetric then we recover known results. In general,
this lower bound is optimal.

Let Ω ⊂ RN be open, and let S ∈ L∞(Ω;RN×N) be uniformly elliptic.
Assume that S is in addition uniformly sectorial, i.e., there exists a constant
c2 ≥ 0 such that

(1) |Im 〈S(x)ξ, ξ〉| ≤ c2Re 〈S(x)ξ, ξ〉 for all x ∈ Ω, ξ ∈ CN ,

where 〈·, ·〉 denotes the usual hermitian product in CN .
Let m be positive function in Ω such that m,m−1 ∈ L∞loc(Ω) and define the

Borel measure dµ = m dλ, where λ is the Lebesgue measure on Ω. Let us
introduce the spaces Lpµ = Lp(Ω; dµ) and

W 1,p
µ = {u ∈ W 1,p

loc (Ω) : u, ∇u ∈ Lpµ}.

We shall write H1
µ instead of W 1,2

µ , as usual. The operator A2 on L2
µ defined

by

D(A2) := {u ∈ L2
µ : ∃v ∈ L2

µ s.t. ∀ϕ ∈ H1
µ :

∫
Ω

〈S(x)∇u,∇v〉 dµ = 〈v, ϕ〉L2
µ
},

A2u := v,
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which is associated with the form (a,H1
µ)

a(u, v) :=

∫
Ω

〈S(x)∇u,∇v〉 dµ, u, v ∈ H1
µ,

is the negative generator of a submarkovian semigroup (e−tA2)t≥0, i.e., e−tA2 is
a positive contraction which is also L∞-contractive. Let us stress that we are
not assuming that A2 is self-adjoint.

By (1), the form a and the operator A2 are sectorial, and the semigroup
(e−tA2)t≥0 extends to an analytic contraction semigroup on the sector Σθ2 :=
{z ∈ C : | arg z| < θ2}, where the angle θ2 is determined by the constant c2 in
(1) through the equation cot θ2 = c2.

Moreover, by L∞ contractivity, the semigroup (e−tA2)t≥0 extrapolates on all
Lpµ, 2 ≤ p ≤ ∞. Since A∗2 is the operator associated with the matrix S∗, it
is also the negative generator of a submarkovian semigroup and therefore, by
duality, the semigroup (e−tA2)t≥0 extrapolates on all Lpµ, 1 < p ≤ ∞. The
negative generator on Lpµ will be denoted by Ap. We prove the following
theorem.

Theorem 1. For every 1 < p < ∞, the semigroup (e−tAp)t≥0 on Lpµ extends
to an analytic semigroup of contractions on the sector Σθp, where

cot θp =

√
(p− 2)2 + p2c2

2

2
√
p− 1

.

Example 2. Theorem 1 applies to semigroups generated by second order
elliptic operators in divergence form with bounded measurable real coefficients:

Au = −divS(x)∇u on Ω.

In this example one takes µ = λ, where λ is the Lebesgue measure on Ω, so
that L2

µ = L2 and H1
µ = H1 are the usual Lebesgue and Sobolev spaces on Ω.

The form (a,H1) is given by

a(u, v) =

∫
Ω

〈S(x)∇u,∇v〉 dλ, u, v ∈ H1.

Example 3. Theorem 1 applies to semigroups generated by Ornstein-Uhlen-
beck operators of the form

Au = −∆u−Bx∇u on RN ,

where B is a real matrix having only eigenvalues with negative real part.
Theorem 1 applies if µ is the invariant measure for the Ornstein-Uhlenbeck
semigroup:

dµ(x) =
1√

(4π)NdetQ∞
e−

1
4
〈Q−1
∞ x,x〉 dλ(x),
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where

Q∞ :=

∫ ∞
0

esBesB
∗
ds.

In this example, the form (a,H1
µ) is given by

a(u, v) = −2

∫
RN
〈Q∞B∗∇u,∇v〉 dµ, u, v ∈ H1

µ.

Example 4. Theorem 1 also applies to semigroups generated by Ornstein-
Uhlenbeck operators of the form

Au = −divS∇u− S∗∇ϕ∇u on Ω,

where ϕ ∈ C1(Ω) and S ∈ RN×N . In this example

dµ(x) = e−ϕ(x) dλ(x),

and (a,H1
µ) is given by

a(u, v) =

∫
RN
〈S∇u,∇v〉 dµ, u, v ∈ H1

µ.

Remark 5. The angle of analyticity θp from Theorem 1 is in general better
than the angle of analyticity which one would obtain by the Stein interpolation
theorem, see [11]. That angle would be θ2(1− |2

p
− 1|).

Remark 6. In the case when the S(x) are symmetric, so that A2 is self-adjoint,
Theorem 1 has been proved in [1, 3, 8]. For general symmetric submarkovian
semigroups, see [5, 12].

Remark 7. The proof of Theorem 1 will show that instead of the form domain
H1
µ one may also choose H1

µ,0 (the closure of C∞0 (Ω) in H1
µ), which corresponds

to Dirichlet boundary conditions in the case of nondegenerate m. One may
take also as form domain H1

µ but change the form to

a(u, v) :=

∫
Ω

〈S(x)∇u,∇v〉 dµ+

∫
∂Ω

β(x)uv̄, u, v ∈ H1
µ,

which then corresponds to Robin boundary conditions.

Remark 8. Clearly, it can happen that the semigroup (e−tAp)t≥0 extends ana-
lytically to a larger sector than the sector described in Theorem 1. This can
happen even if p = 2 and the constant c2 from (1) is optimal; for nonsymmetric
but constant S one has c2 > 0 but if µ = λ is the Lebesgue measure on Ω then
the operator A2 is self-adjoint. In this case, it is known that (etAp)t≥0 extends
analytically to the sector Σθp where

cot θp =
|p− 2|

2
√
p− 1

,

which is our θp for c2 = 0.
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However, in general the angle θp from Theorem 1 is optimal as the following
proposition shows. It is an immediate consequence of [2, Theorem 2].

Proposition 9. Consider the Ornstein-Uhlenbeck operator on the space Lpµ
from Example 3. Then for every p ∈ (1,∞) the angle of analyticity θp from
Theorem 1 is optimal. More precisely: whenever (e−tAp)t≥0 extends to an
analytic semigroup on a sector Σθ (the extended semigroup need a priori not
be a contraction semigroup), then θ ≤ θp.

Proof of Theorem 1. Fix p ∈ (2,∞). By the Lumer-Phillips theorem, the
semigroup (e−tAp)t≥0 on Lpµ extends to an analytic semigroup of contractions

on the sector Σθp if and only if −eiϕAp is dissipative for every ϕ ∈ (−θp, θp),
i.e. if and only if for every u ∈ D(Ap)

(2)

∣∣∣∣Im ∫
Ω

Apuu
∗ dµ

∣∣∣∣ ≤ cot θp Re

∫
Ω

Apuu
∗ dµ,

where

u∗ := ū |u|p−2 (∈ Lp′µ , p′ =
p

p− 1
).

Note that for every u ∈ D =: D(A2) ∩D(Ap) ∩ L∞ one has u ∈ H1
µ ∩ L∞ and

therefore also u∗ ∈ H1
µ ∩ L∞. Hence, for every u ∈ D one has∫

Ω

Apuu
∗ dµ =

∫
Ω

A2uu
∗ dµ = a(u, u∗) =

∫
Ω

S(x)∇u∇u∗ dµ;

here, ξ η =
∑N

i=1 ξiηi for ξ, η ∈ CN . Since D is a core for Ap (note that D is
dense in Lpµ and invariant under the semigroup), inequality (2) holds for every
u ∈ D(Ap) if and only if for every u ∈ D one has

(3)

∣∣∣∣Im ∫
Ω

S(x)∇u∇u∗ dµ
∣∣∣∣ ≤ cot θp Re

∫
Ω

S(x)∇u∇u∗ dµ.

Fix x ∈ Ω and u ∈ D. Set S := S(x), and let

S1 := (S + S∗)/2 and S2 := (S − S∗)/2

be the symmetric and the antisymmetric part of S, respectively.
Write u = v + iw, where v and w are real-valued. If u∗ is defined as above,

then

∇u∗ = ∇ū|u|p−2 + (p− 2)ū(v∇v + w∇w)|u|p−4.

Writing |u|p−2 = |u|p−4(v2 + w2), we thus obtain

S∇u∇u∗ = |u|p−4(v2 + w2)
(
S(∇v + i∇w) (∇v − i∇w)

)
−|u|p−4(v − iw)

(
S(∇v + i∇w) (v∇v + w∇w)

)
+(p− 1)|u|p−4(v − iw)

(
S(∇v + i∇w) (v∇v + w∇w)

)
.
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By simplifying, we obtain

S∇u∇u∗ = |u|p−4
[
w2S∇v∇v + v2S∇w∇w

+ i(w2S∇w∇v − v2S∇v∇w)

− vwS∇v∇w − vwS∇w∇v
+ i(vwS∇v∇v − vwS∇w∇w)

+ (p− 1)
(
v2S∇v∇v + vwS∇v∇w

)
+ i(p− 1)

(
v2S∇w∇v + vwS∇w∇w

)
+ (p− 1)(vwS∇w∇v + w2S∇w∇w)

−i(p− 1)(vwS∇v∇v + w2S∇v∇w)
]

= |u|p−4 [S(v∇w − w∇v) (v∇w − w∇v)

+ (p− 1)S(v∇v + w∇w) (v∇v + w∇w)

+ i(p− 1)S(v∇w − w∇v) (v∇v + w∇w)

−iS(v∇v + w∇w) (v∇w − w∇v)] .

Observe that

Sξ η = S∗η ξ for every ξ, η ∈ RN ,

and that

Re (ū∇u) = v∇v + w∇w and

Im (ū∇u) = v∇w − w∇v.

Hence

S∇u∇u∗ = |u|p−4 [〈S Im (ū∇u), Im (ū∇u)〉
+ (p− 1)〈S Re (ū∇u),Re (ū∇u)〉
+i 〈

(
(p− 1)S − S∗

)
Im (ū∇u),Re (ū∇u)〉

]
.

Since

〈Sξ, ξ〉 = 〈S1ξ, ξ〉 for every ξ ∈ RN ,

and

(p− 1)S − S∗ = (p− 2)S1 − pS2,

we finally obtain

S∇u∇u∗ = |u|p−4 [〈S1 Im (ū∇u), Im (ū∇u)〉
+ (p− 1)〈S1 Re (ū∇u),Re (ū∇u)〉
+i 〈

(
(p− 2)S1 − pS2

)
Im (ū∇u),Re (ū∇u)〉

]
.
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Since S1 is elliptic, there exist S
1
2
1 and S

− 1
2

1 . By the Cauchy-Schwarz inequality

|ImS∇u∇u∗| =

= |u|p−4
∣∣∣〈((p− 2)I − pS−

1
2

1 S2S
− 1

2
1

)
(S

1
2
1 Im (ū∇u)), (S

1
2
1 Re (ū∇u))〉

∣∣∣
≤ |u|p−4 ‖(p− 2)I − pS−

1
2

1 S2S
− 1

2
1 ‖ ‖S

1
2
1 Im (ū∇u)‖ ‖S

1
2
1 Re (ū∇u)‖.

On the other hand,

ReS∇u∇u∗ = |u|p−4
(
‖S

1
2
1 Im (ū∇u)‖2 + (p− 1)‖S

1
2
1 Re (ū∇u)‖2

)
.

Since the matrix S
− 1

2
1 S2S

− 1
2

1 is skew-adjoint, the norm of the normal matrix

(p− 2)I − pS−
1
2

1 S2S
− 1

2
1 is equal to its spectral radius. The latter can be easily

computed by using Pythagoras’ theorem and one obtains

‖(p− 2)I − pS−
1
2

1 S2S
− 1

2
1 ‖ =

√
(p− 2)2 + p2‖S−

1
2

1 S2S
− 1

2
1 ‖2.

By assumption (1),

‖S−
1
2

1 S2S
− 1

2
1 ‖ ≤ c2,

so that

‖(p− 2)I − pS−
1
2

1 S2S
− 1

2
1 ‖ ≤

√
(p− 2)2 + p2c2

2 =: κ.

It is easy to verify that for

γ :=

√
(p− 2)2 + p2c2

2

2
√
p− 1

one has

κ ab ≤ γ (a2 + (p− 1)b2) for every a, b ≥ 0.

Hence, we have proved that for every x ∈ Ω and every u ∈ W 1,p
µ ,

|ImS(x)∇u∇u∗| ≤ γ ReS(x)∇u∇u∗.

Integrating this inequality over Ω, we obtain (3).
Now let p ∈ (1, 2), let p′ be the conjugate exponent and A∗p be the adjoint

operator. Notice that A∗2 is obtained as A2, starting from S∗ instead of S,
and that the constant c2 in (1) is the same for S and S∗. Moreover, A∗p is
obtained by extrapolation from A∗2 with the same procedure as Ap′ , hence we
may apply the first part of the proof, obtaining for A∗p an analyticity angle
θp′ = θp. By duality, the angles of analyticity for Ap and A∗p coincide, and the
claim is proved. �



SECTOR OF ANALYTICITY OF SUBMARKOVIAN SEMIGROUPS 7

References

1. D. Bakry, Sur l’interpolation complexe des semigroupes de diffusion, Séminaire de Proba-
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