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1. Introduction

1.1. General considerations. The current mathematical view of perfect elasto-plasticity finds
its roots in the work of P.-M. Suquet (see e.g. [10],[11]), later completed by various works of R.
Temam (see e.g. [12]) and R.V. Kohn and R. Temam (see [7]). After a long lull, that work was
revived by G. Dal Maso, A. De Simone and M. G. Mora [3] within the framework of the variational
theory of rate independent evolutions advocated in particular by A. Mielke (see e.g. [9]).

Those evolutions are quasi-static, that is that inertia effects are neglected. Then, the evolution
can be viewed as a time-parameterized set of minimization problems for the sum of the elastic
energy and of the add-dissipation; see Section 2 for details. The minimizers should also conserve
energy throughout the evolution, a statement that can be seen as the result of a combination of
the two principles of thermodynamics. Once such an evolution is secured, it has been shown in
various recent works that that evolution satisfies the original system of equations, and in particular
the so-called flow rule: whenever the (deviatoric part of the) stress reaches the boundary of its
admissible set, the plastic strain should flow in the direction normal to that set.

Although the evolutions constructed in this manner share a unique stress field (see for example
Theorem 2.12 below), hence a unique elastic strain field, uniqueness of the plastic strain, hence of
the displacement field, is a delicate issue. As a matter of fact, to the best of our knowledge, there
is no example of uniqueness to be found in the overwhelmingly abundant literature on elasto-
plasticity, except when the problem reduces to a one-dimensional setting. In the latter setting,
A. Demyanov proved in [4, Section 10.2] that uniqueness is achieved for a very specific loading
process. To be fair, the beauty of his result resides elsewhere: it is in the demonstration that any
measure which does not charge atoms can be attained as a plastic strain in a one-dimensional
context.

In this paper, we propose to exhibit a bona fide three-dimensional problem for which uniqueness
is generic. To do so, we have to introduce a set of boundary conditions which does not fall within
the scope of the established variational theory introduced in [3]. This is because our example
necessitates the consideration of mixed type boundary conditions in the following sense: on part
of the boundary of the domain, only the normal component of the displacement is given, while
the tangential components of the normal stress are nul. This is because our example is a bi-axial
test where such boundary conditions are needed if one is to secure an explicit elastic field.

Consequently, we have to revisit the whole theory of variational evolutions in this new context.
Only once this is done can we address the example of the bi-axial test.

The paper is organized as follows.
After a short Subsection (Subsection 1.2) devoted to notation and mathematical preliminaries,

Section 2 revisits the variational approach to quasi-static elasto-plastic evolutions in this new
context and re-establishes all needed results. We attempt to perform the task by striking a
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sometimes delicate balance between precision and brevity. Particular attention is paid to the
kinematics of the problem. This is because admissible rigid body motions have to be factored out
if coercivity is to be secured.

Section 3 addresses the bi-axial test. In a first Subsection (Subsection 3.1), the setting is
detailed and a spatially homogeneous evolution is evidenced. Subsection 3.2 then investigates the
possible uniqueness of the homogeneous solution. Theorem 3.2 demonstrates that uniqueness is
generic.

Finally, when uniqueness does not hold, it is shown in Remark 3.4 that the multiplicator of
the plastic strain satisfies a spatially hyperbolic equation with an incomplete set of boundary
data. Consequently, an infinite number of solutions to the quasi-static evolution are generated. In
particular, there exist solutions for which the plastic strain exhibits a Cantor part! This is to our
knowledge the first truly multi-dimensional example for which the solution displacement field u(t)
is in BD, and not only in SBD (see, once again, [4, Section 10.2] for a one-dimensional example)
and it dashes any hope for a regularity statement on solution-displacement fields of quasi-static
elasto-plastic evolutions.

1.2. Mathematical Preliminaries. Here, we detail the mathematical notation, as well as a few
mathematical remarks that will be of relevance.

Throughout the paper, we refer to e.g. [2] for background material, especially concerning finer
measure theoretical points.

General notation. For B ⊆ RN , the symbol A ⊂⊂ B means that the closure of A is compact
and contained in B. The symbol bA stands for “restricted to A”.

Matrices. We denote by MN
sym the set of N × N -symmetric matrices and by MN

D the set of

trace-free elements of MN
sym. The identity matrix in MN

sym is denoted by i. If M is an element

of MN
sym, then MD denotes its deviatoric part, i.e., its projection onto the subspace MN

D of MN
sym

orthogonal to i for the Frobenius inner product. The symbol · denotes that inner product. We
denote by Ls(MN

sym) the set of symmetric endomorphisms on MN
sym. For a, b ∈ RN , a � b stands

for the symmetric matrix such that (a� b)ij := (aibj + ajbi)/2.
Depending on the context, we will denote by B(x, r) the open ball of center x and radius r in

RN , or that in MN
D .

Measures. If E ⊆ RN is locally compact and Y a finite dimensional normed space,Mb(E;Y ) will
denote the space of finite Radon measures with values in Y . If Y = R, we denote by M+

b (E) the
subspace of nonnegative elements of Mb(E;R). For µ ∈ Mb(E;Y ), we denote its total variation
by |µ|(E), or equivalently by ‖µ‖1. This is because the total variation of µ is also the norm of µ as
an element of the topological dual of C0

0 (E;Y ∗), the set of continuous functions u from E to the
vector dual Y ∗ of Y which “vanish at the boundary”, i.e., such that for every ε > 0 there exists
a compact set K ⊆ E with |u(x)| < ε for x 6∈ K. Besides the associated weak-? convergence, we
also use strict convergence. We say that

µn
s→ µ strictly in Mb(E;Y )

iff

µn
∗
⇀ µ weakly∗ in Mb(E;Y ) and |µn|(E)→ |µ|(E).

Functional spaces. Given E ⊆ RN measurable, 1 ≤ p < +∞, and Y a finite dimensional
normed space, Lp(E;Y ) stands for the space of p-summable functions on E with values in Y , with
associated norm denoted by ‖·‖p. (Note that ‖f‖1 thus denotes both the L1-norm if f ∈ L1(E;Y ),
and the total variation of a finite radon measure if f ∈ Mb(E;Y ); no confusion should ensue.)
Given A ⊆ RN open, H1(A;Y ) is the Sobolev space of functions in L2(A;Y ) with distributional
derivatives in L2.

Finally, let X be a normed space. We denote by BV (a, b;X) and AC(a, b;X) the space of
functions with bounded variation and the space of absolutely continuous functions from [a, b] to
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X, respectively. We recall that the total variation of f ∈ BV (a, b;X) is defined as

VX(f ; a, b) := sup


k∑
j=1

‖f(tj)− f(tj−1)‖X : a = t0 < t1 < · · · < tk = b

 .

The (kinematic) space BD. In this paper as in previous works on elasto-plasticity the dis-
placement field u lies in BD(Ω), the space of functions of bounded deformations. We refer the
reader to e.g. [12, Chapter II], and [1] for background material. Besides elementary properties of
BD(Ω), we will use the following Korn’s inequality: if Ω has a Lipschitz boundary, there exists
C > 0, such that, for every u ∈ BD(Ω), there exists r ∈ R(Ω) satisfying

(1.1) ‖u− r‖BD(Ω) ≤ C‖Eu‖Mb(Ω;MN
sym),

where Eu denotes the symmetrized gradient of u, and

(1.2) R(Ω) := {u = b+Ax : b ∈ RN , A ∈ MN
skew}

denotes the family of infinitesimal rigid body motions on Ω; see [12, Chapter II, Prop. 2.3].
We say that

un
∗
⇀ u weakly∗ in BD(Ω)

iff
un → u, strongly in L1(Ω;RN ) and Eun

∗
⇀ Eu weakly∗ in Mb(Ω; MN

sym).

Bounded sequences in BD(Ω) always admit a weakly∗ converging subsequence.

The (static) space Σ. It is defined as

Σ :=
{
σ ∈ L2(Ω; MN

sym) : div σ ∈ L2(Ω;RN ) and σD ∈ L∞(Ω;RN )
}
.

It is classical that, if σ ∈ L2(Ω; MN
sym) with div σ ∈ L2(Ω;RN ), σν is well defined as an element

of H−1/2(∂Ω;RN ), ν being the outer normal to ∂Ω.
More generally, consider an arbitrary Lipschitz subdomain A ⊂ Ω with outer normal ν, and

∆ ⊂ ∂A open in the relative topology. We can define the restriction of σν “on ∆” by testing
against functions in H1/2(∂A;RN ) with compact support in ∆. This amounts to viewing σν as

an element of the dual to H
1/2
00 (∆;RN ).

If σ ∈ Σ, then, in the spirit of [7, Lemma 2.4], we can define a tangential component [σν]τ of
σν on ∆ such that

[σν]τ ∈ L∞(∆;RN ) with ‖[σν]τ‖∞ ≤ ‖σD‖∞.
Indeed, consider any regularization σn ∈ C∞(Ā; MN

sym) of σ on Ā such that
σn → σ strongly in L2(A; MN

sym)

divσn → divσ strongly in L2(A;RN )

‖(σn)D‖∞ ≤ ‖σD‖∞.

Define the tangential component [σnν]τ := (σn)ν − ((σn)ν · ν)ν. It is readily seen that [σnν]τ =
[(σn)Dν]τ (the tangential component of (σn)D is defined analogously). Since x 7→ ν(x) is an
L∞(∆;RN )-mapping, there exists an L∞(∆;RN )-function [σν]τ such that, up to a subsequence,

[σnν]τ
∗
⇀ [σν]τ weakly∗ in L∞(∆;RN ).

If σD ≡ 0 then, clearly, [σν]τ ≡ 0, so that [σν]τ is only a function of (σn)D which we will denote
henceforth by [σDν]τ . Notice that [σDν]τ may depend upon the approximation sequence σn (or
at least upon (σn)D).

If ∆ is a C2-hypersurface, then [σDν]τ is uniquely determined as an element of L∞(∆;RN ).
Indeed, for every ϕ ∈ H1/2(∂A;RN ) with support compactly contained in ∆ (that is by density

ϕ ∈ H1/2
00 (∆;RN )),

(1.3)

∫
∆

[σν]τ · ϕdHN−1 = 〈σν, ϕ〉 − 〈(σν)ν , ϕ〉,



4 G.A. FRANCFORT, A. GIACOMINI, AND J.-J. MARIGO

where
〈(σν)ν , ϕ〉 := 〈σν, (ϕ · ν)ν〉.

Since the normal component (ϕ · ν)ν of ϕ with respect to ∆ belongs to H1/2(∂A;RN ) in view of
the regularity of ν on ∆, the definition of (σν)ν is meaningful.

2. Quasi-static evolution for mixed boundary conditions

In this section, we demonstrate that the setting introduced in [3] can be extended to the case
where boundary conditions are of a mixed type, that is to the case where, on a part Γd of the
boundary of the domain Ω under investigation, the following type of boundary conditions is
imposed:

u · ν = w (prescribed normal displacement),

[σν]τ = 0 (zero tangential forces).

As mentioned in the introduction, such a setting does not fall squarely within the confines of the
evolution discussed in [3] and revisited in [5]. Thus, a revisiting of the results obtained there is
required. In what follows, we accomplish this task while relying as much as feasible upon available
results.

2.1. Mathematical framework. The reference configuration. In all that follows Ω ⊂ RN is an
open, bounded, connected set with (at least) Lipschitz boundary and exterior normal ν. Further,
the Dirichlet part Γd of ∂Ω is a non empty open set in the relative topology of ∂Ω with boundary
∂b∂ΩΓd in ∂Ω and we set Γn := ∂Ω \ Γ̄d. Reproducing the setting of [5, Section 6], we introduce
the following

Definition 2.1 (Admissible boundaries). We will say that ∂b∂ΩΓd is admissible iff, for any σ ∈
L2(Ω; MN

sym) with

divσ = f in Ω, σν = h on Γn, σD ∈ L∞(Ω; MN
D)

where f ∈ LN (Ω;RN ) and h ∈ L∞(Γn;RN ), and every p ∈Mb(Ω∪Γd; MN
D) such that there exists

an associated pair (u, e) ∈ BD(Ω)× LN/N−1(Ω; MN
sym) and g ∈ H1(Ω;RN ) with

Eu = e+ p in Ω, p = (g − u)� νHN−1bΓd on Γd,

the distribution, defined for all ϕ ∈ C∞c (RN ) by

(2.1) 〈σD, p〉(ϕ) := −
∫
Ω

ϕσ · (e− Eg) dx−
∫
Ω

ϕf · (u− g) dx

−
∫
Ω

σ · [(u− g)�∇ϕ] dx+

∫
Γn

ϕh · (u− g) dHN−1

extends to a bounded Radon measure on RN with |〈σD, p〉| ≤ ‖σD‖∞|p|.

Definition 2.1 covers many “practical” settings like those of a hypercube with one of its faces
standing for the Dirichlet part Γd; see [5, Section 6] for that and other such settings.

Remark 2.2. Expression (2.1) defines a meaningful distribution on RN . Indeed, according to [5,
Proposition 6.1] if σ ∈ L2(Ω; MN

sym) is such that divσ ∈ LN (Ω;RN ) and σD ∈ L∞(Ω; MN
D), then

σ ∈ Lr(Ω; MN
sym) for every 1 ≤ r <∞ with

‖σ‖r ≤ Cr (‖σ‖2 + ‖divσ‖N + ‖σD‖∞)

for some Cr > 0. On the other hand, u ∈ LN/N−1(Ω;RN ) in view of the embedding of BD(Ω)
into LN/N−1(Ω;RN ). Further, u has a trace on ∂Ω which belongs to L1(∂Ω;RN ). Finally note
that, if σ is the restriction to Ω of a C1-function and if HN−1(∂b∂ΩΓd) = 0, then, an integration
by parts in BD (see [12, Chapter 2, Theorem 2.1]) would demonstrate that the right-hand side of
(2.1) coincides with the integral of ϕ with respect to the (well defined) measure σDp. ¶

We will use the following result concerning the duality pairing 〈σD, p〉: for a proof we refer to
[5, Lemma 3.8 and Theorem 6.2].
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Proposition 2.3 (Duality). Let the duality 〈σD, p〉 ∈ Mb(Ω ∪ Γd) be defined according to (2.1).
Then the following facts hold true.

(a) Absolutely continuous part: we have

〈σD, p〉a = σD · pa dx,
where pa ∈ L1(Ω; MN

D) is the density of the absolutely continuous part of p.
(b) Behaviour at the boundary: if Γd is of class C2, then

〈σD, p〉bΓd = [σν]τ · (g − u)HN−1bΓd,
where [σν]τ ∈ L∞(Γd;RN ) is uniquely defined according to (1.3).

(c) Total mass: we have

〈σD, p〉(Ω ∪ Γd) = −
∫
Ω

σ · (e− Eg) dx−
∫
Ω

f · (u− g) dx+

∫
Γn

h · (u− g) dHN−1.

Kinematic admissibility. In this contribution we only prescribe the normal component of the dis-
placements on Γd. In other words, given w ∈ H1(Ω), we impose that the displacement u should
satisfy

u · ν = w on Γd,

where ν denotes the outer normal to ∂Ω and u · ν is to be understood in the sense of traces.
Correspondingly, we define the admissible infinitesimal rigid body motions as those with normal
component vanishing on Γd, i.e., the elements of

Rd(Ω) := {u ∈ R(Ω) : u · ν = 0 on Γd},
where R(Ω) is defined in (1.2). Depending on the geometry of Γd, it may be so that Rd(Ω)
reduces to the null displacement.

In turn, this prompts the definition of the quotient space{
BDd(Ω;w) := {u ∈ BD(Ω) : u · ν = w on Γd}/Rd(Ω)

BDd(Ω) := BDd(Ω; 0).

From now onward, we denote by [u] an element of the set

BDd(Ω;w) := {u+ r : u ∈ BD(Ω) with u · ν = w on Γd, r ∈ Rd(Ω)} ,
by Eu the common value of E(u+r), r ∈ Rd(Ω), and recall that, sinceRd(Ω) is finite dimensional,

‖[u]‖BDd(Ω;w) = min
{
‖u+ r‖BD(Ω) : r ∈ Rd(Ω)

}
.

Then, we adopt the following

Definition 2.4 (Admissible configurations). A(w), the family of admissible configurations relative
to w, is the set of triplets ([u], e, p) with

[u] ∈ BDd(Ω;w), e ∈ L2(Ω; MN
sym), p ∈Mb(Ω; MN

D), Eu = e+ p in Ω.

The function u denotes the displacement field on Ω, while e and p are the associated elastic
and plastic strains.

We will make repeated use of the following

Proposition 2.5 (Korn). There exists a constant c(Ω) > 0 such that, for every [u] ∈ BDd(Ω),

‖[u]‖BDd(Ω) ≤ c(Ω)‖Eu‖1.

Proof. The inequality follows if we show that ‖Eu‖1 is a norm on the quotient space equivalent to
that induced by the BD-norm. This is a consequence of the open mapping theorem provided that
we show that the space BDd(Ω) is complete when equipped with that norm (see e.g.[12, Chapter
II, Proposition 1.2] for a similar argument).

Since R(Ω) is a finite dimensional vector space, we decompose R(Ω) as

(2.2) R(Ω) = Rd(Ω)⊕R⊥d (Ω),
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and this for any inner product on R(Ω). Consider ([un])n∈N ⊂ BDd(Ω) such that (Eun)n∈N is a
Cauchy sequence inMb(Ω; MN

sym). Then, in view of (1.1), there exist v ∈ BD(Ω) and rn ∈ R(Ω)
such that

‖un + rn − v‖BD(Ω) → 0.

By the continuity of the trace operator, this entails that

rn · ν → v · ν strongly in L1(Γd).

Set

rn = r̃n + r̂n

with r̃n ∈ Rd(Ω) and r̂n ∈ R⊥d (Ω) according to decomposition (2.2). Then

r̂n · ν → v · ν strongly in L1(Γd).

Since R⊥d (Ω) is a finite dimensional space on which

r 7→
∫
Γd

|r · ν| dHN−1

is a norm, we may assume that, up to a subsequence,

r̂n → r̂ in R⊥d (Ω)

and also strongly in BD(Ω). Then, u := v − r̂ satisfies u · ν = 0 on Γd and

un + r̃n → u strongly in BD(Ω),

so that [un]→ [u], strongly in BDd(Ω). The result follows. �

The elasticity tensor. The Hooke’s law is given by an element C ∈ L∞(Ω;Ls(MN
sym)) such that

(2.3) c1|M |2 ≤ CM ·M ≤ c2|M |2 for every M ∈ M3
sym,

with c1, c2 > 0.
For every e ∈ L2(Ω; MN

sym) we set

Q(e) :=
1

2

∫
Ω

Ce · e dx.

The set of admissible stresses. In elasto-plasticity, the deviatoric part of the stress σ is assumed
to be restricted by the yield condition. We thus assume that there exists a convex compact set
K ⊂ MN

D such that σD(x) ∈ K for a.e. x ∈ Ω. We further assume that K cannot be too small or
too large, i.e., there exist c3, c4 > 0 such that

(2.4) B(0, c3) ⊂ K ⊂ B(0, c4).

Our formulation of the problem uses the Legendre transform of IK , which is often referred to as
the dissipation potential.

The dissipation functional. For a.e. x ∈ Ω, we define the dissipation to be

(2.5) H(ξ) := sup{τ · ξ : τ ∈ K}.
Definition (2.5) produces a convex, one-homogeneous function which further satisfies

c3|ξ| ≤ H(ξ) ≤ c4|ξ|.
For every p ∈Mb(Ω; MN

D), we define the dissipation functional as

H(p) :=

∫
Ω

H

(
x,

p

|p|

)
d|p|,

where p/|p| denotes the Radon-Nikodym derivative of p with respect to its total variation |p|. We
have

(2.6) c3‖p‖1 ≤ H(p) ≤ c4‖p‖1.
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The total dissipation. If t 7→ p(t) is a map from [0, T ] to Mb(Ω; MN
D), we define, for every [a, b] ⊆

[0, T ],

D(a, b; p) := sup


k∑
j=1

H (p(tj)− p(tj−1)) : a = t0 < t1 < · · · < tk = b


to be the total dissipation over the time interval [a, b]. Thanks to (2.6), the total dissipation
satisfies for every t ∈ [0, T ]

(2.7) c3V(0, t; p) ≤ D(0, t; p) ≤ c4V(0, t; p).

The loads. As mentioned at the beginning of this section, we prescribe a normal boundary dis-
placement w on Γd. To that aim, we define, w(t), t ∈ [0, T ], as the normal trace on Γd of some

(2.8) g ∈ AC(0, T ;H1(RN ;RN )),

i.e., for every t ∈ [0, T ],

(2.9) g(t) · ν = w(t) on Γd.

Then, in particular,

w ∈ AC(0, T ;L2(Γd)).

On the part Γn of the boundary, we prescribe a surface traction which should not produce any
work against admissible rigid body motions, that is

(2.10) h ∈ AC(0, T ;L∞(Γn;RN )) with, for every r ∈ Rd(Ω),

∫
Γn

h(t) · r dHN−1 = 0, t ∈ [0, T ].

Define L(t) ∈ BD′(Ω) as

〈L(t), v〉 := −
∫
Γn

h(t) · v dHN−1, v ∈ BD(Ω).

Then, the work of the surface traction is given, for any element ([u], e, p) of A(w(t)) by

(2.11) L(t; [u]) := 〈L(t), u〉,
where, thanks to (2.10), u is any representative of [u]. Note that, under our assumptions on h,

L̇(t) := w∗ − lim
s→t

L(s)− L(t)

s− t
exists in BD(Ω)′ for a.e. t ∈ [0, T ] (see [3, Remark 4.1]) and that it is represented by

〈L̇(t), u〉 = −
∫
Γn

ḣ(t) · u dHN−1, with, for every r ∈ Rd(Ω),

∫
Γn

ḣ(t) · r dHN−1 = 0.

In particular, we can define

(2.12) L̇(t; [u]) := 〈L̇(t), u〉, u ∈ BDd(Ω;w(t)),

and t 7→ L̇(t; [u(t)]) is an L1(0, T )-function whenever [u− g] ∈ L∞(0, T ;BDd(Ω)).
As is well known in plasticity, the traction should also be such that it satisfies a uniform safe

load condition (see [3, Eqns. (2.17)-(2.18)]). We will assume henceforth that

(2.13) HN−1(∂b∂ΩΓd) = 0

and that there exists a stress field π ∈ AC(0, T ;L2(Ω; MN
sym)) with

(2.14) πD ∈ AC(0, T ;C0(Ω; MN
D))

(2.15) πD(t, x) +B(0, α) ⊂ K
for some α > 0, and such that, for every t ∈ [0, T ],

(2.16) div π(t) = 0 in Ω, π(t)ν = h(t) on Γn, [π(t)ν]τ = 0 on Γd
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The work defined in (2.11) can in turn be rewritten as

L(t; [u]) = −
∫
Ω

π(t) · (e− Eg(t)) dx− 〈πD(t), p̃〉(Ω∪Γd)−
∫
Γn

h(t) · g(t) dt,

where p̃ ∈Mb(Ω ∪ Γd; MN
D) is defined as

p̃bΩ = p and p̃bΓd = (g(t)− u)� νHN−1bΓd.
Note that p̃ has values in MN

D since ([u], e, p) ∈ A(w(t)). The previous expression is obtained from

(2.1) with the choice ϕ ≡ 1 on Ω and the term 〈πD, p̃〉 uses the duality. However, the regularity
assumption (2.14) entails that the duality 〈πD, p̃〉 reduces to the well defined measure πD(t) · p̃
(see [5, Section 6]), while, thanks to the last equality in (2.16), we may write

(2.17) (πD(t) · p̃)(Ω∪Γd) = (πD(t) · p)(Ω) +

∫
Γd

πD(t) · [(g(t)− u)� ν] dHN−1

= (πD(t) · p)(Ω) +

∫
Γd

[πD(t)ν]τ (g(t)− u) dHN−1 = (πD(t) · p)(Ω).

Using an integration by parts formula in H1(Ω;RN ), (2.9), (2.13), (2.14), (2.16), and (2.17) yield

(2.18) L(t; [u]) = −
∫
Ω

π(t) · e dx− (πD(t) · p)(Ω) +

∫
Γd

(π(t)ν · ν)w(t)dx.

Remark 2.6. Following [3], we could simply require that{
πD ∈ AC(0, T ;L∞(Ω; MN

D))

[π(t)ν]τ = 0 on Γd of class C2,

and interpret the calculations above using the stress-strain duality. However, the absence of spatial
regularity of π is the only reason for appealing to the duality in that argument, because the product
of πD with p is not meaningful under the assumed regularity of πD. ¶

In all that follows, we will have to deal with maps of the form

(2.19) F [t;w; p] : ([v], η, q) ∈ A(w(t)) 7→ Q(η) +H(q− p) +L(t; [v]), for some p ∈Mb(Ω; MN
D).

The following remark addresses the lower semi-continuity and coercivity properties of F [t;w; p].

Remark 2.7 (Lower semi-continuity and coercivity). First, in view of the expression (2.18) for
L(t; ·) we can write

(2.20) F [t;w; p]([v], η, q) = Q(e)−
∫
Ω

π(t) · e dx

+H(q − p)− (πD(t) · (q − p))(Ω) +

∫
Γd

(π(t)ν · ν)w(t) dHN−1.

The term involving e is clearly weakly lower semi-continuous on L2(Ω; MN
sym). In view of the safe

load condition (2.15) on πD(t), H defined in (2.5) satisfies

(2.21) ∀ξ ∈ MN
D : H(ξ)− πD(t) · ξ ≥ α|ξ|.

Consequently, the term

q 7→ H(q − p)− (πD(t) · (q − p))(Ω) =

∫
Ω

[
H

(
q − p
|q − p|

)
− πD(t) · q − p

|q − p|

]
d|q − p|

is weakly-? lower semicontinuous on Mb(Ω; MN
D) in view of Reshetnyak’s lower semi-continuity

theorem (see e.g. [2, Theorem 2.38]). The remaining term in (2.20) is a t-dependent constant.
We conclude that F [t;w; p] is weak-? (sequentially) lower semi-continuous for the (natural)

weak-? topology on A(w(t)).
As far as coercivity is concerned, (2.3), (2.8), (2.14) and (2.21) imply that, for every ([v], η, q) ∈

A(w(t))

F [t;w; p]([v], η, q) ≥ α‖q‖1 +
c3
2
‖η‖2 + C(p),



THE BI-AXIAL TEST 9

where C(p) is a constant depending on of ‖p‖1. ¶

2.2. Quasi-static evolutions. In what follows, the energetic formulation of the quasi-static evo-
lution is detailed.

Definition 2.8 (Quasi-static evolution). The mapping

t 7→ ([u(t)], e(t), p(t)) ∈ A(w(t))

is a quasi-static evolution iff the following conditions hold for every t ∈ [0, T ]:

(a) Global stability: for every ([v], η, q) ∈ A(w(t))

(2.22) Q(e(t)) + L(t; [u(t)]) ≤ Q(η) + L(t; [v]) +H(q − p(t)).
(b) Energy equality: p ∈ BV

(
0, T ;Mb(Ω; MN

D)
)

and

(2.23) Q(e(t)) + L(t; [u(t)]) +D(0, t; p) = Q(e(0)) + L(0; [u(0)])

+

∫ t

0

{∫
Ω

σ(τ) · Eġ(τ) dx+ L(τ ; [ġ(τ)]) + L̇(τ, [u(τ)])

}
dτ

where σ(t) := Ce(t).

Remark 2.9. Note that the global stability condition for ([u], e, p) ∈ A(w) (we drop the t-
dependence throughout this remark), implies in particular the uniqueness of e ∈ L2(Ω; MN

sym)
and of [u] ∈ BDd(Ω;w) once p is fixed. Indeed, the global stability is equivalent, thanks to the
one-homogeneous character of H, to the following set of inequalities

(2.24) −H(q) ≤
∫
Ω

Ce · η dx+ L(t; [v]) ≤ H(−q) for every ([v], η, q) ∈ A(0).

One implication is proved in [3, Theorem 3.4] while the other is immediate by convexity of the
quadratic form Q(e). Then, if ([u′], e′, p′) ∈ A(w) is an other globally stable configuration, we
obtain

−H(p′ − p) ≤
∫
Ω

Ce · (e′ − e) dx+ L(t; [u′ − u]) ≤ H(p− p′)

and

−H(p− p′) ≤
∫
Ω

Ce′ · (e− e′) dx+ L(t; [u− u′]) ≤ H(p′ − p)

so that ∫
Ω

C(e′ − e) · (e′ − e) dx ≤ H(p− p′) +H(p′ − p),

and, appealing to (2.3), (2.6), we conclude that

‖e′ − e‖2 ≤ C|p′ − p|1/2(Ω),

for some C > 0. Concerning the displacement, thanks to Proposition 2.5,

‖[u′ − u]‖BDd(Ω) ≤ C‖E(u′ − u)‖1 ≤ C
[
|Ω|1/2‖e′ − e‖2 + |p′ − p|(Ω)

]
from which the result follows. ¶

Remark 2.10 (Independence of the extension g). Whenever (2.13), (2.14) hold true, the quasi-
static evolution of Definition 2.8 remains unchanged if g defined in (2.8) is replaced by any

g′ ∈ AC(0, T ;H1(RN ;RN ))

with, for every t ∈ [0, T ],

(2.25) g′(t) · ν = w(t) on Γd.

In other words the evolution only depends on w(t), not on g(t), provided that (2.25) is satisfied.
Indeed, in the context of Remark 2.9, take ([v], η, q) = ([ġ − ġ′], Eġ − Eġ′, 0) as test function in
(2.24). We get ∫

Ω

Ce · (Eġ − Eġ′)dx+ L(t; [ġ − ġ′]) = 0.
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Reintroducing the t-dependence, we thus conclude that we are at liberty to replace ġ(t) by ġ′(t)
in the energy equality. Since, in view of (2.18), this expression is the only one that involves ġ(t),
rather than ẇ(t), in the definition of a quasi-static evolution, the conclusion is reached.

Note that a similar remark would also apply to the general setting first introduced in [3]. To
the best of our knowledge, this has not previously been explicitly observed. ¶

The following theorem is a generalization of [3, Theorem 4.5] to our setting.

Theorem 2.11 (Existence of quasi-static evolutions). Assume that (2.3), (2.4), (2.8)–(2.10) and
(2.13)–(2.16) are satisfied. Let ([u0], e0, p0) ∈ A(w(0)) satisfy the global stability condition (2.22).
Then there exists a quasi-static evolution t 7→ ([u(t)], e(t), p(t)) ∈ A(w(t)), t ∈ [0, T ], such that
([u(0)], e(0), p(0)) = ([u0], e0, p0).

Proof. The proof proceeds as usual by discretization in time, solving incremental minimum prob-
lems depending on Q,H and letting the time step discretization going to zero.

Step 1: Existence of the incremental configurations. Let tki := (iT )/k for k ≥ 1. Let us show that
for every i = 0, ...., k, we can find a triplet ([uki ], eki , p

k
i ) ∈ A(w(tki )) such that, for i > 0,

(2.26) ([uki ], eki , p
k
i ) ∈ Argmin

{
F [tki ;w(tki ); pki−1](v, η, q) =

Q(η) +H(q − pki−1) + L(t; [v]) : ([v], η, q) ∈ A(w(tki ))
}

and ([uk0 ], ek0 , p
k
0) = ([u0], e0, p0).

We can proceed as follows. Let ([un], en, pn) ∈ A(w(tki )) be a minimizing sequence. Comparing
with ([g(tki )], Eg(tki ), 0) and appealing to the coercivity in Remark 2.7 yields, for some constant
C,

‖en‖2 + ‖pn‖1 ≤ C,
so that we can assume that, up to a subsequence,

en ⇀ e weakly in L2(Ω; MN
sym),

and
pn ⇀ p weakly-? in Mb(Ω; MN

D).

The lower semi-continuity of F [tki ;w(tki ); pki−1] is ensured through Remark 2.7. In order to con-

clude, we simply need to find [u] ∈ BDd(Ω;w(tki )) such that ([u], e, p) ∈ A(w(tki )). Then, ([u], e, p)
will be a minimum.

Thanks to Proposition 2.5
‖[un − g(tki )]‖BDd(Ω) ≤ c,

for some constant c. Consequently, there exists rn ∈ Rd(Ω) such that un + rn is bounded in
BD(Ω). Let Ω′ ⊆ RN be open, bounded and such that Ω ∪ Γd = Ω ∩Ω′. Let us consider

vn :=

{
un + rn on Ω

g(tki ) on Ω′ \Ω.

(vn)n∈N is a bounded sequence in BD(Ω′): indeed, the jumps created across Γd are of the form

(un + rn − g(tki ))� νHN−1bΓd,
so that their mass is dominated by ‖un + rn − g(tki )‖L1(Γd;RN ) which is bounded. Up to a subse-
quence we get

vn
∗
⇀ v weakly-? in BD(Ω′).

Let u be the restriction of v to Ω. Since

Evn = ẽn + p̃n

where

ẽn =

{
en in Ω

Eg(tki ) in Ω′ \Ω
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and

p̃n :=


pn in Ω

(un + rn − g(tki ))� νHN−1bΓd on Γd

0 on Ω′ \Ω,

and since p̃n is MN
D -valued, we deduce that the singular part of Ev is also MN

D -valued. But

EvbΓd = (g(tki )− u)� νHN−1bΓd,

so that u · ν = g(tki ) · ν = w(tki ), which entails that ([u], e, p) ∈ A(w(tki )).

Step 2: Piecewise constant interpolation in time and conclusion. With Step 1 at our disposal, we
can adapt easily the arguments of [5, Theorem 2.7] to our setting.

Define ([uk(t)], ek(t), pk(t)) to be the right-continuous and piecewise in time constant inter-
polation of the ([uki ], eki , p

k
i )’s. Then, upon testing the minimality of ([uki ], eki , p

k
i ) in (2.26) with

([uki−1 + g(tki ) − g(tki−1], eki−1 + Eg(tki ) − Eg(tki−1), pki−1) ∈ A(w(tki )) and upon iterating, we can
write, using the regularity properties of g,

(2.27) Q(ek(t)) +D(0, t; pk) + L(t; [uk(t)]) ≤ Q(e0)+∫ tkik(t)

0

[∫
Ω

Cek(s) · Eġ(s) dx+ L(s; [ġ(s)])

]
ds+

∫ tkik(t)

0

L̇(s, [uk(s]) ds+ δk,

where ik(t) is the largest index i such that t ∈ [tki , t
k
i+1) and δk

k

↘ 0. We deduce that there exists
C > 0 independent of k such that

(2.28) sup
t∈[0,T ]

‖ek(t)‖2 +D(0, T ; pk) ≤ C.

In view of (2.7), a generalized version of Helly’s theorem (see [8, Theorem 3.2]) implies the existence
of a subsequence of (pk)k∈N, still indexed by k, such that, for all t ∈ [0, T ],

pk(t)
∗
⇀ p(t) weakly∗ in Mb(Ω; MN

D)

for a suitable p ∈ BV (0, T ;Mb(Ω; MN
D)). By (2.28) and by the arguments of Step 1, there exists

a t-dependent subsequence ((ukt(t), ekt(t)))nt∈N and rkt ∈ Rd(Ω) such that

ukt(t)− rkt
∗
⇀ u(t) weakly∗ in BD(Ω),

ekt(t) ⇀ e(t) weakly in L2(Ω; MN
sym),

with ([u(t)], e(t), p(t)) ∈ A(w(t)). The global stability of ([uk(t)], ek(t), pk(t)) easily implies that
of ([u(t)], e(t), p(t)). In view of Remark 2.9, there is no need to pass to a t-dependent subsequence.
From now on, the arguments of [5, Theorem 2.7] can be followed word for word: we can pass to
the limit in (2.27) obtaining

Q(e(t))+D(0, t; p)+L(t; [u(t)]) ≤ Q(e0)+

∫ t

0

[∫
Ω

Ce(s) · Eġ(s)dx+ L(s; [ġ(s)]) + L̇(s; [u(s)])

]
ds,

while the opposite inequality is a consequence of the global stability of ([u(t)], e(t), p(t)). We
conclude that ([u(t)], e(t), p(t)) ∈ A(w(t)) is a quasi-static evolution, and the result follows. �

Theorem 2.12 (Uniqueness of the stress). Let {t 7→ ([u(t)], e(t), p(t)), t ∈ [0, T ]} be a quasi-static
evolution according to Definition 2.8. Then, the stress σ(t) := Ce(t) is uniquely determined.

Proof. Indeed, let

t 7→ ([ũ(t)], ẽ(t), p̃(t)) ∈ A(w(t)), σ̃(t) := Cẽ(t),
be an other quasi-static evolution relative to w with ẽ(0) = e0. Consider the evolution

t 7→ ([u′(t)], e′(t), p′(t)) :=
1

2

(
[u(t) + ũ(t)], e(t) + ẽ(t), p(t) + p̃(t)

)
∈ A(w(t)).
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In view of (2.24), the configuration ([u′(t)], e′(t), p′(t)) is globally stable for every t ∈ [0, T ].
Consequently, arguing as in last part of the proof of Theorem 2.11,

(2.29) Q(e′(t)) +D(0, t; p′) + L(t; [u′(t)])

≥ Q(e0) +

∫ t

0

[∫
Ω

σ′(τ) · Eġ(τ) dx+ L(s; [ġ(s)]) + L̇(s; [u′(s)])

]
ds,

where σ′(τ) := Ce′(τ). On the other hand, in view of the energy equality satisfied by the evolutions,
for every t ∈ [0, T ],

Q(e′(t))+D(0, t; p′(t))+L(t; [u′(t)]) =Q
(
e(t) + ẽ(t)

2

)
+D
(

0, t;
p(t) + p̃(t)

2

)
+L
(
t;

[
u(t) + ũ(t)

2

])
≤ 1

2

(
Q(e(t)) +Q(ẽ(t)) +D(0, t; p(t)) +D(0, t; p̃(t)) + L(t; [u(t)]) + L(t; [ũ(t))

)
= Q(e0) +

∫ t

0

[∫
Ω

σ′(τ) · Eġ(τ) dx+ L(s; [ġ(s)]) + L̇(s; [u′(s)])

]
ds.

But (2.29) then turns the previous string into equalities, so that, for every t ∈ [0, T ],

Q
(

1

2
(e(t) + ẽ(t))

)
=

1

2
(Q(e(t)) +Q(ẽ(t))),

hence, Q being strictly convex, e(t) = ẽ(t) and σ(t) = σ̃(t). �

The following result holds true.

Proposition 2.13 (Regularity in time). Let {t 7→ ([u(t)], e(t), p(t)), t ∈ [0, T ]} be a quasi-static
evolution according to Definition 2.8. Then,

(2.30) (e, p) ∈ AC
(
0, T ;L2(Ω; MN

sym)×Mb(Ω; MN
D)
)

and the map t 7→ [u(t)] is absolutely continuous on [0, T ] with values in the quotient space
BD(Ω)/Rd(Ω). Moreover for a.e. t ∈ [0, T ] the following limits exist

[u̇(t)] := lim
s→t

[u(s)− u(t)]

s− t
weakly∗ in BD(Ω)/Rd(Ω),

ė(t) := lim
s→t

e(s)− e(t)
s− t

strongly in L2(Ω; MN
sym),

ṗ(t) := lim
s→t

p(s)− p(t)
s− t

strictly in Mb(Ω; MN
D),

with ([u̇(t)], ė(t), ṗ(t)) ∈ A(ẇ(t)). Finally, D(0, t; p) ∈ AC(0, T ) and, for a.e. t ∈ [0, T ],

(2.31) Ḋ(0, t; p) = −
∫
Ω

σ(t) · (ė(t)− Eġ(t)) dx+

∫
Γn

h(t)(u̇(t)− ġ(t)) dHN−1.

Proof. Property (2.30) follows by a straightforward adaptation of [3, Theorem 5.2]. Concerning
the displacements, the absolute continuity follows in view of Proposition 2.5. The existence of the
limits of the difference quotients for e and p follow from [3, Section 5.1]; that for the displacement
follows again by Proposition 2.5; further, ([u̇(t)], ė(t), ṗ(t)) ∈ A(ẇ(t)). Finally (2.31) is obtained
through differentiation of the energy equality. �

2.3. Equilibrium conditions and flow rules. In this subsection we derive, in a weak form
compatible with the mathematical framework explained above, the classical equilibrium condition
and yield constraint for the Cauchy stress, together with the flow rule satisfied by the plastic
strain.

Concerning the stress we have the following result.
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Theorem 2.14 (Equilibrium and stress admissibility). Let {t 7→ ([u(t)], e(t), p(t)), t ∈ [0, T ]} be a
quasi-static evolution according to Definition 2.8. Then, for every t ∈ [0, T ], σ(t) = Ce(t) satisfies
the balance equations

(2.32)

{
div σ(t) = 0 in Ω

σ(t) · ν = h(t) on ∂Ω \ Γ d
and the admissibility constraint

(2.33) σD(t, x) ∈ K for a.e. x ∈ Ω.
Finally, assuming that Γd is of class C2, then

(2.34) [σ(t)ν]τ = 0 a.e. on Γd,

where [σ(t)ν]τ ∈ L∞(Γd;RN ) is defined according to (1.3).

Proof. As mentioned in Remark 2.9, the global stability of (u(t), e(t), p(t)) is equivalent to the
relation

(2.35) −H(q) ≤
∫
Ω

Ce(t) · η dx+ L(t; [v]) ≤ H(−q) for every ([v], η, q) ∈ A(0).

Choose ([v], η, q) to be ([ϕ], Eϕ, 0) with ϕ ∈ C∞c (Ω;RN ), then with ϕ ∈ C∞(Ω;RN ) s.t. ϕ ≡ 0 on
Γ d. We obtain

divσ(t) = 0 in Ω, σ(t)ν = h on ∂Ω \ Γ d.
Finally, choose ([v], η, q) to be ([0], χBξ,−χBξ) with ξ ∈ MN

D and χB the characteristic function
of an arbitrary Borel subset B of Ω. Letting ξ vary first in a countable and dense set in MN

D , and
then using the continuity of ξ 7→ H(ξ) for a.e. x ∈ Ω, we obtain that

−H(−ξ) ≤ σD(t, x) · ξ ≤ H(ξ), a.e. in Ω,

so that, in view of (2.5),

σD(t, x) ∈ K, a.e. in Ω.

Let us come to (2.34). Because of the C2-regularity of Γd, we know that [σν]τ is well defined as

(2.36)

∫
Γd

[σν]τ · ϕdHN−1 = 〈σν, ϕ〉 − 〈(σν)ν , ϕ〉,

for every ϕ ∈ H1/2(∂Ω;RN ) with support compactly contained in Γd (that is by density ϕ ∈
H

1/2
00 (Γd;RN )), where

(2.37) 〈(σν)ν , ϕ〉 := 〈σν, (ϕ · ν)ν〉.
Furthermore, as observed in Section 1.2, [σν]τ is also an element of L∞(Γd;RN ).

Now choose ([v], e, q) of the form ([ϕ], Eϕ, 0) where ϕ ∈ C2(Ω;RN ) is such that ϕ|∂Ω has
support compactly contained in Γd, with ϕ · ν = 0 on Γd. Using (2.35) again, we get, in view of
(2.36) and (2.37),

0 =

∫
Ω

σ(t) · Eϕdx = 〈σν, ϕ〉 =

∫
Γd

[σν]τ · ϕdHN−1,

from which (2.34) follows. �

Remark 2.15. The equilibrium conditions (2.32), (2.33) and (2.34) for the Cauchy stress σ(t) are
indeed equivalent to the global stability of the configuration ([u(t)], e(t), p(t)) ∈ A(w(t)) provided
that ∂b∂ΩΓd is admissible and that Γd is of class C2. Thanks to (2.32), (2.33), [5, Proposition 3.9]
applies and yields in particular

〈σD(t), q〉 ≤ H
(
q

|q|

)
|q| as measures on Ω,

for every ([v], η, q) ∈ A(0). Here q/|q| stands for the Radon-Nykodim derivative of q with respect
to |q|. In particular we deduce, upon taking the masses,

−H(−q) ≤ 〈σD(t), q〉(Ω) ≤ H(q).
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In view of the abmissibility of ∂b∂ΩΓd, and thanks to (2.34), we get invoking Proposition 2.3
(points (b) and (c))

〈σD(t), q〉(Ω ∪ Γd) = 〈σD(t), q〉(Ω) = −
∫
Ω

σ · η dx− L(t, [v])

so that

−H(q) ≤
∫
Ω

σ · η dx+ L(t, [v]) ≤ H(−q),

which is equivalent to global stability by convexity. ¶

A first step towards a flow rule is given by the following result.

Proposition 2.16. Let {t 7→ ([u(t)], e(t), p(t)), t ∈ [0, T ]} be a quasi-static evolution according to
Definition 2.8. Assume further that ∂b∂ΩΓd is admissible and that Γd is of class C2. Then, for
a.e. t ∈ [0, T ],

H

(
ṗ(t)

|ṗ(t)|

)
|ṗ(t)| = 〈σD(t), ṗ(t)〉 as measures on Ω.

Proof. Let t ∈ [0, T ] be such that equality (2.31) holds true. Thanks to (2.32), (2.33), [5, Propo-
sition 3.9] applies and yields in particular

(2.38) H

(
ṗ(t)

|ṗ(t)|

)
|ṗ(t)| ≥ 〈σD(t), ṗ(t)〉 as measures on Ω.

Since, in view of the regularity of p, Ḋ(0, t; p) = H(ṗ(t)) (see [3, Theorem 7.1]), we deduce that

H(ṗ(t)) = −
∫
Ω

σ(t) · (ė(t)− Eġ(t)) dx+

∫
Γn

h(t)(u̇(t)− ġ(t)) dHN−1.

The left hand side is the total mass of the measure H (ṗ(t)/|ṗ(t)|) |ṗ(t)|, while, in view of the
admissibility of ∂b∂ΩΓd, the right hand side is the mass of the duality pairing 〈σD(t), ṗ(t)〉 as a
measure on Ω∪Γd (apply (2.1) with the choice ϕ ≡ 1 on Ω∪Γd). Note however that such a duality
vanishes on Γd according to item (b) in Proposition 2.3 and to (2.34). Then, inequality (2.38)
immediately implies the desired equality. �

We are now in a position to recover the flow rule for a variational quasi-static evolution.

Theorem 2.17 (Flow rule). Let {t 7→ ([u(t)], e(t), p(t)), t ∈ [0, T ]} be a quasi-static evolution
according to Definition 2.8. Assume further that ∂b∂ΩΓd is admissible and that Γd is of class C2.
Set

ṗ(t) = ṗa(t) dx+ ṗs(t),

where ṗa(t) (resp. ṗs(t)) are the absolutely continuous (resp. singular) part of the measure ṗ(t).
Then the following items hold true:

(a) For a.e. t ∈ [0, T ],

ṗa(t, x)

|ṗa(t, x)|
∈ NK(σD(t, x)) for LN a.e. x ∈ {|ṗa(t| > 0}.

(b) If, for every r > 0 and x ∈ Ω, we set

σr(t, x) :=
1

|Br(x) ∩Ω|

∫
Br(x)∩Ω

σ(t, y) dy,

then, there exists rn → 0+ such that

(2.39) σrnD (t)
∗
⇀ σ̂D(t) weakly-? in L∞|ṗs(t)|(Ω; MN

D),

with

(2.40)
ṗs(t)

|ṗs(t)|
(x) ∈ Nσ̂D(t,x)(K) for |ṗs(t)|-a.e. x ∈ Ω.

In (2.40), ṗs(t)/|ṗs(t)| denotes the Radon-Nikodym derivative of ṗs(t) with respect to its
total variation.
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Proof. Let t ∈ [0, T ] be such that the equality of Proposition 2.16 holds true. Considering the
absolutely continuous parts of the measures in the equality of Proposition 2.16 we get

H(ṗa(t, x)) = σD(t, x) · ṗa(t, x) for a.e. in Ω

so that item (a) follows in view of the admissibility constraint (2.33) for σD(t).
Let us come to item (b). Let us consider A ⊂⊂ Ω. Since for r small enough, σr(t) is continuous

with a continuous divergence on A (thanks to the equilibrium condition (2.32)), we have that

(2.41) 〈σrD(t), ṗ(t)〉 = σrD(t) · ṗ(t)
|ṗ(t)|

|ṗ(t)| on A.

Moreover, since
σr(t)→ σ(t) strongly in L2(A; MN

sym)

and
div σr(t)→ div σ(t) strongly in LN (A;RN )

we deduce that
〈σrD(t), ṗ(t)〉 ∗⇀ 〈σD(t), ṗ(t)〉 weakly-? in Mb(A).

In view of the stress admissibility condition (2.33),

σrD(t, x) ∈ K for every x ∈ A,
so that, up to a subsequence in r,

σrD(t)
∗
⇀ σ̂D(t) weakly-? in L∞|ṗs(t)|(A; MN

D).

with

(2.42) σ̂D(t, x) ∈ K for |ṗs(t)|-a.e. x ∈ A.
In the light of (2.41) and of the equality in Proposition 2.16 we conclude that

H

(
ṗs(t)

|ṗs(t)|

)
= σ̂D(t) · ṗ

s(t)

|ṗs(t)|
|ṗs(t)|-a.e. on A.

The previous equality and (2.42) entail the flow rule (2.40) on A: since A is arbitrary, and σrD(t)
is uniformly bounded on Ω, the previous results can be extended to Ω, which completes the
proof. �

Remark 2.18. If K is strictly convex, then, as detailed in [3, Theorem 6.6], the stress σ̂D(t) is
uniquely determined in L∞|ṗs(t)|(Ω; MN

D). In particular convergence (2.39) holds for r → 0, and it

can be shown to occur strongly in L1
|ṗs(t)|(Ω; MN

D). ¶

Remark 2.19. In this remark, we specialize the results of Theorem 2.17 and of Remark 2.18 to
the Von Mises case, that is to the case where the dimension is N = 3 and, for some σc > 0,

K := {τ ∈ M3
D : |τ | ≤

√
2/3 σc}.

In such a setting H(ξ) =
√

2/3σc|ξ|, ξ ∈ M3
D, and the statement of the theorem becomes

(1) |σD(t, x)| =
√

2

3
σc and

ṗa(t, x)

|ṗa(t, x)|
=

σD(t, x)

|σD(t, x)|
for L3-a.e. x ∈ {|ṗa(t, x)| > 0};

(2) σrD(t)
r→0+

→ σ̂D(t) strongly in L1
|ṗs(t)|(Ω; M3

D), where

|σ̂D(t, x)| =
√

2

3
σc and

ṗs(t)

|ṗs(t)|
(x) =

σ̂D(t, x)

|σ̂D(t, x)|
for |ṗs(t)|-a.e. x ∈ Ω.

¶

3. An application to the bi-axial test

In this section, we propose to discuss a bona fide three-dimensional problem for which the results
of Section 2 will permit to attain a uniqueness result for the quasi-static evolution. As mentioned
in the introduction, it is, to our knowledge, the first such result in a three-dimensional setting.



16 G.A. FRANCFORT, A. GIACOMINI, AND J.-J. MARIGO

3.1. Setting of the bi-axial test. Throughout this section, the elasticity tensor C is assumed
to be homogeneous and isotropic with Young’s modulus E > 0 and Poisson’s ratio −1 < ν < 1/2,
i.e.,

C−1σ = − ν
E

trσ i +
1 + ν

E
σ, σ ∈ M3

sym.

Further (f1, f2, f3) is a fixed orthonormal basis in R3.
The domain is

Ω = (−d/2, d/2)× (−`/2, `/2)× (0, `), d < `.

At initial time, we solve the mixed boundary value problem
div σ0 = 0 in Ω

σ0 = Ce0 in Ω

e0 = Eu0 in Ω

with the following boundary conditions
σ0f1 = 0 on x1 = ±d/2
σ0f2 = σ2f2 on x2 = ±`/2
(σ0)13 = (σ0)23 = 0 on x3 = 0, `

u3 = 0 on x3 = 0, `.

The elastic solution (u0, e0, σ0) is unique, up to the possible addition to the displacement field u0

of infinitesimal rigid body motions belonging to

Rd(Ω) = {r(x) =(a− ωx2)f1 + (b+ ωx1)f2, a, b, ω ∈ R}.

It is given by

(3.1)


u0 := −ν(1 + ν)

E
σ2x1f1 +

(1− ν2)

E
σ2x2f2

e0 = −ν(1 + ν)
σ2

E
f1 ⊗ f1 + (1− ν2)

σ2

E
f2 ⊗ f2

σ0 = σ2f2 ⊗ f2 + νσ2f3 ⊗ f3.

As long as

(3.2) 0 ≤ σ2 <
σc√

1− ν + ν2
,

the associated stress is also such that, for some α > 0,

(3.3) (σ0)D +B(0, α) ∈ Kvm := {τ ∈ M3
D : |τ | ≤

√
2/3 σc},

where Kvm is the Von Mises yield region. We will assume that (3.2) holds true throughout the
rest of this section.

The corresponding initial state is

(3.4)


σ(t = 0) := σ0 = σ2f2 ⊗ f2 + νσ2f3 ⊗ f3,

e(t = 0) := e0 = −ν(1 + ν)
σ2

E
f1 ⊗ f1 + (1− ν2)

σ2

E
f2 ⊗ f2

p(t = 0) = p0 = 0.

At all later times, the following boundary conditions are imposed:

(3.5)


σf1 = 0 on x1 = ±d/2
σf2 = σ2f2 on x2 = ±`/2
σ13 = σ23 = 0 on x3 = 0, `,

and

(3.6) u3 = 0 on x3 = 0, u3 = t` on x3 = `.
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In other words, the stress σ2 is maintained constant in direction 2 while the sample is stretched
in direction 3 (see Figure 1).

Note that, in the framework of Section 2,

Γd = (−d/2, d/2)× (−`/2, `/2)× {0,`} is of class C2,

while the associated relative boundary of Γd is admissible, thanks to [5, Section 6, Example 2].
The tractions on Γn = ∂Ω \ Γ̄d are independent of time and are given by

x3

x2

�2

x2

�2

x1

Figure 1. Bi-axial test.

h(x) :=

{
±σ̄2f2 for x2 = ±`/2,
0 otherwise.

In particular h(x) is associated to the homogeneous stress σ0 which satisfies

div σ0 = 0, σ0ν = h on Γn, [σ0ν]τ = 0 on Γd,

together with (σ0)D + B(0, α) ∈ Kvm for some α > 0 (see (3.3)). Finally, the imposed normal
displacement is given by

w(t) := tx3 on Γd.

We can then take

g(t) := tx3f3

to be a suitable extension giving the normal trace w(t).
In the notation of Subsection 2.1, it is immediately checked that the triplet ([u0], e0, p0) ∈ A(0),

so that, in view of the properties of σ0 detailed above and of (3.4), Remark 2.15 implies that
([u0], e0, p0) is a global minimizer for (2.22) at t = 0.

The quasi-static evolution with initial configuration ([u0], e0, p0) admits a homogeneous solution,
by which we mean that both e(t) and p(t) are W 1,1(0,∞)-functions, hence independent of the
spatial variable x.Noting that 4σ2

c − 3σ2
2 > 0 in view of (3.2) and defining

(3.7) tc :=
1

2E

(
(1− 2ν)σ2 +

√
4σ2

c − 3σ2
2

)
,

that solution is found as follows.
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1. Elastic Phase, 0 ≤ t < tc: Then, the response is purely elastic. We obtain

(3.8)

σ(t) = σ0 + tEf3 ⊗ f3,

e(t) = e0 + t
(
− νf1 ⊗ f1 − νf2 ⊗ f2 + f3 ⊗ f3

)
,

which corresponds to

(3.9) u(t) = u0 + t(−νx1f1 − νx2f2 + x3f3),

with u0 given by (3.1).
2. Plastification Phase: t ≥ tc: At the end of the elastic phase, i.e., when t = tc, the stress

state is

(3.10) σ(tc) = σ2f2 ⊗ f2 + σ3f3 ⊗ f3 with σ3 :=
1

2

(
σ2 +

√
4σ2

c − 3σ2
2

)
.

From thereon, the stress field σ(t) remains constant and equal to σ(tc). Consequently,
according to item (a) in Theorem 2.17, the absolutely continuous part of the plastic strain
rate ṗ has a set direction (that of σD(tc)). Thus, since we are only seeking a homogeneous
solution, the plastic strain will be of the form

(3.11) p(t) = η(t)
(
− (σ2 + σ3)f1 ⊗ f1 + (2σ2 − σ3)f2 ⊗ f2 + (2σ3 − σ2)f3 ⊗ f3

)
,

with η ∈W 1,1(0, T ).
The plastic multiplier η(t) can be derived as follows. Since p ∈ W 1,1(0,∞), then, for

a.e t ∈ (0, T ), u3(t) is an affine function of x. But, from (3.8), (3.11),

(Eu(t))33 = tc + η(t)(2σ3 − σ2),

so that

u3(t) = (tc + η(t)(2σ3 − σ2))x3 + U(t, x1, x2),

with U affine in x1, x2. In view of (3.6), we conclude that we can set U ≡ 0, so that

tc + η(t)(2σ3 − σ2) = t.

Since 2σ3 − σ2 > 0,

(3.12) η(t) =
1

2σ3 − σ2
(t− tc),

thus

(3.13) p(t) = (t− tc)
(
− (σ2 + σ3)

2σ3 − σ2
f1 ⊗ f1 +

2σ2 − σ3

2σ3 − σ2
f2 ⊗ f2 + f3 ⊗ f3

)
.

The elastic strain e(t) is obtained upon setting t = tc in (3.8) while the displacement field
u(t) is determined from the boundary conditions, together with Eu(t) = e(t) + p(t). It is
precisely

(3.14) u(t) =

{
−ν(1 + ν)

σ2

E
− νtc −

(σ2 + σ3)

2σ3 − σ2
(t− tc)

}
x1f1

+

{
(1− ν2)

σ2

E
− νtc+

2σ2 − σ3

2σ3 − σ2
(t− tc)

}
x2f2 + tx3f3.

Then, we can establish the following

Proposition 3.1. The homogeneous solution

t 7→ ([u(t)], e(t), p(t)) ∈ A(w(t))

produced in (3.8)-(3.10), (3.13), (3.14) is a quasi-static evolution according to Definition 2.8 rel-
ative to the initial condition (u0, e0, 0) ∈ A(0) (defined in (3.4), (3.1)), with respect to the mixed
boundary conditions (3.5) and (3.6). In particular the Cauchy stress σ(t) given through (3.8),(3.10)
is uniquely determined.
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Proof. Since σ(t) satisfies is divergence free, matches the boundary conditions (3.5) and σD(t)
belongs to the yield region Kvm, Remark 2.15 implies that the homogeneous solution satisfies the
global minimality condition in Definition 2.8. A direct computation shows that the following items
hold true:

(a) Elastic energy:

Q(e(t)) = Q(e0) + 1
2 t

2E|Ω|, for 0 ≤ t ≤ tc
Q(e(t)) = Q(e(tc)), for t ≥ tc.

(b) Traction potential:

L(t, [u(t)]) = L(0, [u(0)]) + tσ̄2ν|Ω|, for 0 ≤ t ≤ tc

L(t, [u(t)]) = L(tc, [u(tc)])− (t− tc)σ̄2
2σ̄2 − σ̄3

2σ̄3 − σ̄2
|Ω|, for t ≥ tc.

(c) Dissipation:

D(0, t; p) =

∫ t

0

H(ṗ(τ)) dτ =
2σ2

c

2σ̄3 − σ̄2
|Ω|(t− tc)+.

(d) External work: for 0 ≤ t ≤ tc∫ t

0

[∫
Ω

σ(τ) · Eġ(τ) dx+ L(τ, [ġ(τ)]) + L̇(τ, [u(τ)])

]
=

(
νσ̄2 +

t

2
E

)
|Ω|t

and for t ≥ tc∫ t

0

[∫
Ω

σ(τ) · Eġ(τ) dx+ L(τ, [ġ(τ)]) + L̇(τ, [u(τ)])

]
=

(
νσ̄2 +

tc
2
E

)
|Ω|tc + (νσ̄2 + tcE)|Ω|(t− tc) = − t

2
c

2
E|Ω|+ σ̄3|Ω|t.

From the various expressions above together with (3.7), (3.10), it is easily checked that the energy
equality holds true. �

We have thus determined a possible elasto-plastic evolution. In the next subsection we will
argue that this is the only possible evolution, provided that σ2 remains strictly below its maximal
value in (3.2).

3.2. About uniqueness. In the previous subsection, a spatially homogeneous quasi-static evo-
lution for the bi-axial test has been evidenced. It uniqueness is debated in the present subsection.

First, in view of the uniqueness of the stress field (see Theorem 2.12), the elastic phase is also
unique as long as t < tc, because the yield stress has not been reached.

When t ≥ tc, we distinguish two cases. Note that, since −1 < ν < 1/2, then,

(3.15) 2
σc√

3
>

σc√
1− ν + ν2

>
σc√

3
,

so that, by virtue of (3.2), it is always possible to set σ2 = σc/
√

3. Also note that, in view of
(3.10), the deviatoric part of the stress field is given for t ≥ tc by

(3.16)



σD(t) = σ̌ := σ̌1f1 ⊗ f1 + σ̌2f2 ⊗ f2 + σ̌3f3 ⊗ f3

σ̌1 := − 1
2 σ2 − 1

6

√
4σ2

c − 3σ2
2

σ̌2 := 1
2 σ2 − 1

6

√
4σ2

c − 3σ2
2

σ̌3 := 1
3

√
4σ2

c − 3σ2
2,

so that σ̌1 + σ̌2 + σ̌3 = 0, σ̌2
1 + σ̌2

2 + σ̌2
3 = 2/3 σ2

c .
Further, note that

(3.17) σ̌ = diag

(
− σc√

3
, 0,

σc√
3

)
iff σ2 = σc/

√
3.
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The first case is described in the following

Theorem 3.2 (Uniqueness of the solution). If σ2 satisfies (3.2) and σ2 6= σc/
√

3, the homogeneous
elasto-plastic evolution derived in Subsection 3.1 is the only possible quasi-static evolution for the
bi-axial test.

Proof. The spatially homogeneous character of σD(t) in (3.16) implies that σ̂D(t) = σ̌ in item (2)
of Remark 2.19, so that the plastic strains are of the same form as in (3.11), except that, for a.e.
t ≥ tc, η(t) may be an element of M+

b (Ω) instead of a constant.
Uniqueness will be achieved if we prove that η(t) is spatially homogeneous and given through

(3.12). To that effect, we observe that

(Eu(t))11 = − ν
E

(σ2 + σ3)− η(t)(σ2 + σ3)

(Eu(t))22 =
1

E
(σ2 − νσ3) + η(t)(2σ2 − σ3)

(Eu(t))33 =
1

E
(σ3 − νσ2) + η(t)(2σ3 − σ2)

(Eu(t))12 = 0

(Eu(t))23 = 0

(Eu(t))31 = 0.

The classical geometric compatibility equations for an element ε ∈ D′(Ω; M3
sym) to be the distribu-

tional symmetrized gradient of a R3-valued distribution, namely εij,kl + εkl,ij = εik,jl + εjl,ik, 1 ≤
i, j, k, l ≤ 3, yield

0 = (2σ2 − σ3)η,11(t)− (σ2 + σ3)η,22(t)

0 = (2σ2 − σ3)η,33(t) + (2σ3 − σ2)η,22(t)

0 = (2σ3 − σ2)η,11(t)− (σ2 + σ3)η,33(t)

0 = (σ2 + σ3)η,23(t)

0 = (2σ2 − σ3)η,31(t)

0 = (2σ3 − σ2)η,12(t),

where the various derivatives of η are to be viewed as distributional derivatives. By virtue of
(3.15), 2σ2 6= σ3, 2σ3 6= σ2 and σ2 +σ3 6= 0, so that η,ij(t) = 0 ∀i, j ∈ {1, 2, 3}. Thus η is actually
an affine function of x, i.e.,

η(x, t) = η0(t) +

3∑
i=1

ηi(t)xi.

Then,

u3,3(x, t) =
1

E
(σ3 − νσ2) + (2σ3 − σ2)

(
η0(t) +

3∑
i=1

ηi(t)xi

)
.

Since u3(t) = 0 at x3 = 0, we obtain

u3(x, t) =
1

E
(σ3 − νσ2)x3 + (2σ3 − σ2)

(
η0(t)x3 + η1(t)x1x3 + η2(t)x2x3 +

1

2
η3(t)x2

3

)
.

Since u3(t) = t` at x3 = `, this yields in turn, thanks to the expressions (3.7),(3.10) for tc and σ3

which yield in particular that Etc = σ̄3 − νσ̄2,

η1(t) = η2(t) = 0, η0(t) +
1

2
η3(t)` =

t− tc
2σ3 − σ2

.

Since u3,2(t) = 0 and (Eu(t))23 = 0, u(t)2,3 = 0, hence ([Eu(t))22],3 = u(t)2,23 = 0, which implies
that η,3(t) = η3(t) = 0. Finally, we conclude that η(x, t) = η(t) given by (3.12), hence that
p(x, t) = p(t) given by (3.13). �

The second case occurs when σ2 = σc/
√

3. Then, for t ≥ tc,

(3.18)



σ(t) =
σc√

3

(
f2 ⊗ f2 + 2f3 ⊗ f3

)
e(t) =

σc
E

(
−ν
√

3f1 ⊗ f1 +
1− 2ν√

3
f2 ⊗ f2 +

2− ν√
3
f3 ⊗ f3

)
σD(t) = σ̊D :=

σc√
3

(
− f1 ⊗ f1 + f3 ⊗ f3

)
which corresponds to the point B∗ on Figure 2 (this is the point on the ellipse for which σ3 reaches
its maximal value).
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B B⇤

Figure 2. Stress path in the bi-axial test: [OA) corresponds to the prestress, [AB)
to the elastic phase. During the plastification phase, stresses stay at B. The ellipse is
the Von Mises ellipse σ2

2 + σ2
3 − σ2σ3 = σ2

c in the plane (σ2, σ3) since σ1 = 0.

In such a case, for t ≥ tc, consider the following displacement field:

(3.19) u(t, x) =
σc
E

(
−ν
√

3x1f1 +
1− 2ν√

3
x2f2 +

2− ν√
3
x3f3

)
+ ū(x, t)

with

ū(t, x) =

{
0 if x3 − x1 < `/2

(t− tc)`(f1 + f3) otherwise.

The field u jumps across the plane Γ := {x3 − x1 = `/2}. Consider the associated plastic strain

(3.20) p(t) = (t− tc)
`√
2

(−f1 ⊗ f1 + f3 ⊗ f3)H2bΓ on Γ.

Proposition 3.3. The mapping t → (u(t), e(t), p(t)) given by (3.18), (3.19), (3.20) is a quasi-
static evolution different from the homogeneous evolution derived in Subsection 3.1.

Proof. Notice that ([u(t)], e(t), p(t)) ∈ A(w(t)). Indeed clearly

Eu(t) = e(t) + p(t) in Ω

since the plastic strain in (3.20) takes into account the jump occurring across Γ . Concerning the
boundary conditions for the displacement, since d < `,

ū(t)|x3=0 ≡ 0 and ū(t)|x3=` = (t− tc)`(f1 + f3).

Then, the displacement boundary conditions (3.6) are clearly satisfied at x3 = 0. According to

(3.7), tc = (2− ν)σc/(
√

3E), so that, at x3 = `,

u3(t)|x3=` =
(

(2− ν)σc/(
√

3E) + t− tc
)
` = t`.

In view of Remark 2.15, global stability is a consequence of the fact that the stress field σ(t) defined
in (3.18) is divergence free and satisfies the boundary conditions (3.5) and the yield condition
σ(t) ∈ Kvm.

Finally, in order to check the energy equality, it suffices to notice that, for t ≥ tc, the left hand
side of (2.23) increases by the quantity

D(0, t; p) =

∫ t

0

H(ṗ(τ)) dτ =

√
2

3
σc`(t− tc)H2b(Γ ∩Ω)

(there is no additional contribution to the potential of the traction forces), while the right hand
side increases by the quantity

(νσ̄2 + tcE)|Ω|(t− tc).
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Those two quantities are readily seen to be equal for σ̄2 = σc/
√

3. �

Remark 3.4. In the case σ2 = σc/
√

3, an infinite number of quasi-static evolutions can be
constructed. Indeed, since d < `, the slip surface Γ can be translated vertically without altering
the arguments outlined above because the plastic slip can take place along the plane

(3.21) Γa :=

{
x+ af3 : x ∈ Γ, |a| < `− d

2

}
.

We further elaborate on non-uniqueness. Since σ̂D(t) = σ̊D in (3.18), item (2) of Remark 2.19
entails |ps(t)|-a.e. the following expression for the plastic strains:

p(t, x) = η(t)(−f1 ⊗ f1 + f3 ⊗ f3), η ∈W 1,1([0,∞);M+
b (Ω)).

Thus the strain tensor reads as

(Eu(t))11 = − ν√
3
σc/E − η(t)

(Eu(t))22 =
(1− 2ν)√

3
σc/E

(Eu(t))33 =
(2− ν)√

3
σc/E + η(t)

(Eu(t))12 = 0

(Eu(t))23 = 0

(Eu(t))31 = 0.

Geometric compatibility implies in turn that

0 = η,12(t) = η,22(t) = η,23(t), 0 = η,11(t)− η33(t).

The three first compatibility equations yield that ∇(η,2(t)) = 0, thus that η(t) = η̊(t) + β(t)x2,
with η̊(t) a bounded Radon measure independent of x2 and β(t) a constant. The last one becomes

η̊,11(t)− η̊,33(t) = 0,

which is a (spatial) wave equation. Thus

η̊(t) = ζ−(t)(x1 − x3) + ζ+(t)(x1 + x3), ζ−(t), ζ+(t) ∈M(R).

In view of the preceding relations, we set β(t) ≡ 0 and look for solutions of the form

η(t) = (t− tc) [ζ−(x1 − x3) + ζ+(x1 + x3)] , ζ−, ζ+ ∈M+(R).

By ζ−(x1 − x3) we mean the two dimensional Radon measure defined by

〈ζ−(x1 − x3), ϕ〉 :=
1

2

∫ [∫
ϕ

(
u+ v

2
,
−u+ v

2

)
dζ−(u)

]
dv, ϕ ∈ C∞c (R2).

Similarly, ζ+(x1 + x3) is defined by

〈ζ+(x1 + x3), ϕ〉 :=
1

2

∫ [∫
ϕ

(
u+ v

2
,
u− v

2

)
dζ+(u)

]
dv, ϕ ∈ C∞c (R2).

If we denote by G± a primitive of ζ±, we infer that the displacement u(t) is given for t ≥ tc

u(t) = u(tc)− (t− tc)(G−(x1 − x3) +G+(x1 + x3) +K)f1

+ (t− tc)(−G−(x1 − x3) +G+(x1 + x3) +H)f3,

for some K,H ∈ R. Let us set H = K = 0. Imposing the boundary conditions (3.6) yields the
following conditions:

• For u3(t) = 0 for x3 = 0 to hold, we need

(3.22) G−(x1) = G+(x1) for x1 ∈ [−d/2, d/2].

• For u3(t) = t` for x3 = ` to hold, we need

tc + (t− tc)(−G−(x1 − `) +G+(x1 + `)) = t, for x1 ∈ [−d/2, d/2],

or still

(3.23) G−(x1) = G+(x1 + 2`) + 1 for x1 ∈
[
−d

2
− `, d

2
− `
]
.
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Since d < `, relations (3.22) and (3.23) are not sufficient to determine uniquely G±. For example,
we see that, if ζ− is any probability measure supported on the interval [d/2− `,−d/2], we can
choose ζ+ ≡ 0 with G+ ≡ 1 and G− as the primitive of ζ− which vanishes at d/2− `.

We conclude that the quasi-static evolution problem admits infinitely many solutions, for which
the plastic strain can also be of Cantor type. This is to our knowledge the first such example of the
possible appearance of a Cantor part in a plastic strain associated with a quasi-static elasto-plastic
evolution.

We finally note that the solution with jump discontinuities proposed in (3.19) is recovered upon
choosing ζ− in the form of a Dirac delta concentrated at −`/2, i.e., G−(x1) = He(x1 +`/2) (where
He is the Heaviside function) and ζ+ ≡ 0, G+ ≡ 0. A similar argument applies to the solution
with jumps on Γa (see (3.21)). ¶

Remark 3.5. As demonstrated in [6], the condition (3.17) is not surprising. It is precisely that
which allows for jumps to appear during a quasi-static evolution. For more details, we refer the
reader to that reference. ¶
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