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Abstract
On a smoothly bounded domain Q C R®*™ we consider a sequence
of positive solutions u;, — 0 in H™(Q) to the equation (—A)™uy =
Akukem"% subject to Dirichlet boundary conditions, where 0 < A\ — 0.
Assuming that

A= lim [ ur(—A)"updz < oo,
k—oo [

we prove that A is an integer multiple of A; := (2m — 1)!vol(S®™), the
total @Q-curvature of the standard 2m-dimensional sphere.

1 Introduction

Given a smoothly bounded domain 2 C R?™, suppose that for each k € N we
have a smooth function uj > 0 satisfying the equation

(=A)"uy = /\kukemuﬁ in (1)
with
up = U = ... = 8;”‘1uk =0 on 012, (2)

where 0 < A — 0 as kK — oo. We assume that (ug) is bounded in H™ ().
Hence, after passing to a subsequence and integrating by parts we may assume
that as k& — co we have

/ |V uy |2 de = / up(—A) " updr = )\k/ uﬁem“idaz —A>0. (3)
Q Q Q

Note that by elliptic estimates the quantity
||U|| = (/ \Vmuk|2dx)1/2 _ (/ Z |8auk|2dx)1/2
Q Q
|a]=m

defines a norm on the Beppo-Levi space H{"(€2) which is equivalent to the
standard Sobolev norm.

*The first author was supported by the ETH Research Grant no. ETH-02 08-2 and by the
Italian FIRB Ideas “Analysis and beyond”.



Generalising previous results by Adimurthi and Struwe [3], Adimurthi and
Druet [1] and Robert and Struwe [11], the first author proved in [8] the following
theorem.

Theorem 1 Let (uy) be a sequence of positive solutions to (1), (2) with 0 <
A — 0 as k — oo and satisfying (3) for some A > 0. Then supg up — o0 as

k — oo and there exist a subsequence (ug) and sequences of points m,(f) —z® e
Q, 1< <1, for some integer I < CA, such that the following is true.

For every 1 < i <1, letting r,(f) > 0 be given by
Aelr)2md (o) e A = 920 (2m — 1)) (4)
and setting
1 (2) = wn ) o) +772) — ui(2})) + log2
we have T‘]Si) — 0, dist(x,ii),aﬂ)/r,ii) — 00 as k — oo, and

) 2 . . .
7]](;) (IB) — T]()(I') = log W m 01200 1(R2 ) as k — OQ. (5)

Moreover, for i # j there holds

(@ _ ()
M — 00 as k — oo. (6)
Ty

In addition, with Ry(z) := infi<;<y |z — x,(;)| there exists a constant C' > 0
such that there holds

AR () ()™ @) < ¢ (7)

uniformly for all x € Q, k € N.
Finally uy, — 0 in CE"H(Q\S), where S = {zM) ... (D},

loc

We remark that the function g given by (5) satisfies the Q-curvature equa-
tion
(~)™0 = (2m — 1)l ®)

and

(2m — 1)!/R2 e2mmo dy = . Qszmdvoly ,, = (2m — DYS*™| = Ay (9)

For a discussion of the geometric meaning of (8) we refer to [4] or to the intro-
duction of [7].

The purpose of this paper is to prove the following quantization result.

Theorem 2 Under the hypothesis of Theorem 1 we have A = I*Ay for some
I* € N\{0}.



The analogue of Theorem 2 was proven by O. Druet [5] in dimension 2
(m = 1) and by the second author [13] in dimension 4 (m = 2) in the case of the
Navier boundary condition u; = Aui = 0 on 9. Note that in the latter case
the maximum principle implies that Au, < 0 in © whereas such an estimate is
not available in the case of the Dirichlet boundary condition.

Quantization results similar to Theorem 2 previously have also been obtained
for concentrating sequences of solutions uy to the Q-curvature equation

(—A)™uy, = \pe?™  in Q C R*™, (10)

In the case of the Navier boundary condition, assuming that Ay — 0 and

A := lim A2k dg < oo,
k—oo Jq

J. Wei [14] proved that when m = 2 and when  is convex the quantity A
is an integer multiple of A;. Moreover concentration points are simple and
isolated, in the sense that (9 # 2U) for i # j, and I* = I in the notation of
Theorems 1 and 2 above. Robert and Wei [12] proved the analogous result for a
general domain 2 and in the case of Dirichlet boundary conditions. In [9], the
first author and Petrache generalized the result of Robert and Wei to arbitrary
dimensions.

Equation (1) is more difficult to deal with analytically than equation (10);
the analogous questions whether for a blowing up sequence of solutions to (1)
the concentration points are isolated, simple and stay away from the boundary
are still open, even in dimension 2.

Our paper is organized as follows. In the next section we present the proof
of Theorem 2 in the case when (2 = Bp, is a ball and each function uy, is radially
symmetric. In Section 3 we prove the theorem in the general case. Some useful
technical results are collected in the Appendix. The overall strategy of the proof
is very similar to the approach followed in [13], and some of the results in [13]
can be carried over almost literally to the present setting. Several key steps in
the proof, however, require conceptually new ideas in the case when m > 3.
These ideas also shed new light on the previous approaches in low dimensions
and have a unifying feature.

Throughout the paper the letter C' denotes a generic constant independent
of k which can change from line to line, or even within the same line.

2 Proof of Theorem 2 in the radial case

Let Q = Br = Bgr(0) and assume that each uy is radially symmetric. By slight
abuse of notation we write ug(z) = ug(r) if |x| = r. In the notation of Theorem

1 we then have I = 1 and we can choose x,(gl) = 0 for every k > 0. In fact, as
shown in assertion (17) of Lemma 4 below, we have u;(0) = maxq ug.

2.1 Strategy of the proof

Set ey, := )\ku%em“i and let

Ax(r) ::/B exdr, Np(s,t):= Ax(t) — Ax(s) = /B \B exdx



as in [13]. We shall say that the property (Hy) is satisfied if there exist sequences

(0) (1) (€]

N ::0<Tk: <Sk <...<7”(f)<5](f)§R7 kGN’

such that the following holds:

@ G-1)
. r . S .
(Heq1) limp— oo SE:T) = limy . :T) =0for1 <5<,

[€))
(HZ,Q) hmkﬂoo uk(s,{j)) =0 for 1 < J < gv L> 07
uk(LTk_ )

(He3) limg oo Ak(sg)) =jA for1<j </,
(Hp,a) Ump oo limy_ oo (Nk(sfcj_l),r,(cj)/L) + Nk(Lr]ij), sfcj))) =0forl1 <j<U/.

For the proof of Theorem 2 we proceed via induction from the following two
claims: (Hp) holds, and if (Hy) holds then either (Hyy1) holds as well, or

Jlim Ni(s R) = 0. (11)

By (3) and (H¢3) the induction terminates when ¢ > AAl Letting £y be the

largest integer such that (Hy,) holds, (Hy, 3) and (11) imply
A= lim Ag(s) + lim Ni(st), R) = Loy,
k—oo k—oo
and Theorem 2 in the radial case follows.

2.2 Proof of (H)

Let i > 0 be defined as in Theorem 1 such that

Nerf g (0)em O = 227 (2m — 1)1,

and set
wi(2) = up(0)(uk(2z) — uk(0)) in Brg.
We have
(—A)mwk = )\kuk(())ukem“i
m _Yk _w
= /\kuk(O)ukem“z(o)e2 (H_Z“i(”)) b fr in Bg.

Letting also
or(r) ::/ frdx > Ag(r),
B,

then by (5) of Theorem 1 and (9) clearly we have

lim lim Ag(Lrg) = lim lim ox(Lrg)

— 00 k—oo L—o00 k—o00

lim lim (2m — 1)!/ A dy = Ay, (12)
Br,

L—o0 k—oo



For 0 <t < R let gi solve the equation
A™Mgr = A™w in By
with homogeneous Dirichlet boundary data
gy =00 = ... = 8;”_1% =0 on 0B;.
Then Lemma 22 in the Appendix gives the identity
Ag(?)

(=1D)™0) gr(t) = o 132 (13)

similar to (20) in [13], where

t tm—1
0 :/ t2-~-/ b0k (b )l - - -, (14)
0 0

and where wa,,_1 is the (2m — 1)-dimensional volume of $2"~1.

Lemma 3 For every b < 2 we can find L = L(b) and ko = ko(b) such that for
k > ko we have

9m=1(m — 1)1b

tm

(=0,)" g (t) =

Proof. Noting that

for Lr, <t < R. (15)

Ay
wgm_12m—1(m — 1)'

=2"(m — 1),

from (12) and (13) together with the identity

m—1 t2m_2
/ o / ‘T2 (m - 1)

we obtain the claim. O

These estimates now yield the following result analogous to Lemma 2.1 in
[13]. Note, however, that the statement (17) below in the present case no longer
can simply be deduced from the maximum principle, as was the case in [13]. In
addition, the higher order nature of equation (1) requires substantial technical
modifications of the approach used in [13].

Lemma 4 For any b < 2 there is L = L(b) and ko = ko(b) such that for k > ko
there holds

wp(t) < —% +tP(t) in Br\BLr,, (16)
wy(t) < 0 in Bg, (17)
w(t) < blog ( ) +C in Bg, (18)

where P is a polynomial independent of k. In particular ui is monotone de-
creasing. For any € €]0,1[ let T, > 0 be such that ug(Ty) = ur(0). Then we
have

lim — =0 (19)



and
klim Ak(Tk) = klim Uk(Tk) = Al. (20)

Proof. Fix t > 0 and write wy = g + hg, where

A™h, =0in By, and g =0gr =...= 0" tgr =0 on 0B,.

Step 1. We claim that

Mg (t) =tm Lt () ) ) (21)
N———— ——
m—1 times m—1 times

Indeed, subtracting 07wy (t) from both sides of (21) we need to show

—OP () =t (N (1) ) )Y O wn(d).
—_—— ——

m—1 times m—1 times

Using the boundary condition dJwy(t) = dJhg(t) for 0 < j < m — 1, and
observing that on the right-hand side the terms involving 07wy (t) cancel, we
can replace wy by hi and it suffices to prove

—O) i (t) =t (T () ) ) =0 (1),
| —— ——
m—1 times m—1 times

But A™hj, = 0 and radial symmetry imply that h(r) = Z;igl a; %% so

et ) ) ) =0,
—_——— ——
m—1 times m—1 times

and (21) follows.

Step 2. Inserting now (15) into (21), for any given b < 2 we infer
b U N/
et (e (e (w4 5) ) o))
—_—
m—1 times m—1 times (22)

= () +

= i

<0 for Lry <t <R,

provided that we fix L = L(b) sufficiently large and then also choose k large
enough. We now prove by induction over 1 < j < m that

o) = (" (1 (e (0 (w0 + 7)) ) ) < B0, @9)
s

t

m—j times m—j times

for Lry <t < R, where Pj(t) > 0 is a polynomial in ¢ independent of k. The
case j = 1 follows at once from (22) with P; = 0. Using the Dirichlet boundary
condition (which implies 84wy (R) =0 for 1 < j <m — 1) we get ¢, ,(R) < C;



for some constant C; > 0, 2 < j < m. Observing that ¢’ , (t) = —tw;_1 x(t) for
2 < j < m, we then obtain

R
pialt) = einl®)+ [ e ia(r)dr
t
R
< Cj —|—/ rPi_1(r)dr =: P;(t),
t
that is, (23). For j = m we get

b
wi(t) € =5 +tP(t), Ly <t < R.

Integrating once more, recalling that L depends on b, and that wy(Lrg) — no(L)
as k — oo, for sufficiently large k we find

wi(t) < wi(Lrg) — blog (Lirk) +C <blog (%’“) rC

for Lry, <t < R. For 0 <t < Lry (18) already follows from Theorem 1.
In order to prove (17), observe that (13) implies

(=0,)"gr(t) >0 for 0 <t <R, k€N,

and (21) yields

(~nmThm Tt et et () ) )) <0 (24)
—_——— ——
m—1 times m—1 times

In analogy with (23), for 1 < 7 < m we can show by induction that
Vi) = ()"t () ) --)) <0 forallO<t < R
—_—— ——
m—j times m—j times
Indeed 91 x(t) < 0 by (24), while for 2 < j < m, we have ; 1 (R) = 0 thanks to

the boundary condition. Hence

R
Vie(t) = / ryi_1(r)dr <0 forall 0 <t <R,
¢

and the case j = m implies (17).

Step 3. In order to prove (19), assume by contradiction that

T
liminf =% = L € [0, ool.
k—oo T

Then from Theorem 1 for a suitable subsequence on the one hand we have

i (0) (ue (Ti) — s (0)) + log 2 = ¢ (T’“) ~ log (HQL) a8 k — oo,

But on the other hand, since uj(0) — oo we also have that

p (0)(ug(Ti) — up(0)) = uf (0)(e — 1) — —o0

EN|



as k — oo, a contradiction.
It thus remains to prove (20). Using (18) and observing that

(e — Dui(0) < wr(r) <0 for 0 <r < Ty,

from (4) for k > ko we get

wy, (1)
fr (T) < Akui (O)Gm“i (0)62m (1+ 2“% () )wk (r)
m(e+1)b
< )\kT’Qm 2 (O)emui (O)Tk—27n.6m(5+1)w;c (r) < CTk_2m (TTIC) )

Choosing now b < 2 such that m(e + 1)b = 2m + ¢, and integrating over Br,,
we find

A1 S khm Ak(Tk) S khm Uk(Tk)

= A+ hm lim frdx

L—o0 k—oco BTk\Ber

1 Tk 2m—+e
< M +C hm lim W/ (—) dz
L—o00 k—oo L Br \BLn, r
1>
< AlJr9 lim lim (r—k> =Aq,
L—o00 k—o00 L’I"k,
hence (20). O

According to Lemma 4 we can now choose a sequence €, — 0 as k — oo and
corresponding numbers s = T (gx) such that ug(sg) — 0o as k — oo and

lim — =0, lm Ag(sg) = Ay, hm lim Ny (Lrg,sg) = 0. (25)

k—oo Sp k—o0 L—oo k—oo

Observing that Theorem 1 implies limg_ o LL(S;‘) =1 for every L > 0, we get

o uk(Sk) . uk(sk)
lim ———~ =1 =0, forall L>0. 26
B (Trg ~ A ) & e 20)

We also claim that
lim hm Ni(sg, Lsk) = 0. (27)

L—oo k—

To see this, remember that for 0 < s <t < R

t
Ni(s,t) :/ erpdr = wgm_l/ /\kTmeluiem“idr.
B:\B s
Now set

0

Pk(t) = thk(S,t) = t/ ekdo = meil)\thmu%(t)emui(t).
(915 OBy

Using the monotonicity of u; that we proved in Lemma 4 we immediately obtain

the estimate

t

Pat) = Clonm1 At (1)e™ 2 ) / P2m=1dr < ONg(t/2,1) < CPs(t/2) (28)
t/2



analogous to (26) in [13]; hence we also conclude that
Ni(t,2t) < CNi(t/2,t) for t € [0, R/2]. (29)
Now (25) and (29) imply that for any M € N

lim Nk(2M_15k,2Msk) < Cklim Nk(2M_2sk,sM_1sk)

k—o0

< <Oy Jim Ni(sk/2,s,) = 0.

Therefore if 2 > L we have
M
lim N, Lsi) <) Ni(2971s;,275,) =0
Jim i (Sks Lsg) __;g; k(27 s, 27 51) = 0,

as claimed.
Setting r,(cl) =g, 5,(61) := s, and taking into account (25) - (27) and Theorem
1 we see that the property (H7) is satisfied.

2.3 The inductive step

We now assume that (H,) holds for some integer £ > 1 and fix numbers

XQ (W o 0

=0<r,’ <s; .<()<s,(f),keN

such that (Hg1), (He2), (Hes) and (Hg4) hold true. To complete the proof
of Theorem 2 it suffices to show that either (Hps1) or (11) holds. The proof
requires the following analogue of (29) in [13].

Lemma 5 There is a constant Co = Co(A) such that for tj, > s,(c) there holds

Py (t)

Ni(s$ 1) < + CoNE(s\9, 1) + 0(1), (30)

with error o(1) — 0 as k — o0

Proof. For s = sgf) < t we integrate by parts to obtain

t
2
Ni(s,t) :LUQm_l/ P2\ uge ™k dr
S

t

w2 1 2\ |t Wam—1 2

= \k 2m (r2mu£em“k)|s— 2m Ner?™ (2uy, + 2maus )uj e™ e dr
m

S

) / Uk 1 omu?
Apr?™ )uk(O)wke kdr.

(31)
Define gi(t) as in the beginning of the proof of Lemma 4. Then (13) and (21)

imply
A (t)
w2m71t4m—3 ’

¢ T ) ) ) = (=
| S —— —

m—1 times m—1 times



where Ay, is as in (14). Integrating this relation m — 1 times from ¢ to R, and
using the Dirichlet boundary condition dJwy(R) =0 for 1 < j <m — 1 we get

Ag(
/ tl/ i+ / k(tm—1) ——— g dtm—1 - - dty;
5 W 1tm 1
hence

R R R
4Mﬁwawzgwm/'h/trn/ Arlnor) gy gy =1
uk(0) ux(0) Jy t b Wom—1tm 1

m—

More explicitly,

rei [ e
t1 L2 W2m— 1tm 1

m—1 Pm—2
X / P / Pm—1Tk(Pm—1,t)dpm—1 - - dp1 dtpm_1 - - - dt1,
0 0

where
ug(t)ok(p)
UL (0)

We now show that I can be bounded in terms of Ny(s,t) up to a small error.
From this the desired inequality (30) will be immediate. Split

Tr(p,t) = :/B )\kuk(t)ukemuzdx.

P

I=:1I+III,

where I corresponds to p,,,—1 < t. Since u; <0, for p <t we have

mmw—ép

< / )\kuk(s)ukem“idz + Ni(s,p) < Ni(s,t) 4+ o(1)
B

s

2 2
Apug(t)uge™  dr < / Apug(p)uge™ e dx
o (32)

with error o(1) — 0 as k — oo. Here we used that for arbitrary L > 1 we can
bound

B up(Lry”)

and by (Hp2), (Hea) the latter tends to 0, if first & — oo and then L — oo.
Since

) tm—l Pm—2
t / / 3/ Pl"'/ Pm-1dpm—1---dty <C
y Wom— 1tm 1 Jo 0

uniformly in ¢, we conclude that
IT < CNg(s,t) + o(1).

In order to obtain a similar bound for I11, for t < p we estimate

10



Recalling (32), we have
[ Mwtun(o) + Ve do < 1o, p) + 1) < Nals.p) + o).
BP
Also note that by Holder’s inequality we can estimate

p 2m—1
e (8) — k() g/ [ (r)dr < [V 2 (log 2) 7

t

Thus, with a constant C' = C(A) for all ¢ < p we obtain

tuy(t) _t(uk(t)—uk(p) ui(p) )
plur(p) +1)  p\ w(p)+1  uk(p)+1

t P25t
gp(c(logt) +1) <C

and with Cy; = C1(A) we can bound

t
;Tk(p7t) < ClNk(S,p) + 0(1)

It follows that

R R
IIT =¢2 / t / ty-- / _
t ty1 2 Wom— 1t’m 1

tm—1 Pm—2
X/ / Pm—1Tk(Pm—1,t)dPm—1 - -dp1 dtm_1---dt1

S

tm—2

Pm—2 t
X/ p1 / 2_1p 1Tk(pm 1,t)dpm—1 -+ dpy dltpq - dty

<01t/ t1/ to - /
Wom— 1tmm 13

tm—2

pm—2
X/ pl"'/ pm_l(Nk(Sapm—l)+0(1))dl)m—1"'dt1'
t t

3
Wom— 1t

For any L > 1 we split the integral with respect to t; and use the obvious
inequality Ny (s, pm—1) < 2A for large k to estimate

Lt R
e [ [l [N [ L
t t1 to 2 W2m— 1tm 1

tm—1 Pm—2
o [ A s ) + o) s

+20At/ t/ t/t /
1 tl 2 3" 2w2m1t4m3

tm—

tm—1 Pm—2 9
X / p1- / Pm—1dpm—1 -+ dtr + o(1)
t t

11



Observing the uniform bound

[ee] tm—1 Pm—2 9
Lt/ / —s / pl.../ pmfldpmfl"'dtl S 07
Lt tm_s Wom— 1tm 1~ Jo 0

with a constant Cy = Co(A) we obtain

Lt
III<Clt/ tl/ tg/ ts - /
tm—2 W2m— 1tm 1

tm—1 Pm—2
X / pl.n/ pfnfl(Nk(S»mel)+0(1))dpm71-~-dt1
t t

CoA
el

o 4m-3

To proceed we successively split the integral also with respect to ts,...,tn_1
and use the uniform bounds

Lt Lt
Lt
/0 / J 1/ / ) Wom— 1t4m 3
Pm—2
X / p1- / Py dppm—1---dt; < C
0 0

for 2 < j < m to estimate

Lt Lt
HI<Clt/ t1/ tz/ t3-- / T dm—3 3
tm—2 Wam— lt

m—1 Pm—2
% / o [ (N p) o)) dpr s
t t

Lt R
—|—201At/ tl/ tg/ ts - / —4m—3
t Lt to L2 W2m— 1t7n 1

tim—1 Pm—2 CA
></ p/ P rdpm1-- dt1+%+o<1)

Lt Lt Lt Lt
- < Clt/ tl/ tg/ /
L2 W2m— 1tmm 13

X/ P1 .../pm 2pm 1(Nk(8 Lt)+0( ))dpm 1° dtl

Lt Lt Lt 1
e [N [ [
t to Lt Wom— 1tm 1

m—1 Pm—2 C A
X / p1- / Pr 1 APy -+ dty + 7t o(1)
t t

< Cp Ny (s, Lt) + % +o(1),

with constants C; = C;(A), 2 < j < m. Using (27) in case t < 2s and (28) in
case t > 2s we get
Nils, Lt) < C(L)Ne(s, 1) + o(1),

12



and with the constant C,,11 = C;, A = Cp41(A) there results

up(t)
k(0)

Inserting this into (31) we infer

—tw},(t) < C(L,A)Ny(s,t) + 072“ +o(1).

e

Py(t t 1
Ni(s,t) < ﬁfwgm_l/ )\kr2m(—+ui) Uk w;em“idr
s m

2m uk (0)
< 2O (czamits.n + ) Nl + o). (3)

Choosing L = 20,41 we finally get (30) for an appropriate Cy = Cp(A). O

Lemma 6 Let Cy = Cy(A) be the constant appearing in (30). If for some
ty; E]sfc ),R] there holds

. 1
O<klgroloNk(8’(“)’ tr) ::oz<2—c07 (35)
then
s mo
khm ko —, hmmka(tk) TR and Lhm khm Nk(sk /L) =0.
—oo Uk — 00 k—oo

Proof. Assume that for some ¢, E]s](C ), R] we have (35). Since the same reasoning

as in the proof of (27) also yields that

lim lim Nk(sl(f),Ls(Z)) 0,

L—o00 k—o00

necessarily sgf) /tr — 0 as k — oo. Moreover, (30) yields

Py (t
lim inf k() > lim (Nk(s,(f), k) — CoNZ(s!! ,tk)>
—00 m — 00
Ng (s() k)« (36)
> lim Nelsg 7 t) = —,

as claimed. Now we show that
lim lim Nk(sk tk/L) = 0. (37)

L—oo k—

Indeed, if we assume

lim limsuka(s,c Jtk/L) =8> 0,

L—co k00

we have

B ¢
5 = Ni(sy t/L) < Ni(sy) 1) < 20,
for any L > 1 and sufficiently large k. Therefore we can apply (36) with t5/L

instead of ¢ for any L > 1 to get

mp

i > 2
Jim Pr(te/L) = =

13



Then (28) yields

mp

Cklim Nk(tk/(QL),tk/L) > klim Pk(tk/L) > 7

Choosing L = 2/ and summing over j for 0 < j < M — 1, we get

mM (3
2

C lim Ag(ty) > C lim Ny(27 Mty ty) >
k—o0 k—oo
which contradicts (3). Therefore (37) is proven. O
Suppose now that for some t; > sgf) there holds

hmsuka(sk ,te) > 0.

k—o0
We then want to show that (Hy1) holds. We can choose numbers 7y }sgf), ti|
such that for a subsequence there holds
1
0< lim Ny (s, Yy <« — (38)
2Cy
where C is as in Lemma 6. Observe that Lemma 6 then implies
hm sk /r (E+1) _ hm khm Nk(s,(f), Z+1)/L) =0, (39)
L—oo
and
Jim Po(ry > 0. (40)

Proposition 7 We have
n,(fﬂ)(w) — uk(r,(fﬂ))(uk(h(fﬂ)x) . Uk(’";(fﬂ))) s D)

in CEm—1(R?>™\{0}). Moreover, for a suitable constant c“*1) the function

néé+1) = D) 4 (D) gatisfies

(e+1)
)

(—A) (€+1) (2m 1)| 2mmn) / (2m _ 1)' gmn(l’+1)dw _ Al.
R2m
The above proposition, which will be proven in the following section, implies
that
lim lim N(r“Y /L, Lr) = Ay

—00 k—00

hence (39) yields

lim lim N (s,(f) , LT(€+1))

— o0 k—oo

= lim lim Ng (ng),?"k +1)/L)+ hm hm Ni(r +1)/L,Lr,(f+1)) (41)

L—oo k—oo L—oo k—

:0+A1:A1

Then the inductive hypothesis (Hy3) gives

- )y o O 5 (6+1)
i Jim A(Er) = i i (A7) + NG, )
= (L+1)A.
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Now set wy () = up(ri ) (ug (@) — u(ri 7)) so that
(—A)mwl(cul) — Akuk(r,(f“))ukem“i _. f’if-&-l)'

Similar to Lemma 4 and with the same proof (except that instead of Theorem
1 one needs to use Proposition 7) we have

Lemma 8 For any 0 < e < 1, letting T,g”l)(e) > 0 be such that uk(TgH)) =
(£+1)
eug(ry, ), we have
Jim N(s$, Ty = A (42)

Moreover r,i“l)/Tlng) — 0 as k — 0.

According to Lemma 8 and (41) we can choose numbers ¢, — 0 and a

subsequence so that for s,(fﬂ) = T,EZH)(E;C) we have uk(s,(fﬂ)) —ooask — o0

and
(1)

klinolo (¢+1) 0,
Sk

while

L—o00 k—oo

Jim Ae(s ™) = (04 DAy, Tim lim N (Ll 5Dy = 0,
Again reasoning as in the proof of (27) we also infer

lim Nk(sl(fﬂ),le(erl)) =0 forevery L > 1.

k—oo
Finally, observe that the definition of sffﬂ) implies that
(£+1)
uk(Sk(Hl)) =0 forevery L > 0.
k=00 (Lry, )

Together with (39) this completes the proof of (Hy41), and hence of Theorem 2
in the radially symmetric case.

2.4 Proof of Proposition 7

As preparation for the proof of Proposition 7 we need the following two lemmas.

41
Lemma 9 For r,i D s above, we have

v () == ug (r,(fﬂ)m) — uy, (T,(fﬂ)) — 0 in C2"HRY™\{0}).

loc

Proof. We write rp = r,(fﬂ). Moreover, we consider only the case m > 1, the
case m = 1 being considerably easier. As in the proof of Lemma 3.2 in [13] we
have

(=A)"ug(z) = )\kr,%muk(rkm)em“i(”"“') =: gi(x) > 0,
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with g, — 0 in LS (R*™\{0}). By scaling and Sobolev’s embedding we also
have

HVQ’U]CHLM(BR/Tk) = ||V2UkHLm(BR) S C, (43)
IV™vkllL2(g), ) = IV ukllL2(8R) < C

Set wy := Awvi. Then a subsequence wp — w weakly in H$C72(R2m) and in

CEm=5*(R?™ \ {0}) for some function w € L™(R>™) with V2w € L*(R>™).
Clearly A™ 1w = 0 in R?™\{0}. In fact, since the point x = 0 has vanishing
H™-capacity, as in [13] we have A™ 'w = 0 in R®*™. Recalling that w €
L™(R?*™) we conclude that w = 0; see Lemmas 23 and 24 in the appendix.
Recalling that (Awvy) is bounded in L™(R?™) and noting the condition
vg(1) = 0, from standard elliptic estimates we infer that (vg) is bounded in
W?2™(By). Hence a subsequence vy, — v weakly in W2™(Bj) and in C?™m~ b«
away from x = 0. We then have Av =0 and v(1) = 0, therefore v =0 on Bj.
By elliptic estimates, from (43) and the condition vi(1) = 0 we also infer that
(vi) is bounded in W™ (R?™). Therefore, we also have that vy — v weakly in
W2 (R?™) and in Cp7 " (R?™ \ {0}), with Av = 0. By unique continuation

it follows that v = 0. This completes the proof. (]

Lemma 10 For any L > 0 there exists ko = ko(L) such that for all k > ko and
any 1 < j <2m — 1 there holds

uk(r,(fﬂ))/ |Viug|de < C’(Lr,(fﬂ))%’_j.
B

B
P AN

Proof. The proof is identical to the proof of Lemma 6 in [8], using Lemma 9
above instead of Lemma 3 in [8]. O

Proof of Proposition 7. For simplicity of notation, we now drop the index ¢+ 1.

Step 1. We claim that 7, — 1 in C27~1*(R27™\{0}) for some smooth function

loc
n. For any L > 1let Qf, := Br(0)\B1,.(0). Recall that by Lemma 9 we have
ug(z) == ?k((ff)) — 1 uniformly on Q7 as k¥ — oco. Thus by (7) with error

o(1) — 0 as kK — oo we have

0. < (8" () = Merd ™ (i g ()™ E ) (44)
< (L2™ + 0(1) Mg (ri|2]) 22 (rpz)e™ R (5) < CL2™ 4 o(1).
Split nx = hi + Ik on Qsp, where

A™h, =0 on Qop, and Iy = Al =...=A""1, =0 on 9.

Since [|A™ k|| Lo (,,) < C = C(L), by elliptic estimates we get that I, — [ in
C?m=1(Qy,1). Together with Lemma 10 this implies

VRl L1 o) < NV L1 @2n) + VIR (001) < C
Moreover, since 7, = 0 on 9B1(0), we have

hi| = |le] <€ on 8B4 (0). (45)
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Then, from a Poincaré-type inequality, we easily get ||hx| 11(q,,) < C. By virtue
of Proposition 21, we infer that

hellcico,) < C;  for every j € N.
Hence a subsequence hy — h smoothly on €, and

e —n:=h+1 in C*"=Ho(Qp),
proving our claim.

Step 2. With @ () == “20%2) a5 above, from (44) we get

u (k)

(—A)mnk = )\krimui(T}C)Bm“i(%)ﬂk(CC)em(“i(Tk DRACG)) 46
= e T 10

where by (40) we may assume

mui(rk)

W = )\kr,%mui(rk)e = w;rrll_lPk(rk) — po > 0.

Since 7y, — 1 locally uniformly on R?\{0} we may pass to the limit k — oo in
(46) to see that 7 solves the equation

(—A)™ = poe™™  on R2™\{0} (47)

in the distribution sense. In fact, we now show that (47) holds on all of R*™.
Note that by Step 1 for any L > 1 we have

/ e2™dy = lim w2 em TRt gy,
Q5 k—oo Jo,

= lim g (= A) ™ g da

k—oo QL

gt lim inf/ ugp(—A) " updr < g tA.
Brr,

IN

k—o0

As L — oo, by Fatou’s lemma, we get e2™7 € L1(R?>™). Moreover n > 0 on By,
hence 1 € LP(By) for every p € [1,00[. Also note that (—A)™n, > 0 and that
from (32) we can bound

k—o00

limsup/ (=A)"ny, dx

B

1/5(0) 2 (48)

= lim sup/ A (re)uge™  dx < limsup Nk(s,(f),rk/L) -0
B, /(0)

k—oo k—oo

as L — oo. Since by Lemma 4 we have u; > 1, np > 0 on By, from (46) and
(48) we also find that

k—oo

limsup/ N der — 0as L — oo (49)
By,1(0)

17



By (47) and (48) for any test function ¢ € C§°(R?*™) we now obtain

/ ((_A)mn - MOean)‘p dr = lim (=A)"neTr, dx
R2m

L—oo Jp2m

(50)

L—oo k—oo

= lim liminf/ ((—A)mn — (—A)mﬁk)QOTL dx,
]RZWL

where for L € N we let 71, () = 7(Lx) with a fixed cut-off function 7 € C5°(Bs)
such that 0 <7 <1 and 7 =1 in B;. But by Step 1 for any L > 1 we have

lim inf/ ((—A)mn — (fA)mnk)gorL dx
R2m

k—oo

= lim inf /Rm (n — ) ((—A)") 7, da,

k—o0

and since 7 € L'(B;) and on account of (49) the latter converges to 0 as L — oo
for any fixed ¢ € C§°(R?*™). From (50) we thus see that n solves (47) in the
distribution sense on R?™. By elliptic estimates, 7 is smooth on all of R?>™; see
for instance [7], Corollary 8. The function g := 1+ 5= log ﬁ then satisfies

(=A)"n = (2m — 1)1e*™™  in R*™, / > dx < oo. (51)
R2m

Solutions to (51) have been classified in [7], where it was shown that either
(i) no(z) = log H_Uliﬁ for some o > 0, x¢ € R*™, or
(ii) m > 1 and there exist 1 < j <m — 1 and a # 0 such that

lim Alng(z) = a,

|z|—o0

and hence for sufficiently large L, with error o(1) — 0 as k — oo,

(L) =2y () /

Brr, \Br, /L

:L?Hm/B o PP mldz 4 o(1) 2 CL o)
\Bi/L

[V ug|de = L2j_2m/ (V2 g | e
Br\Bi,L (52)

for some constant C' > 0 independent of L.

But (52) is incompatible with the estimate of Lemma 10 when L and k are
large. Hence case (i) occurs (with 2o = 0, by radial symmetry). In particular,
we have [5,, (2m — 1)le?™M0dz = A;. O

3 The general case
The following gradient bound analogous to [5], Proposition 2, and generalizing
[13], Proposition 4.1, will be crucial in the sequel. The proof will be given in

the next section.

Proposition 11 There exists a uniform constant C' such that

sup inf |z — xgcj)|€uk(x)\veuk(x)| <C foralll<€<2m-—-1, keN.
zeQ1<j<I

18



Fix an index i € {1,...,1} and let z}, = m,(;) —z® = r](f) — 0 as given

by Theorem 1. After a translation we may assume that z(¥) = 0. Set as before
e 1= )\ku%em“i, fk = )\kuk(O)ukem“k

and

Ap(r) = /B endz.

r

In the following we will use the notation

][ fdo,

for any function f. Set also
)
ey = )\kﬂiemuk < €.

(Here we used Jensen’s inequality.) Again we let wy(z) := ug(0)(ug(z) — ug(0)),
satisfying
(—A)mﬂ)k = )\kuk(O)ukemui = fk
Finally set
Ak(’l") ::/ ékd(E S Ak(T), O’k(T’) = fkdx (53)
. B.
Again Theorem 1 implies
lim lim Ag(Lry) = lim lim Ag(Lrg) = hm lim ox(Lry) = A1 (54)

L—o00 k—oo L—o00 k—oo L—o00 k—oo
Recalling that ng) =0 we let

. ()
pr = py) == min { inf i |

JF1

,dist (0, 0Q,) };

that is, we set py = dist(0, 9€y,) if the (ac,(f)) are the only concentration points.
Observe that by Theorem 1 we have ry, = o(pg) as k — oo.
Note that Proposition 11 implies the uniform bound

0< sup wi(x)— inf wi(x) < Crsup |Vui(z) <C (55)
r/2<|z|<r r/2<]z|<r |z|=r

for 0 < r < pg.

Lemma 12 Let 0 < € < 1 and assume that for k > ko = ko(e) there holds

. _ E’CL}C(O)
< .
oo, (1) = 5

Let T, = Tp(e) < Sp = Sk(e) €]0,px] be the smallest numbers such that
g (T) = eug(0), 4 (Sk) = cur(0)/2, respectively. Then

LT . Ty
Jim o= Jim - =0. (56)
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Moreover for any b < 2 and k > ko = ko(b) there holds

wur) < viog (%) € for0<r <7 (57)
and we have _
lim Ag(T}) = Ar. (58)
k—oo

Proof. Property (56) follows from (55) and our choice of T}, and S.
As in the proof of Lemma 4 for a given ¢t < Ty we decompose Wy = gi + hi
on By, with

A™hp=01in By, and g = 0pgr = ... = [“),’j”_lg;C =0 on 0B;.

By (54), we get the analogues of Lemma 3 and of (22); that is, for L > Ly =
Lo(b), k > ko = ko(L) there holds

(_1)m_1tm_l (t_l (t_l e (t_l (117)2(25) + %) ), ... )l)/ <0
—_———

m—1 times m—1 times

for all ¢t € [Lry, Sk]. We now inductively integrate from ¢ to Sy as in Lemma 4.
Using Proposition 11 to bound

up(0) Shk(Sk) 0%k (Sk)| . C

D@, (Sy)| = : .
19705l = 7 7gy S = s

and recalling (56), for L > Ly and k > ko we get

C
twy,(t) < —b+ s i —b+o0(1) for all Lr, <t < T,
k
with error o(1) — 0 as k — oco. Since b < 2 is arbitrary, (57) follows as before.

In order to prove (58) observe that the definition of 7 gives

wy, (1) _
(1) < Caud (0)m 0 U)o

2, mug (0),.—2m jm(e+1)wp (r) —2om Tk m(ethb
S C)\k;?"k ’U/k(o)e k Ty e b S Crk
r

for Lry < r < Ty. We then complete the proof as in the radial case. O

For 0 < s <t < pyg set

Ni(s,t) = Ag(t) — Ap(s) = / ApuZe™ik dz,
B;\Bs

and let

¢
Ni(s,t) := A(t) — A(s) = / wgm_l)\krszlﬂiemﬁidr < Ni(s,t). (59)

From (55) we infer

sup emui(@) < Cemii(r) for 0 < r < Ok; (60)

="
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hence we obtain

sup ui(w)emui(m) <C(1+ ﬁi(r))emai(r) for 0 <r < pg. (61)

|z|=r
Then (61) implies
Ni(s,t) < CNi(s,t) +o(1) for 0 <s<t< pg, (62)

with o(1) — 0 as k — oo. Similarly, setting

By(t) = t/aB Erdo = wapm 1 A2 T2 (H)e™ (D) < Py(t) 1= t/BB exdo,
t t

we can estimate
Pp(t) < CPy(t) + o(1) for 0 <t < py, (63)

with o(1) — 0 as kK — oco. Finally, from (61) we also obtain the analogue of
(28); that is, we have

Pi(t) < CNk(t/2,1) + o(1) < CP(t/2) + o(1), (64)

with error o(1) — 0 as k — oo.
In particular, we obtain the following improvement of Lemma 12.

Lemma 13 For any 0 < e < 1, if Ty, = Ti(e) < pi is as in Lemma 12, then
we have
klim Ak(Tk) = Al.

Proof. Indeed (58) and (62) imply
lim hm Ni(Lrg, T) < C hm lim Nk(er,Tk) =0,

L—oo k— —00 k—o00
which together with (54) implies the lemma. O

If the assumptions of Lemma 12 hold for any 0 < € < 1 we may proceed
to resolve secondary concentrations at scales o(py) as in the radially symmetric
case. Indeed, by Lemmas 12 and 13 we may then choose a subsequence (uy),
numbers €, — 0 as k — oo and corresponding numbers s = Ty (ex) < pr with
ri/sr — 0 as k — oo and such that

kli_)n()lo Ak (sg) = Ay, hm hm Ni(Lrg, sg) =0,

L—oo k—oo

while in addition @ (sx) — oo and
’ﬁk<8k)

lim —

=0 f L>0.
L uk(er) or every L >

As before, by slight abuse of notation, we set rp = r,(c ), Sk = sg), so that
the analogue of (H7) holds, and iterate. Suppose that for some integer ¢ > 1 we
already have determined numbers

s 0 < 1D < 5 <

0<r’ <s, <r()

© _

< s = olp)

satisfying the analogues of (Hy1) up to (Hg4). Similar to Lemma 5 we then
have the following result.
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Lemma 14 There is a constant Cy = Co(A) such that for sg) < tx, = o(pk)
there holds ~
Py (tr)

S CoNE (s 1) + (1), (65)

Ni(s$ t5) <

with error o(1) — 0 as k — oo.

Proof. For ease of notation we write s = s,(f). Replacing wy with @y in the

proof of Lemma 5, similar to (31) we find

Butost) < G0 = [emnart e+ o),

with error o(1) — 0 as k — oo, uniformly in s < ¢t. Proceeding as in Lemma 5,
from the equation

Ax(?)

t—lt— t—lflt oYY = (—=1)™

(N k) ) ) = ()
m—1 times m—1 times

where Ay is defined by (14), with oy now given by (53), we get

Pk Pk Pk A
_/ t) — _t2/ tl/ t2/ %dtm—ldtl +Bk:(t7pk)7
t t1

tm_o W2m—1Cp,

where By/(t, pr) corresponds to the boundary terms. By arguing as in the proof
of Lemma 4 we see that By, is a linear combination of terms of the form

t2l+2 . .
2[+2pk8wk(pk) Oglgm_Qalg.]Sm_l
k
EO))’ the resulting terms can be written as
t2l+2 . t2l+l tﬂk (t) . )
—r73 Wk (1) Py, 00t (o) = P (pr) + 1)00 (pr).-
pt P pu(un(pr) + 1)

But by Proposition 11 and the analogue of (33) we have

tug(t)

Pi(k(or) + DI a(pr)| < €, —m Sy

<C.

Ul (t)
uk(0)
error o(1) — 0 as k — oo we obtain the identity

B 57 t uk t Pk Pk Pk )
() 2 / / / Aty -~ dt
wk( )uk(O 0 5 Wom— 1t dm— 3 v -

The rest of the proof is similar to the proof of Lemma 5. ]

Hence for t = t;, = o(px) we have

By (t,pr) — 0 as k — oo, and up to an

3

On account of (62) and (63) we now obtain the analogue of Lemma 6. The
proof is the same as in the radially symmetric case.
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Lemma 15 Let Cy = Co(A) be the constant appearing in (65), and let tj, > s( )

be such that for a subsequence
1

lim 2k — lim N (s9 - _—
i =0 0 Jim Nulsilti) = < 5 o

Then

()
lim ZE- — 0, hmll’lka(tk)

k—oo Tk

, and hm lim N ( slc 7tk/L)—O

L—oo k—oo

5 me
2

We now closely follow [6]. By the preceding result it suffices to consider the
following two cases. In Case A for any sequence t; = o(py) we have

sup  Py(t) — 0as k — oo,
s <t<ty

and then in view of Lemma 15 also

lim hm Nk(s oe/L) =0, (67)

—o00 k—

thus completing the concentration analysis at scales up to o(pg).
In Case B for some 5( ) < tx < pi there holds

1irnsuka(s,(€)7 tg) >0, lim — =0.
k—oo k—oo P

Then, as in the radial case, from Lemma 15 we infer that for a subsequence (uy)

(£+1) E]Si(f) tk[

and suitable numbers 7, we have

(€

.8 . 0 (41 o +1
khﬂrgoﬁ =0, klirgo Nk(s,g),rl(¢ + )) >0, hkrglorngk(r,(C + )) > 0; (68)
k

in particular, u (7, (¢ +1)) — 00 as k — oo. Also note that
(@) (e+1) rp Y b
lim limsup Ng(s,.’,r L lim +— = lim — =0. 69
o kﬁoop k(s sry, /L) = koo P koo Py (69)

Moreover, analoguous to Proposition 7 we have the following result, which is a
special case of Proposition 17 below.

Proposition 16 There exists a subsequence (uy) such that

0 (@) = () () — () — D ()

in it~ (R#™\ {0}) as k — oo, where 7]( = D) 4 D) solves (8), (9)

loc
for a suitable constant ¢+,

From Proposition 16 the desired energy quantization result at the scale T(HI)

follows as in the radial case.
If pp > po > 0 we can argue as in [13], p. 416, to obtain numbers s,(fH)
satisfying
: ; (e+1)y _
lim lim Ag(s;, ) = (£ + 1)A4, (70)

L—oo k—oo
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and such that

(£41)
. . (L+1)y (E+1)\\ _ 1: k T (e+1)
o, e () = el 7)) = iy = s =0

while ﬂk(sffﬂ)) — 00 as k — oo. Moreover, for any L > 1 we have
_ 0+1
i ( ( ))

. k
fim k) (71)

By iteration we then establish (70), (71) up to £+ 1 = ¢y for some maximal
index £y > 1 where Case A occurs and thus complete the concentration analysis
near the point 2", getting

klinolo Ak (,00) = foAl .

If pp — 0 as k — oo, we distinguish the following two cases. In Case 1
for some €y €]0,1] and all ¢ € [r,(fﬂ),pk] there holds @ (t) > aoﬂk(r,(fﬂ)). The
decay estimate that we established in Lemma 12 then remains valid through-
out this range and (70) holds true for any choice sgfﬂ) = o(pr). Again the
concentration analysis at scales up to o(py) is complete. In Case 2, for any

e €]0, 1] there is a minimal T, = Ty (e) € [r,(fﬂ), px] as in Lemma 12 such that
Uk (Ty) = eug(r™) D) <y with
ak(sl(fﬂ)) — 00 as k — oo so that (70), (71) also hold true, and we proceed by
iteration up to some maximal index £o > 1 where either Case 1 or Case A holds
with final radii r,(f"), s,(f"), respectively.

For the concentration analysis at the scale pj first assume that for some
number L > 1 there is a sequence (zy) such that pr/L < Ri(xy) < |zk| < Lpg
and

. Then as before we can define numbers s

A | |22 (2 ) ™5 ) > 1y > 0. (72)

By Proposition 11 we may assume that |zx| = pg. Moreover, (55) implies
that dist(0,00%)/pr — o0 as k — oo. As in [13], Lemma 4.6, we then have
ﬂk(pk)/ak(r,(fo)) — 0 as k — oo, ruling out Case 1; that is, at scales up to o(py)
we end with Case A. The desired quantization result at the scale py then is a
consequence of the following result similar to [13], Proposition 4.7, whose proof

may be easily carried over to the present situation.

Proposition 17 Assuming (72), there exist a finite set So C R®*™ and a sub-
sequence (ug) such that

k() = ug(zk) (ur (prr) — uk(zr)) — n(z)

in CEm=HR2™ \ Sy) as k — oo, where for a suitable constant cy the function

o =N+ co solves (8), (9).

By Proposition 17 in case of (72) there holds

lim lim epdr = Ay. (73)
L—00 k=00 J{3e0; 8k <Ry (x)<|z|<Lpy}
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Letting

X1 = X,gl)l = {x,(cj);HC >0: |x,(€j)\ < Cpy, for all k}
and carrying out the above blow-up analysis up to scales of order o(py) also on
all balls of center x(]) € X1, then from (71) and (73) we have

Llim klim Ap(Lpr) = A1(1 + 1),

where I; is the total number of bubbles concentrating at the points x(J b e X ,gl)l
at scales o(pg).

On the other hand, if (72) fails to hold clearly we have
epdr =0, (74)

lim limsup /
L=00 k—oo J{zeQ;Lk<Ry(z)<|z|<Lpy}
and the energy estimate at the scale p; again is complete.
In order to deal with secondary concentrations around xg) = 0 at scales
exceeding py, with X}, 1 defined as above we let

‘x(j)|

, dist(0,0Q) };

= min { inf

{j§$§€])¢Xk,1}
that is, we again set py 1 = dist(0,00), if {j;xg) ¢ X1} = 0. From this
definition it follows that py1/pr — o0 as k — oo. Then, using the obvious
analogue of Lemma 15, either we have

hm lim sup N (ka,

L—oo koo

L):O’

and we iterate to the next scale; or there exist radii t5 < py 1 such that t5/pr —
00, t/pr1 — 0 as k — oo and a subsequence (u) such that

Pr(ty) > v9 >0 for all k. (75)

The argument then depends on whether (72) or (74) holds. In case of (72), as in
[13], Lemma 4.6, the bound (75) and Proposition 7 imply that @ (tx)/ar(px) —
0 as k — 0. Then we can argue as in Case A for r € [Lpy, pi,1] for sufficiently
large L, and we can continue as before to resolve concentrations in this range
of scales.

In case of (74) we further need to distinguish whether Case A or Case 1

holds at the final stage of our analysis at scales o(py). In fact, for the following
estimates we also consider all points xg Jex ,5 )1 in place of m,i) Recalling that in
Case A we have (71) (with index ¢, instead of /4 1) and (67), on account of (74)
for a suitable sequence of numbers sgcoi such that sk’l/pk — 00, tk/sgﬁ — 00 as

k — oo we find

Llirn lim( séoi Z A )) 0,

—00 k— @ ®
k3
ay €Xpa

: (7)
where A ( ) and r( ") are computed as above with respect to the concentration

point x(J ). In particular, with such a choice of s,(ﬂoi we find the intermediate
quantization result

lim Ak( ) A111

k—o0
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analogous to (70), where I; is defined as above. In Case 1 we can obtain the

same conclusion by our earlier reasoning. Moreover, in Case 1 we can argue as
)

in [13], Lemma 4.8, to conclude that ﬂk(tk)/ﬁk(Lr,(f" )) — 0 for any L > 1 as

k — 0; therefore, similar to (71) in Case A, we can achieve that for any L > 1

we have

)
Ca(s) s
lim #:khm W:khm W:khm t7 =0
k=00 ﬂk(Lr](go )) T 5L TSk ek

for all xéj) € X,il)l where Case 1 holds, similar to (Hp).
We then finish the argument by iteration. For ¢ > 2 we inductively define
the sets

Xy = X,S} = {m,(j); 3C > 0: |x§€j)| < Cpge—1 forall k}
and we let

2

Pre = p,(:’)é = min{ inf , dist(O,@Qk)};

{5z ¢ X1}

that is, as before, we set py o = dist(0, 9y,), if {j; ac,(cj) ¢ X,SZ} = (). Tteratively
performing the above analysis at all scales pi_ ¢, thereby exhausting all concen-

tration points xg ), upon passing to further subsequences, we finish the proof of

Theorem 2.

3.1 Proof of Proposition 11

Our proof of Proposition 11 is modelled on the proof of [5], Proposition 2.
In fact, the first steps of the proof seem almost identical to the corresponding
arguments in [5]. The special character of the present problem only enters at the
last stage, where we also need to distinguish the cases { =1 and 2 < £ < 2m—1.

Fix any index 1 < £ < 2m — 1. The following constructions will depend on

this choice; however, for ease of notation we suppress the index £ in the sequel.
Set Ry (z) :=infi<j<y |z — ng)| and choose points y, such that

Ry (yi) e (yi) |V un (yr) | = sup Rjug|Viug| =: Ly.

Suppose by contradiction that Ly — oo as & — oo. From Theorem 1 then it
follows that sy := Ry (yx) — 0 as k — oco. Set

Q= {y;yp + s1y € Q}

and let
ve(y) == ur(ye + sxy), Y € Q.

Observe that for 1 < j < m via Sobolev’s embedding from (3) we obtain

IVl xS CIV™liaa, =C [ w(-a)"ude<C. (70)
7 (Qk) Qp
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Also let

and set

Clearly then we have
dist (0, Sg) = 1%11_1; |y,(j)| =1

and

2@@%%&WMMWWMDZW@W%@deHm (77)

as k — oo. Moreover (7) implies

C

0< —A)™ =\ 2m2m,vi< . 78
< ve(=A)"vy, kSk Vi€ = dist(y, S)2m™ (78)
Since limg_,o S = 0, we may assume that as & — oo the domains
exhaust a half-space
Qo = RQm_lx] — 00, Ro[,
where 0 < Ry < oo. We may also assume that either limj_ |y,(j)\ = 00 or
limy oo y,(j) =y®, 1< i< I, and we let Sy be the set of these accumulation
points of Sy, satisfying dist(0, Sp) = 1. For R > 0 denote
Ky r == QN Br(0)\ U Bi/r(y).
yESo
Observing that A\;s2™ — 0, from (78) we obtain that
klln;o [A™ k|| oo (i, z) = 0 for every R > 0. (79)

Lemma 18 We have Ry = 0o, hence Qy = R?™.

Proof. Suppose by contradiction that Ry < co. Choosing R = 2Ry and observ-
ing that by (2) for 0 < j < £ < 2m — 1 we have dJv? = 0 on 9y, from Taylor’s
formula and (77) we conclude

2
Uk
sup —————— < C = C(R).
2 O ) <€ O
. . v .
Letting wy, := T we then have 0 < wy, < C on K r. Using (76),

Sobolev’s embedding, (77) and (79) we infer
||vwkHL2m(Qk) + ||V2U1k||Lm(Qk) + ||Amw1€||Loo(Kk_YR) — 0 as k — oc.

Since dJwy, = 0 on 9Q, for 0 < j < m — 1, it follows from elliptic regularity
that wi, — 0 in C2m_1’a(Kk,R) for 0 < a < 1, contradicting the fact that

loc

wy, (0)| Vi, (0)] = 1. O
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Lemma 19 As k — oo we have v (0) — oo and

Uk . 2m—1,« 2m
1 C! R\ Sp).
w(@) Gl TS

Proof. First observe that

Ck = Ssup vy — o0 as k — oo.
By/s
Indeed, otherwise (76), (79) and elliptic regularity would contradict (77). Let-
ting wy, := ¢&, from (76) and (79) for any R > 0 we have

IVwg|[L2m (o) + ||V2wk||Lm(Qk) + A" wi[ oo (i, ) — 0 as k — oo,

whence wy — w = const in CE7"~H*(R?™\Sp). Recalling that dist(0,Sp) = 1,
we obtain
w=supw = lim sup wg = 1.
B2 k—oco B,y

In particular we conclude that v’cc—io) = wi(0) — 1 as k — oo and therefore

vk(0) = crwi(0) — oo, TG = iy — 1in C2mmLba(R2m\ §0)  as claimed. [

loc

For the final argument now we need to distinguish the cases ¢ = 1 and
2 < ¢ <2m — 1. Consider first the case £ = 1. Set

vk (y) — vk (0)

From (77) and Lemma 19 we infer

0e(0) s ()| Vor(w)| _ 1+ 0(1)

v (y) ve(0)| Vo (0)] — dist(y, So)’
with error o(1) — 0 in C2"~H*(R2™\Sp) as k — oo. Since 7;,(0) = 0, from (80)

we conclude that o is bounded in C' (K} g) for every R > 0, uniformly in k.
Moreover, (78) and Lemma 19 give

[Vor(y)| = (80)

Uk(O) ’Uk|AmUk| C(R) Uk(O)

A" = -
A= e = P,

—0 (81)

uniformly on K, r as k — oo, for any R > 0. The sequence 9, then is bounded
in CiT_l’a(R2m\So) for any o < 1, and by Arzela-Ascoli’s theorem we can

~ ~ . 2m—1 ~ .
assume that o, — 0 in C7" "*(R?*™\Sy), where ¥ satisfies

1
< ——.
~ dist(y, So)

Fix a point zg € Sp. For any r €]0, dist(zo, So\{z0})/2[let ¢ € C§°(B,(x0))
be a function 0 < ¢ < 1 such that ¢ = 1 in B, 2(x), and satisfying |V/p| <
Cr~7 for 0 < j < m. Integration by parts yields

A0 =0, 9(0)=0, [Vo(0)l=1, [Vi(y)| (82)

/ (Vv - VA™ Ly + pupe Ay )da

Br(mo) (83)

— —/ pVuy - VA L. de =: 1.
Br(ibo)
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Again integrating by parts m — 1 times, we obtain

I= (—1)’”/3 Z 0% (V) - VO®uy, dx,

r(@0) |a|=m—1

so that by Holder’s inequality and (76) this term may be bounded
n<e Y rj—m/ IV 04| [V ™ 0| d
1<j<m By(x0)

<C Y IVl an [V 02 < C.

1<j<m

Similarly, we have

0< / o (—A) "y de < C,
BT(.’L‘O)

and from (83) we conclude the bound
‘ / Vv, - VA™ Lypdz| < C. (84)
Br(xo)

Observe that Vi = 0 in B, /5(2¢). By Lemma 19 therefore the integral on the
left-hand side equals

/ Vv, - VA™ Lyde
BT(.’L'O)
=1+ o(l))vk(O)va(O)l / V- VAm_lfjkdal‘
By (z0)

= —(14 0(1))vg(0)| Vi (0)] A" dx.
By (z0)

Since (—A)™9; > 0, it follows that

C
“A)"dr < ———— =CL' -0 as k — .
[ AT S e = O

Recalling (81), we infer that A™o, — 0 in L{ _(R?*™). Therefore Ao =
in R?™. Since from (82) we have |0(y)| < C(1 + |y|) for y € R®*™, we may
now invoke a Liouville-type theorem as in [7], Theorem 5, to see that ¥ is a
polynomial of degree at most 2m — 2 if m > 1 and of degree at most 1 if m = 1.
But then (82) implies that ¥ = 0, contradicting the fact that |V, (0)| = 1. This
completes the proof in the case ¢ = 1.

In the case when 2 </ <m — 1 we set

vk (y) — vi(0)

W) = G0, 0))

As shown above we have

dist(y, Sk)ve(y)[Vor(y)] < C'sup Ry (x)up ()| Vug (z)| < C;
xre
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hence Lemma 19 implies with error o(1) — 0 in CZ™~1*(R2™\Sy) as k — oo

loc
that
) C(1 +o(1) _ Clto)
VOl < O T (0) dist(y. 5] Ledist(y, o) (85)

Notice that this is stronger than its analogue (80). As in the case £ = 1 we have

Vg (0) UkAmUk < C(R)

N
U e we(0)[Veu(0) = Ly

0 (36)

uniformly on K, g as k — oo, for any R > 0, hence 0, — ¥ in 6’12:;71’“ (R?™\ Sy),
where ¥ satisfies
A™p =0, #0)=0, |V%(0) =1.

On the other hand (85) implies Vo = 0, contradiction. This completes the
proof. |

Appendix

We collect here some technical results used in the above sections. The proof of
the following proposition can be found in [7], Prop. 4.

Proposition 20 Let A™h =0 in Bo C R". For every 0 < a <1 and >0
there is a constant C(¢, &) independent of h such that

HthM(Bl) < C(E,a)”hHLl(Bz)'

By a simple covering argument Proposition 20 can be extended to the case
of annuli.

Proposition 21 Let A™h = 0 in Byr(0)\By/21(0) C R™ for some L > 1. For
every 0 < a <1 and £ > 0 there is a constant C = C(¢, «, L) such that

[hllcea B onB L 0) < ClRILL (B (0)\By 21 (0))-

Lemma 22 Let g € C*(By), where B; = B;(0) C R™ for somen € N, t > 0.
Assume that g is radially symmetric and satisfies

g=0,9=...=9" 'g=0 on dB,. (87)

Then

¢ b1
/ t" oM g do = / to--- / tm< Amgdx) dty, ... dts. (88)
0B 0 0 By,,

Proof. For m = 1 equation (88) simply reduces to
Oygdo = Agdx. (89)
OB By
For m = 2 consider the function ¢(z) = z - Vg(z) with

Az - Vg)dz = / (x-VAg+2Ag)dx

/ Oypdo = Apdr =
OBy By By

By
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and note that the condition d,¢g = 0 on 9B; and (89) imply

Oppdo = Oy(x-Vg)do = / td%gdo, and Agdx = 0.
OBy OBy 0By By

Thus from Fubini’s theorem we obtain the desired identity

/ t@sgdaz/ x-VAgdx
OB B:

t t
= / t2</ ayAg d0> dtQ = / tQ( A2g d$> dtg.
0 OBi, 0 Bz,

We now proceed by induction. Assume that the lemma is true for m — 1.
Choosing ¢(z) =z - Vg(x) with

0=0,p=...=90" 2p=0 on 0B,

we get

/ t" oM gdo = / tm20m (10, g)do = / tm29m (2 - Vg)do
aB, oB, aB,

t tm—2
= / to - / tm—1 / Amil(l‘ . Vg)dl‘dtm_l coodty =1 1.
0 0 B

m—1

Observe that A™~1(z - Vg) = x- VA™ g+ 2(m — 1)A™~1g, hence

t tim—2
1= / tg N / tm—l / (Z‘ . VAmilg)dl‘dtm_l e dtQ
0 0 By

m—1

t tm—2
+2(m7 1)/ t2/ tm—l/ Amilgdxdtm_l...dtg
0 0 By

=II+1I1I.

By inductive hypothesis and (87) the contribution from the second term is

IIT =2(m—1) / tm 29" gdo = 0,
OBy

and our claim follows from writing

tm—1
/ - VA" lgdz = / tm/ 0, A" Lgdodt,,
B 0 dBu,,

tm—1

tm—1
= / tm AMgdxdt,,.
0 By,

Lemma 23 Let u € C°(R") N LP(R"), for some p > 1, satisfy Alu = 0 for
some integer j > 0. Then u = 0.
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Proof. We first claim that

for every £ € R™. Indeed by Jensen’s inequality

1
|
‘ ][Udff‘< ][ |Ud$<( ][ |U|pd$> Sw”“”m(w)_’o,

Br(§) Br(§) Br(§)
as R — oo. By Pizzetti’s formula (see [10]) we have constants ci,...,c;—1 such
that
F e =€) + B -+ ey BT 2AT () = P(R).
Br(§)

Taking the limit as R — oo we see at once that the polynomial P(R) is iden-
tically 0, and in particular u(§) = P(0) = 0. Since £ was arbitrary the proof is
complete. O

Lemma 24 There holds
cappm ({0}) = inf{[|[V™ ¢l L2; ¢ € X} =0,
where
X ={peC5(Bi(0); 0<p<1,3r>0:p()=1 for|z| <r}.

)
Proof. Let f(x) = logloglog(1/|x|) with V™ f € L?(B,--(0)) and fix g € C*°(R)
with 0 < g < 1 satisfying g(s) =0 for s <0, g(s) =1 for s > 1. Letting

er(z) = g(f(x) — k), k €N,

we find ¢ € X for all k and |[V™pg||r2 — 0 as k — oc. O
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