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Abstract. We show that for a metric space with an even number of points

there is a 1-Lipschitz map to a tree-like space with the same matching number.
This result gives the first basic version of an unoriented Kantorovich duality.

The study of the duality gives a version of global calibrations for 1-chains with

coefficients in Z2. Finally we extend the results to infinite metric spaces and
present a notion of “matching dimension” which arises naturally.

1. Introduction

Let n ∈ N and X = {x1, . . . , x2n} a set with 2n points equipped with a
pseudometric d. A matching on X is a partition π of X into n pairs of points,
π = {{x1, x

′
1}, . . . , {xn, x′n}}. The set of all matchings on X is denoted by M (X).

The main object of study in this work is the minimum matching problem (cfr. [5]
for a combinatorial analogue) for d, which is the following minimization:

(1.1) m(X, d) := min
π∈M (X)

∑
{x,x′}∈π

d(x, x′) .

The topic of the present work is the description of the dual problem for (1.1). The
interesting phenomenon is that dual objects are characterized by a special tree
structure. A pseudometric space (X, d) is said to be tree-like if for any choice of
points x1, x2, x3, x4 ∈ X,

(1.2) d(x1, x3) + d(x2, x4) ≤ max{d(x1, x2) + d(x3, x4), d(x1, x4) + d(x2, x3)} .

(X, d) is tree-like if and only if it can be realized as a subset of a metric tree (in case
of a pseudometric, we identify those points in X with vanishing distance), see [30],
[4] for finite spaces and [9] for the general case. Metric trees can be characterized
as uniquely arcwise connected geodesic metric spaces. Throughout these notes we
will also assume that metric trees are complete.

Our main basic observation is that:

1.1. Theorem. For any pseudometric d on X, there is a tree-like pseudometric D
on X with D ≤ d and m(X,D) = m(X, d).

The metric D that we construct has some additional properties. For example,
there holds H 1(T ) = m(X, d) for the metric tree T that is spanned by some
minimal metric D as in the theorem above, see Proposition 3.4. We develop three
concepts as applications of Theorem 1.1, where the dual objects presented here
give respectively a notion of unoriented Kantorovich duality, a notion of global
calibrations modulo 2 and a notion of matching dimension.
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1.1. Unoriented Kantorovich duality. There is a very direct link between our
duality result and a basic version of the so-called Kantorovich duality. More pre-
cisely we have in mind the following, by now classical, result (see [16] for the
originating idea, and see e.g. [23, Lemma 2.2] for a proof of this precise statement):

1.2. Theorem (Kantorovich duality). Let (X, d) be a metric space of cardinality
2n. Let Π = {{x+

1 , . . . , x
+
n }, {x−1 , . . . , x−n }} be a partition of X into two n-ples of

points. Then the following holds,

(1.3) min
σ∈Sn

n∑
i=1

d
(
x+
i , x

−
σ(i)

)
= max

{
n∑
i=1

f(x+
i )− f(x−i )

∣∣∣∣ f : X → R
is 1-Lipschitz

}
.

A matching {{x+
1 , x

−
σ(1)}, . . . , {x

+
n , x

−
σ(n)}} achieving the above minimum is some-

times called a minimal connection corresponding to the partition Π and in general
a matching respecting this partition like in Theorem 1.2 is called an admissible
connection for Π. Let M(Π, d) denote the length of the minimal connection. In

another setting we may imagine that X ⊂ X̃ is a finite set in another metric space
and we have two probability measures µ+, µ− defined as

(1.4) µ± :=
1

n

n∑
i=1

δx±i
.

In this case we have

M(Π, d) = W1(µ+, µ−) ,

where W1 is the 1-Wasserstein distance defined on probability measures (cfr. [25],

[1] and the references therein). By density considerations, if X̃ is Polish, then
giving W1 on measures of the type (1.4) is the same as giving it on the whole set

of probability measures on X̃.

Note that for any 1-Lipschitz function f : X → R there holds

(1.5)

n∑
i=1

f(x+
i )− f(x−i ) = min

σ∈Sn

n∑
i=1

dR

(
f
(
x+
i

)
, f
(
x−σ(i)

))
= M(Π, f∗dR) .

In view of (1.5), another version of Theorem 1.2 is the following:

1.3. Theorem (Kantorovich duality, equivalent formulation). Let (X, d) be a metric
space of cardinality 2n. Let Π = {{x+

1 , . . . , x
+
n }, {x−1 , . . . , x−n }} be a partition of X

into two n-ples of points. Then the following holds,

(1.6) M(Π, d) = max {M(Π, f∗dR) : f : X → R is 1-Lipschitz} .

A slight reformulation of Theorem 1.1 makes the analogy with the Kantorovich
duality clear.

1.4. Theorem (unoriented Kantorovich duality). Let (X, d) be a pseudometric
space of cardinality 2n. Then

(1.7) m(X, d) = max

{
m(X, f∗dT )

∣∣∣∣ f : X → (T, dT ) is 1-Lipschitz
and (T, dT ) is a metric tree

}
.

The important difference between this theorem and Theorem 1.3 is that here the

minimization is done amongst a wider class of competitors. The set X has (2n)!
2nn!
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matchings and once we fix a partition Π only n! of them are admissible connections
for it. Therefore there holds

(1.8) m(X, d) ≤M(Π, d) ,

with a strict inequality in general. It might then look slightly surprising that, while
on the one hand in the unoriented version the minimum on the left decreased, on
the other hand in order to achieve the same number by the maximum we have to
enlarge the space of 1-Lipschitz maps competing for the dual problem on the right,
passing form R to general metric trees.

For the sake of concreteness we also formulate more explicitly a corollary of
Theorem 1.4 in a special situation:

1.5. Corollary. Let X ⊂ Rn be a subset of even cardinality. Then there holds

min
π∈M (X)

∑
{x,x′}∈π

|x− x′| = max
f,T

min
π∈M (X)

∑
{x,x′}∈π

dT (f(x), f(x′)) ,

where the maximum is taken over all metric trees (T, dT ) and all 1-Lipschitz func-
tions f : Rn → T .

For more properties of the maximizing couples (f, T ) see Proposition 3.4.

1.2. Global calibrations modulo 2. In Section 2 we connect our result to the
theory of calibrations, and give a natural answer in the first truly nontrivial case to
the question of extending the notion of a calibration to the setting of the Plateau
problem for chains with coefficients in a group. Let (T, dT ) be a metric tree. A
1-Lipschitz function ρ : T → R is an orientation modulo 2 for A ⊂ T if for any arc
[a, b] ⊂ T we have J(ρ|[a,b])(t) = 1 for H 1-a.e. t ∈ [a, b] ∩ A. Such orientations for
T are given for example by the distance functions t 7→ dT (p, t) for any p ∈ T .

Let (X̃, d) be a metric space. As defined in [8], the set R1(X̃,Z2) of rectifiable
1-chains modulo 2 is composed of chains [[Γ]], where Γ is some H 1-rectifiable set
Γ ⊂ X (there holds [[Γ]] = [[Γ′]] if and only if H 1(Γ∆Γ′) = 0). The mass of [[Γ]] is

given by M([[Γ]]) = H 1(Γ) and assumed to be finite. If f : X̃ → R is Lipschitz
we can define its action on [[Γ]] as follows. Fix some countable parameterization
γi : Ki ⊂ R → γi(Ki) ⊂ Γ, i.e. Ki is compact, the images γi(Ki) are pairwise
disjoint, all γi are bi-Lipschitz and H 1(Γ \ ∪iγi(Ki)) = 0. Then we define

[[Γ]](df) :=
∑
i

∫
Ki

|(f ◦ γi)′(t)| dH 1(t) .

It is not hard to check that this definition does not depend on the parameterization
and on the choice of the set Γ representing [[Γ]] as above. Further, [[Γ]](df) ≤
Lip(f)M([[Γ]]) and if f ∈ C1(Rn) and γ : [0, 1]→ Rn is Lipschitz and injective, then

[[im(γ)]](df) =
∫ 1

0
|df(γ′(t))| dt, justifying the use of df in the definition of this action.

In contrast to chains with coefficients in Z, this action is not linear. For Lipschitz
functions f, g and C,C ′ ∈ R1(X̃,Z2) there holds, C(d(f +g)) ≤ C(df)+C(dg) and
(C + C ′)(df) ≤ C(df) + C ′(df), with strict inequalities in general.

A Lipschitz chain C ∈ L1(X̃, d) is given by a finite sum
∑n
i=1 γi#[[0, 1]] for

Lipschitz curves γi : [0, 1]→ X̃. The boundary of C is defined to be

∂C :=

n∑
i=1

[[γi(1)]] + [[γi(0)]] ,
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see [8, Theorem 4.2.1]. This shows that such boundaries are composed of an even
number of points. From [8, Theorem 4.3.4] it follows that the same is true for any

C ∈ R1(X̃,Z2) with finite boundary. On the other side, if X̃ is Lipschitz path

connected, any collection of an even number of points in X̃ is the boundary of some
Lipschitz chain.

1.6. Proposition. Let (X̃, d) be a geodesic metric space and let [[X]] be a 0-boundary

modulo 2 in X̃ (i.e. X is a subset of even cardinality). Let f : X̃ → T be a
1-Lipschitz map into a metric tree (T, dT ) with m(X, d) = m(X, f∗dT ) and ρ an

orientation modulo 2 for T . Then for any C ∈ R1(X̃,Z2) with ∂C = [[X]] there
holds

m(X, d) ≤ C(d(ρ ◦ f)) ≤M(C) ,

with equalities if and only if C =
∑n
i=1[[xi, yi]] where [xi, yi] are geodesic segments

and {{xi, yi}, 1 ≤ i ≤ n} is a minimal matching for (X, d).

We then may define:

1.7. Definition (global calibrations modulo 2). Let (X̃, d) be a geodesic metric

space and let [[X]] be a 0-boundary modulo 2 in X̃. The differential d(ρ ◦ f) for f, ρ
like in Proposition 1.6 is called a global calibration modulo 2 for [[X]].

For the proof and more properties of global calibrations modulo 2 see Theo-
rem 2.1. As a link to classical results, we include Proposition 2.3 which is the
analogue of Proposition 2.4 valid for usual calibrations. See Subsection 2.4 for ref-
erences to the existing literature. Three directions for generalizations are briefly
discussed in the remarks at the end of Section 2.

1.3. Matching dimension. As a concrete application of our new global duality
result for matchings, we prove an incompressibility property for minimum match-
ings. If we have k points constrained in a n-dimensional cube of side 1, then we
show that the maximal total length of the minimum matching segments behaves

like k
n−1
n . This result uses the properties of the tree we construct in connection

with the matching number and the coarea-formula. See Proposition 4.3 for this
result. An analogy with this Euclidean case justifies in particular to define the
matching dimension of a metric space.

Acknowledgements. Corollary 1.5 answers a question posed by Tristan
Rivière, to whom go our thanks. The first author is supported by the Fonda-
tion des Sciences Mathématiques de Paris and the second author is supported by
the Swiss National Science Foundation.

2. Calibrations modulo 2

2.1. Calibrations for integral chains. We recall here the setting of the theory
of calibrations (see [14], [11]). The following is a simple proof that the shortest
oriented curve connecting two points a, b ∈ Rn is the oriented segment [a, b]. Let
α be the constant coefficient differential 1-form dual to the unit vector τ orienting
[a, b]. Then for any other Lipschitz curve γ from a to b we have

(2.1) lenght([a, b]) =

∫
[a,b]

α =

∫
γ

α ≤ lenght(γ) ,
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where we used the fact that dα = 0 for the middle equality and the fact that τ
realizes the maximum of α and α measures the length along [a, b]

(2.2) 〈α, τ〉 = max
τ ′∈Sn−1

〈α, τ ′〉 = 1 ,

for the remaining equality and inequality. More in general, we may apply the same
method for minimizers of the following problem. Let [[X±]] :=

∑n
i=1([[x+

i ]]− [[x−i ]]).
Consider then

(2.3) FillZ([[X±]]) := inf

{
M(C)

∣∣∣∣ C is an integer multiplicity 1-chain
and ∂C = [[X±]]

}
.

This can be generalized to prove the minimality of k-dimensional oriented surfaces
as well, using their duality with smooth k-forms. A calibration of dimension k
is a comass-1 closed k-form. This is one of the most robust tools for testing the
minimality of submanifolds. For more precise definitions and extensions see [14].

2.2. Plateau problem for chains modulo p. Here and in the rest of this section
we consider a cardinality-2n set X = {x1, . . . , x2n} ⊂ X̃ where X̃ is a Lipschitz-
connected metric space and X has the induced metric. The condition |X| = 2n

implies that [[X]] :=
∑2n
i=1[[xi]] is the boundary of some 1-chain with coefficients in

Z2. In our setting we recall that k-dimensional chains with coefficients in a normed
abelian group G are the completion for the so-called flat distance of the set of finite
sums of Lipschitz singular k-simplices with multiplicities in G. See [8] for more
details. We consider the 1-dimensional unoriented Plateau problem analogous with
the one of the previous section:

(2.4) FillZ2([[X]]) := inf

{
M(C)

∣∣∣∣ C a 1-chain with coefficients
in Z2 and ∂C = [[X]]

}
,

We encourage the interested reader to consult [10] and [2], [28] for results on the
solution of the Plateau problem and for the case of k-chains with coefficients in a
normed abelian group like Zp. We just mention here that in our case p = 2 the

minimum in (2.4) is realized and equal to m(X, d) in case X̃ is geodesic. Moreover,
minimizers C are precisely chains of the form

C =
∑
{x,y}∈π

[[x, y]] , where


π is a minimizer of (1.1) and [[x, y]]
is the 1-chain corresponding to

some geodesic segment [x, y] ⊂ X̃.
Contrary to the case of integral chains, there is no linear duality with 1-forms

for 1-chains with coefficients in Zp. Therefore if we want to find a replacement for
calibrations allowing to test minimality like in (2.1) a different object must be found.

Some partial extension of the duality method was already considered in [21] for
chains with coefficients in Zp in Euclidean spaces Rn. The observation there is
that imposing extra local conditions on the calibration forms and some multiplicity
bounds on projections for the minimizing objects has the effect of reducing the
study of the minimization to a situation similar to the integer coefficient case. For
some related negative results see also [27].

As explained in [21] and in Examples 2.5, in general having only a local condition
on calibrations will not insure global minimality of calibrated Z2-chains. Our result
gives a natural and optimal notion of calibrations for 1-chains with coefficients in
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Z2 by capturing the nonlocal phenomena. We will see below (in Remark 2.6) that
different ideas are needed for a similar natural notion in the case of other groups,
e.g. Zp, p > 2.

2.3. Global calibrations modulo 2. We now describe an extension of Theo-
rem 1.4 which allows to build a solid analogy with the result of Subsection 2.1.

Given a closed set A ⊂ X̃ and a set X ⊂ X̃ of even cardinality, we say that A
is a Z2-cut of X if at least one of the connected components of X̃ \ A contains an
odd number of points in X. Then denote

(2.5) CutZ2
(A,X) := #

{
connected components A′ of A

that are Z2-cuts

}
.

For a Lipschitz function ϕ : X̃ → R we define

(2.6) levZ2
(ϕ,X) :=

∫
R

CutZ2
(ϕ = t,X) dt .

We then consider the following real number:

(2.7) LevZ2(X) := sup
{

levZ2(ϕ) : ϕ : X̃ → R is 1-Lipschitz
}
.

For a map f : X → T defined on an even cardinality metric space X into a tree,
define

(2.8) AX :=
⋃{

[f(x), f(y)]

∣∣∣∣ {x, y} appears in some
minimal matching of (X, d)

}
.

See Proposition 3.4 for some properties of this set. We then have the following
result.

2.1. Theorem. Let (X̃, d) be a geodesic metric space and let X = {x1, . . . , x2n} ⊂
X̃. Let ϕ : X̃ → R be a 1-Lipschitz function. Consider the following statements:

(1) ϕ = ρ ◦ f for 1-Lipschitz maps f : X̃ → T , ρ : T → R where (T, dT ) is a
metric tree, m(X, d) = m(X, f∗dT ) and ρ is an orientation modulo 2 for
AX .

(2) For any 1-Chain C in X̃ there holds FillZ2([[X]]) ≤ C(dϕ).
(3) levZ2

(ϕ,X) = LevZ2
(X).

The following implications hold: (1) ⇒ (2). If πLip
1 (X̃) = 0 then (2) ⇒ (1). If

H1(X̃) = 0 or HLip
1 (X̃) = 0 then (1) ⇔ (3). In particular if πLip

1 (X̃) = 0 then all
three statements are equivalent.

Moreover, If H1(X̃) = 0 or HLip
1 (X̃) = 0, then

m(X, d) = FillZ2
([[X]]) = LevZ2

(X) .

This theorem implies Proposition 1.6 in the introduction. The following examples
show that the implications (2)⇒ (1) and (3)⇒ (1) do not hold on S1.

2.2. Examples. (2) ; (1): Consider S1 ⊂ C with the intrinsic metric d and let
X := {i,−i}. Define ϕ : S1 → R by ϕ(p) := d(1, p). Then ϕ(1) 6= ϕ(−1). Clearly,
m(X, d) = C(dϕ) = π for any chain C with ∂C = [[X]]. But if ρ ◦ f = ϕ with
dT (f(i), f(−i)) = π as in (1), T would be isometric to [0, π] and f(1) = f(−1) = π

2
contradicting ϕ(1) 6= ϕ(−1).

(3) ; (1): For any X ⊂ S1 consisting of two different points and any Lipschitz
function ϕ : S1 → R, there always holds levZ2

(ϕ,X) = 0 since there is no connected
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set in S1 that disconnects X. Hence, LevZ2
(X) = 0 and any 1-Lipschitz function

achieves this maximum. Therefore (3)⇒ (1) doesn’t hold.

The analogue of CutZ2(A,X), levZ2(ϕ,X) for the minimization on integral chains

like in Section 2.1 is as follows. For a closed set A ⊂ X̃ and for Π = {{x+
i }, {x

−
i }}

a partition of X into two equal parts, define the quantity

CutZ(A,Π) :=
∣∣#A ∩ {x+

i } −#A ∩ {x−i }
∣∣ .

Then for a 1-Lipschitz function f : X̃ → R define

(2.9) levZ(f,Π) :=

∫
R

CutZ({f ≤ t},Π) dt ≤ FillZ([[X±]]) .

Proof of (2.9). Indeed, let C be a competitor in (2.3), and parameterize C via the
triple [Γ, θ, τ ] where Γ is a H 1-rectifiable set, θ ∈ L1(Γ,H 1) and has values a.e. in
Z \ {0}, and τ is a H 1-measurable orienting vector field for Γ. Then via the area
formula and using the fact that f is 1-Lipschitz there holds∫

R

∑
p∈f−1(t)∩Γ

|θ(p)| dt =

∫
Γ

J(f |Γ)(p)|θ(p)| dH 1(p) ≤
∫

Γ

|θ(p)| dH 1(p) = M(C) ,

and the left-hand side is estimated by the one of (2.9), since CutZ({f ≤ t},Π) ≤∑
p∈f−1(t) |θ(p)|. Taking now the infimum like in (2.3) we conclude. �

If LevZ(Π) is defined to be the supremum of levZ(f,Π) among all f as above, then
we see immediately that Theorem 1.2 states exactly that FillZ([[X±]]) = LevZ(Π).
Calibrations like in Subsection 2.1 appear via the following well-known fact, of
which we provide a sketch of proof for the convenience of the reader.

2.3. Proposition. Let X̃ be a connected Riemannian manifold with H1(X̃) = 0

and Π be some partition {{x+
1 , . . . , x

+
n }, {x−1 , . . . , x−n }} of a finite subset X of X̃.

Let C be an integer 1-chain with ∂C = [[X±]] and M(C) = FillZ([[X±]]).

For a flat 1-form α on X̃ the following are equivalent:

(1) α is a calibration for C.
(2) α is a calibration for any minimizer C as above.

(3) α = df for some 1-Lipschitz function f : X̃ → R for which as in (1.3)

min
σ∈Sn

n∑
i=1

d
(
x+
i , x

−
σ(i)

)
=

n∑
i=1

f(x+
i )− f(x−i ) .

(4) α = df for some 1-Lipschitz function f : X̃ → R realizing the equality
levZ(f,Π) = LevZ(Π).

Sketch of proof: We prove (1) ⇒ (3) ⇒ (2) ⇒ (1). Note first that (2) ⇒ (1) is

trivial. To prove (1)⇒ (3) note that any closed flat 1-form α of comass 1 on X̃ can

be written as α = df for some Lipschitz f : X̃ → R, see e.g. [15, Theorem 5.12].
The condition maxτ ′∈Sn−1〈α, τ ′〉 ≤ 1 translates in f being 1-Lipschitz. If f were
not a maximizer in (1.3), then we would have

n∑
i=1

f(x+
i )− f(x−i ) <

n∑
i=1

d
(
x+
i , x

−
σ(i)

)
.

Thus there exists i such that, using (2.2),

d
(
x+
i , x

−
σ(i)

)
> f(x+

i )− f(x−σ(i)) = 〈[[x−σ(i), x
+
i ]], df〉 = d

(
x+
i , x

−
σ(i)

)
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and this gives a contradiction. An analogous reasoning gives (3) ⇒ (2). We then
similarly prove (1)⇒ (4)⇒ (2) by noting that counting the number of level sets of
a 1-Lipschitz function f crossed by a curve C which is part of a minimal connection
gives the highest value when ∇f is the orienting unit tangent vector field of C, i.e.
when (2.2) holds. �

Note the following analogue of the above proposition.

2.4. Proposition. Let X̃ be a connected Riemannian manifold with H1(X̃) = 0 and

let X ⊂ X̃ be an even cardinality set. Let C be a chain modulo 2 with ∂C = [[X]]

and M(C) = FillZ2
([[X]]). For a closed flat 1-form α on X̃ consider the following

statements:

(1) α has comass 1 and for a fixed C as above, C(α) = M(C).
(2) α has comass 1 and for any minimizer C as above, C(α) = M(C).

(3) α = d(ρ◦f), where f : X̃ → T is a 1-Lipschitz map into a finite tree (T, dT )
such that m(X, d) = m(X, f∗dT ) and ρ is an orientation for AX defined in
(2.8).

(4) α = dϕ for some 1-Lipschitz function ϕ : X̃ → R realizing the equality
levZ2(ϕ,X) = LevZ2(X).

Then (4)⇔ (3)⇒ (2)⇒ (1).

Proof. (3)⇒ (2) is a particularization of Proposition 3.4(1), which gives the slightly
more precise information that any f like in (3) is actually an isometry when re-
stricted to the segments forming C. The implication (2) ⇒ (1) is trivial. The
implication (3)⇔ (4) follows directly from Theorem 2.1. �

In general we don’t have the implications (1)⇒ (2) and (2)⇒ (3) as the following
examples demonstrate.

2.5. Example (loss of information in conditions (1) and (2)). (1) ; (2): Let X
be the collection of the four points p1 = (1, 1), p2 = (1,−1), p3 = (−1,−1) and
p4 = (−1, 1) in R2. There are exactly two minimizers with boundary [[X]], namely
C1 = [[p1, p4]] + [[p2, p3]] and C2 = [[p1, p2]] + [[p3, p4]]. Obviously, C2(dx) = 0 and
C1(dx) = 4 = M(C2). (1) holds for C1 but not for C2, hence we don’t have (2).

(2) ; (3): Let X̃ = B(0, 1) ⊂ R2 and select X = {(1, 0), (−1, 0)}. The function
ϕ(p) = |p| is 1-Lipschitz and C(dϕ) = 2 = M(C) for the unique minimizer C =
[[(1, 0), (−1, 0)]] with boundary [[X]]. But none of the level sets ϕ−1(t) disconnects
the two points of X. Hence levZ2

(ϕ,X) = 0 < 2 = LevZ2
(X) by the (1)⇔ (3) part

of Theorem 2.1. The equivalence of (3) and (4) in Proposition 2.4 now implies that
(3) doesn’t hold.

2.4. Generalizations. We recall that the condition on the coefficient group G in
order for the Plateau problem for flat k-chains with coefficients in G and compact
support to be solvable is, by [28], that there exist no nonconstant Lipschitz path
γ : [0, 1] → G. This condition is true for discrete groups G = Z and G = Z2 for
which we have a duality as above, but also for more general discrete groups like
Zp or Zn, for Z endowed with the p-adic norm and for Rn or S1 endowed with the
snowflaked distance dα(x, y) := |x − y|α, α ∈]0, 1[. We include here some remarks
about global duality questions for the problem of minimizing the length of 1-chains
in some of the cases which remain open.
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2.6. Remark (global calibrations modulo p for p ≥ 3). Note that for G = Z2 several
coincidences happen which help us pinpoint what global calibrations for chains
modulo 2 should be. Most notably we have an action R 	 Z2, therefore we may still
identify calibrations modulo 2 with R-valued forms, modulo this action. Already
in the case Z3 this is not valid anymore. That in this case usual differential forms
are not enough even for calibrating 1-chains is seen by considering the minimizer
for the boundary [[X]] corresponding to the 3rd roots of unity in C. In this case the
minimizing 1-chain modulo 3 is the C given by the cone on X and the underling
set has a triple junction at the origin. If some α = df is to calibrate C like in the
mod-2 case, then the level sets of f have to be orthogonal to the “arms” of the
triple junction, which is not compatible with the angles at the origin, see Figure 1.

Figure 1. We depict a solution C of the Plateau problem for 1-
chains with coefficients in Z3. If df were to describe a calibration,
then the level sets of f near spt(C) would be given by the dotted
transverse lines. This is not possible near the origin.

2.7. Remark (calibrations for the coefficient group (R, dα)). The minimization of
mass for 1-chains with coefficients in R endowed with the norm dα(x, y) := |x−y|α,
α ∈]0, 1[, is exactly the same as the so-called branched optimal transport problem
or irrigation problem. In that case a possible starting point for a duality theory
is represented by the so-called landscape function introduced in [24], see also [29].
For the description of this function and for further references we refer to these two
papers.

2.8. Remark (calibrations with coefficients in Zn with different norms). A duality
theory with coefficients in Zn was introduced in [19] for a different reason, and
constant-coefficient calibrations were considered. In that case, if the norm on Zn
is symmetric enough the situation is analogous to the classical case n = 1, and a
duality between forms with values in Rn (also interpretable as n-tuples of forms
and Zn-valued 1-chains) is present. The question is relevant in crystallography
problems [6].
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3. Proof of the main theorems

3.1. Proof of Theorem 1.1. To simplify the notation we write 1, 2, . . . , 2n for the
points in X. The set of all matchings on X is denoted by M (X). The matching
number of some π ∈M (X) with respect to the metric d is defined by

m(π, d) :=
∑
{i,j}∈π

d(i, j) .

The matching number of d then is

m(X, d) := min
π∈M (X)

m(π, d) ,

and a minimal matching is some π ∈ M (X) for which this minimum is achieved.
The set of all minimal matchings is denoted by M (X, d). We will write {i, j} ∈
P(d) if there is a minimal matching π ∈M (X, d) with {i, j} ∈ π.

We denote with D the set of pseudometrics d′ on X with d′ ≤ d and m(X, d′) =
m(X, d). Given two metrics d1 and d2 on X we can associate a distance δ(d1, d2)
by

δ(d1, d2) := max
i,j∈X

|d1(i, j)− d2(i, j)| .

This is similar to the definition of the Gromov-Hausdorff distance of metric spaces.
It is easy to check that (D , δ) is a compact metric space and the function w : D → R
given by

w(d′) :=
∑
i 6=j

d′(i, j)

is continuous. Hence, w attains its minimum at some D ∈ D . The goal will
be to show that D is tree-like. By using a compactness argument like this, D
may be a pseudometric even if we started with a genuine metric d. This actually
does not depend on the particular way of constructing D and we can’t reformulate
Theorem 1.1 using metrics instead of pseudometrics. Indeed, consider the following
example:

3.1. Example. Let X = {1, 2, 3, 4, 5, 6} and 0 < ε ≤ 2. For i < j set,

d(i, j) :=

 2 if 1 ≤ i < j ≤ 4 ,
1 if 1 ≤ i ≤ 4 and k = 5, 6 ,
ε if i = 5, j = 6 .

Let D be a tree-like pseudometric on X with D ≤ d and m(X,D) = m(X, d). By
symmetry it is easy to check that m(X, d) = 4 and some matching π ∈M (X) is in
M (X, d) if and only if {5, 6} /∈ π. This forces D(i, j) = d(i, j) unless {i, j} = {5, 6}.
Because D is tree-like,

2 +D(5, 6) = d(1, 2) +D(5, 6) = D(1, 2) +D(5, 6)

≤ max{D(1, 5) +D(2, 6), D(1, 6) +D(2, 5)}
= max{d(1, 5) + d(2, 6), d(1, 6) + d(2, 5)} = 2 ,

and hence D(5, 6) = 0. So D can’t be strictly positive.

With the definition of D as an element of (D , δ) minimizing w, we get:

3.2. Lemma. There is a pseudometric D on X with the property that for any other
pseudometric D′ on X with D′ ≤ D and D′ 6= D we have m(X,D′) < m(X,D) =
m(X, d).
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Here a first step which shows that there are many minimal matchings with
respect to D. For simplicity we abbreviate |ij| = D(i, j).

3.3. Lemma. For all different points i, j ∈ X we have {i, j} ∈P(D).

Proof. The main obstacle in obtaining this result is the violation of the triangle in-
equality. Assume by contradiction that for different i, j ∈ X we have {i, j} /∈P(D).
Since pseudometrics are those symmetric functions d′ : X ×X → R determined by
the inequalities d′(a, b) ≥ 0 and d′(a, b) + d′(b, c) ≥ d′(a, c), the only way in which
making |ij| smaller makes us exit the set of pseudometrics is if |ij| = 0 or if there
exists some k /∈ {i, j} for which we have

|ij|+ |jk| = |ik| or |ji|+ |ik| = |jk| .
We write [a, b] ⊂ [c, d] for some not necessarily different a, b, c, d ∈ X if

|ca|+ |ab|+ |bd| = |cd| .
The following fact is easy to check:

(3.1) [a, b] ⊂ [c, d] implies [a, b] ⊂ [a, d] and [a, b] ⊂ [c, b].

Step 1. If |ij| > 0, [i, j] ⊂ [k, l] and {k, l} ∈ P(D), then {i, j} ∈ P(D), con-
tradicting our assumption. If {k, l} = {i, j} there is nothing to show, so assume
w.l.o.g. l /∈ {i, j}. We will first show that {k, j} ∈P(D) (note that k 6= j because
|kj| = |ki| + |ij| > 0 by (3.1) and the assumption |ij| > 0). {k, l} ∈ P(D) means
that there is some π ∈ M (X,D) with {k, l} ∈ π. Since π is a matching, there is
some j′ ∈ X with {j, j′} ∈ π. By the minimality of m(π,D) we obtain

(3.2) |kl|+ |jj′| ≤ min{|kj|+ |lj′|, |kj′|+ |lj|} .
Otherwise we could replace the pairs {k, l}, {j, j′} in π by {k, j}, {l, j′} or
{k, j′}, {l, j} to obtain a new matching with a smaller matching number, but this is
not possible. Because of (3.1) we have [kj] ⊂ [kl] which together with (3.2) implies

|kl|+ |jj′| ≤ |kj|+ |lj′| ≤ |kj|+ |lj|+ |jj′| = |kl|+ |jj′| .

This means that both inequalities are actually equalities and in particular |lj′| =
|lj|+ |jj′|. Hence,

|kj|+ |lj′| = |kj|+ |lj|+ |jj′| = |kl|+ |jj′| ,
because [kj] ⊂ [kl]. So, by replacing the pairs {k, l}, {j, j′} in π with {k, j}, {l, j′}
we obtain a matching π′ with the same, and therefore minimal, matching number.
This implies {k, j} ∈P(D). If k = i we have directly {i, j} ∈P(D), and if k 6= i
we have by (3.1) that [i, j] ⊂ [k, j] and repeating the arguments above with these
intervals we obtain again {i, j} ∈P(D), contradicting our assumption.

Step 2. Proof of the lemma in case |ij| > 0. Depending on {i, j} define the set
of pairs

P :=
{
{k, l} ∈ 2X : [i, j] ⊂ [k, l] or [j, i] ⊂ [k, l]

}
.

Note that [j, i] ⊂ [k, l] is equivalent with [i, j] ⊂ [l, k], so P is well defined. For
ε > 0 define

Dε(a, b) := |xy|ε :=

{
|ab| − ε if {a, b} ∈P ,
|ab| else .

Since |ij| > 0 (and hence also |kl| > 0 if {k, l} ∈P) we can assume that ε is small
enough such that Dε ≥ 0 and that {k, l} /∈ P(D) implies {k, l} /∈ P(Dε) and
all strict triangle inequalities for D are also strict triangle inequalities for Dε. By
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the definition of D we have two possibilities: either m(X,Dε) < m(X,D) or some
triangle inequality of Dε is violated. So assume first that m(X,Dε) < m(X,D). By
the choice of ε there is some {k, l} ∈P for which {k, l} ∈P(D), but this implies
{i, j} ∈P(D) by Step 1, and this gives a contradiction. Now assume some triangle
inequality for Dε is violated. By the choice of ε this means that there are a, b, c ∈ X
with

(3.3) |ab|+ |bc| = |ac| and |ab|ε + |bc|ε < |ac|ε .

In order for the strict inequality to hold at least one of the pairs {a, b}, {b, c} needs
to be in P. We assume {a, b} ∈ P, the other cases being similar. {a, b} ∈ P
implies (by switching i and j if necessary we assume [i, j] ⊂ [a, b])

|ai|+ |ij|+ |jc| ≥ |ac| = |ab|+ |bc| = |ai|+ |ij|+ |jb|+ |bc| ≥ |ai|+ |ij|+ |jc| ,

and hence |ac| = |ai| + |ij| + |jc|, which forces {a, c} ∈ P. This means that
|ac|ε = |ac| − ε and |ab|ε = |ab| − ε. In order to obtain the strict inequality in (3.3),
it is therefore necessary that {b, c} ∈P. If [i, j] ⊂ [b, c],

|ac| = |ab|+ |bc| = (|ai|+ |ij|+ |jb|) + (|bi|+ |ij|+ |jc|)
= (|ai|+ |ij|+ |jc|) + (|bi|+ |ij|+ |jb|) ≥ |ac|+ |ij| > |ac| ,

since |ij| > 0 by assumption. If [j, i] ⊂ [b, c],

|ac| = |ab|+ |bc| = (|ai|+ |ij|+ |jb|) + (|ci|+ |ij|+ |jb|)
≥ |ac|+ 2|ij| > 0 .

Both of these options lead to a contradiction.
Step 3. Proof of the lemma in case |ij| = 0. Pick any optimal π ∈ M (X,D).

Because π is a matching and {i, j} /∈ P(D) there are different k, l ∈ X with
{i, k} ∈ π and {j, l} ∈ π. Then

|ij|+ |kl| = |kl| ≤ |ki|+ |ij|+ |jl| = |ki|+ |jl| .

Hence by replacing the pairs {i, k}, {j, l} in π with {i, j}, {k, l} we obtain a new
matching π′ with m(π′, D) ≤ m(π,D). m(π,D) is minimal among matchings, and
therefore π′ too is a minimal matching, which witnesses the fact that {i, j} ∈P(D),
a contradiction to the starting assumption. �

With this preparation we can prove the main result.

Proof of Theorem 1.1. Assume by contradiction that (X,D) is not tree-like, i.e.
renumbering the elements of X if necessary,

|13|+ |24| > max{|12|+ |34|, |14|+ |23|} .

By Lemma 3.3, {1, 3}, {2, 4} ∈P(D). This means that there are π, π′ ∈M (X,D)
with {1, 3} ∈ π, {2, 4} ∈ π′ and m(π,D) = m(π′, D) = m(X,D). We can write

π = {{1, 3}, {i2, j2}, . . . , {in, jn}} ,
π′ = {{2, 4}, {i′2, j′2}, . . . , {i′n, j′n}} .

We thus have

(3.4) 2m(X,D) = |13|+ |24|+
n∑

m=2

|imjm|+ |i′mj′m| .
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Every element of X appears exactly twice in this sum because it is composed of two
matchings. Taking T := {{im, jm}, {i′m, j′m} : m = 2, . . . , n} with repeated cou-
ples counted twice, consider the multigraphs (i.e. graphs with multiplicity) (X,E),
(X,E1) and (X,E2) given by

E = T ∪ {{1, 3}, {2, 4}} ,
E1 = T ∪ {{1, 2}, {3, 4}} ,
E2 = T ∪ {{1, 4}, {2, 3}} .

By the remark above, every x ∈ X has exactly two neighbors (counting multiplic-
ities of edges) in (X,E) and hence the same is true for the other graphs. By a
standard result of graph theory, these multigraphs are disjoint unions of cycles.
Since (X,E) is the union of two matchings, the cycles in E have even length, oth-
erwise there would be two pairs in π or π′ that have a point in common, which is
not possible.

We consider separately the cases in which in (X,E) the edges {1, 3}, {2, 4} belong
to the same cycle or to different cycles.

Figure 2. We show what can happen going from (X,E) to
(X,E1), (X,E2) in the two possible cases. The points 1, 2, 3, 4 are
drawn in grey.

If {1, 3}, {2, 4} belong to different cycles of (X,E) of lengths 2r, 2s, then in both
(X,E1) and (X,E2) the points 1, 2, 3, 4 belong to a single cycle of length 2r + 2s.

If {1, 3}, {2, 4} belong to the same cycle C of (X,E) of length 2r then removing
those edges from C we are left with two paths P, P ′ connecting either 1, 2 and 3, 4,
or 1, 3 and 2, 4. These paths also belong to (X,E1), (X,E2) and have total length
2r − 2. Moreover, in the first case, in (X,E1) the edges {{1, 2}, {3, 4}} ∪ P ∪ P ′
form a cycle C1 of length 2r and in the second case the same is true for (X,E2).

Therefore, in either case (X,E1) or (X,E2) is a union of disjoint cycles of even
lengths and by splitting (arbitrarily) each cycle into two sets of disjoint edges we
obtain two matchings σ and σ′. Comparing with (3.4) leads to

m(σ,D) +m(σ′, D) ≤ max{|12|+ |34|, |14|+ |23|}+

n∑
m=2

|imjm|+ |i′mj′m|

< |13|+ |24|+
n∑

m=2

|imjm|+ |i′mj′m| = 2m(X,D) .

But by the definition of the matching number, m(σ,D),m(σ′, D) ≥ m(X,D), a
contradiction. �
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Note that the tree furnished in the theorem is generally not unique, as shown in
Figure 3.

Figure 3. Consider the cyclic graph with six vertices and the
combinatorial (integer-valued) distance represented in the higher
left corner. Shown on the right are the four possible metric trees of
Theorem 1.1. If we perturb the combinatorial distance by adding
further edges, then less and less of these trees stay admissible.
The star-like tree with 2n points at distance 1/2 from the center
is admissible for the complete graph, and thus for any graph with
2n vertices and a matching of length n.

3.2. Structure of the constructed tree. The tree-like pseudometric D we con-
structed in the proof of Theorem 1.1 has some special features which we will discuss
in this part. For once we can isometrically embed (X,D) into a metric tree (T, dT ).
As such we obtain a 1-Lipschitz map f : (X, d) → (T, dT ). Complete metric trees
are injective, see e.g. [18, Lemma 2.1] for a simple proof. As such, whenever the

finite space (X, d) is realized as a subspace of some metric space (X̃, d), there is

a 1-Lipschitz extension f : (X̃, d) → (T, dT ). For a matching π of X and a map
f : X → T into a tree we define the set

Aπ :=
⋃

{x,y}∈π

[f(x), f(y)] ⊂ T .

We will also use the set AX ⊂ T as defined in (2.8). For points u, v, w in a tree T we
denote by c(u, v, w) the unique intersection point of the three arcs [u, v], [v, w], [w, u].
For a map g : Y → T defined on a set Y we denote

(3.5) Vg(Y ) := {c(g(x), g(y), g(z)) : x, y, z ∈ Y } ⊂ T .

This set contains the set of vertices of the subtree in T spanned by g(Y ), and equals
this set if no g(x) is contained in some open arc ]g(y), g(z)[.

3.4. Proposition. For any pseudometric d on a set X with |X| = 2n, there is a
metric tree (T, dT ) and a 1-Lipschitz map f : X → T such that m(X, f∗dT ) =
m(X, d). Assuming such a map, let π ∈ M (X, f∗dT ) (note that M (X, d) ⊂
M (X, f∗dT )). Then we have the following properties:

(1) For a pair {x, y} that appears in a minimal matching of (X, d), there holds

dT (f(x), f(y)) = d(x, y). Assume further (X̃, d) contains X as a subset,
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f : X̃ → T is a 1-Lipschitz extension and [x, y] is a geodesic segment

connecting x with y in X̃, then the restriction f : [x, y]→ [f(x), f(y)] is an
isometry.

(2) For different matches {x, y} and {x′, y′} in π, the arcs [f(x), f(y)] and
[f(x′), f(y′)] have at most one common point. Hence H 1(Aπ) = m(X, d).

(3) Aπ ⊂ Aπ′ for any other matching π′ of X. In particular Aπ = AX and
Aπ = T if (T, dT ) is a minimal tree.

(4) For all points p ∈ Aπ \Vf (X) there are components C of Aπ \{p} for which
#{x ∈ X : f(x) ∈ C} is odd.

Proof. As before we abbreviate |xy| = f∗dT . Let π′ be a minimal matching for
(X, d). By assumption, m(π, d) = m(X, f∗dT ) and hence dT (f(x), f(y)) = d(x, y)

for {x, y} ∈ π, otherwise we would have m(X, d) > m(X, f∗dT ). Let f : X̃ → T

be any 1-Lipschitz extension and [x, y] is a geodesic in X̃. Because f is 1-Lipschitz
and dT (f(x), f(y)) = d(x, y), it is dT (f(x′), f(y′)) = d(x′, y′) for any two points
x′, y′ ∈ [x, y] which shows (1).

Let {x, y} and {x′, y′} be two different pairs in π. Indeed, if the intersection
[f(x), f(y)] ∩ [f(x′), f(y′)] would contain more than one point, it would contain a
nontrivial arc. But then

min{|xx′|+ |yy′|, |xy′|+ |x′y|} < |xy|+ |x′y′| ,

and by replacing the pairs {p, q}, {p′, q′} in π with {p, p′}, {q, q′} or {p, q′}, {p′, q}
we obtain a new matching π′ with m(π′, f∗dT ) < m(π, f∗dT ), which is not possible.
This proves (2). Moreover it implies H 1(Aπ′) = m(X, d).

To prove (3) and (4) it suffices to prove that Aπ ⊂ Aπ′ for any matching π′ of X.
This then shows that Aπ = AX and in case T is a minimal tree, then any pair {x, y}
is contained in such a minimal matching. Hence, Aπ = T . Assume by contradiction
that Aπ \ Aπ′ is nonempty. Let T ′ ⊂ T be the subtree spanned by f(X). Since
both Aπ and Aπ′ are finite unions of closed arcs, they are closed and there is a
nontrivial arc [a, b] in Aπ \ Aπ. Since T ′ is finite, we can assume that [a, b] does
not intersect the set Vf (X) defined in (3.5). Hence, T ′ \ [a, b] consists of exactly
two components. Denote by B one of them and let Y ⊂ X be those points that
get mapped into B by f . Since [a, b]∩Aπ′ is empty, Y contains an even number of
points. Otherwise there would be a matching {x, y} ∈ π′ with [a, b] ⊂ [f(x), f(y)].
Since [a, b] doesn’t contain any vertices of T ′, (2) implies that there is exactly one
matching {x, y} ∈ π with [a, b] ⊂ [f(x), f(y)]. Hence Y is odd (this also shows (4)),
which gives a contradiction. Hence, Aπ ⊂ Aπ′ and visa versa.

�

3.3. Proof of Theorem 2.1. Apart from the construction of the tree in [31] we
will make use of the following lemma, which is probably well known.

3.5. Lemma ([31],Lemma 3.5). Let X̃ be a connected and locally (Lipschitz) path-

connected space with H
(Lip)
1 (X̃) = 0. Assume that C ⊂ X̃ is a closed set that

disconnects two points x and x′ in X̃. Then there is a connected component of C
that disconnects x and x′.

Additionally, he following facts will be used in the proof of Theorem 2.1.
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Figure 4. Illustrated is a 1-Lipschitz map f : R2 → T as in
Proposition 3.4 corresponding to the set X displayed by the four
dots and mutual geodesics by thick lines on the left. The dotted
lines indicate some possible level sets.

Let C = [[Γ]] ∈ R1(Y,Z2) where Γ ⊂ Y is an H 1-rectifiable subset of Y , and let
f : Y → Z, g : Z → R be Lipschitz functions. As in [8, p. 10], the push-forward
f#C ∈ R1(Z,Z2) is defined by

∑∞
i=1[[(f ◦ γi)(Ki)]], where each f ◦ γi : Ki → Z is

bi-Lipschitz, Ki ⊂ R is compact, the images γi(Ki) ⊂ Γ are pairwise disjoint and
H 1(f(Γ \ ∪∞i=1γi(Ki))) = 0. Then

(3.6) C(d(g ◦ f)) ≥
∑
i

∫
Ki

|(g ◦ f ◦ ϕi)′(t)| dH 1(t) = (f#C)(dg) .

Let X ⊂ X̃ be a set consisting of an even number of points in a geodesic metric
space (X̃, d), then as noted in the beginning of Subsection 2.2,

(3.7) FillZ2
([[X]]) = m(X, d) ,

and the minimum is achieved if C =
∑n
i=1[[xi, yi]] where [xi, yi] are geodesic seg-

ments and {{xi, yi}, 1 ≤ i ≤ n} is a minimal matching for (X, d).
Let γ : [0, 1]→ T be a Lipschitz curve into some metric tree (T, dT ). Then

(3.8) γ#[[0, 1]] = [[γ(0), γ(1)]] .

This is an immediate consequence of the fact that γ#[[S1]] = 0 for every closed
Lipschitz curve γ : S1 → T . Any such γ has a Lipschitz extension g : B2 → T with
im(g) = im(γ) (for example, let q ∈ im(γ) and define g(te) := [q, γ(e)](t)). This
implies H 2(im(g)) = H 2(im(γ)) = 0 and hence γ#[[S1]] = ∂(g#[[B2]]) = 0.

Proof of Theorem 2.1: (1)⇒ (2): Assume that #X = 2n and let f and ρ be as in

(1) and C ∈ R1(X̃,Z2) with ∂C = [[X]]. Assume first that C =
∑n
i=1 γi#[[0, 1]],

where γi : [0, 1] → X are Lipschitz curves with γi(t) ∈ X for all i and t = 0, 1.
Then CT := f#C is a 1-chain in T with ∂(CT ) = f#[[X]]. From (3.8) it follows that

CT =

n∑
i=1

[[f(γi(0)), f(γi(1))]] .

Let π be a minimal matching for m(X, f∗dT ). From Proposition 3.4(4) it follows
for all p ∈ Aπ \ Vf (X), there is a component C of Aπ \ {p} such that #{x ∈ X :
f(x) ∈ C} is odd. Hence, p ∈ spt(CT ) and therefore Aπ ⊂ spt(CT ). Since ρ is
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an orientation modulo 2 for AX , this shows together with Proposition 3.4(2), (3.6)
and (3.7) that

FillZ2
([[X]]) = m(X, d) = H 1(Aπ) ≤ CT (dρ) ≤ C(d(ρ ◦ f)) .

This shows (2) for C and by a simple argument for any Lipschitz chain. The general
case follows by approximation.

(1)⇒ (3): Let f and ρ be as in (1) and let π be a minimal matching of (X, d),
i.e. m(π, d) = m(X, d).

Let A ⊂ T \ f(X) be some set and {x, y} ∈ π. If x and y are in the same

component C of X̃ \f−1(A), then f(C) is a connected set containing f(x) and f(y)
but does not intersect A. Since a set in T is connected if and only if it is arcwise
connected, A doesn’t intersect [f(x), f(y)]. On the other side, if f(x) and f(y)
are in the same component of T \A, then A doesn’t intersect [f(x), f(y)] and since
f : [x, y]→ [f(x), f(y)] is an isometry by Proposition 3.4(1), [x, y] does not intersect

f−1(A). Hence x and y are in the same connected component of X̃ \ f−1(A). This
shows that for a set A ⊂ T \ f(X),

(3.9) A disconnects f(x) and f(y) in T iff f−1(A) disconnects x and y in X̃ .

Now assume further that A ⊂ T \Vf (X) is closed and connected. Then by Proposi-
tion 3.4(2), A intersects at most one arc [f(x), f(y)] for {x, y} ∈ π. If A∩[f(x), f(y)]
is nonempty for some {x, y} ∈ π, (3.9) shows that f−1(A∩Aπ) disconnects x and y

in X̃ while all other matches in π are not disconnected by f−1(A). From Lemma 3.5
it follows that there is at least one connected component of f−1(A ∩Aπ) that dis-
connects x and y and hence

CutZ2
(f−1(A), X) = CutZ2

(f−1(A ∩Aπ), X)

=

{
nA ≥ 1 if A ∩Aπ 6= ∅ ,
0 if A ∩Aπ = ∅ .(3.10)

This in particular holds for A consisting of a single point outside Vf (X). From the
definition in (3.5) we see that Vf (X) is a finite set, and by Proposition 3.4(2) we
have H 1(Aπ) = m(X, d), therefore

(3.11) m(X, d) = H 1(Aπ) ≤
∫
Aπ

CutZ2
(f = q,X) dH 1(q) .

From the area formula and since ρ is 1-Lipschitz it follows,∫
R

#{ρ−1(t) ∩Aπ} dt =

∫
Aπ

J(ρ|Aπ )(q) dH 1(q) ≤H 1(Aπ) <∞ .

This shows that #{ρ−1(t)∩Aπ} is finite for almost every t. Fix some t /∈ ρ(Vf (X))
and let At be the collection of connected components of ρ−1(t) in T . Since any
A ∈ At intersects Aπ in at most one point we obtain by (3.10),

CutZ2
(ϕ = t,X) =

∑
A∈At

CutZ2
(f−1(A), X)

=
∑

q∈ρ−1(t)∩Aπ

CutZ2
(f = q,X) .(3.12)
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Applying the area formula with g(q) := CutZ2
(f = q,X) together with (3.12) we

get ∫
Aπ

J(ρ|Aπ )(q)g(q) dH 1(q) =

∫
R

∑
q∈ρ−1(t)∩Aπ

g(q) dt = levZ2
(ϕ,X) .

By the definition of ρ there holds J(ρ|Aπ )(q) = 1 for H 1-a.e. q ∈ Aπ. With (3.7)
and (3.11) we conclude that

(3.13) FillZ2([[X]]) = m(X, d) ≤ levZ2(ϕ,X) ≤ LevZ2(X) .

Next we show that LevZ2(X) ≤ FillZ2([[X]]) holds. Indeed, let Γ be a geodesic

segment that connects x with y in X̃ and g : X̃ → R be 1-Lipschitz. Then via the
area formula there holds

(3.14)

∫
R

#(g−1(t) ∩ Γ) dt =

∫
Γ

J(g|Γ)(s) dH 1(s) ≤H 1(Γ) = d(x, y) .

Clearly, #(g−1(t) ∩ Γ) is an upper bound on the number of components of g−1(t)

that separate x from y in X̃. Hence, levZ2
(g, {x, y}) ≤ d(x, y) and summing over

all pairs of π we get

levZ2
(g,X) ≤

∑
{x,y}∈π

levZ2
(g, {x, y}) ≤ m(π, d) = m(X, d) = FillZ2

([[X]]) .

This concludes the proof of this part and since maps f and ρ as in (1) exist by

Proposition 3.4, this also shows that in case H1(X̃) = 0 or HLip
1 (X̃) we have

(3.15) FillZ2
([[X]]) = m(X, d) = LevZ2

(X) .

(3)⇒ (1): Let ϕ : X̃ → R be as in (3). By (3.15) just above, we know
that levZ2

(ϕ,X) = m(X, d). As in the proof of [31, Theorem 1] consider the set

T = X̃/∼, where x ∼ x′ if D(x, x′) = 0 with the pseudo distance D on X̃ given by

(3.16) D(x, x′) := inf{diam(ϕ(C)) : x, x′ ∈ C and C ⊂ X̃ is connected} .

Let f : X̃ → T be the quotient map and ρ : T → R the map for which ϕ = ρ ◦ f
holds. It is shown in [31, Lemma 3.1] that (T,D) is a metric space and both f and
ρ are 1-Lipschitz. Moreover, it follows from [31, Proposition 3.8] that (T,D) is a
(topological) tree. Let dT be the intrinsic metric induced by (T,D), i.e. dT (p, p′)

is the minimal length of curves in (T,D) connecting p with p′ in T . Because X̃

is geodesic and f : (X̃, d) → (T,D) is onto and 1-Lipschitz, we immediately get

that f : (X̃, d) → (T, dT ) is also 1-Lipschitz. By construction, dT ≥ D and hence
ρ : (T, dT ) → R is also 1-Lipschitz. Let π be a minimal matching of (X, d). From

the area formula it follows for a geodesic segment [x, y] connecting x with y in X̃
as in (3.14),

lev(ϕ = t, {x, y}) =

∫
R

CutZ2
(ϕ = t, {x, y}) dt ≤

∫
R

#(ϕ−1(t) ∩ [x, y]) dt

≤
∫

[x,y]

J(ϕ|[x,y])(s) dH
1(s) ≤ d(x, y) .

Hence,

m(X, d) = levZ2
(ϕ,X) ≤

∑
{x,y}∈π

lev(ϕ = t, {x, y}) ≤ m(π, d) = m(X, d) .
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This shows that lev(ϕ = t, {x, y}) = d(x, y) for all {x, y} ∈ π and further there is a
measurable set G ⊂ [x, y] with

(3.17)

 H 1(G \ [x, y]) = 0 ,
J(ϕ|[x,y])(s) = 1 for all s ∈ G ,
#(ϕ−1(t) ∩ [x, y]) = CutZ2(ϕ = t, {x, y}) <∞ for all t ∈ ϕ(G) .

This means that for t ∈ ϕ(G) every point s in the finite set ϕ−1(t)∩[x, y] comes from
a Z2-cut component of ϕ−1(t) and J(ϕ|[x,y])(s) = 1. From the construction of T it is

clear that every connected component c of ϕ−1(t) satisfies f(c) = p for some p ∈ T .
Now assume by contradiction that there are two different points x < s1 < s2 < y in
G with ϕ(s1) = ϕ(s2) = t and f(s1) = f(s2) = p. By (3.17) there are components
c1 and c2 of ϕ−1(t) that disconnect x and y and ci ∩ [x, y] = si, i = 1, 2. Since
J(ϕ|[x,y])(s1) = 1, there is some s3 ∈ G∩]s1, s2[ close to s1 with ϕ(s3) = t′ 6= t.

Let c3 be the corresponding component of ϕ−1(t′) with c3 ∩ [x, y] = s3. From the
definition of D in (3.16) it follows that

dT (p, p) ≥ D(p, p) = D(s1, s2) ≥ |t− t′| ,

a contradiction. To see the last estimate, let C be a connected set in X̃ that
contains s1 and s2. Since c3 disconnects x and y in X̃, C∩c3 is nonempty and hence
diam(ϕ(C)) ≥ |t− t′|. So the restriction f |G is injective and satisfies J(f |[x,y])(s) =

1 for H 1-a.e. s ∈ [x, y]. The latter is implied the fact that f andρ are 1-Lipschitz
using the chain rule

(3.18) 1 = J(ϕ|[x,y])(s) = J(ρ|f([x,y]))(f(s))J(f |[x,y])(s) ,

which holds for a.e. s ∈ [x, y]. Therefore f |[x,y] : [x, y]→ [f(x), f(y)] is an isometry
and in particular dT (f(x), f(y)) = d(x, y) for all {x, y} ∈ π. Hence we obtain
m(π, d) = m(π, f∗dT ) and there holds

CutZ2
(p, {x, y}) =

{
1 if p ∈ [f(x), f(y)] ∩ f(G) ,
0 if p /∈ [f(x), f(y)] .

This implies∫
Aπ

CutZ2(p,X) dH 1(p) ≤
∑
{x,y}∈π

∫
[f(x),f(y)]

CutZ2(p, {x, y}) dH 1(p)

≤H 1(Aπ) ≤ m(X, d) .

Since every component c of ϕ−1(t) maps to some single point in T there holds

CutZ2
(ϕ = t,X) =

∑
p∈ρ−1(t)

CutZ2
(p,X) ,

for all t ∈ R. Since ρ is 1-Lipschitz it follows from the area formula, (3.15) and the
two equations above,

m(X, d) =

∫
R

CutZ2
(ϕ = t,X) dt ≤

∫
Aπ

CutZ2
(p,X) dH 1(p) ≤H 1(Aπ) ≤ m(X, d) .

Hence H 1(Aπ) = m(X, d) and as in Proposition 3.4(2), for two different pairs
{x, y}, {y′, y′} ∈ π the intersection [f(x), f(y)] ∩ [f(x′), f(y′)] contains at most
one point. Assume by contradiction that there is a matching π′ of X with
m(π′, f∗dT ) < m(π, f∗dT ). If we consider Aπ′ = ∪{x,y}∈π′ [f(x), f(y)], this as-

sumption implies H 1(Aπ′) < H 1(Aπ). Then the same argument as in the proof of
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Proposition 3.4(3) gives a contradiction and hence m(X, f∗dT ) = m(X, d). From
(3.18) it follows directly that ρ is an orientation modulo 2 for Aπ, which equals AX
by Proposition 3.4(3).

(2)⇒ (1): Let ϕ : X̃ → R be as in (2). As in [26] consider the pseudo distance

dϕ on X̃ defined by

dϕ(x, y) := inf{length(ϕ ◦ γ) : γ a Lipschitz curve connecting x with x′} .

Let T = X̃/∼ with x ∼ x′ if dϕ(x, y) = 0. It is stated in [26, Theorem 5],
respectively in the proof thereof, that (T, dϕ) is a metric tree and there are 1-

Lipschitz maps f : X̃ → T and ρ : T → R with ϕ = ρ ◦ f .
Let π be a minimal matching for (X, d). For any {x, y} ∈ π choose a geodesic

segment [x, y] in X̃. Assume by contradiction that f is not injective on [x, y]. Then
there are points x ≤ v < w ≤ y on [x, y] with f(v) = f(w). By the definition of dϕ,

there is a sequence of Lipschitz curves γn : [0, 1] → X̃ connecting v with w such
that

0 = dϕ(f(v), f(w)) = dϕ(v, w) = lim
n→∞

length(ϕ ◦ γn) = lim
n→∞

∫ 1

0

|(ϕ ◦ γn)′(s)| ds .

Replacing the γn by injective curves if necessary we get

lim
n→∞

[[im(γn)]](dϕ) = lim
n→∞

∫ 1

0

|(ϕ ◦ γn)′(s)| ds = 0 .

If we set Cn := [[x, v]] + [[im(γn)]] + [[w, y]], then ∂Cn = [[x]] + [[y]] and for n large

Cn(dϕ) ≤ [[x, v]](dϕ) + [[im(γn)]](dϕ) + [[w, y]](dϕ)

≤ d(x, v) + d(w, x) + [[im(γn)]](dϕ) < d(x, y) .

This contradicts our assumption on ϕ. Namely, from (3.7) it follows, m(X, d) =
FillZ2([[X]]) ≤ Cn(dϕ) for all n.

Therefore, f is injective on [x, y]. By the assumption on ϕ there holds
J(ϕ|[x,y])(p) = 1 for H 1-a.e. p ∈ [x, y] and since both f and ρ are 1-Lipschitz,

the chain rule (3.18) implies that J(f |[x,y])(p) = 1 for H 1-a.e. p ∈ [x, y]. Hence
the restriction of f to [x, y] is an isometry. This is true for any {x, y} ∈ π, thus
m(π, d) = m(π, f∗dϕ). Now assume that [f(x), f(y)] ∩ [f(x′), f(y′)] is nonempty
for some different {x, y}, {x′, y′} ∈ π. If this intersection would contain an arc [a, b]
for different a, b ∈ T , then there are points x ≤ v < w ≤ y in [x, y] and points
x′ ≤ v′ < w′ ≤ y′ in [x′, y′] with f(v) = f(v′) = a and f(w) = f(w′) = b. Connect-
ing x with x′ via Lipschitz curves from v to v′ and y with y′ via Lipschitz curves
from w with w′ as above, we get a contradiction to our starting assumption on ϕ.

Combining these two observation we get H 1(Aπ) = m(π, d) = m(π, f∗dϕ).
Assume by contradiction that there is some matching π′ of X with m(π′, f∗dϕ) <
m(π, f∗dϕ). Then H 1(Aπ′) < H 1(Aπ) and as in the proof of Proposition 3.4(3) we
get a contradiction. We have already established that J(f |[x,y])(p) = 1 for H 1-a.e.
p ∈ [x, y] in case {x, y} ∈ π. Again with the chain rule (3.18) it follows directly that
ρ is an orientation modulo 2 for Aπ, which equals AX by Proposition 3.4(3). �

4. Two generalizations of matching numbers
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4.1. Matching number and dimension for metric spaces. For a metric space
(X, d), an even number k ∈ N and ε > 0 define the matching numbers

mk(X, d) := sup{m(X ′, d) : X ′ ⊂ X, |X ′| = k} ,
m′ε(X, d) := sup{m(X ′, d) : X ′ ⊂ X is ε-separated in } .

Here, X ′ is ε-separated if d(x, x′) ≥ ε for different x, x′ ∈ X ′. To make the ar-
guments simpler, we allow for members of X ′ in the definition of mk(X, d) to
appear more than once, i.e. X ′ is a multiset. This way we also don’t run into the
problem of taking a supremum of the empty set. This can happen in the defini-
tion of m′ε(X, d) if ε > diam(X, d). In this case we set sup ∅ := 0. Obviously,
mk(X, d) = m′ε(X, d) = ∞ if X is not bounded. Here are some easy observations
about these numbers, the proofs of which are elementary.

4.1. Lemma. The following properties for the matching numbers hold,

(1) If A ⊂ X, then mk(A, d) ≤ mk(X, d) and m′ε(A, d) ≤ m′ε(X, d).
(2) For even numbers k ≤ k′ and reals ε ≤ ε′,

mk(X, d) ≤ mk′(X, d) ≤ diam(X)
k

2
,

m′ε′(X, d) ≤ m′ε(X, d) .

(3) For any Lipschitz map ϕ : (X, dX)→ (Y, dY ),

mk(ϕ(X), dY ) ≤ Lip(ϕ)mk(X, dX) .

(4) If ϕ : (X, dX)→ (Y, dY ) is bi-Lipschitz,

Lip(ϕ−1)−1m′Lip(ϕ−1)ε(X, dX) ≤ m′ε(Y, dY ) ≤ Lip(ϕ)m′Lip(ϕ)−1ε(X, dX) .

Depending on some geometric conditions on a metric space we give some bounds
to these matching numbers.

4.2. Proposition. Let (X, d) be a compact metric space and n ≥ 1. Assume that
there are constants 0 < c1 < C1 such that for every 0 < ε < diam(X),

c1ε
−n < sup{|X ′| : X ′ ⊂ X has even cardinality and is ε− separated} ≤ C1ε

−n .

Then, there is a constant c > 0 such that for all 0 < ε < diam(X) and all even
numbers k,

(4.1) mk(X, d) ≥ ck
n−1
n , and m′ε(X, d) ≥ c1ε1−n .

Let Y ⊂ X. Assume that H n(X) < ∞ and that there are constants C2 > 0 and
0 < λ2 < 1

2 such that for all points x, x′ ∈ Y and all open sets U ⊂ X with

B(x, λ2d) ⊂ U and B(x, λ2d) ⊂ X \ Ū there holds

H n−1(∂U) ≥ C2d
n−1 .

Then, there is a constant C > 0 such that for all 0 < ε < diam(X) and all even
numbers k,

(4.2) mk(Y, d) ≤ CH n(X)
1
n k

n−1
n , and m′ε(Y, d) ≤ CH n(X)ε1−n .

Proof. If X ′ε ⊂ X is some ε-separated subset of even cardinality realizing the first
inequality, then obviously

c1ε
1−n ≤ ε|X ′ε| ≤ m′ε(X ′ε, d) ≤ m′ε(X, d) .
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Assume the even number k is big enough such that εk := C
1
n
1 k
− 1
n < diam(X).

With some set X ′εk as above, we have |X ′εk | ≤ C1ε
−n
k = k and hence

c1C
1−n
n

1 k
n−1
n ≤ c1ε1−nk ≤ ε|X ′εk | ≤ m|X′εk |(X

′
εk
, d) ≤ mk(X, d) .

This holds for all but finitely many k which shows (4.1).
To see the second statement let X ′ ⊂ Y be some (multi)set of even cardinality.

Let f : X → T be some 1-Lipschitz map into a minimal metric tree (T, dT ) as in
Proposition 3.4. In particular for π ∈M (X ′, d),

(4.3) H 1(T ) = m(X ′, d) = m(π, d) = m(π, f∗dT ) = m(X ′, f∗dT ) .

By the coarea inequality, see e.g. [10, Theorem 2.10.25], we then get

(4.4)
αn−1α1

αn
H n(X) ≥

∫ ∗
T

H n−1(f−1(q)) dH 1(q) .

Because X is compact, the map q 7→H n−1(f−1(q)) is measurable by the statement
in [10, Subsection 2.10.26]. Hence the upper integral on the right-hand side above
can be replaced by the usual Lebesgue integral. By Proposition 3.4, T can be
expressed as ∪{x,y}∈π[f(x), f(y)] and the pairwise overlaps of these intervals have

H 1-measure zero. For {x, y} ∈ π we define the set

G({x, y}) := {q ∈ [f(x), f(y)] : dT (f(x), q), dT (f(y), q) ≥ λ2dT (f(x), f(y))} .

For any q ∈ G({x, y}) the set f−1(q) separates x and y in X and
d(x, f−1(q)), d(x, f−1(q)) ≥ λ2d(x, y) since f is 1-Lipschitz and dT (f(x), f(y)) =
d(x, y) by (4.3). Hence by our assumptions on X and (4.4),

αn−1α1

αn
H n(X) ≥

∑
{x,y}∈π

∫
[f(x),f(y)]

H n−1(f−1(q)) dH 1(q)

≥
∑
{x,y}∈π

∫
G({x,y})

C2d(x, y)n−1 dH 1(q)

≥
∑
{x,y}∈π

(1− 2λ2)d(x, y)C2d(x, y)n−1

= (1− 2λ2)C2

∑
{x,y}∈π

d(x, y)n .

Therefore,
∑
{x,y}∈π d(x, y)n ≤ C ′′H n(X) for some constant C ′′ independent of π.

If |X ′| = k, then by the power mean inequality∑
{x,y}∈π

d(x, y)n ≥ (2−1k)1−n

( ∑
{x,y}∈π

d(x, y)

)n
= (2−1k)1−nm(X ′, d)n ,

and hence m(X ′, d) ≤ 2C ′′H n(X)
1
n k

n−1
n . If X is ε-separated, then

εn−1m(X ′, d) ≤
∑
{x,y}∈π

d(x, y)n ≤ C ′′H n(X) .

By taking the supremum over all such X ′, the upper bound on mk(Y, d) and
m′ε(Y, d) follows. �
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This can be applied to balls in an Ahlfors regular space that supports a Poincaré
inequality. A metric measure space (X, d, µ) is a metric space (X, d) equipped with
a Borel measure µ. This space is Ahlfors regular of dimension n with constants
0 < cA ≤ CA if for all x ∈ X and r > 0,

cAr
n ≤ µ(B(x, r)) ≤ CArn .

(X, d, µ) supports a weak Poincaré inequality if there are constants λP ≥ 1, CP > 0
such that for all continuous functions u : X → R, their upper gradients g and all
balls B = B(x, r),

−
∫
B

|u− uB | dµ ≤ CP r−
∫
λPB

g dµ .

Here, −
∫
B

= 1
µ(B)

∫
B

and uB = −
∫
B
u.

4.3. Corollary. Let (X, d, µ) be a complete metric measure space that is Ahlfors
regular of dimension n > 1 and supports a weak Poincaré inequality. Then there are
constants 0 < c ≤ C, such that for all x ∈ X, r > 0, k ∈ 2N and ε < diam(B(x, r)),

crk
n−1
n ≤ mk(B(x, r), d) ≤ Crk

n−1
n ,

crnε1−n ≤ m′ε(B(x, r), d) ≤ Crnε1−n .

Proof. Fix some x ∈ X and r > 0. The Ahlfors regularity implies that µ is a
doubling measure comparable to the n-dimensional Hausdorff measure. Moreover,
there is some constant 0 < c′ ≤ 2 such that diam(B(x, r)) ≥ c′r. It is rather direct
to check that this implies the first assumption of Proposition 4.2. To see this, let
0 < r′ ≤ r and consider a maximal r′-separated set X ′ in B(x, r). Then the balls

U(x′, r
′

2 ) are pairwise disjoint subsets of B(x, 2r) and hence

|X ′|c
(
r′

2

)n
≤ µ

(
B

(
X ′,

r′

2

))
≤ µ(B(x, 2r)) ≤ C(2r)n .

Moreover, because X ′ is maximal, the set B(X ′, r′) covers B(x, r) and hence

|X ′|C(r′)n ≥ µ(B(X ′, r′)) ≥ µ(B(x, r)) ≥ crn .
This shows that up to some constants independent of x and r, |X ′| is comparable
to ( rr′ )

n which shows the first assumption of Proposition 4.2. Moreover, since X is
complete and by the consideration above, balls in X are totally bounded and hence
compact.

Because X supports a weak Poincaré inequality, it follows from Theorem 5.1 and
Theorem 10.3 in [13] that for all balls B ⊂ X, continuous functions u and their
upper gradients g, (

−
∫
B

|u− uB |
n
n−1 dµ

)n−1
n

≤ C ′P r−
∫
λ′PB

g dµ .

By [17, Theorem 1.1], this weak ( n
n−1 , 1)-Poincaré inequality implies that there

are some constants CS > 0 and λS ≥ 1 such that for all balls B and all Borel
measurable E ⊂ B,(

min{H n(B ∩ E),H n(B \ E)}
H n(B)

)n−1
n

≤ CSr
H n−1(λSB ∩ ∂E)

H n(λSB)
.

In order to apply the second part of Proposition 4.2 fix some ball B = B(x, r) and
let x1, x2 ∈ B. For s < 1

2d(x1, x2), the balls B(x1, s) and B(x2, s) are disjoint and



24 MIRCEA PETRACHE AND ROGER ZÜST

contained in 2B. If U is some open set in X with B(x1, s) ⊂ Ū and B(x2, s) ⊂ X\U ,
then for some constants c′, C ′ > 0,

c′
sn−1

rn−1
≤
(

min{B(x1, s),B(x2, s)}
H n(2B)

)n−1
n

≤
(

min{H n(2B ∩ Ū),H n(2B \ U)}
H n(2B)

)n−1
n

≤ CS2r
H n−1(λS2B ∩ ∂U)

H n(λS2B)
.

If we set s = 1
3d(x1, x2), then C ′′d(x1, x2)n−1 ≤ H n−1(λS2B ∩ ∂U) for some

constant C ′′ > 0 independent of x and r. Since H n(λS2B) is bounded by a fixed

multiple of rn, we get by Proposition 4.2, mk(B, d) ≤ Crk
n−1
n and m′ε(B, d) ≤

Crnε1−n. �

The assumptions of this Corollary are satisfied for example by Carnot groups
equipped with the Carnot-Carathéodory metric with homogeneous dimension n,
see e.g. [13, Proposition 11.17] and the references there. Or simpler, they are
satisfied for normed vector spaces of dimension n, in this case there are also more
elementary proofs of the second assumption in Proposition 4.2 not relying on the
Poincaré inequality.

From the statement of Proposition 4.2 and its application to Corollary 4.3 we
see that up to some multiplicative constant, the matching number mk for balls
or cubes in Rn are realized by distributing the points as equally as possible and

behaves like k
n−1
n . This motivates the definition of the matching dimension of a

bounded metric space X as the number,

dimm(X) := inf
{
n ∈ [1,∞] : ∃C ≥ 0 such that ∀k ∈ 2N, mk(X) ≤ Ck

n−1
n

}
.

To see some interesting behavior of this notion of dimension we consider examples
of compact metric trees. As in Proposition 3.4 it is rather direct to check that
mk(T ) ≤ H 1(T ) for all k and any compact tree T . Hence if H 1(T ) < ∞, then
dimm(T ) = 1. On the other side, for any decreasing sequence ε1 ≥ ε2 ≥ · · · > 0 with
limm→∞0 εm = 0 we can construct the compact metric tree T obtained by gluing
the countable collection of closed intervals [0, εm] at 0. By taking the 2k points
corresponding to the point εm in the interval [0, εm] for m = 1, . . . , 2k, we see that

m2k(T ) ≥
∑2k
m=1 εm. Since the maximum of H 1(T ′) taken over all subtrees T ′ ⊂ T

spanned by 2k points in T is also equal to this number we get that indeed,

m2k(T ) =

2k∑
m=1

εm .

Hence, n = dimm(T ) < ∞, if the sequence (εm) can be chosen in such a way that
for all k,

(4.5)

2k∑
m=1

εm = k
n−1
n .

But this is easy to achieve since the successive differences of the right-hand side
satisfy,

1 ≥ k
n−1
n − (k − 1)

n−1
n > (k + 1)

n−1
n − k

n−1
n

k→∞−−−−→ 0 .
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There are also such trees with dimm(T ) =∞. Note that for this class of examples
we have dimH(T ) = 1 for the Hausdorff dimension and dimA(T ) = ∞ for the
Assouad dimension. This shows that ranging over all compact metric trees T with
dimH(T ) = 1, the matching dimension dimm(T ) can realize any number in [1,∞].

4.2. Infinite matchings. We now consider the case where X could be infinite.
The main difference with the finite case is that in this setting it is not true in general
that a minimum matching exists, as shown by Example 4.6 below. Such pathological
examples exist, even though there are less competitors for the minimization, alredy
for the oriented case, i.e. for the optimal transportation problem for infinite sets
of points, as explained in Remark 4.7. We fix now the most general notion of
minimization for matchings for infinite X, which in the case of locally finite X ⊂
X̃ = R with a special kind of distance was studied in [7], [20]:

4.4. Definition (matching, locally minimal matching, finite matching). Let (X, d)
be a possibly infinite pseudometric space, and consider a partition π of X into
cardinality-2 sets. We say that π is a matching for X if for finite subsets of couples
A ⊂ π the sum of d(x, y) for {x, y} ∈ A is always finite. We further say that π is
a locally minimal matching for (X, d) if for any other matching π′ of X such that
the symmetric difference π∆π′ is finite there holds∑

{x,y}∈π\π′
d(x, y) ≤

∑
{x′,y′}∈π′\π

d(x′, y′) .

We say that a partition π of X is a finite matching in case
∑
{d(x, y) : {x, y} ∈

π} <∞. As in the finite case we denote this number by m(π, d).

In particular, if a finite matching exists then X is countable. We then have the
following result.

4.5. Proposition (duality for infinite matchings). Let (X, d) be a countable metric
space for which the completion X̄ is compact and for which there exists a finite,
locally minimal matching π. Then there exists a compact metric tree T and a 1-
Lipschitz function f : X → T such that m(π, f∗dT ) = m(π, d) and π is locally
minimal for (X, f∗dT ) too.

4.6. Example (an X with no minimal matching). Consider X := {0} ∪ {2−i : i ∈
N} ⊂ R. This set obviously has some finite matching and in any such matching
π the limit point 0 has to be matched with some point x > 0. The interval [0, x]
then contains another point x′ that is paired with some x′′ > x′. But replacing the
matches {0, x}, {x′, x′′} in π with {0, x′}, {x, x′′} gives a new matching π′ with a
smaller matching number. So there does not exist a locally minimal matching.

4.7. Remark (similar result for transport problems). We may reach a similar patho-
logical example in the case of the minimization (1.3) for infinite sets of points
{x+

i }i∈N, {x
−
i }i∈N by considering the example where the x+

i and the x−i are respec-
tively the right and left extremes of the segments met during the limit construction
of a Cantor set starting from the interval [0, 1]. In the case of the standard Cantor
set the x−i are 0 and those 3-adic points in ]0, 1] such that in their expansion in base
3 the last nonzero digit is a 2 and the x−i are the 3-adic points in [0, 1] for which
the last nonzero digit in base 3 is a 1. Then a similar reasoning as in Example 4.6
applies. This topic was studied in [22].
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Proof of Proposition 4.5: Let {{x2i−1, x2i} : i = 1, 2, . . . } be an enumeration of the
pairs in π. Let Xk := {x1, . . . , x2k} ⊂ X and πk the restriction of π to this finite
set. For each k, πk is a minimal matching on Xk and applying Proposition 3.4,
there is a 1-Lipschitz function fk : X̄ → Tk onto a minimal metric tree (Tk, dk)
with

(4.6) m(πk, f
∗
kdk) = m(Xk, f

∗
kdk) = m(Xk, d) = m(πk, d) = H 1(T ) .

If we can show that the sequence of trees (Tk) is uniformly bounded and uniformly
compact, it follows by a result of Gromov [12] that there is a compact set Z ⊂ `∞(N)
and isometric embeddings ιk : Tk ↪→ Z such that some subsequence of (ιk(Tk))
converges with respect to the Hausdorff distance.

The minimal trees Tk as obtained in Proposition 3.4 are compact and moreover,

(4.7) diam(Tk) ≤H 1(Tk) = m(πk, d) ≤ m(π, d) <∞ .

Hence the sequence (Tk) is uniformly bounded. Let Sk ⊂ Tk be a maximal ε-
separated set. If diam(Tk) < ε

2 , then #Sk = 1. Otherwise, for any p ∈ Sk,

H 1(B(p, ε2 )) ≥ ε
2 and hence

ε

2
#Sk ≤H 1(Tk) .

Using (4.7) this implies that for every ε > 0 there is a N(ε) such that every Tk can
be covered by N(ε) balls of radius ε, i.e. the sequence (Tk) is uniformly compact.
As noted before, this implies the existence of a compact subspace T ⊂ Z (with
the induced metric d∞ of `∞(N)) such that liml→∞ dH(ιkl(Tkl), T ) = 0 for some
subsequence of (Tk). As a limit of compact geodesic spaces, T is itself geodesic,
see e.g. [3, Proposition 5.38]. Since all the Tk satisfy the 4-point condition (1.2),
it is easy to check that T does too and hence T is a compact metric tree. Since
X̄ is compact and all the maps ιk ◦ fk are 1-Lipschitz with values in a common
compact metric space Z, the Arzelà-Ascoli theorem guarantees a subsequence of
(ιkl ◦ fkl) that converges uniformly to some 1-Lipschitz function f : X̄ → Z (we
will use the same indices for this subsequence). The image of ιkl ◦ fkl is in ιkl(Tkl)
and hence the image of f is contained in T . Because of (4.7), we have for any pair
{x2i−1, x2i} ∈ π and all k ≥ i,

d(x2i−1, x2i) = dk(fk(x2i−1), fk(x2i)) = d∞(ιk(fk(x2i−1)), ιk(fk(x2i))) .

Hence, by taking the limit of the functions fk we get d(x2i−1, x2i) =
d∞(f(x2i−1), f(x2i)) for all i. This in particular shows that m(π, f∗d∞) = m(π, d).
We also have that π is locally minimal for (X, f∗d∞). Indeed otherwise there would
be a matching π′ of X and some j such that {x2i−1, x2i} ∈ π′ for all i > j and
m(π′, f∗d∞) < m(π, f∗d∞). If π′k denotes the restriction of π′ to Xk, this would
give m(π′k, f

∗
kdk) < m(πk, f

∗
kdk) if k is big enough, contradicting (4.6). �
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