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Abstract. We consider systems of n parallel edge dislocations in a single slip system, repre-

sented by points in a two-dimensional domain; the elastic medium is modelled as a continuum.
We formulate the energy of this system in terms of the empirical measure of the dislocations,

and prove several convergence results in the limit n→ ∞.

The main aim of the paper is to study the convergence of the evolution of the empirical
measure as n→ ∞. We consider rate-independent, quasi-static evolutions, in which the motion

of the dislocations is restricted to the same slip plane. This leads to a formulation of the quasi-

static evolution problem in terms of a modified Wasserstein distance, which is only finite when
the transport plan is slip-plane-confined.

Since the focus is on interaction between dislocations, we renormalize the elastic energy
to remove the potentially large self- or core energy. We prove Gamma-convergence of this

renormalized energy, and we construct joint recovery sequences for which both the energies

and the modified distances converge. With this augmented Gamma-convergence we prove the
convergence of the quasi-static evolutions as n→ ∞.

1. Introduction

It is well known that plastic, or permanent, deformation in metals is caused by the concerted
movement of many curve-like defects in the crystal lattice, called dislocations. What is not yet
known is how to use this insight to predict behaviour at continuum scales. It would be natural
to take a sequence of systems with increasing numbers of dislocations, and derive an effective
description in terms of dislocation densities. In various cases formal and rigorous convergence
results have been proved of the elastic energies generated by the dislocations (see the discussion
of the literature below), and this provides a good starting point.

However, macroscopic plasticity heavily depends on dynamic properties of the dislocations. The
most basic aspect of the motion of dislocation curves of edge type, that we study in this paper,
is a strong confinement to slip planes: each curve can move only in the plane spanned by its
Burgers vector and the tangent to the curve. Other essential dynamic phenomena are creation
and annihilation of dislocations, and their behaviour at obstacles; especially in small systems,
these latter phenomena are believed to be the main determining factors in the plastic behaviour
of metals [DNG05, CC10].

Although models exist that describe the motion, creation, annihilation, and obstacle behaviour
of dislocations at the level of densities (see e.g. [GB99, GCZ03, YGG04, YG05a, YG05b, BGGZ06,
GGK07, GGI10]), these are phenomenological in nature, and the connection between these models
and more microscopic descriptions of dislocation motion is tenuous. Many different models exist,
and at this moment no good method is available to compare these or choose between them. For a
better understanding of the complex motion of dislocations it is therefore essential to understand
the upscaling of discrete-dislocation models to descriptions at the level of densities.

A mathematical theory of creation, annihilation, and obstacles can only be formulated in the
context of dislocation motion that is confined to the slip plane. In this paper we therefore make
a first step in the direction of the dynamics of dislocations, by proving a rigorous upscaling of a
system of moving edge dislocations in two dimensions with slip-plane confinement. Although this
confinement may seem a minor restriction, it actually makes the proof of the upscaling far more
complex.
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1.1. Setup. We restrict ourselves to straight and parallel edge dislocations in plane strain, and
we assume that only one slip system is active, with Burgers vector b = e1 ∈ R2, and that all
dislocations have the same sign. Since we will take the many-dislocation limit, we describe the
positions of the dislocations by a measure on a bounded open set Ω ⊂ R2 (the cross section) of
the form

µ =
1

n

n∑
i=1

δzi , {zi}ni=1 ⊂ Ω.

The dislocations interact with each other through the elasticity of the medium, which we assume
to be a homogeneous, isotropic, linearly elastic continuum; its properties are characterized by the
fourth-order stress-strain tensor C, which satisfies CF = λ tr(symF )Id + 2µ symF with Lamé
constants λ+ µ > 0 and µ > 0.

Since the elastic energy density is not integrable close to a dislocation, we employ the core-
region approach of removing disks of radius εn → 0 around the dislocations, leading to an effective
domain Ωn(µ) := Ω \

⋃n
j=1Bεn(zj). In addition we assume that the dislocations are separated

from each other by a distance rn → 0 and that they can only live in a closed rectangle R in Ω
whose sides are parallel to the coordinate axes and which has a distance ` > 0 from the boundary
∂Ω. We assume that εn and rn satisfy

εn → 0, rn → 0, εn/r
3
n → 0, rnn→ 0 as n→∞. (1.1)

See Section 1.7.1 for comments on this choice.
At finite n, admissible measures µ belong to the set

Xn :=
{
µ =

1

n

n∑
i=1

δzi such that {zi}ni=1 ⊂ R and |zi − zj | ≥ rn for i 6= j
}
. (1.2)

The elastic energy of a measure µ ∈ Xn, defined for convenience on the set P(Ω) of all probability
measures, is

Fn(µ) :=

 inf
β∈An(µ)

En(µ, β) if µ ∈ Xn,

+∞ if µ ∈ P(Ω) \Xn,
(1.3)

where

En(µ, β) :=
1

2

∫
Ωn(µ)

Cβ : β dx. (1.4)

The tensor-valued field β has the interpretation of the elastic part of the strain. The admissibility
class An(µ) characterizes the incompatibility conditions on β generated by the dislocations:

An(µ) :=
{
β ∈ L2(Ω;R2×2) : β = 0 in Ω \ Ωn(µ), Curlβ = 0 in Ωn(µ),∫

∂Bεn (zi)

β τ dH1 =
b

n
for every i = 1, . . . , n

}
, (1.5)

where τ is the tangent to ∂Bεn(zi) and the integrand β τ is understood in the sense of traces (see
[CL05] for details). The minimization problem (1.3) is a reformulation of the standard elasticity
problem, in terms of the elastic strain β, with stress-free boundary conditions at ∂Ωn(µ).

Note that since the dislocation density µ ∈ Xn is rescaled to have mass one, the incompatibility
of the strain β at every dislocation is of order 1/n. We also observe that in alternative to the
integral incompatibility condition in (1.5) one could require the more familiar condition on the
circulation of the strain:

Curlβ =
1

n

b

2πεn

n∑
i=1

H1x∂Bεn(zi) in Ω.

For more background on dislocations in general, see e.g. [Krö81, HL82, Cal07]; a more detailed
derivation of this model can be found in [GN95, CL05, GLP10].
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1.2. Γ-convergence of the renormalized energy. The discrete evolutionary system at finite n
is defined by the energy functional Fn and a dissipation distance that we introduce below. We
first study the behaviour of Fn as n→∞.

Garroni, Ponsiglione, and co-workers [GLP10, DLGP12] show that as n → ∞ and εn → 0 the
energy Fn has contributions of order 1 and of order n−1| log εn|. The contributions of order 1
stem from the interaction between pairs of distant dislocations, of which there are n2, each with
strength of order n−2 by the scaling in (1.5). The contributions of order n−1| log εn| arise from the
energy of order n−2| log εn| contained in a neighbourhood of each of the n dislocations. Depending
on the relative size of n and | log εn|, one or the other will dominate.

In this paper we consider an evolution that conserves the total number of dislocations, and
therefore the self-energy of order n−1| log εn| is of no relevance, even when it is large. To extract
the interaction energy, we renormalize Fn by defining

Fn(µ) :=

Fn(µ)− 1

2n2

n∑
i=1

∫
Ωn(µ)

CKn
zi : Kn

zi dx if µ ∈ Xn, µ =
1

n

n∑
i=1

δzi ,

+∞ if µ ∈ P(Ω) \Xn.

(1.6)

Here Kn
z is a small correction of the canonical strain field Kz generated by a single dislocation at

z in R2, as defined in Section 2.1. The second term has the same scaling n−1| log εn| as the self-
energy, and approximately cancels the self-energy in the first term. The aim of this renormalization
is to extract that part of the energy that characterizes the interaction, and our first main result
(Theorem 3.3) makes clear in which sense this is indeed the case:

Theorem 1.1. Under conditions (1.1) on εn and rn, the functionals Fn Γ-converge in the space
of probability measures P(Ω) endowed with the narrow topology to the limit functional

F(µ) :=
1

2

∫∫
Ω×Ω

V (y, z) dµ(y)dµ(z)

+ inf
v

{1

2

∫
Ω

C∇v : ∇v dx+

∫
Ω

∫
∂Ω

CK(x; y)ν(x) · v(x) dH1(x) dµ(y)
}
, (1.7)

where

V (y, z) :=

∫
Ω

CKy(x) : Kz(x) dx. (1.8)

The first term in the limit F is a two-point interaction functional, with interaction potential
V (y, z). The potential in (1.8) is related to the formula for the interaction between segments
of dislocations in infinite space that is widely used in the engineering literature (see e.g. [HL82,
(5–16)]). The distinction between this formula and V , and the second term in (1.7), is generated
by the boundedness of Ω.

1.3. Quasi-static evolution of dislocations. In the second part of this paper we use the con-
vergence result above to pass to the limit in a rate-independent or quasi-static evolution that is
driven by Fn. Considering rate-independent evolution is a specific choice, and we motivate this
first.

At the atomic scale, dislocation motion is a complex, thermally driven random rearrangement
process, displaying such features as splitting into half-dislocations, joining of dislocations of dif-
ferent Burgers vectors, dislocation-core spreading, and many others. In addition, the presence
of interstitial atoms, vacancies, stacking faults, grain boundaries, and dislocations belonging to
different slip systems all interfere with the motion of a given dislocation line.

In this paper we consider dislocations as points in two dimensions, corresponding to straight
and parallel lines in three dimensions (often called the Discrete Dislocation Dynamics (DDD)
paradigm [GN95, CGN99, Zbi12]). For the evolution of DDD systems a choice has to be made
that expresses the lateral velocity of a dislocation line in terms of the local stress. Atomistic,
molecular-dynamics simulations suggest various motion laws, ranging from linear (e.g. [CCBY02])
to the rate-independent one of the type we adopt below [MT09]. The various types of obstacles
that a dislocation may encounter further modify the mobility (see e.g. [TS76, OP82]).
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These observations imply that there is no universal law for the mobility of edge dislocations in
two dimensions. Since we are interested in the mathematical side of these models, and especially
the mathematical formulation and treatment of slip-plane confinement, we choose a simple mobility
law for this paper: a rate-independent law. This rate-independent evolution is observed in a variety
of situations where the system can be compared to a point particle in a periodic potential. The wells
of this potential correspond to energetically favourable positions of the system, which translates
in the case of dislocations to energetically favourable positions of the defect. The spacing of the
wells can be either the Burgers vector, in the case of dislocations in pure crystals, or the typical
spacing of obstacles.1

This locally periodic potential is tilted by a global driving force that varies on larger scales
and arises from the bulk elasticity. Motion in this tilted periodic potential is assumed to arise
from thermal fluctuations, leading to a jump process between wells with a rate that is determined
by the rate of escape from a well. Orowan [Oro40] first formulated this concept of dislocation
motion and the Arrhenius rate expression that follows from it. In the one-dimensional case, with
a periodic potential with wells of depth e and spacing `, and a global force f, the rates of jumping
right and left are

r+ = αe−β(e−f`) r− = αe−β(e+f`),

where α > 0 is a fixed constant and β = 1/kT is inverse temperature. The expected velocity
therefore is equal to 2α exp(−βe) sinh(βf`).

‘Rate-independence’ appears in this expression for the rate of motion when we take the low-
temperature limit β→∞:

2α e−βe sinh(βf`)
β→∞−−−−→ m

( f`
e

)
, m(s) :=



∅ if s < −1

(−∞, 0] if s = −1

{0} if − 1 < s < 1

[0,∞) if s = 1

∅ if s > 1.

(1.9)

Here the convergence is in the sense of graphs, and the limit m is a graph, i.e., a set-valued function.
In words: at low temperatures, motion only takes place when f = ±e/`, and for those two values
of f any velocity is possible; for smaller forces f the motion is arrested, and larger forces should
never appear (see Figure 1). What constitutes low temperatures can be understood in terms of an
energy comparison: low temperatures are those in which the thermal energy kT = β−1 is small
with respect to the activation energy e.

Inspired by these arguments we choose a rate-independent evolution for the discrete system. In
order to force a non-trivial evolution, we add a smoothly time-varying external load of the form∫

Ω

f(x, t) dµ(x). (1.10)

The function f can be interpreted as a time-varying potential for dislocations, in the sense that
the derivative ∂x1

f(x, t) acts as an additional horizontal force on a dislocation at x. For instance,
applying an appropriate time-varying boundary traction, one can achieve a spatially uniform shear
stress σ(t) in the bulk, which can be represented with the potential f(x, t) = σ(t)x1. The total
energy for this system is then

F̃n(µ, t) = Fn(µ)−
∫

Ω

f(x, t) dµ(x). (1.11)

We assume that each of the dislocations zi evolves by a rate-independent law of the type (1.9).
The driving force f for each of the dislocations is the derivative of the energy with respect to the

position zi, −∇ziF̃n
(

1
n

∑n
j=1 δzj , t

)
. Since our edge dislocations are restricted to movement in the

1Note added in proof: In the meantime Patrick van Meurs has proved a related evolutionary convergence result

in the case of a linear driving law [Meu15].
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Figure 1. The rate-independent limit.

direction of the Burgers vector b = e1, the motion is one-dimensional, and only the horizontal or
first component of this force leads to motion:

żi(t) ∈ e1m
(
−e1 · ∇ziF̃n

( 1

n

n∑
j=1

δzj(t), t
))
. (1.12)

Note how the ‘equation’ above is an inclusion, since the right-hand side is multivalued. In (1.12)
we have normalized the constant `/e to 1 for simplicity.

The flow rule (1.12) can be interpreted as follows: for each i separately, and at each t, either

the velocity żi(t) is zero, or the force −e1 · ∇ziF̃n equals ±1; in the latter case, żi is parallel to e1

and points in the same direction as the force.

1.4. Measure-valued formulation. Instead of considering solutions of (1.12) in the classical
sense, we focus on solutions in the energetic or quasi-static sense [Mie05], given by Definition 1.2
below. For this we recast the problem as a rate-independent system in the space of probability

measures P(Ω), driven by F̃n, with a Wasserstein-type dissipation, which we now introduce.
To motivate the definition, consider a smooth curve t 7→ µ(t) = 1

n

∑n
i=1 δzi(t). Since dislocations

move parallel to b = e1, żi(t) · e2 = 0; therefore

∂t

∫
Ω

ϕ(x2) dµ(t)(x) =
1

n
∂t

n∑
i=1

ϕ(zi(t) · e2) = 0 for any ϕ ∈ C1(R).

Along the curve the integral on the left-hand side is preserved, implying that if µ and ν can be
transported into each other, then

∫
ϕ(x2) d(µ − ν)(x) = 0; or equivalently, (π2)#µ = (π2)#ν,

where π2 : Ω → R is the coordinate mapping π2(x) := x2. This leads us to define the distance
function

d(µ, ν) :=

 inf
γ∈Γ(µ,ν)

∫∫
Ω×Ω

|x− y| dγ(x, y) if (π2)#µ = (π2)#ν,

+∞ otherwise,

(1.13)

where Γ(µ, ν) is a restricted set of couplings of µ and ν,

Γ(µ, ν) :=
{
γ ∈ P(Ω× Ω) : γ(A× Ω) = µ(A), γ(Ω×A) = ν(A) for all Borel sets A ⊂ Ω,

and π2(x) = π2(y) for γ-a.e. (x, y) ∈ Ω× Ω
}
. (1.14)

This is the usual 1-Wasserstein or Monge-Kantorovich transport distance on P(Ω) [Vil03], except
for the additional restriction that π2(x) = π2(y) for γ-a.e. (x, y); this restriction forces the transport
to move parallel to b = e1. We describe some properties of this distance in Lemma 4.1.
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Now we have defined the driving functional F̃n and the dissipation distance d, a solution of the
quasi-static evolution is defined as follows.

Definition 1.2. A solution of the quasi-static evolution associated with F̃n is a curve t 7→ µ(t)
from [0, T ] into Xn that satisfies the two following conditions:

• global stability: for every t ∈ [0, T ] we have

F̃n(µ(t), t) ≤ d(ν, µ(t)) + F̃n(ν, t)

for every ν ∈ Xn;
• energy balance: for every t ∈ [0, T ]

F̃n(µ(t), t) +D(µ, [0, t]) = F̃n(µ(0), 0)−
∫ t

0

∫
Ω

ḟ(s) dµ(s)ds,

where D(µ, [0, t]) is the total dissipation of µ on [0, t],

D(µ, [0, t]) := sup
{ M∑
i=1

d(µ(ti), µ(ti−1)) : 0 = t0 < · · · < tM = t, M ∈ N
}
. (1.15)

In Section 4 we prove the existence of a solution for this evolution at fixed n ∈ N (Theorem 4.4).

1.5. Convergence of the quasi-static evolutions. Now we have defined the energy of the
discrete system and its evolution in time, we turn to the convergence of this evolutionary system
as n→∞.

The renormalized Γ-convergence result in terms of measures (Theorem 1.1) is the first ingre-
dient in passing to the limit, as n → ∞, in the quasi-static evolution that we formulated above.
The second ingredient is a stronger recovery result, the existence of a joint or mutual recovery
sequence [MRS08], for which both Fn and d converge. Specifically, if µn ⇀ µ narrowly, and if ν
is given, we need to construct νn such that

Fn(νn) + d(µn, νn)→ F(µ) + d(µ, ν).

This is a stronger property than Theorem 1.1 in a non-trivial way. To start with, the topology
of d is stronger than the narrow topology, implying that the recovery sequence generated by
Theorem 1.1 does not necessarily converge in d. The situation is worse, however: since d(µ, ν) is
only finite on measures with equal vertical marginals ((π2)#µ = (π2)#ν), the finiteness of d(µn, νn)
requires νn to be an exact horizontal transport of µn, i.e., the slip planes of µn and νn have to
coincide, and the numbers of dislocations on each of the slip planes have to be the same for the
two. Note that the recovery sequence νn necessarily depends on the whole sequence µn.

Because of this tight binding between µn and νn, we prove the existence of such a joint recovery
sequence under a restriction on µn: we require the minimal slip-plane spacing in µn to be bounded
from below, and the numbers of dislocations on each slip plane to be bounded from above, both by
powers of n (see Definition 5.1 and Theorem 5.5). In the context of convergence in the evolutions
this can relatively easily be achieved by imposing the same restrictions on the approximations of
the initial datum µ0, since the evolution preserves these restrictions. The set of measures that can
be approximated this way includes all measures with bounded two-dimensional Lebesgue density,
but also some concentrated measures; see Lemma 5.2 for details.

Armed with this joint recovery sequence and setting

F̃(µ, t) := F(µ)−
∫

Ω

f(t, x)µ(t, x) dx,

in Section 5 we prove the following theorem (Theorem 5.8):

Theorem 1.3. Consider µ0 ∈ P(Ω) such that there exists an approximating sequence µ0
n according

to Theorem 5.5, with µ0
n ⇀ µ0 narrowly and Fn(µ0

n)→ F(µ0). Assume that f ∈W 1,1(0, T ;C(Ω))

is given. For every n ∈ N let t 7→ µn(t) be a quasi-static evolution on [0, T ] associated with F̃n
and with initial value µ0

n, according to Definition 1.2. Then
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(1) Compactness: There exists a subsequence µn (without change in notation) and a limit
curve µ : [0, T ]→ P(Ω) such that µn(t) ⇀ µ(t) narrowly for all t ∈ [0, T ];

(2) Convergence: The curve µ is a quasi-static evolution associated with F̃ and with initial
value µ0 (see (5.35) and (5.36)).

1.6. Strong formulations. In Section 6 we show that, as we claimed above, the quasi-static
formulation of Definition 1.2 is equivalent to the strong formulation of (1.12) when the solution is
smooth. In that section, we also give a formal argument suggesting that the quasi-static evolution
satisfied by the limiting measures µ, as given by Theorem 1.3, has a similar structure, which we
now describe.

We consider evolving measures t 7→ µ(t) that are smooth in space and time, and which have
the property that there exists a smooth scalar field φ = φ(t, x) such that

∂tµ+ ∂x1(φµ) = 0 in the sense of distributions.

The field φ has the interpretation of the horizontal velocity of the dislocations. Such a curve of

measures solves the quasi-static evolution problem associated with F̃ , i.e., conditions (5.35) and
(5.36), if and only if

−φ(t, x) ∂x1

δF̃
δµ

(µ(t), t) = |φ(t, x)| for µ(t)-a.e. x.

Here δF̃/δµ is the variational derivative of F̃ , and its x1-derivative at a point x has the interpre-
tation of the x1-component of the force acting on a dislocation at x. Similarly to the discrete case,
this implies that:

In µ(t)-a.e. x, either φ(x, t) = 0, or the total force −[∂x1δF̃/δµ](µ(t), t)(x) equals
±1; in the latter case φ has the same sign as the force.

We briefly mention that the evolution systems of this paper, both at finite n and in the limit
n → ∞, have formal counterparts as solutions of the so-called Energy-Dissipation Inequality, see
e.g. [MRS09, MRS12]. However, the approach followed in these works generates a different class
of solutions than Definition 1.2, since solutions of the Energy-Dissipation Inequality only jump
when they lose their local minimality, while solutions of Definition 1.2 jump as soon as they lose
global minimality.

1.7. Discussion. The research of this paper was driven by several aims. To start with, we
wanted to make a first step in connecting dynamic discrete-dislocation models with their upscaled
dislocation-density counterparts in a mathematically rigorous way; the slip-plane confinement is
an important aspect of this. Secondly, we wanted to formulate a clear Γ-convergence statement for
edge dislocations in terms of dislocation densities (or measures), which is more convenient for dis-
location dynamics than the results of [GLP10], which are formulated in terms of the matrix field β.
Finally, we wanted to bring the mathematical and the engineering literature on dislocations closer
together; one striking difference is the preference in engineering to formulate problems in terms
of the interaction energy V , while this interaction energy is nearly absent from the mathematical
literature. Hence the explicit characterization of the Γ-limit in terms of V (Theorem 1.1).

These aims suggested a number of differences with the current literature. For instance, we chose
to renormalize the elastic energy by subtracting the self-energy, which amounts to disregarding
that energy contribution; in the context of the evolution of preserved dislocation numbers this
makes sense, and leads to a simpler Gamma-convergence result (one single scaling regime instead
of three regimes, as in [GLP10]). We also restrict ourselves to the single-Burgers-vector case,
since the treatment of cancellation of dislocations of opposite sign should arise from a separate
modelling of the creation and annihilation of dislocation pairs.

The main methodological contributions of this paper lie in the details of the construction of the
recovery sequences in the two Gamma-convergence results (Theorems 1.1 and 5.5). Even without
the slip-plane restrictions (Theorem 1.1), avoiding the singularity in the interaction potential
requires careful placing of the dislocations. In the case of slip-plane confinement, the restrictions
are much more severe, and subtle management of the different scales is required.
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We now comment more in detail on some issues.

1.7.1. Conditions on the separation of dislocations. For Theorem 1.1 the sequence µn of empirical
measures is required to satisfy two separation requirements: the defects should be separated from
each other by at least rn → 0 and from the boundary by at least the fixed distance ` > 0.

The parameter rn represents the radius of the hard-core region. We require rn to decay to
0 slower than the atomic distance parameter εn. More specifically, condition (1.1) arises from
the difference between Kn and K, which in turn arises from the difference between imposing the
circulation condition via an integrated boundary condition as in (2.3) or a Dirac delta as in (2.1).

The interaction energy difference between the two is bounded by O(
√
εn/r3

n), and condition (1.1)
makes this difference small. Without this separation we believe the limiting energy to be the same,
but we have no proof. In particular, the condition rnn→ 0 implies that, if the dislocations are all
on the same plane, the intersection of the hard-core region with the plane has length converging
to zero, as n→∞.

The separation of the dislocations from the boundary ∂Ω is related to the choice of boundary
conditions. With the no-stress boundary conditions that we impose at ∂Ω, dislocations can reduce
their energy by moving to the boundary (in essence they ‘vanish’ at the boundary). Taking this
possibility into account would require a modification of the renormalization term in (1.6), and
we leave this to a future publication. Note that similar conditions are present in other work;
for instance, the authors of [ADLGP14] prove the liminf inequality only for the case that no
dislocations are ‘lost’ in the limit. Although one could in principle use different, Dirichlet-type
boundary conditions to avoid this problem, it is not clear how to do this in our setup. The
energy we consider is indeed expressed in terms of a stress, and there is no natural deformation
associated to it; we could obtain a deformation via a Hodge-type decomposition of the stress, but
this procedure seems ad-hoc and not physically sound.

The condition that dislocations can only live in a rectangle R ⊂ Ω is a simplification that proves
to be very useful in the approximation results in Section 5 and in the construction of the recovery
sequence in Theorem 5.5. A crucial point in our constructions is the possibility to spread out the
dislocations horizontally and our assumption on R guarantees that the modified positions are still
in the domain.

In addition, as pointed out before, for the joint recovery sequence in Theorem 5.5 we require the
admissible measures to satisfy an upper bound on the maximum number of dislocations per slip
plane and a lower bound on the minimum distance between slip planes, both in terms of powers
of the number n of dislocations (see Definition 5.1). This condition allows concentration on a slip
plane or on a vertical line, but does not allow dislocations to be too close both horizontally and
vertically at the same time.

1.7.2. Related Work. The asymptotic behaviour of the quadratic dislocation energy for edge dis-
locations was already studied by Garroni, Leoni and Ponsiglione in [GLP10]. One of the main
difference with our work is that we consider the reduced energy (1.3) instead of (1.4), and use
as main variable the dislocation density rather than the strain. Moreover, while in [GLP10] the
authors focus on the self-energy term of (1.4) in the case of edge dislocations with multiple Burgers
vectors, we instead focus on the next term in the expansion, namely the interaction energy, and
simplify by restricting to one Burgers vector. A similar analysis as in [GLP10] has been done
in [DLGP12] without the well-separation assumption that we make (see (1.1)).

The focus on the interaction term of the energy for edge dislocations was already present in
the work of Cermelli and Leoni [CL05]. In [CL05] the authors define the renormalised energy
starting from a quadratic dislocation energy, and focus on the interaction term of the energy.
They however consider the case of a finite number of dislocations with different Burgers vectors,
and do not phrase their result in terms of Γ-convergence, but instead they keep n fixed, and
therefore express their renormalised energy in terms of the positions of dislocations, rather than
densities.

For screw dislocations the interaction energy was derived from discrete models in [ADLGP14].
Moreover in [ADLGP14] the authors also considered the time-dependent case. More precisely they
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proved the convergence of the discrete gradient flow for the discrete dislocation energy with flat
dissipation to the gradient flow of the renormalised energy.

As for the slip-plane-confined motion, the only related work in the mathematical domain that we
know of is [BFLM14], where the authors consider screw dislocations that may move along a finite
set of directions. Such a system presents different mathematical difficulties, since each dislocation
can, in theory, reach each point in the plane, in contrast to the single-slip-plane confinement of
this paper.

Finally, there is an intriguing question that arises from the comparison with current continuum-
scale modelling of plasticity (as in e.g. [GA05, AGLG05]). The limiting energy of Theorem 1.1 is
non-local, with an interaction kernel that has no intrinsic length scale. However, ‘defect energies’
in the continuum-level modelling are usually assumed to be local (see e.g. [AGLG05, Eq. (8.8)] or
[GA05, Eq. (6.16)]). It is unclear to us how these two descriptions can be reconciled.

1.7.3. Extensions and open questions. Various extensions of the present work would be relatively
straightforward. The isotropy of C is only assumed for convenience, and without this property we
expect similar results to hold. The type of loading in the quasi-static evolution (the form of (1.10))
is also chosen for convenience; we expect that other types of loading can be treated with minor
changes, although we expect that the elasticity problem should then be formulated in terms of
displacements u rather than elastic strains β.

The current restriction on the set of admissible initial data (see Definition 5.1) is not fully
satisfactory. It would be very interesting, and useful, to understand wich class of quasi-static
evolutions can be approximated using discrete systems.

In this work we restricted our attention to the single slip case, namely to the case of parallel
slip planes, and with no loss of generality we considered b = e1. We moreover assumed that all the
dislocations are positive dislocations. This further assumption excludes the case of annihilation
and the presence of dipoles. Natural extensions would be to allow for both positive and negative
dislocations, and to consider the multiple Burgers vector case. It would also be very interesting
to include creation and annihilation in such a model, allowing the total variation of the density of
dislocations to change in time.

Another possible direction of investigation would be to consider other significant dissipations,
e.g., the flat dissipation considered in [ADLGP14] (but still keeping our slip-confinement con-
dition); another example of this would be considering gradient-flow (quadratic-dissipation) time
evolution rather than quasi-static evolution.

One of the most interesting directions of extension is towards the three-dimensional case, where
dislocations are three-dimensional curves, and entanglement between dislocations has a crucial role
in evolution. For static Gamma-convergence very first results have recently been proved by Conti,
Garroni, and Massaccesi [CGM13], but the mathematical understanding of the three-dimensional
situation is still very much in its infancy.

1.8. Notation. We recall some definitions. We say that a sequence µn in P(Ω) converges narrowly
to µ ∈ P(Ω), and we write µn ⇀ µ, if ∫

Ω

f dµn →
∫

Ω

f dµ, (1.16)

as n → ∞, for every continuous and bounded function f : Ω → R. If (µn) ⊂ P(Ω) is such that
suppµn ⊂ Ω′ for every n, where Ω′ is an open set compactly contained in Ω, and (1.16) holds for
every f ∈ C∞c (Ω), then µ ∈ P(Ω) and µn ⇀ µ narrowly.

Below we list some symbols and abbreviations that are going to be used throughout the paper.
Since the problem is in the setting of planar elasticity, all functions and vectors below are defined
on a two-dimensional domain.
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a⊥ vector orthogonal to a ∈ R2 obtained by a counterclockwise rotation by π/2
brc integer part of r ∈ R
skewF skew-symmetric part of a matrix F , skewF = (F − FT )/2
symF symmetric part of a matrix F , symF = (F + FT )/2
Eu symmetric gradient, Eu = sym∇u
L1, L2 one- and two-dimensional Lebesgue measure
H1 one-dimensional Hausdorff measure
πi projection onto the coordinate ei
P(Ω) non-negative Borel measures on Ω of mass 1
|µ|(A) total variation of µ ∈ P(Ω) in A ⊆ Ω
f#µ push forward of µ by f
βµ elastic strain associated with µ Sec. 2.1
Kn
z ,Kz singular strains associated with µ Sec. 2.1

uµ, vµ displacements associated with µ Sec. 2.1
In,µ, Iµ auxiliary functionals associated with µ Sec. 2.1
d slip-plane-confined Wasserstein distance (1.13)
d1 Monge-Kantorovich distance with cost c(x, y) = |x− y| [Vil03]
Γ(µ, ν) set of couplings of µ and ν with only horizontal transport (1.14)
Γ1(µ, ν) set of couplings of µ and ν [Vil03]
Fn renormalized energy (2.13)

F̃n total energy (1.11)
Xn set of admissible discrete dislocation measures (1.2)
Yn(γ, c) set of admissible recovery measures (5.2)
P∞
γ,c(Ω) set of admissible limit measures Lemma 5.2

2. Definitions and preliminaries

In the following Ω ⊂ R2 is a simply connected bounded domain with Lipschitz boundary. We
moreover assume that it contains a closed rectangle R whose sides are parallel to the coordinate
axes and with dist(R, ∂Ω) = ` > 0.

Before turning to the main theorems of this paper, starting from Section 3, we introduce five
auxiliary functions (Section 2.1), and use these to rewrite the renormalized energy (Section 2.2).

2.1. Auxiliary functions. In the arguments of this paper, five auxiliary functions play an im-
portant role: K, Kn, βµ, uµ, and vµ. We now introduce these. For the notation we follow [CL05],
and we set the Burgers vector b = e1.

The matrix-valued function K is defined as

K(x; z) :=
1

2π|x− z|2
e1 ⊗ (x− z)⊥ +∇v(x− z) for every x 6= z,

where

v(x) := − µ log |x|
2π(λ+ 2µ)

e2 −
λ+ µ

4π(λ+ 2µ)|x|2
[
(e1 · x⊥)x+ (e1 · x)x⊥

]
and λ, µ are the Lamé constants of the stress-strain tensor C. The function K(·; z) is the strain
field in R2 generated by a single dislocation at z, with Burgers vector e1, and is a distributional
solution of {

divCK(·; z) = 0 in R2,

CurlK(·; z) = e1δz in R2.
(2.1)

For brevity we often write Kz for K(·; z).
The matrix-valued function Kn is a perturbation of K, defined by

Kn(x; z) := K(x; z) + ε2
n∇w(x− z), (2.2)

with

w(x) :=
(λ+ µ)

2π(λ+ 2µ)|x|4
[
(e1 · x⊥)x+ (e1 · x)x⊥

]
.
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As before, we will often write Kn
z (·) and wz(·) instead of Kn(·; z) and w(· − z). The function

Kn is also the strain generated by a dislocation at z, but in the context of the exterior domain
R2 \ Bεn(z); the mismatch associated with the dislocation is enforced by a combination of a
stress-free condition and a circulation condition on the boundary:

divCKn(· ; z) = 0 in R2 \Bεn(z),

CKn(· ; z)ν = 0 on ∂Bεn(z),∫
∂Bεn (z)

Kn(x; z) τ(x) dH1(x) = e1.

(2.3)

The functions K and Kn have the same far-field behaviour, and Kn converges pointwise to K as
εn → 0.

For given µ ∈ Xn, the matrix-valued function βµ is the unique (up to skew-symmetric
matrices) minimizer of the energy En in (1.4) subject to the circulation constraint (1.5); it is
therefore the strain field generated by the dislocations that µ represents. It satisfies the equations{

divCβµ = 0 in Ωn(µ),

Cβµν = 0 on ∂Ωn(µ).
(2.4)

For given µ ∈ Xn, the vector-valued function uµ is a displacement generated by the
dislocations, as follows: since the left-hand side of

βµ(x)− 1

n

n∑
i=1

Kn(x, zi) = ∇uµ(x) for x ∈ Ωn(µ) (2.5)

is curl-free in Ωn(µ), with zero-circulation boundary conditions on each of the ∂Bεn(zi), it is the
gradient of a function uµ. It can be interpreted as a corrector displacement field, which cancels
the non-stress-free boundary values of 1

n

∑
iK

n
zi .

We choose a fixed ball B contained in Ω such that dist(x, ∂Ω) < `/2 for every x ∈ B (and thus,
contained in Ωn(µ)). We will require that∫

B

uµ(x) dx = 0,

∫
B

skew∇uµ(x) dx = 0. (2.6)

The function uµ can be alternatively characterised in terms of a minimisation problem for the
functional In,µ defined as

In,µ(u) :=
1

2

∫
Ωn(µ)

C∇u(x) : ∇u(x) dx+
1

n

n∑
i=1

∫
∂Ωn(µ)

CKn(x; zi)ν(x) · u(x) dH1(x). (2.7)

This will be proved in Lemma 2.1 at the end of this section.

The vector-valued function vµ is very similar to uµ: for given µ ∈ P(Ω), it is the unique
minimizer of

Iµ(v) :=
1

2

∫
Ω

C∇v(x) : ∇v(x) dx+

∫
Ω

∫
∂Ω

CK(x; y)ν(x) · v(x) dH1(x) dµ(y) (2.8)

on the class {
v ∈ H1(Ω;R2) :

∫
B

v dx = 0,

∫
B

skew∇v dx = 0
}
. (2.9)

Note the similarity between In,µ, which defines uµ, and Iµ: if we take µ = 1
n

∑
i δzi , then In,µ

and Iµ are very similar, differing only in the distinction between Kn and K and in the domain of
integration. Indeed we will see below (proof of Theorem 3.3) that if µn ⇀ µ, then uµn converges
to vµ and In,µn(uµn)→ Iµ(vµ).
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2.2. Rewriting the energy. Recall that the energies Fn and Fn are defined in (1.3) and (1.6)
in terms of the minimiser βµ of the energy En in (1.4) subject to the circulation constraint (1.5).

Using (2.5) we rewrite Fn(µ) for µ ∈ Xn as

Fn(µ) =
1

2

∫
Ωn(µ)

Cβµ : βµ dx

=
1

2n2

n∑
i=1

∫
Ωn(µ)

CKn(x; zi) : Kn(x; zi) dx+
1

2n2

n∑
i=1

∑
j 6=i

∫
Ωn(µ)

CKn(x; zi) : Kn(x; zj) dx

+
1

n

n∑
i=1

∫
Ωn(µ)

CKn(x; zi) : ∇uµ(x) dx+
1

2

∫
Ωn(µ)

C∇uµ(x) : ∇uµ(x) dx. (2.10)

Note that the first term in the above expression represents the self-energy contributions of the
dislocations, while the second term represents the mesoscopic pairwise interaction energy between
two dislocations located at zi and zj . Concerning the last two terms, integrating by parts and
applying (2.3) yield

1

n

n∑
i=1

∫
Ωn(µ)

CKn(x; zi) : ∇uµ(x) dx

=
1

n

n∑
i=1

∫
∂Ω

CKn(x; zi)ν · uµ(x) dH1(x)− 1

n

n∑
i=1

∑
j 6=i

∫
∂Bεn (zj)

CKn(x; zi)ν · uµ(x) dH1(x).

Similarly, using (2.3)–(2.5) we obtain∫
Ωn(µ)

C∇uµ(x) : ∇uµ(x) dx

= − 1

n

n∑
i=1

∫
∂Ω

CKn(x; zi)ν · uµ(x) dH1(x) +
1

n

n∑
i=1

∑
j 6=i

∫
∂Bεn (zj)

CKn(x; zi)ν · uµ(x) dH1(x).

(2.11)

By these computations we have that for µ ∈ Xn

Fn(µ) =
1

2n2

n∑
i=1

∑
j 6=i

∫
Ωn(µ)

CKn
zi : Kn

zj

+
1

2n

n∑
i=1

∫
∂Ω

CKn
ziν · uµ dH

1 − 1

2n

n∑
i=1

∑
j 6=i

∫
∂Bεn (zj)

CKn
ziν · uµ dH

1 (2.12)

=
1

2n2

n∑
i=1

∑
j 6=i

∫
Ωn(µ)

CKn
zi : Kn

zj +
1

2n

n∑
i=1

∫
∂Ωn(µ)

CKn
ziν · uµ dH

1, (2.13)

where in the last step we used the boundary condition (2.3) to add the missing term in the double
sum.

The two terms above will result in the two terms in the limiting energy F (see (1.7)). To
recognize the second term, note that by the same calculation (2.11), the second term is equal to
In,µ(uµ), which will converge in the limit to Iµ(vµ).

The energy decomposition above proves useful for the characterisation of uµ in the following
lemma.

Lemma 2.1. Assume (1.1) and let µ = 1
n

∑n
i=1 δzi ∈ Xn for some n ∈ N. Then there exists a

unique uµ ∈ H1(Ωn(µ);R2) that satisfies (2.5) and (2.6). Moreover, there exist a constant C > 0,
independent of n, µ, and uµ, and an extension ũµ ∈ H1(Ω;R2) of uµ such that

‖ũµ‖H1(Ω) ≤ C‖Euµ‖L2(Ωn(µ)) ≤ C. (2.14)

In addition, the function uµ minimizes the functional In,µ defined in (2.7) on H1(Ωn(µ);R2).
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Proof. As mentioned before, the curl-free property of the left-hand side of (2.5) implies that there
exists some uµ ∈ H1(Ωn(µ);R2) satisfying (2.5). Since the minimizer of En(µ, ·) in An(µ) is unique
up to addition of skew-symmetric matrices, condition (2.6) guarantees the uniqueness of uµ.

We now prove (2.14). For every u ∈ H1(Ωn(µ);R2) the function

β(x) := χΩn(µ)(x)
( 1

n

n∑
i=1

Kn(x; zi) +∇u(x)
)

belongs to An(µ). Thus, by (1.3) we have

Fn(µ) ≤ En(µ, β) =
1

2

∫
Ωn(µ)

Cβ : β dx.

Developing the quadratic form on the right-hand side and taking into account the decomposition
(2.10) and the first equation in (2.3), one easily deduces that the function uµ minimizes the
functional In,µ on H1(Ωn(µ);R2). In particular, considering u ≡ 0 as a competitor and using the
coercivity of C on symmetric matrices, we deduce

C1‖Euµ‖2L2(Ωn(µ))

≤ 1

n

n∑
i=1

‖CKn(· ; zi)‖L2(∂Ω)‖uµ‖L2(∂Ω) +
1

n

n∑
i=1

∑
j 6=i

‖CKn(· ; zi)‖L2(∂Bεn (zj))‖uµ‖L2(∂Bεn (zj)).

(2.15)

From the definition (2.2) of Kn, the definition (1.2) of the admissible class, and assumption (1.1)
it follows that

sup
x∈∂Ω

|CKn(x; zi)| ≤ C sup
x∈∂Ω

( 1

|x− zi|
+ ε2

n

1

|x− zi|3
)
≤ C

(1

`
+
ε2
n

`3

)
≤ C,

and, analogously, for i 6= j,

sup
x∈∂Bεn (zj)

|CKn(x; zi)| ≤ C sup
x∈∂Bεn (zj)

( 1

|x− zi|
+ ε2

n

1

|x− zi|3
)
≤ C

( 1

rn
+
ε2
n

r3
n

)
≤ C

rn
. (2.16)

Combining the two inequalities above with (2.15), we have

‖Euµ‖2L2(Ωn(µ)) ≤ C‖uµ‖L2(∂Ω) + C

√
εn
rn

n∑
j=1

‖uµ‖L2(∂Bεn (zj)). (2.17)

To control the norms of uµ on the right-hand side, we proceed as follows. By Theorem 7.1 in
the Appendix we can extend uµ to a function ũµ ∈ H1(Ω;R2) such that

‖Eũµ‖L2(Ω) ≤ C‖Euµ‖L2(Ωn(µ)),

where C is a constant independent of n, µ, and uµ. Moreover, since ũµ = uµ on the ball B where
(2.6) is satisfied, by the Korn and Poincaré inequalities we have

‖ũµ‖H1(Ω) ≤ C‖Eũµ‖L2(Ω) ≤ C‖Euµ‖L2(Ωn(µ)), (2.18)

and by the continuity of the trace operator on ∂Ω

‖uµ‖L2(∂Ω) = ‖ũµ‖L2(∂Ω) ≤ C‖ũµ‖H1(Ω) ≤ C‖Euµ‖L2(Ωn(µ)). (2.19)

To estimate the norm of uµ on the boundaries ∂Bεn(zj) we use polar coordinates centered at
the point zj on the annulus Brn(zj) \Bεn(zj). For every θ ∈ [0, 2π] and every εn ≤ s ≤ r ≤ rn we
may write

uµ(s, θ) = uµ(r, θ)−
∫ r

s

∂uµ
∂ρ

(ρ, θ) dρ.

Thus,

|uµ(s, θ)|2 ≤ 2|uµ(r, θ)|2 + 2rn

∫ rn

s

∣∣∣∂uµ
∂ρ

(ρ, θ)
∣∣∣2dρ.
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Integrating over [0, 2π] yields∫ 2π

0

εn|uµ(s, θ)|2 dθ ≤ 2

∫ 2π

0

r|uµ(r, θ)|2 dθ + 2rn

∫
Brn (zj)\Bεn (zj)

|∇uµ|2 dx.

We now integrate over r ∈ [εn, rn] and divide by rn − εn:∫
∂Bεn (zj)

|uµ|2 dH1 ≤ 2

rn − εn

∫
Brn (zj)\Bεn (zj)

|uµ|2 dx+ 2rn

∫
Brn (zj)\Bεn (zj)

|∇uµ|2 dx.

Hence, by (2.18) we conclude that

n∑
j=1

‖uµ‖L2(∂Bεn (zj)) ≤
C
√
rn
‖uµ‖H1(Ωn(µ)) ≤

C
√
rn
‖ũµ‖H1(Ω) ≤

C
√
rn
‖Euµ‖L2(Ωn(µ)). (2.20)

Combining (2.17), (2.19), and (2.20), and taking into account (1.1), we obtain

‖Euµ‖2L2(Ωn(µ)) ≤ C‖Euµ‖L2(Ωn(µ)) +
C
√
εn

r
3/2
n

‖Euµ‖L2(Ωn(µ)) ≤ C‖Euµ‖L2(Ωn(µ)).

Therefore, using also (2.18), we deduce (2.14). �

3. Γ-convergence of the renormalized energy

In this section we prove Theorem 1.1, the Gamma-convergence of the renormalised energy
defined in (1.6). Before stating and proving the main theorem we state some useful properties of
the interaction potential V appearing in the definition of the limit energy.

Lemma 3.1. The function V : Ω× Ω→ R ∪ {+∞} defined as

V (y, z) :=


∫

Ω

CK(x; y) : K(x; z) dx if y 6= z,

+∞ if y = z,

(3.1)

is well defined, symmetric, and continuous. Moreover, we have the following estimates:

• there exist two constants C > 0 and L > 0 such that for every y, z ∈ Ω with y 6= z

|V (y, z)| ≤ C
(

1− log
|y − z|
L

)
; (3.2)

• for every open set Ω′ compactly contained in Ω there exist C(Ω′) > 0 and R > 0 such that
for every y, z ∈ Ω′ with 0 < |y − z| ≤ R

C(Ω′)(1− log |y − z|) ≤ V (y, z). (3.3)

Proof. From the definition of K it follows that there exists a constant C > 0 such that

|K(x; y)| ≤ C

|x− y|
(3.4)

for every x 6= y. This implies that the integral in the definition of V (y, z) for y 6= z is finite.
Clearly V is symmetric, that is, V (y, z) = V (z, y).

We now prove (3.2). Let y, z ∈ Ω with y 6= z. From the definition of V and from (3.4) we have

|V (y, z)| ≤ C
∫

Ω

dx

|x− y||x− z|
≤ C

∫
BL(z)

dx

|x− y||x− z|
, (3.5)

because, Ω being bounded, Ω ⊂ BL(z) for some finite L > 0 and every z ∈ Ω. With no loss of
generality we can assume that L ≥ 2|y − z|. For convenience we set x̃ := x − z and ỹ := y − z;
then for the last integral in (3.5) we have∫

BL(z)

dx

|x− y||x− z|
=

∫
BL(0)

dx̃

|x̃||x̃− ỹ|
=

∫
B2|ỹ|(0)

dx̃

|x̃||x̃− ỹ|
+

∫
BL(0)\B2|ỹ|(0)

dx̃

|x̃||x̃− ỹ|
. (3.6)
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If x̃ ∈ BL(0) \B2|ỹ|(0), then |x̃− ỹ| ≥ ||x̃| − |ỹ|| = |x̃| − |ỹ|; hence∫
BL(0)\B2|ỹ|(0)

dx̃

|x̃||x̃− ỹ|
≤
∫
BL(0)\B2|ỹ|(0)

dx̃

|x̃|
(
|x̃| − |ỹ|

) = 2π

∫ L

2|ỹ|

dr

r − |ỹ|

= 2π log

(
L

|ỹ|
− 1

)
≤ −2π log

(
|ỹ|
L

)
. (3.7)

We now split the integral on B2|ỹ|(0) in (3.6) into three terms:∫
B2|ỹ|(0)

dx̃

|x̃||x̃− ỹ|
=

{∫
B|ỹ|/2(0)

+

∫
B|ỹ|/2(ỹ)

+

∫
B2|ỹ|(0)\

(
B|ỹ|/2(0)∪B|ỹ|/2(ỹ)

) } dx̃

|x̃||x̃− ỹ|
. (3.8)

For the first integral in the right-hand side of (3.8) we have∫
B|ỹ|/2(0)

dx̃

|x̃||x̃− ỹ|
≤ 2

|ỹ|

∫
B|ỹ|/2(0)

dx̃

|x̃|
=

4π

|ỹ|

∫ |ỹ|/2
0

dr = 2π,

since |x̃− ỹ| ≥ |ỹ|2 for x̃ ∈ B|ỹ|/2(0). Analogously,∫
B|ỹ|/2(ỹ)

dx̃

|x̃||x̃− ỹ|
≤ 2π.

Moreover, for the last integral in the right-hand side of (3.8) we have∫
B2|ỹ|(0)\

(
B|ỹ|/2(0)∪B|ỹ|/2(ỹ)

) dx̃

|x̃||x̃− ỹ|
≤ 4

|ỹ|2

∫
B2|ỹ|(0)

dx̃ = 16π.

In conclusion, from (3.8), we deduce∫
B2|ỹ|(0)

dx̃

|x̃||x̃− ỹ|
≤ 20π.

Finally, putting together (3.5)–(3.8), and substituting back ỹ = y − z we obtain

|V (y, z)| ≤ C
(
−2π log

(
|y − z|
L

)
+ 20π

)
,

which implies (3.2).
We now prove (3.3). Let Ω′ be an open set contained in Ω with δ := dist(Ω′, ∂Ω) > 0 and let

y, z ∈ Ω′ with y 6= z. Here we use an argument by [CL05]. Let γy,z be a line segment parallel to
z − y connecting z to ∂Ω, so that

γy,z =
{
x ∈ Ω : x = z + s

z − y
|z − y|

, s ∈ [0, s̄y,z]
}
.

Let alsomy,z be the unit normal vector to γy,z. Since Ω\γy,z is simply connected and CurlK(· ; z) =
0 in Ω \ γy,z, there exists a function vy,z in Ω \ γy,z such that K(· ; z) = ∇vy,z in Ω \ γy,z and the
jump of vy,z across γy,z satisfies [vy,z] = −e1. We can also assume that vy,z has zero mean value
on Ω \ γy,z. By the divergence theorem we obtain

V (y, z) =

∫
Ω\γy,z

CK(x; y) : K(x; z) dx

=

∫
Ω\γy,z

CK(x; y) : ∇vy,z(x) dx

=

∫
∂Ω

CK(x; y)ν(x) · vy,z(x) dH1(x)−
∫
γy,z

CK(x; y)my,z(x) · [vy,z(x)] dH1(x). (3.9)

We first observe that the first integral on the right-hand side is uniformly bounded with respect
to y and z. Indeed, by (3.4)

|CK(x; y)ν(x)| ≤ C

|x− y|
≤ C

δ
(3.10)
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for every x ∈ ∂Ω and every y ∈ Ω′. Moreover, we have∫
Ω\γy,z

|K(x; z)| dx ≤ C

∫
Ω

1

|x− z|
dx

= C

∫
Bδ/2(z)

1

|x− z|
dx+ C

∫
Ω\Bδ/2(z)

1

|x− z|
dx

≤ πCδ +
2C

δ
.

Therefore, the measures Dvy,z = K(·; z)L2 − e1 ⊗ my,zH1xγy,z are uniformly bounded in Ω.
By Poincaré-Wirtinger inequality we deduce that the functions vy,z are uniformly bounded with
respect to y and z in the BV norm, hence their traces are bounded in L1(∂Ω;R2). In conclusion,
by the previous estimate and by (3.10) follows that the first term in (3.9) is bounded.

We focus on the second integral on the right-hand side of (3.9). We note that for x = z+s z−y
|z−y| ∈

γy,z we have

−CK(x; y)my,z(x) · [vy,z(x)] = CK(x; y)my,z(x) · e1 =
µ(λ+ µ)

π(λ+ 2µ)

1

|z − y|+ s
,

therefore

−
∫
γy,z

CK(x; y)my,z(x) · [vy,z(x)] dH1(x) =
µ(λ+ µ)

π(λ+ 2µ)

(
− log |y − z|+ log(|y − z|+ s̄y,z)

)
.

Since s̄y,z ≥ dist(z, ∂Ω) ≥ δ, we have

log(|y − z|+ s̄y,z) ≥ log δ.

Combining (3.9) with the previous estimates, we conclude that

V (y, z) ≥ −C − µ(λ+ µ)

π(λ+ 2µ)
log |y − z| ≥ C ′(1− log |y − z|),

where the last inequality is satisfied for |y − z| < R, with R small enough. This shows (3.3).
Finally, we prove the continuity of V . Let y, z ∈ Ω with y 6= z and let (yn), (zn) be two

sequences in Ω converging to y and z, respectively. For n large enough we clearly have yn 6= zn.
It is easy to see that

CK(x; yn) : K(x, zn)→ CK(x; y) : K(x; z) for a.e. x ∈ Ω.

Moreover, the sequence is dominated. Indeed, for 0 < δ < 1
4 |y − z| we have

χΩ\(Bδ(yn)∪Bδ(zn))|CK(x; yn) : K(x, zn)| ≤ C

δ2
,

while

χBδ(yn)∪Bδ(zn)|CK(x; yn) : K(x, zn)| ≤ χBδ(yn)∪Bδ(zn)
C

|x− yn| |x− zn|

≤ 4C

|y − z|

( 1

|x− yn|
+

1

|x− zn|

)
and the function on the right-hand side is dominated since it is strongly converging in L1 (by the
continuity property in L1). Thus, by the dominated convergence theorem we have

lim
(yn,zn)→(y,z)

V (yn, zn) = lim
(yn,zn)→(y,z)

∫
Ω

CK(x; yn) : K(x; zn) dx

=

∫
Ω

CK(x; y) : K(x; z) dx = V (y, z).

Let now y = z ∈ Ω and let (yn), (zn) be two sequences converging to y. Let Ω′ be an open
set compactly contained in Ω such that y ∈ Ω′. Without loss of generality we can assume that
yn 6= zn and yn, zn ∈ Ω′ for every n. Thus, we can use (3.3) for n large enough and deduce that

lim
(yn,zn)→(y,y)

V (yn, zn) = +∞ = V (y, y).
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This concludes the proof of the continuity of V . �

Remark 3.2. Note that from (3.2) and (3.3) follows that for every open set Ω′ compactly con-
tained in Ω there exists a constant C1(Ω′) > 0 such that for every y, z ∈ Ω′

V (y, z) ≥ −C1(Ω′). (3.11)

We are now ready to prove the Γ-convergence of the renormalised energy, which constitutes the
main result of this section.

Theorem 3.3. Assume (1.1). Then the functionals Fn Γ-converge with respect to the narrow
convergence of measures, as n→∞, to the functional F : P(Ω)→ R ∪ {+∞} defined as

F(µ) :=
1

2

∫∫
Ω×Ω

V (y, z) dµ(y) dµ(z) + min
v
Iµ(v),

if supp µ ⊂ R, while F(µ) := +∞ otherwise. In the formula above V is the function defined in
(3.1) and Iµ is the functional defined in (2.8),

Iµ(v) :=
1

2

∫
Ω

C∇v : ∇v dx+

∫
Ω

∫
∂Ω

CK(x; y)ν(x) · v(x) dH1(x) dµ(y)

on the class {
v ∈ H1(Ω;R2) :

∫
B

v dx = 0,

∫
B

skew∇v dx = 0
}
. (3.12)

Remark 3.4. Since suppµ ⊂ R and V is bounded from below on open sets compactly contained
in Ω by Remark 3.2, the interaction energy term in F is always well defined, possibly equal to
+∞.

Proof of Theorem 3.3. Preliminary estimates. Let (µn) be such that µn ∈ Xn for every n ∈ N,
and let (zni )i=1,...,n ⊂ R be such that

µn =
1

n

n∑
i=1

δzni .

For brevity we set βn := βµn , un := uµn and simply denote Ωn(µn) by Ωn. Finally, let

µn � µn :=
1

n2

n∑
i=1

∑
j 6=i

δ(zni ,znj ).

As a preliminary step, we shall prove that

1

2n2

n∑
i=1

∑
j 6=i

∫
Ωn

CKn(x; zni ) : Kn(x; znj ) dx =
1

2

∫∫
Ω×Ω

V (y, z) d(µn � µn)(y, z) + o(1) (3.13)

and

1

n

n∑
i=1

∫
∂Ωn

CKn(x; zni )ν(x) · un(x) dH1(x) =
1

n

n∑
i=1

∫
∂Ω

CK(x; zni )ν(x) · un(x) dH1(x) + o(1),

(3.14)
where o(1) denotes an infinitesimal quantity, as n→∞. Moreover, if we assume in addition that
µn ⇀ µ narrowly, as n→∞, then

lim
n→∞

1

2n

n∑
i=1

∫
∂Ω

CK(x; zni )ν(x) · un(x) dH1(x) = Iµ(vµ) = min Iµ. (3.15)

The proof of (3.13)–(3.15) is split into several steps.

Step 1. Proof of (3.13). We first show that, as n→∞,

1

2n2

n∑
i=1

∑
j 6=i

∫
Ωn

CKn(x; zni ) : Kn(x; znj ) dx =
1

2n2

n∑
i=1

∑
j 6=i

∫
Ω

CK(x; zni ) : K(x; znj ) dx+ o(1).

(3.16)
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Here we follow an argument in [CL05, Proof of Theorem 5.1]. We recall that by (2.2) we have
Kn(x; zni ) = K(x; zni ) + ε2

n∇wn,i, where we set wn,i(x) := w(x− zni ). Therefore,∫
Ωn

CKn(x; zni ) : Kn(x; znj ) dx =

∫
Ωn

CK(x; zni ) : K(x; znj ) dx

+ ε2
n

∫
Ωn

CK(x; zni ) : ∇wn,j(x) dx+ ε2
n

∫
Ωn

CK(x; znj ) : ∇wn,i(x) dx

+ ε4
n

∫
Ωn

C∇wn,i(x) : ∇wn,j(x) dx.

Applying the divergence theorem the last three integrals can be written as

ε2
n

∫
∂Ω

(
CK(x; zni )ν · wn,j(x) + CK(x; znj )ν · wn,i(x) + ε2

nC∇wn,i(x)ν · wn,j(x)
)
dH1(x)

−ε2
n

n∑
k=1

∫
∂Bεn (znk )

(
CK(x; zni )ν ·wn,j(x)+CK(x; znj )ν ·wn,i(x)+ε2

nC∇wn,i(x)ν ·wn,j(x)
)
dH1(x).

Since |K(x;x0)| ≤ C|x − x0|−1 and |w(x)| ≤ C|x|−2, while |∇w(x)| ≤ C|x|−3, we easily deduce
that the first term in the formula above is of order ε2

n. As for the second term, by (1.1) we have

ε2
n

∣∣∣ ∑
k 6=i,j

∫
∂Bεn (znk )

(
CK(x; zni )ν · wn,j(x) + CK(x; znj )ν · wn,i(x) + ε2

nC∇wn,i(x)ν · wn,j(x)
)
dH1(x)

∣∣∣
≤ Cε3

nn

(
1

r3
n

+
ε2
n

r5
n

)
≤ C ε

3
n

r4
n

(
1 +

ε2
n

r2
n

)
,

while

ε2
n

∣∣∣ ∑
k=i,j

∫
∂Bεn (znk )

(
CK(x; zni )ν · wn,j(x) + CK(x; znj )ν · wn,i(x) + ε2

nC∇wn,i(x)ν · wn,j(x)
)
dH1(x)

∣∣∣
≤ Cε3

n

(
1

ε2
nrn

+
1

εnr2
n

+
1

r3
n

)
= C

εn
rn

(
1 +

εn
rn

+
ε2
n

r2
n

)
.

Combining the previous estimates, we obtain

1

2n2

n∑
i=1

∑
j 6=i

∫
Ωn

CKn(x; zni ) : Kn(x; znj ) dx =
1

2n2

n∑
i=1

∑
j 6=i

∫
Ωn

CK(x; zni ) : K(x; znj ) dx+ o(1).

To conclude the proof of (3.16), it remains to show that

lim
n→∞

1

2n2

n∑
i=1

∑
j 6=i

∫
Ω\Ωn

CK(x; zni ) : K(x; znj ) dx = 0. (3.17)

Using again the estimate |K(x;x0)| ≤ C|x− x0|−1 and (1.1), we infer

1

2n2

∣∣∣ n∑
i=1

∑
j 6=i

∫
Ω\Ωn

CK(x; zni ) : K(x; znj ) dx
∣∣∣

=
1

2n2

∣∣∣ n∑
i=1

∑
j 6=i

n∑
k=1

∫
Bεn (znk )

CK(x; zni ) : K(x; znj ) dx
∣∣∣

≤ C

(
n
ε2
n

r2
n

+
εn
rn

)
= C

εn
rn

(
1 +

εn
r2
n

)
,

which proves (3.17) and, in turn, (3.16).
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Identity (3.13) follows immediately from (3.16), since by the definitions of V and of µn�µn we
may write

1

2n2

n∑
i=1

∑
j 6=i

∫
Ω

CK(x; zni ) : K(x; znj ) dx =
1

2

∫∫
Ω×Ω

(∫
Ω

CK(x; y) : K(x; z) dx
)
d(µn � µn)(y, z)

=
1

2

∫∫
Ω×Ω

V (y, z) d(µn � µn)(y, z).

Step 2. Proof of (3.14). By Lemma 2.1 for every n ∈ N there exists an extension ũn ∈ H1(Ω;R2)
of un such that

‖ũn‖H1(Ω) ≤ C‖Eun‖L2(Ωn) ≤ C, (3.18)

with a constant C independent of n. This implies that, up to subsequences, ũn converges weakly
in H1(Ω;R2) to some function v ∈ H1(Ω;R2). Since un (and thus ũn) satisfies the conditions (2.6)
for every n, the function v belongs to the class (3.12). We also recall that by (2.20) and (3.18) we
have

n∑
j=1

‖un‖L2(∂Bεn (znj )) ≤
C
√
rn
‖Eun‖L2(Ωn) ≤

C
√
rn
. (3.19)

Using the boundary condition in (2.3), we have

1

n

n∑
i=1

∫
∂Ωn

CKn(x; zni )ν · un(x) dH1(x)

=
1

n

n∑
i=1

∫
∂Ω

CKn(x; zni )ν · un(x) dH1(x)− 1

n

n∑
i=1

∑
j 6=i

∫
∂Bεn (znj )

CKn(x; zni )ν · un(x) dH1(x).

(3.20)

Arguing as in the proof of (3.16), it is easy to see that

1

n

n∑
i=1

∫
∂Ω

CKn(x; zni )ν · un(x) dH1(x) =
1

n

n∑
i=1

∫
∂Ω

CK(x; zni )ν · un(x) dH1(x) + o(1). (3.21)

Moreover, as a consequence of (2.16) and (3.19), we obtain

1

n

∣∣∣ n∑
i=1

∑
j 6=i

∫
∂Bεn (znj )

CKn(x; zni )ν · un(x) dH1(x)
∣∣∣ ≤ C√εn

r
3/2
n

→ 0. (3.22)

Combining (3.20)–(3.22), we deduce (3.14).

Step 3. Convergence of the boundary energy terms. Assume now that µn ⇀ µ narrowly, as n→∞.
We prove that

lim
n→∞

1

n

n∑
i=1

∫
∂Ω

CK(x; zni )ν · un(x) dH1(x) =

∫
Ω

∫
∂Ω

CK(x; y)ν(x) · v(x) dH1(x) dµ(y). (3.23)

Since ũn = un on ∂Ω, we have

1

n

n∑
i=1

∫
∂Ω

CK(x; zni )ν · un(x) dH1(x) =

∫
Ω

∫
∂Ω

CK(x; y)ν(x) · ũn(x) dH1(x) dµn(y). (3.24)

Let now Ω′ be the open set of all points in Ω with distance from ∂Ω larger than `/2. By the
compactness of the trace operator the weak convergence of ũn to v in H1(Ω;R2) guarantees strong
convergence of the traces in L2(∂Ω;R2). This, in turn, implies

sup
y∈Ω′

∣∣∣ ∫
∂Ω

CK(x; y)ν(x) ·
(
ũn(x)− v(x)

)
dH1(x)

∣∣∣ ≤ ‖ũn − v‖L2(∂Ω) sup
y∈Ω′
‖K(· ; y)‖L2(∂Ω)

≤ C

`
‖ũn − v‖L2(∂Ω) → 0.
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Since supp µn ⊂ Ω′ for every n ∈ N, the estimate above, together with the narrow convergence of
µn to µ, allows us to pass to the limit in (3.24) and obtain (3.23).

Step 4. Characterization of v. We now prove that v = vµ, that is, v is the unique minimizer of
the functional Iµ on the class (3.12).

We have that |Ω \ Ωn| → 0 since (1.1) implies that nr2
n → 0 as n → ∞. Therefore, by lower

semicontinuity of the elastic energy with respect to weak convergence in L2 we have

lim inf
n→∞

1

2

∫
Ωn

C∇un : ∇un dx = lim inf
n→∞

1

2

∫
Ωn

C∇ũn : ∇ũn dx ≥
1

2

∫
Ω

C∇v : ∇v dx.

Combining the inequality above with (3.14) and (3.23) yields

lim inf
n→∞

In,µn(un) ≥ Iµ(v).

On the other hand, since un minimizes In,µn on H1(Ωn;R2) by Lemma 2.1, we have

In,µn(un) ≤ In,µn(u)

for every u ∈ H1(Ω;R2). Arguing as in (3.20)–(3.22), one can show that the functionals In,µn
converge pointwise to Iµ on H1(Ω;R2). Thus, we deduce that

Iµ(v) = lim inf
n→∞

In,µn(un) ≤ lim
n→∞

In,µn(u) = Iµ(u).

We conclude that v is the minimizer of Iµ on the class (3.12), that is, v = vµ, and In,µn(un) →
Iµ(vµ). Together with (3.23), this implies (3.15), since

Iµ(vµ) =
1

2

∫
Ω

∫
∂Ω

CK(x; y)ν(x) · vµ(x) dH1(x) dµ(y),

where we used integration by parts and the Euler-Lagrange equations satisfied by vµ.

Liminf inequality. Let now (µn) be a sequence of measures such that µn ∈ Xn for every n ∈ N
and µn ⇀ µ narrowly, as n→∞. We shall prove that

lim inf
n→∞

Fn(µn) ≥ F(µ). (3.25)

Clearly µ satisfies supp µ ⊂ R. We consider the decomposition of Fn given in (2.13). Equation
(3.13) guarantees that

lim inf
n→∞

1

2n2

n∑
i=1

∑
j 6=i

∫
Ωn

CKn(x; zni ) : Kn(x; znj ) dx = lim inf
n→∞

1

2

∫∫
Ω×Ω

V (y, z) d(µn � µn)(y, z).

(3.26)
For M > 0 let VM := V ∧M . We observe that supp µn, supp µ ⊂ Ω′ for every n, where Ω′ is
the open set of all points in Ω with distance from ∂Ω larger than `/2; thus, by Lemma 3.1 and
Remark 3.2 the function VM is continuous and bounded on Ω′×Ω′. Using the narrow convergence
of µn � µn to µ⊗ µ, we infer

lim inf
n→∞

1

2

∫∫
Ω×Ω

V (y, z) d(µn � µn)(y, z) ≥ lim inf
n→∞

1

2

∫∫
Ω×Ω

VM (y, z) d(µn � µn)(y, z)

≥ 1

2

∫∫
Ω×Ω

VM (y, z) dµ(y) dµ(z). (3.27)

Since M is arbitrary, (3.26) and (3.27) yield

lim inf
n→∞

1

2n2

n∑
i=1

∑
j 6=i

∫
Ωn

CKn(x; zni ) : Kn(x; znj ) dx ≥ 1

2

∫∫
Ω×Ω

V (y, z) dµ(y) dµ(z).

Combining this inequality with (3.14) and (3.15), we obtain (3.25).

Limsup inequality. Let µ ∈ P(Ω) be such that F(µ) < +∞. In particular, we have that
supp µ ⊂ R. Since the energy estimates (3.13)–(3.15) are valid for any admissible sequence
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converging to µ, it is sufficient to construct a sequence µn such that µn ∈ Xn, with µn ⇀ µ
narrowly and

lim sup
n→∞

1

2

∫∫
Ω×Ω

V (y, z) d(µn � µn)(y, z) ≤ 1

2

∫∫
Ω×Ω

V (y, z) dµ(y) dµ(z).

Also in this case the proof will be split into several steps.

Step 1. Approximation of the measure µ. Define the family of squares

Q̃h :=
{

[0, 2h)2 + 2h(m, `) : (m, `) ∈ Z2
}
,

and let {Q̃hk}k=1,...,Nh be the squares in Q̃h intersecting the support of µ. For k = 1, . . . , Nh let
Qhk be defined as

Qhk := {x ∈ Q̃hk : x+ λ1e1 + λ2e2 ∈ Q̃hk , 0 ≤ λi < h}.

We define the approximating measures µh as

µh :=

Nh∑
k=1

µ(Q̃hk)

h2
χQhk

for every h. Without loss of generality we can assume that supp µh ⊂ R for every h. Clearly
µh ⇀ µ narrowly, as h→ 0.

We claim that

lim sup
h→0

∫∫
Ω×Ω

V (y, z) dµh(y) dµh(z) ≤
∫∫

Ω×Ω

V (y, z) dµ(y) dµ(z). (3.28)

For M > 0 we consider the truncated function VM := V ∧M and we write V = VM + (V − VM ).
Let Ω′ be the open set of all points in Ω with distance from ∂Ω larger than `/2. Since

supp µh, supp µ ⊂ Ω′ for every h and VM is continuous and bounded on Ω′ × Ω′, narrow con-
vergence yields

lim
h→0

∫∫
Ω×Ω

VM (y, z) dµh(z) dµh(y) =

∫∫
Ω×Ω

VM (y, z) dµ(z) dµ(y)

≤
∫∫

Ω×Ω

V (y, z) dµ(z) dµ(y).

Therefore, (3.28) is proved if we show that

lim
M→∞

lim sup
h→0

∫∫
Ω×Ω

(V (y, z)− VM (y, z)) dµh(z) dµh(y) = 0. (3.29)

We observe that the bound (3.2) on V implies that

|V (y, z)| > M =⇒ |y − z| < RM , (3.30)

for some RM > 0 such that RM → 0, as M →∞. Therefore,∫∫
Ω×Ω

(V (y, z)− VM (y, z)) dµh(z) dµh(y) ≤
∫

Ω

(∫
BRM (y)

V (y, z) dµh(z)
)
dµh(y). (3.31)

By estimate (3.3) of Lemma 3.1 there exist C(Ω′) > 0 and R > 0 such that

C(Ω′)(1− log |y − z|) ≤ V (y, z) (3.32)

for every y, z ∈ Ω′ with 0 < |y−z| ≤ R. Since RM → 0, as M →∞, we can assume that RM � R.
For every k = 1, . . . , Nh and every p = 1, . . . , Phk , with Phk = bRM/(2h)c+ 1, we consider the set
of indices

Ihk,p :=
{

1 ≤ j ≤ Nh : Qhj = Qhk + 2h(m, `), |m| ∨ |`| = p
}
.
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Ω

(∫
BRM (y)

V (y, z) dµh(z)
)
dµh(y)

=

Nh∑
k=1

Phk∑
p=1

∑
j∈Ihk,p

µh(Q̃hk)µh(Q̃hj )

h4

∫
Qhk

(∫
BRM (y)∩Qhj

V (y, z) dz
)
dy

+

Nh∑
k=1

(
µh(Q̃hk)

)2
h4

∫
Qhk

(∫
BRM (y)∩Qhk

V (y, z) dz
)
dy.

For k = 1, . . . , Nh and j ∈ Ihk,p we have that |y − z| ≥ (2p − 1)h for every y ∈ Qhk , z ∈ Qhj ; thus,

estimate (3.2) implies that

V (y, z) ≤ C
(

1− log
(2p− 1)h

L

)
for every y ∈ Qhk , z ∈ Qhj , j ∈ Ihk,p.

On the other hand, since |y − z| ≤ 2
√

2(p+ 1)h for every y ∈ Q̃hk , z ∈ Q̃hj with j ∈ Ihk,p, estimate

(3.32) yields

C(Ω′)
(
1− log(2

√
2(p+ 1)h)

)
≤ V (y, z) for every y ∈ Q̃hk , z ∈ Q̃hj , j ∈ Ihk,p.

Therefore, we obtain

∑
j∈Ihk,p

µ(Q̃hk)µ(Q̃hj )

h4

∫
Qhk

(∫
BRM (y)∩Qhj

V (y, z) dz
)
dy

≤ C
∑
j∈Ihk,p

µ(Q̃hk)µ(Q̃hj )
(

1− log
(2p− 1)h

L

)

= C
∑
j∈Ihk,p

µ(Q̃hk)µ(Q̃hj )
(

1− log(2
√

2(p+ 1)h) + log
2
√

2(p+ 1)L

2p− 1

)
≤ C

∑
j∈Ihk,p

∫
Q̃hk

(∫
Q̃hj

V (y, z) dµ(z)
)
dµ(y) + C

∑
j∈Ikh,p

µ(Q̃hk)µ(Q̃hj ).

Similarly, by applying (3.2) and (3.32) and using polar coordinates we have(
µ(Q̃hk)

)2
h4

∫
Qhk

(∫
BRM (y)∩Qhk

V (y, z) dz
)
dy ≤ C

(
µ(Q̃hk)

)2
h4

∫
Qhk

(∫
B√2h(y)∩Qhk

V (y, z) dz
)
dy

≤ C
(
µ(Q̃hk)

)2(
1− log(

√
2h)
)

≤ C

∫
Q̃hk

(∫
Q̃hk

V (y, z) dµ(z)
)
dµ(y) + C

(
µ(Q̃hk)

)2
.

Combining together the previous estimates, we conclude that∫
Ω

(∫
BRM (y)

V (y, z) dµh(z)
)
dµh(y)

≤ C
∫

Ω

(∫
BRM (y)

V (y, z) dµ(z)
)
dµ(y) + C

∫
Ω

µ(BRM (y)) dµ(y),

where the right-hand side tends to zero, as RM → 0, since F(µ) < +∞. Owing to (3.31),
this proves (3.29), hence the claim (3.28). In virtue of (3.28) and of the metrizability of the
narrow convergence on P(Ω), it is sufficient to construct a recovery sequence for the approximating
measures µh.
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Step 2. Construction of the recovery sequence. Let us fix h > 0. For every n we denote with µhn
an approximation of the measure µh defined in the previous step, of the following form:

µhn :=

Nh∑
k=1

ck,nχQhk ,

where the constants ck,n are chosen in such a way that
√
nµhn(Qhk) ∈ N0 for every k and µhn(Qhk)→

µh(Qhk), as n→∞.
At this point we construct the recovery sequence µn = 1

n

∑n
i=1 δzni by choosing the points

zni ∈ Ω in the following way:

(1) to each square Qhk , allocate nµhn(Qhk) dislocations;

(2) in a given square Qhk , choose
√
nµhn(Qhk) equispaced horizontal coordinates and

√
nµhn(Qhk)

equispaced vertical coordinates. Then the dislocations will be located at the nodes of this
square grid, and their distance within the same square Qhk satisfies the bound

|zni − znj | >
h√

nµhn(Qhk)
∼ C(h)√

n
� rn,

since, by assumption (1.1) nrn → 0, as n→∞. Such a sequence is therefore admissible.

By construction we have that µnxQhk ⇀ µhxQhk narrowly, as n → ∞, for every k. This implies
that µn ⇀ µh narrowly as n→∞.

Step 3. Convergence of the energy. It remains to prove that

lim sup
n→∞

1

2

∫∫
Ω×Ω

V (y, z) d(µn � µn)(y, z) ≤ 1

2

∫∫
Ω×Ω

V (y, z) dµh(y) dµh(z). (3.33)

For k = 1, . . . , Nh and n ∈ N we introduce the set

Jnk :=
{

1 ≤ i ≤ n : zni ∈ Qhk
}
.

We then calculate

1

2

∫∫
Ω×Ω

V (y, z) d(µn � µn)(y, z) =
1

2n2

n∑
i,j=1
i 6=j

V (zni , z
n
j )

=
1

2n2

Nh∑
k,`=1
k 6=`

∑
i∈Jnk
j∈Jn`

V (zni , z
n
j ) +

1

2n2

Nh∑
k=1

∑
i,j∈Jnk
i 6=j

V (zni , z
n
j ). (3.34)

For the first term in the right-hand side of (3.34) we have that

lim
n→∞

1

2n2

Nh∑
k,`=1
k 6=`

∑
i∈Jnk
j∈Jn`

V (zni , z
n
j ) =

1

2

Nh∑
k,`=1
k 6=`

∫∫
Qhk×Q

h
`

V (y, z) dµh(y) dµh(z), (3.35)

since V is continuous and bounded on Qhk × Qh` for k 6= `. For the second term in (3.34) we
consider, for fixed M > 0, the decomposition V = VM + (V − VM ), where VM := V ∧M . Since
the truncated function VM is continuous and bounded on an open set containing R×R, we have

lim
n→∞

1

2n2

Nh∑
k=1

∑
i,j∈Jnk
i 6=j

VM (zni , z
n
j ) =

1

2

Nh∑
k=1

∫∫
Qhk×Q

h
k

VM (y, z) dµh(y) dµh(z). (3.36)

Combining together (3.34)–(3.36), since VM ≤ V , the claim (3.33) follows if we prove that

lim
M→∞

lim sup
n→∞

1

2n2

Nh∑
k=1

∑
i,j∈Jnk
i 6=j

(V − VM )(zni , z
n
j ) = 0. (3.37)
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From (3.30), for large enough M (so that, in particular, RM < h) we have that, for every
k = 1, . . . , Nh,

1

2n2

∑
i,j∈Jnk
i 6=j

(V − VM )(zni , z
n
j ) ≤ 1

2n2

∑
i,j∈Jnk

|zni −z
n
j |<RM
i 6=j

V (zni , z
n
j ). (3.38)

Now we denote with Lnk the size of the square grid in Qhk formed by the dislocations locations, i.e.,

Lnk :=
h√

nµhn(Qhk)
.

Then we can rewrite the last term in (3.38) as

1

2n2

∑
i,j∈Jnk

|zni −z
n
j |<RM
i 6=j

V (zni , z
n
j ) =

1

2n2

∑
i∈Jnk

Pnk∑
p=2

∑
j∈Jnk (i,p)

V (zni , z
n
j ), (3.39)

where Pnk is the integer part of RM/L
n
k and, for p = 2, . . . , Pnk ,

Jnk (i, p) :=
{
j ∈ Jnk : (p− 1)Lnk ≤ |znj − zni | < pLnk

}
.

The cardinality of the set Jnk (i, p) can be estimated as

#(Jnk (i, p)) ≤ C(p2 − (p− 1)2) = C(2p+ 1);

moreover, for every j ∈ Jnk (i, p) we have, in virtue of (3.2),

|V (zni , z
n
j )| ≤ C

(
1− log

(p− 1)Lnk
L

)
.

Hence, we deduce∣∣∣ 1

2n2

∑
i∈Jnk

Pnk∑
p=2

∑
j∈Jnk (i,p)

V (zni , z
n
j )
∣∣∣ ≤ C

2n2

∑
i∈Jnk

Pnk∑
p=2

(2p+ 1)
(

1− log
(p− 1)Lnk

L

)

≤ C#(Jnk )

n2

Pnk∑
p=2

(
2p+ 1− 2(p− 1) log

(p− 1)Lnk
L

− 3 log
Lnk
L

)
. (3.40)

It is easy to show that, for every p = 2, . . . , Pnk ,

−2(p− 1) log
(p− 1)Lnk

L
≤ C

Lnk
;

therefore, the sum in the right-hand side of (3.40) can be estimated as follows:

Pnk∑
p=2

(
2p+ 1 +

C

Lnk
− 3 log

Lnk
L

)
≤ CPnk

(
1 +

1

Lnk

)
+ CPnk (Pnk + 1).

Combining this estimate with (3.40) and the definition of Pnk and Lnk , we deduce∣∣∣ 1

2n2

∑
i∈Jnk

Pnk∑
p=2

∑
j∈Jnk (i,p)

V (zni , z
n
j )
∣∣∣ ≤ C µhn(Qhk)

n

(RM
Lnk

+
RM

(Lnk )2
+

R2
M

(Lnk )2

)

≤ CRM
(
µhn(Qhk)

)3/2
h
√
n

+ CRM

(
µhn(Qhk)

)2
h2

+ CR2
M

(
µhn(Qhk)

)2
h2

.

From the last estimate it follows that

lim sup
n→∞

∣∣∣ 1

2n2

∑
i∈Jnk

Pnk∑
p=2

∑
j∈Jnk (i,p)

V (zni , z
n
j )
∣∣∣ ≤ CRM (µh(Qhk)

)2
h2

+ CR2
M

(
µh(Qhk)

)2
h2

. (3.41)
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Since RM → 0, as M → ∞, (3.38), (3.39), and (3.41) prove the claim (3.37). This concludes the
proof of (3.33) and of the theorem. �

Remark 3.5. We observe that there exists a positive constant C such that

F(µ) ≥ −C (3.42)

for every µ ∈ P(Ω). Indeed, from (3.11) follows directly that the interaction energy term is
uniformly bounded from below. Moreover, considering v = 0 as test function for Iµ in the class
(3.12), we obtain

1

2

∫
Ω

C∇vµ : ∇vµ dx ≤ −
∫

Ω

∫
∂Ω

CK(x; y)ν(x) · v(x) dH1(x) dµ(y),

hence ∫
Ω

|Evµ|2 dx ≤
C

`
‖vµ‖L2(∂Ω).

By Korn’s inequality and the definition of the class (3.12) we deduce that the functions vµ are
uniformly bounded in H1(Ω;R2) with respect to µ, hence their traces are uniformly bounded in
L2(∂Ω;R2) with respect to µ. Finally, this implies that the minimum values Iµ(vµ) are uniformly
bounded from below, as well.

We conclude this section with a characterization of the class where the Γ-limit functional F is
finite.

Proposition 3.6. Let µ ∈ P(Ω). Then F(µ) < +∞ if and only if µ ∈ H−1(Ω).

Proof. For every µ ∈ P(Ω) we set

β∗µ(x) := ∇vµ(x) +

∫
Ω

K(x; y) dµ(y), (3.43)

where vµ is the function associated to µ according to Section 2.1, that is, the unique minimizer
of Iµ on the class (2.9). By Fubini Theorem we have that β∗µ ∈ L1(Ω;R2×2). Moreover, β∗µ is the
unique (up to skew-symmetric matrices) solution of the system

divCβ∗µ = 0 in Ω,

Cβ∗µν = 0 on ∂Ω,

Curlβ∗µ = µ e1 in Ω.

(3.44)

Let now µ ∈ P(Ω) ∩H−1(Ω). Then the problem

min
{1

2

∫
Ω

Cβ(x) : β(x) dx : β ∈ L2(Ω;R2×2), Curlβ = µ e1

}
has a solution β̃ (indeed, the class where the minimum is taken is not empty: for instance, we can

solve ∆u = µ e1, u ∈ H1
0 (Ω;R2), and take as β a π/2 rotation of ∇u). Since β̃ is a solution to

(3.44), we deduce that β∗µ ∈ L2(Ω;R2×2). Now, by Fubini Theorem we may write

1

2

∫
Ω

Cβ∗µ :β∗µ dx

=
1

2

∫
Ω

C∇vµ :∇vµ dx+

∫
Ω

∫
Ω

CK(x; y) :∇vµ dx dµ(y) +
1

2

∫
Ω×Ω

V (y; z) dµ(y) dµ(z)

= F(µ),

hence we conclude that F(µ) < +∞.
Conversely, let µ ∈ P(Ω) be such that F(µ) < +∞. By Step 1 in the proof of the limsup

inequality of Theorem 3.3 there exists a sequence (µh) ⊂ L∞(Ω) such that µh ⇀ µ narrowly and

lim sup
h→0

F(µh) ≤ F(µ) < +∞. (3.45)
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Let β∗h be defined as in (3.43) with µ replaced by µh. Since (µh) ⊂ L∞(Ω) (hence, in particular,
in H−1(Ω)), the previous argument guarantees that β∗h ∈ L2(Ω;R2×2) and by Fubini Theorem

1

2

∫
Ω

Cβ∗h :β∗h dx = F(µh) (3.46)

for every h. Combining (3.45) and (3.46), we obtain that the sequence (symβ∗h) is uniformly
bounded in L2(Ω;R2×2).

On the other hand, since µh ⇀ µ, we have that ∇vµh ⇀ ∇vµ weakly in L2(Ω;R2×2) and that∫
Ω

K(·; y) dµh(y) ⇀

∫
Ω

K(·; y) dµ(y)

in the sense of distributions. Thus, β∗h ⇀ β∗µ in the sense of distributions. We conclude that

symβ∗µ ∈ L2(Ω;R2×2). By the generalized Korn inequality [GLP10, Theorem 11] we deduce that

β∗µ ∈ L2(Ω;R2×2), hence µ ∈ H−1(Ω). �

4. Quasi-static evolution of dislocation energies

In this section we prove the existence of a quasi-static evolution for the energy-dissipation
system given by the renormalised dislocation energy Fn defined in (1.6), and the modified, slip-
plane-confined, Wasserstein distance d in (1.13) as dissipation distance.

4.1. Wasserstein-type dissipation. The dissipation term is defined in terms of a Wasserstein-
type distance d (1.13)–(1.14), which is finite only on pairs of measures with the same vertical
marginals. This implies that during the evolution only the horizontal positions of the dislocations
will be allowed to vary, i.e., each dislocation will be only allowed to move within its slip plane.

The next lemma summarises a number of properties of the distance d and its relation with the
standard Wasserstein distance d1 and with narrow convergence. Recall that d1 is defined by

d1(µ, ν) := inf
γ∈Γ1(µ,ν)

∫∫
Ω×Ω

|x− y| dγ(x, y), (4.1)

where Γ1(µ, ν) is the following set of couplings of µ and ν:

Γ1(µ, ν) :=
{
γ ∈ P(Ω×Ω) : γ(A×Ω) = µ(A), γ(Ω×A) = ν(A) for all Borel sets A ⊂ Ω

}
. (4.2)

Since Ω is bounded, the distance d1 generates the topology of narrow convergence.

Lemma 4.1. The following properties are satisfied.

(1) Convergence in d implies narrow convergence.
(2) The d1-distance of measures µ, ν ∈ P(Ω) is bounded from below by the d1-distance of their

horizontal marginals, namely

d1((π1)#µ, (π1)#ν) ≤ d1(µ, ν) ≤ d(µ, ν).

(3) The metric d is lower semicontinuous with respect to narrow convergence: if µk ⇀ µ and
νk ⇀ ν, then d(µ, ν) ≤ lim infk→∞ d(µk, νk).

(4) The dissipation D, introduced in (1.15), is lower semicontinuous with respect to pointwise
narrow convergence: if µk, µ : [0, T ]→ P(Ω) are such that µk(t) ⇀ µ(t) for all t ∈ [0, T ],
then D(µ, [0, T ]) ≤ lim infk→∞D(µk, [0, T ]).

(5) We have the dual characterization

d(µ, ν) = sup

{∫
Ω

φ (dµ− dν) : φ ∈ C∞c (R2),

|φ(x1, x2)− φ(x′1, x2)| ≤ |x1 − x′1| for all x1, x
′
1, x2

}
. (4.3)

(6) For ε > 0 let d1,ε be the Monge-Kantorovich transport distance with cost function cε(x, y) =
|x1 − y1|+ ε−1|x2 − y2|; then

d(µ, ν) = lim
ε→0+

d1,ε(µ, ν). (4.4)
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(7) For any measurable curve t 7→ µ(t, ·), define

D(µ, [0, T ]) := inf

{∫ T

0

∫
Ω

|φ(t, x)| dµ(t) dt : φ : (0, T )× R2 → R Borel measurable,

∂tµ+ ∂x1
(φµ) = 0 as distributions on (0, T )× R2

}
, (4.5)

with the convention that inf ∅ = +∞. If D(µ, [0, T ]) <∞, then D(µ, [0, T ]) = D(µ, [0, T ]).

Remark 4.2. The condition that D < ∞ in Part 7 is necessary: for instance, for two points
x, x̃ ∈ Ω with x2 = x̃2, the curve µ(t) = tδx + (1 − t)δx̃ has D(µ, [0, 1]) = |x1 − x̃1|. However,
D(µ, [0, 1]) = +∞, since the ‘jumping’ of the mass from x to x̃ can not be represented by the
continuity equation ∂tµ+ ∂x1

(φµ) = 0.

Proof of Lemma 4.1. By definition d1(µ, ν) ≤ d(µ, ν), which implies Part 1. For Part 2 we observe
that

γ ∈ Γ1(µ, ν) ⇒ (π1 × π1)#γ ∈ Γ1((π1)#µ, (π1)#ν).

Thus, using the fact that π1(x) = x1, we have

d1((π1)#µ, (π1)#ν) = inf
γ̂∈Γ1((π1)#µ,(π1)#ν)

∫∫
R×R
|x1 − y1| dγ̂(x1, y1)

≤ inf
γ∈Γ1(µ,ν)

∫∫
R×R
|x1 − y1| d

(
(π1 × π1)#γ

)
(x1, y1)

= inf
γ∈Γ1(µ,ν)

∫∫
R2×R2

|π1(x)− π1(y)| dγ(x, y)

≤ inf
γ∈Γ1(µ,ν)

∫∫
R2×R2

|x− y| dγ(x, y) = d1(µ, ν).

We next prove Part 6. Note that d1,ε(µ, ν) ≤ d(µ, ν). To prove d(µ, ν) = limε→0+ d1,ε(µ, ν),
first assume that d(µ, ν) < ∞ and let γ1,ε be an optimal transport plan for d1,ε(µ, ν); since µ
and ν are fixed, γ1,ε is tight, and as ε → 0+ we can assume that γ1,ε ⇀ γ1,0 in P(Ω × Ω). The
inequality ∫∫

Ω×Ω

(
|x1 − y1|+

1

ε
|x2 − y2|

)
dγ1,ε(x, y) = d1,ε(µ, ν) ≤ d(µ, ν)

then implies that the limit satisfies γ1,0 ∈ Γ(µ, ν). Therefore γ1,0 is admissible for d(µ, ν), and

lim inf
ε→0+

d1,ε(µ, ν) ≥
∫∫

Ω×Ω

|x1 − y1| dγ1,0(x, y) ≥ d(µ, ν).

This, together with the inequality d1,ε(µ, ν) ≤ d(µ, ν), proves (4.4). On the other hand, if d(µ, ν) =
∞, then this argument implies that d1,ε(µ, ν) can not remain bounded as ε → 0+, which again
implies (4.4).

From (4.4) directly follows Part 3, since d1,ε is lower semicontinuous with respect to narrow
convergence for each ε > 0 and d1,ε(µ, ν) ≤ d(µ, ν). Part 4 follows from Part 3 and the defini-
tion (1.15).

We next prove Part 5. For α > 0 define the norm |(x1, x2)|α = |x1| + α−1|x2|, so that d1,ε

is the transport distance with respect to the norm | · |ε. Fix η > 0, and choose ε > 0 such
that d(µ, ν) ≤ d1,ε(µ, ν) + η; using the dual characterization for the Monge-Kantorovich transport
distance (e.g. [Vil03, Theorem 1.14]), there exists a function φ with |φ(x) − φ(y)| ≤ |x − y|ε,
and such that d1,ε(µ, ν) =

∫
Ω
φ (dµ − dν). At the cost of another η we can also assume that

φ ∈ C∞c (R2), so that

d(µ, ν) ≤ 2η +

∫
Ω

φ (dµ− dν).

Since |φ(x1, x2) − φ(x′1, x2)| ≤ |(x1, x2) − (x′1, x2)|ε = |x1 − x′1|, φ is admissible in the supremum
in (4.3). Since η is arbitrary, it follows that d(µ, ν) is bounded from above by the right-hand side
in (4.3). For the opposite inequality, let γ ∈ Γ(µ, ν). By applying the disintegration theorem to µ
and ν, we can write µ(x1, x2) = ζ(x2)µ̃x2(x1) and ν(y1, y2) = ζ(y2)ν̃y2(y1), where ζ := (π2)#µ =
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(π2)#ν is the common vertical marginal of µ and ν. Since γ only transports from points x to y
with x2 = y2, we have γ(x1, x2, y1, y2) = ζ(x2)δx2

(y2)γ̃x2
(x1, y1), where the marginal transport

plan γ̃x2
is an element of Γ1(µ̃x2

, ν̃x2
) for ζ-a.e. x2. We can then write∫∫

Ω×Ω

|x− y| dγ(x, y) =

∫
R

∫
R2

|x1 − y1| dγ̃x2
(x1, y1) dζ(x2)

≥
∫
R
d1(µ̃x2

, ν̃x2
) dζ(x2)

≥
∫
R

∫
R
φ(x1, x2) (dµ̃x2 − dν̃x2) dζ(x2)

for any φ 1-Lipschitz in x1, from which follows the assertion.
For Part 7, we first show the inequality D ≤ D . Since we assume D(µ, [0, T ]) < ∞, we may

choose an admissible φ. For any ξ ∈ C∞c (R2) with |∂x1
ξ| ≤ 1, write

f(t) :=

∫
R2

ξ(x) dµ(t) and g(t) :=

∫
R2

φ(x, t) ∂x1
ξ(x) dµ(t),

and note that g ∈ L1(0, T ) since D(µ, [0, T ]) < ∞. From the continuity equation it follows that
∂tf = g in the sense of distributions on (0, T ), which implies that f is absolutely continuous. From
the fundamental theorem of calculus and the bound |∂x1ξ| ≤ 1 we then deduce∫

Ω

ξ(x) (dµ(σ)− dµ(s)) =

∫ σ

s

∫
Ω

φ(t, x) ∂x1
ξ(x) dµ(t) dt ≤

∫ σ

s

∫
Ω

|φ(t, x)| dµ(t) dt.

In combination with the dual characterization (part 5) this implies the inequality D ≤ D .
To show the opposite inequality D ≤ D, by the same argument as above we have, for any

partition {ti} of [0, T ], and ξi ∈ C∞c (R2) with |∂x1
ξ| ≤ 1,∑

i

∫ ti+1

ti

∫
Ω

φ(t, x) ∂x1ξi(x) dµ(t) dt =
∑
i

∫
Ω

ξi(x) (dµ(ti+1)− dµ(ti)) ≤ D(µ, [0, T ]). (4.6)

By approximation it follows that∫ T

0

∫
R2

φ(t, x) ∂x1ζ(x) dµ(t) dt ≤ D(µ, [0, T ]) for all ζ ∈ C∞c ([0, T ]× R2), |∂x1ζ| ≤ 1,

and by defining ∂x1
ζ =: ψ, up to a modification outside of Ω to obtain compact support, we find∫ T

0

∫
R2

φ(t, x)ψ(t, x) dµ(t) dt ≤ D(µ, [0, T ]) for all ψ ∈ C∞c ([0, T ]× R2), |ψ| ≤ 1.

The inequality D ≤ D then follows from the dual characterization of the total variation. �

4.2. Loading term. Let [0, T ] be the interval of time in which we observe our process. The
evolution of the system is driven by a forcing term of the form∫

Ω

f(t, x) dµ(x),

where f ∈W 1,1(0, T ;C(Ω)), which leads to the time-dependent total energy F̃n(µ, t) defined as

F̃n(µ, t) := Fn(µ)−
∫

Ω

f(t, x) dµ(x).

The function f in the force term can be interpreted as the potential of a force, in the sense that
∂x1

f can be seen as a shear stress imposed on the system in the horizontal direction. This is clear
in the case f(t, x) = σ(t)x1, where σ is a time dependent but spatially uniform shear stress acting
on the body.
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4.3. Minimisation problem for the semi-discrete energy. In order to prove existence of
solutions for the continuous-time quasi-static problem (Definition 1.2) we follow the common
strategy of time discretization, and we first study the minimisation problem that defines a single
time step. Given the current value µ0 of the dislocation density and the updated value of the force
potential f (for this discussion the time t is fixed), the updated value of the dislocation density is
obtained by solving the minimisation problem

min
µ∈Xn

{
Fn(µ) + d(µ, µ0)−

∫
Ω

f dµ

}
. (4.7)

Lemma 4.3 (Continuity of Fn and existence of solutions of the incremental problem). Let n ∈ N
and let µk, µ ∈ Xn be such that µk ⇀ µ narrowly. Then

lim
k→∞

Fn(µk) = Fn(µ).

For µ0 ∈ Xn and f ∈ C(Ω) the minimisation problem (4.7) has a solution.

Proof. Since µk ⇀ µ, we can choose a numbering of the n dislocation points zki of µk and zi of µ
such that zki → zi. By Lemma 2.1, the extended ũµk are uniformly bounded in H1(Ω;R2), and

a subsequence (not relabeled) converges weakly to some u ∈ H1(Ω;R2), as k → ∞. The trace of
ũµk converges strongly in L2(∂Ω;R2), as does the trace of ũµk on the moving boundaries ∂Bεn(zki )

(indeed, this follows from the convergence zki → zi, and the boundedness in H1(Bεn(0);R2) of
translates x 7→ ũµk(x− zki )). From the inequalities

In,µ(u) ≤ lim inf
k→∞

In,µk(uµk) ≤ lim inf
k→∞

In,µk(v) = In,µ(v) for all v ∈ H1(Ω;R2),

it follows that u = uµ on Ωn(µ) and that the whole sequence converges.
To prove the continuity of Fn, consider the decomposition in (2.13) for Fn(µk). The first term

converges as k →∞ since Kn(·; zki ) is uniformly bounded on Ωn(µk). For the second term in (2.13)
we use the strong convergence of uµk on the boundaries ∂Ω(µk).

Finally, to prove the existence of a minimizer in (4.7), let (µk) ⊂ Xn be a minimising sequence,
and assume without loss of generality that µk ⇀ µ narrowly and uµk ⇀ uµ in H1(Ω;R2). More-
over, because of the separation condition in Xn, µ ∈ Xn. The forcing term clearly converges; by
the lower semicontinuity of d (Lemma 4.1) and the continuity of Fn,

lim inf
k→∞

{
Fn(µk) + d(µk, µ0)−

∫
Ω

f dµk
}
≥ Fn(µ) + d(µ, µ0)−

∫
Ω

f dµ,

which proves the minimality of the limit measure µ and concludes the proof of the lemma. �

4.4. Quasi-static evolution. In this section we prove the existence of a quasi-static evolution
in the sense of Definition 1.2 for a time-dependent force potential f ∈W 1,1(0, T ;C(Ω)).

Theorem 4.4. Let n ∈ N and let µ0 ∈ Xn satisfy the stability condition

Fn(µ0)−
∫

Ω

f(0) dµ0 ≤ Fn(ν) + d(ν, µ0)−
∫

Ω

f(0) dν,

for every ν ∈ Xn. Then there exists a quasi-static evolution t 7→ µ(t) from [0, T ] into P(Ω) such
that µ(0) = µ0. In other words, the following two conditions hold:

(qs1)n global stability: for every t ∈ [0, T ] we have µ(t) ∈ Xn and

Fn(µ(t))−
∫

Ω

f(t) dµ(t) ≤ Fn(ν) + d(ν, µ(t))−
∫

Ω

f(t) dν, (4.8)

for every ν ∈ Xn;
(qs2)n energy balance: the map s 7→

∫
Ω
ḟ(s) dµ(s) is integrable on [0, T ] and for every t ∈ [0, T ]

Fn(µ(t)) +D(µ, [0, t])−
∫

Ω

f(t) dµ(t) = Fn(µ(0))−
∫

Ω

f(0) dµ(0)−
∫ t

0

∫
Ω

ḟ(s) dµ(s) ds. (4.9)
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Remark 4.5. Note that if t 7→ µ(t) is a quasi-static evolution, then

(π2)#µ(t) = (π2)#µ(0) for every t ∈ [0, T ]. (4.10)

Indeed, owing to the regularity assumptions on f , condition (qs2)n implies that D(µ, [0, T ]) < +∞,
which in turn gives (4.10) by the definition of the dissipation distance d.

Proof of Theorem 4.4. The theorem is a direct application of [MM05, Theorem 4.5]. We sketch
the proof for the reader’s convenience.

For every k ∈ N let (tik)i=0,...,k be a partition of the interval [0, T ] such that

0 = t0k < t1k < · · · < tkk = T and max
i=1,...,k

|tik − ti−1
k | → 0, as k →∞.

For every k ∈ N we set µ0
k := µ0 and for i ≥ 1 we define µik as a solution of the following

minimisation problem (well-defined by Lemma 4.3):

min
ν∈Xn

{
Fn(ν) + d(ν, µi−1

k )−
∫

Ω

f(tik) dν
}
.

Since µi−1
k is a competitor for this problem with finite energy, the minimum is finite. This implies

that d(µik, µ
i−1
k ) < +∞, so that (π2)#µ

i
k = (π2)#µ

i−1
k for every i and k. In other words, (π2)#µ

i
k =

(π2)#µ0 for every i and k. By the minimality of µik and the triangle inequality we infer that

Fn(µik)−
∫

Ω

f(tik) dµik ≤ Fn(ν) + d(ν, µik)−
∫

Ω

f(tik) dν (4.11)

for every ν ∈ Xn. Moreover, using again the minimality, the following discrete energy inequality
can be proved: for all 1 ≤ j ≤ k

Fn(µjk) +

j∑
i=1

d(µik, µ
i−1
k ) ≤ Fn(µ0) +

j∑
i=1

∫
Ω

f(tik) d(µik − µi−1
k ). (4.12)

Now we let µk(t) be the piecewise constant right-continuous interpolation of (µik)i=1,...,k. In
particular, we have (π2)#µk(t) = (π2)#µ0 for every t ∈ [0, T ] and every k.

By the definition (1.6) it is clear that the functional Fn is bounded from below by a fixed
constant (since Fn is nonnegative, while the self-energy is bounded by C(nεn)−1). Using this
fact and (4.12) we deduce that D(µk, [0, T ]) ≤ C for every k. Therefore, by Theorem 7.2 in the
Appendix (or by applying the standard Helly’s Theorem directly to the sequences (in k) of maps
t 7→ zkj (t), j = 1, . . . , n, where µk(t) = 1

n

∑n
j=1 δzkj (t)) there exist a subsequence (not relabelled)

and a function t 7→ µ(t) from [0, T ] into P(Ω), with D(µ, [0, T ]) < +∞, such that µk(t) ⇀ µ(t)
narrowly, as k → +∞, for every t ∈ [0, T ]. It is also easy to check that µ(t) ∈ Xn for every
t ∈ [0, T ] and (π2)#µ(t) = (π2)#µ0 for every t ∈ [0, T ].

Condition (qs1)n follows now by passing to the limit in (4.11). This is possible since Fn and the
force term are continuous with respect to narrow convergence, and convergence in d is equivalent
to convergence of the dislocation points for sequences of measures in Xn.

To prove condition (qs2)n, we can pass to the limit in (4.12) and deduce an energy inequality.
The converse inequality can be proved using the global stability (qs1)n and an approximation of
t 7→ µ(t) in terms of piecewise constant maps. This is possible since the condition D(µ, [0, T ]) <
+∞ is equivalent to saying that the maps t 7→ zj(t) are BV functions from [0, T ] into R2 for every
j = 1, . . . , n, where µ(t) = 1

n

∑n
j=1 δzj(t). Therefore, in particular, t 7→ zj(t) is continuous on

[0, T ], except possibly on a countable set of times. �

5. Convergence of the evolutions

We now prove the convergence of the evolutions associated to Fn to an evolution associated to
the Γ-limit functional F , i.e., Theorem 1.3 in the introduction (as Theorem 5.8 below). We will
consider evolutions for Fn with initial values µ0

n belonging to a subset Yn(γ, c) of the admissible
class Xn, defined as follows.



EVOLUTION OF DISLOCATIONS WITH WASSERSTEIN DISSIPATION 31

Definition 5.1. Let n ∈ N and let µ = 1
n

∑n
i=1 δzi , for some zi ∈ Ω. Let Sµ be the set of slip

planes of µ, and for s ∈ Sµ let mµ,s be the number of dislocations on the slip plane s, i.e.,

Sµ := supp [(π2)#µ], mµ,s := #
{
j : π2(zj) = s

}
. (5.1)

For − 1
2 < γ ≤ 1

2 and c > 0 we introduce the following class of measures:

Yn(γ, c) :=
{
µ ∈ Xn : min

s,s′∈Sµ,s6=s′
|s− s′| ≥ cn− 1

2 +γ , max
s∈Sµ

mµ,s ≤
1

c
n

1
2 +γ

}
. (5.2)

In words, measures in Yn(γ, c) have slip-plane spacing larger than cn−
1
2 +γ and no more than

c−1n
1
2 +γ dislocations per slip plane. Note that the two properties required in the definition of the

class Yn(γ, c) depend only on the vertical marginal of a measure; therefore if µ ∈ Yn(γ, c) for some
γ and c and ν ∈ Xn is such that (π2)#ν = (π2)#µ, then ν ∈ Yn(γ, c).

Although the class Yn(γ, c) imposes restrictions on the structure of admissible measures, we
can nevertheless recover a large class of measures in the limit, as shown in the following lemma.

Lemma 5.2. Assume (1.1) and let − 1
2 < γ ≤ 1

2 and c > 0. Let P∞γ,c(Ω) be the class of measures
µ ∈ P(Ω) such that there exists a sequence µn ⇀ µ narrowly, as n → ∞, with µn ∈ Yn(γ, c) for
every n.

• If − 1
2 < γ < 1

2 , then

P∞γ,c(Ω) =
{
µ ∈ P(Ω) : supp µ ⊂ R, (π2)#µ ≤

1

c2
L1
}
. (5.3)

• If γ = 1
2 , then P∞γ,c(Ω) is the set of all measures µ ∈ P(Ω) such that supp µ ⊂ R,

Sµ := supp [(π2)#µ] is finite,

min
{
|s− s′| : s, s′ ∈ Sµ, s 6= s′

}
≥ c, (5.4)

and

µ(Ω ∩ (R× {s})
)
≤ 1

c
for every s ∈ Sµ. (5.5)

Remark 5.3. We note that for − 1
2 < γ < 1

2 the class P∞γ,c(Ω) is nonempty if and only if

c2 ≤ L1(π2(Ω)). This follows from the second condition in (5.3) and the fact that µ is a
probability measure. Analogously, for γ = 1

2 the class P∞γ,c(Ω) is nonempty if and only if

c2 ≤ max{c,L1(π2(Ω))}. This follows from (5.5) and the fact that µ is a probability measure,
taking into account that #Sµ ≤ max{1,L1(π2(Ω))/c} by (5.4).

Proof of Lemma 5.2. In what follows all the measures that appear are extended to zero outside Ω.
Let µ ∈ P∞γ,c(Ω) and let µn ⇀ µ narrowly, as n → ∞, with µn ∈ Yn(γ, c) for every n. Clearly
supp µ ⊂ R. Let Ir be an open interval of length r > 0.

If − 1
2 < γ < 1

2 , then the maximum number of dislocations of µn contained in the horizontal

strip R× Ir is rn/c2. Therefore,

(π2)#µ(Ir) = µ(R× Ir) ≤ lim inf
n→∞

µn(R× Ir) ≤
1

c2
L1(Ir).

This inequality implies that (π2)#µ ≤ 1
c2L

1 on every open set of R and thus, by approximation
on every measurable set.

If γ = 1
2 , then the maximum number of dislocations of µn in R× Ir is max{n/c, rn/c2}. This

implies (5.5), since Sµ := supp (π2)#µ clearly has finite cardinality and satisfies (5.4).

Let now − 1
2 < γ < 1

2 and let µ ∈ P(Ω) be such that supp µ ⊂ R and (π2)#µ ≤ 1
c2L

1. In
particular, for every interval Ir of length r > 0 we have

µ(R× Ir) ≤
r

c2
. (5.6)

As a first step we assume that supp µ ⊂ intR, where intR denotes the interior of R.
For every n ∈ N we consider a covering {Qni } of Ω made of a grid of squares of side hn with

hn → 0 chosen such that

n
1
2−γhn →∞, n

1
2 +γhn →∞, as n→∞. (5.7)
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We construct the approximating measures µn as follows. Let us consider the straight lines `nj :=

R × {cjn− 1
2 +γ}, j ∈ Z. For every i and j such that Qni ∩ `nj 6= ∅ we allocate mn

i equidistant
dislocations on Qni ∩ `nj at a distance rn from ∂Qni ∩ `nj , where

mn
i :=

⌊µ(Qni )

hn
cn

1
2 +γ

⌋
.

Note that hn/rn → +∞, as n→∞, by (1.1) and (5.7). Moreover, by (5.6) the distance between
two dislocations in Qni and on the same line is larger than

hn − 2rn
mn
i

≥ 1

2c

h2
n

µ(Qni )n
1
2 +γ
≥ c

2

hn

n
1
2 +γ
� rn,

where the last inequality is satisfied in view of (1.1) and (5.7).
Let Inj be the set of indices i for which Qni intersects the line `nj . Then the total number of

dislocations on `nj can be estimated by∑
i∈Inj

mn
i ≤

∑
i∈Inj

µ(Qni )

hn
cn

1
2 +γ ≤

µ(Snj )

hn
cn

1
2 +γ ≤ 1

c
n

1
2 +γ ,

where Snj := ∪i∈Inj Q
n
i is a strip of height hn and the last inequality follows from (5.6). Since

supp µn ⊂ R for n large enough, we conclude that µn ∈ Yn(γ, c) (if µn(Ω) < 1, we can add the
dislocations needed in order for µn to be a probability measure in the activated slip planes, at
distance larger than rn from other dislocations).

We now check that µn ⇀ µ narrowly. Note that the number of lines `nj intersecting a square

Qni is bhnn
1
2−γ/cc. Therefore, the total number of dislocations on each square Qni is

pni :=
⌊hnn 1

2−γ

c

⌋
mn
i .

Denoting by {zi,nj }j=1,...,pni
the dislocations of the measures µn in Qni , we may write

µn =
1

n

∑
i

pni∑
j=1

δzi,nj
.

Let now φ ∈ C(Ω). We have∫
Ω

φdµn =
1

n

∑
i

pni∑
j=1

φ(zi,nj )

=
1

n

∑
i

pni φ(zi,n1 ) +
1

n

∑
i

pni∑
j=1

(
φ(zi,nj )− φ(zi,n1 )

)
,

where the last term tends to 0, as n → ∞, by the uniform continuity of φ and the fact that
|zi,nj − z

i,n
1 | ≤

√
2hn → 0. Moreover,

1

n

∑
i

pni φ(zi,n1 ) =
1

n

∑
i

(
pni − nµ(Qni )

)
φ(zi,n1 ) +

∑
i

∫
Qni

(φ(zi,n1 )− φ) dµ+

∫
Ω

φdµ,

where again by the absolute continuity of φ the second term on the right-hand side tends to 0, as
n→∞. To conclude, it is enough to observe that

1

n

∑
i

∣∣∣(pni − nµ(Qni )
)
φ(zi,n1 )

∣∣∣ ≤ 1

n
‖φ‖∞

∑
i

(hnn 1
2−γ

c
+
µ(Qni )

hn
cn

1
2 +γ − 1

)
≤ C

( 1

n
1
2−γhn

+
1

n
1
2 +γhn

+
1

nh2
n

)
which goes to 0 by (5.7). In the last inequality we have used the fact that the number of squares
Qni covering Ω is of order 1/h2

n.
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In the general case, one can proceed as follows.
For every k ∈ N let µk be a push-forward of µ by a 1/k-retraction of its support; clearly

supp µk ⊂ intR. Then, we can construct an approximation (µkn) of µk as above. In particular,
for every k ∈ N there exists Nk ∈ N such that d(µkn, µ

k) < 1/k for every n ≥ Nk and we can
assume that Nk is strictly increasing with respect to k. The required approximation µn of µ is
finally given by µn := µkn for Nk ≤ n < Nk+1.

Assume now γ = 1
2 and let µ ∈ P(Ω) be such that supp µ ⊂ R, Sµ := supp [(π2)#µ] has finite

cardinality, and (5.4)–(5.5) hold. In this case, to construct the approximating sequence, we locate
the dislocations on the slip planes of µ (which by assumption are finite in number and spaced
at least c from each other) by following a one-dimensional procedure on every slip plane. More
precisely, for every s ∈ Sµ we subdivide the straight line R× {s} into a family of segments {Is,ni }
of length hn, where hn → 0 is chosen so that nhn → ∞ and hn/(nrn) → ∞. In every segment
Is,ni we allocate ms,n

i equispaced dislocations at a distance rn from ∂Is,ni , where

ms,n
i :=

⌊
µ(Is,ni )n

⌋
.

Note that the distance between two dislocations in Is,ni is larger than

hn − 2rn
ms,n
i

≥ 1

2

hn
nµ(Is,ni )

≥ Chn
n
� rn,

where the last two inequalities follow from (5.5) and from our choice of hn. Moreover, again by
(5.5) the number of dislocations on every slip plane is less than n/c. Therefore, the sequence µn
supported on the dislocations positions defined above is in Yn(γ, c) and similarly as before we can
show that it converges narrowly to µ. �

Remark 5.4. We note that the case γ = − 1
2 is irrelevant for our analysis since the corresponding

class of limit measures is contained in the class P∞γ,c(Ω) with − 1
2 < γ < 1

2 , as it can be easily
deduced from the proof of Lemma 5.2.

Let now f ∈W 1,1(0, T ;C(Ω)) and let (µ0
n) be a sequence of initial data with µ0

n ∈ Yn(γ, c) for
every n ∈ N. By Theorem 4.4 for every n there exists a quasi-static evolution t 7→ µn(t) with initial
value µ0

n and potential f , according to Definition 1.2. Note that (π2)#µn(t) = (π2)#µ
0
n for every

t ∈ [0, T ] and every n by Remark 4.5. Therefore, µn(t) ∈ Yn(γ, c) for every t ∈ [0, T ] and every
n ∈ N. Now, in order to pass to the limit in (qs1)n and (qs2)n we need to construct a so-called joint
recovery sequence for Fn relative to the distance d (as defined in [MRS08]). This construction is
done in the next theorem and will also be used to guarantee the existence of admissible sequences
of initial data (see Remark 5.9).

Theorem 5.5. Assume (1.1) and fix − 1
2 < γ ≤ 1

2 and c > 0. Let µ ∈ P∞γ,c(Ω) be such that
F(µ) < +∞ and let µn ⇀ µ narrowly, as n→∞, with µn ∈ Yn(γ, c) for every n. Then for every
ν ∈ P(Ω) with (π2)#µ = (π2)#ν and F(ν) < +∞, there exists a sequence (νn) such that

(i) νn ∈ Yn(γ, c) and (π2)#µn = (π2)#νn for every n;

(ii) νn ⇀ ν narrowly, as n→∞;

(iii) lim sup
n→∞

d(µn, νn) ≤ d(µ, ν);

(iv) lim sup
n→∞

Fn(νn) ≤ F(ν).

The latter two conditions in Theorem 5.5 motivate the name joint recovery sequence for the
sequence νn. The construction of (νn) relies on some technical steps which are summarised in the
following Lemmas 5.6 and 5.7.

Lemma 5.6. Assume (1.1). For n ∈ N let {zni : i = 1, . . . , n} be a family of points in Ω with
{zni }i ⊂ R, and let µn := 1

n

∑n
i=1 δzni denote the corresponding probability measure. Assume that

µn ⇀ µ narrowly, as n → ∞. Then for every ν ∈ P(Ω) with supp ν ⊂ R and (π2)#µ = (π2)#ν,
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there exists a sequence (ν̂n) ⊂ P(Ω), ν̂n = 1
n

∑n
i=1 δẑni , such that supp ν̂n ⊂ R, (π2)#ν̂n = (π2)#µn

for every n, ν̂n ⇀ ν narrowly, as n→∞, and

lim sup
n→∞

d(µn, ν̂n) ≤ d(µ, ν).

Proof. Let ν ∈ P(Ω) be such that supp ν ⊂ R and (π2)#µ = (π2)#ν. Fix δ > 0. For every
m ∈ Z we set Sm := Ω ∩ (R × [mδ, (m + 1)δ)) and we define µm := µxSm and νm := νxSm.
From the assumption (π2)#µ = (π2)#ν it follows immediately that (π2)#µ

m = (π2)#ν
m and

µm(Ω) = νm(Ω). Moreover, from the definition of the distance d we have

d(µ, ν) =
∑
m∈Z

d(µm, νm). (5.8)

We can construct a family {Imn }m∈Z of disjoint subsets of {1, . . . , n} with the following properties:

µmn :=
1

n

∑
i∈Imn

δzin ⇀ µm as n→∞, for every m ∈ Z, (5.9)

dist(zin, Sm) ≤ δ for every i ∈ Imn ,m ∈ Z, n ∈ N, (5.10)

1

n
#(I∗n)→ 0, (5.11)

where I∗n := {1, . . . , n} \ ∪m∈ZImn .
For simplicity of notation we denote the Cartesian coordinates of zin by (ξin, ζ

i
n). For every

n ∈ N, m ∈ Z, and i ∈ Imn let ξ̃m,in ∈ R be chosen so that

λmn :=
1

n

∑
i∈Imn

δξ̃m,in
⇀ (π1)#ν

m, (5.12)

as n→∞. Let Tmn be the non-decreasing map from {ξin}i∈Imn to {ξ̃m,in }i∈Imn . We define

ν̂mn :=
1

n

∑
i∈Imn

δ(Tmn (ξin),ζin) for m ∈ Z.

Up to modifying slightly the choice of ξ̃m,in , if needed, we can assume that supp ν̂mn ⊂ R. We note
that (5.12) and the definition of ν̂mn imply

(π1)#ν̂
m
n = λmn ⇀ (π1)#ν

m, (5.13)

as n→∞. Clearly (π2)#µ
m
n = (π2)#ν̂

m
n . Moreover, using the fact that Tmn is non-decreasing, we

have

d(µmn , ν̂
m
n ) =

1

n

∑
i∈Imn

|ξin − Tmn (ξin)| = d1((π1)#µ
m
n , (π1)#ν̂

m
n ),

so that by (5.9) and (5.13) we obtain

lim
n→∞

d(µmn , ν̂
m
n ) = d1((π1)#µ

m, (π1)#ν
m) (5.14)

for every m ∈ Z.
Now we define

ν̂n :=
∑
m∈Z

ν̂mn +
1

n

∑
i∈I∗n

δzin .

Clearly supp ν̂n ⊂ R since both ν̂mn and µn satisfy the same condition. We will now prove that
the sequence (ν̂n) satisfies

(1) (π2)#ν̂n = (π2)#µn for every n;

(2) lim sup
n→∞

d1(ν̂n, ν) ≤ 3δ;

(3) lim sup
n→∞

d(µn, ν̂n) ≤ d(µ, ν).
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Property (1) holds by construction. Moreover, by Part 2 of Lemma 4.1, (5.8), and (5.14), we have

lim sup
n→∞

d(µn, ν̂n) ≤
∑
m∈Z

lim sup
n→∞

d(µmn , ν̂
m
n ) =

∑
m∈Z

d1((π1)#µ
m, (π1)#ν

m)

≤
∑
m∈Z

d(µm, νm) = d(µ, ν),

which proves condition (3).
To show (2), we introduce the auxiliary measures

ν̄mn :=


ν̂mn (Ω)

νm(Ω)
νm if νm(Ω) > 0

ν̂mn if νm(Ω) = 0

for every n ∈ N, m ∈ Z, and

ν̄n :=
∑
m∈Z

ν̄mn +
1

n

∑
i∈I∗n

δzin

for every n ∈ N. Since ν̂mn (Ω) = µmn (Ω)→ µm(Ω), as n→∞, and (5.11) holds, it is immediate to
see that ν̄n ⇀ ν, as n→∞, and thus, d1(ν̄n, ν)→ 0, as n→∞. In particular, we have

(π1)#ν̄
m
n ⇀ (π1)#ν

m, (5.15)

as n→∞.
Since limn→∞ d1(ν̄n, ν) = 0, to prove condition (2) it is enough to show that

lim sup
n→∞

d1(ν̂n, ν̄n) ≤ 3δ. (5.16)

By (5.10) the support of ν̂mn and ν̄mn is contained in R× [(m− 1)δ, (m+ 2)δ] for every n ∈ N and
m ∈ Z. Therefore, for m ∈ Z such that νm(Ω) > 0, we have, by (4.1) and (4.2):

d1(ν̂mn , ν̄
m
n ) ≤ inf

{∫∫
Ω×Ω

(
|x1 − y1|+ 3δ

)
dγ(x, y) : γ ∈ Γ1(ν̂mn , ν̄

m
n )
}

= inf
{∫∫

π1(Ω)×π1(Ω)

|x1 − y1| dγ(x1, y1) : γ ∈ Γ((π1)#ν̂
m
n , (π1)#ν̄

m
n )
}

+ 3δ

= d1((π1)#ν̂
m
n , (π1)#ν̄

m
n ) + 3δ ν̂mn (Ω).

Combining this inequality with (5.13) and (5.15), we deduce that

lim sup
n→∞

d1(ν̂mn , ν̄
m
n ) ≤ 3δ ν̂m(Ω)

for every m ∈ Z such that νm(Ω) > 0. Since ν̄mn = ν̂mn for every m ∈ Z such that νm(Ω) = 0, we
conclude that

lim sup
n→∞

d1(ν̂n, ν̄n) ≤
∑
m∈Z

lim sup
n→∞

d1(ν̂mn , ν̄
m
n ) ≤ 3δ

∑
m∈Z

νm(Ω) = 3δ,

which proves the claim (5.16), hence condition (2).
To conclude the proof of the lemma it is enough to consider a sequence δk ↘ 0 and apply a

diagonal argument. �

Lemma 5.7. Let ẑ1, . . . , ẑn ∈ Ω, n ∈ N, be such that {ẑi}i ⊂ R, and let ν̂ := 1
n

∑n
i=1 δẑi denote

the corresponding probability measure. Then there exists η0 > 0, depending only on R, such that
for every η ∈ (0, η0) there exists a modification ν of ν̂, ν = 1

n

∑n
i=1 δzi ∈ P(Ω), satisfying the

following properties:

(a) (π2)#ν = (π2)#ν̂;

(b) d(ν̂, ν) ≤ η;

(c) supp ν ⊂ R;

(d) |π1(zi − zj)| ≥ η
m for every zi, zj ∈ supp ν such that π2(zi) = π2(zj), i 6= j,
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where m is the maximum number of dislocations per slip plane of ν̂, that is,

m := max #
{
i : π2(ẑi) = s, s ∈ supp [(π2)#ν̂]

}
.

Proof. Let S := supp [(π2)#ν̂] and for s ∈ S let ms be the number of dislocations on the s-th slip
plane, as in (5.1). By definition m = maxs∈Sms. We can rewrite the measure ν̂ by splitting its
vertical and horizontal marginals as

ν̂(x, y) =
∑
s∈S

ms

n
δs(y)ν̂s(x),

where ν̂s ∈ P(R) is the normalised dislocation density on the s-th slip plane. More explicitly, we
write

ν̂s =
1

ms

ms∑
i=1

δx̂si with {x̂si : i = 1 . . . ,ms} := {π1(ẑi) : ẑi ∈ supp ν̂, π2(ẑi) = s},

and we assume without loss of generality that the points {x̂i} of the support of ν̂s are ordered
increasingly.

To construct the required modification ν of ν̂, since we want to preserve the vertical marginals,
we will only modify the horizontal marginals ν̂s, for every s ∈ S. More precisely, for every s ∈ S
we consider a grid of size η/ms and define Gs as

Gs :=
{
x ∈ η

ms
Z : (x, s) ∈ R

}
.

Now let νs := 1
ms

∑ms
i=1 δxsi be a minimiser of the following problem:

min
{
d1(ν̂s, µ) : µ =

1

ms

ms∑
i=1

δxi , xi ∈ Gs for every i, xi 6= xj if i 6= j
}
,

where the points {xsi} are ordered increasingly. Note that to guarantee that the above minimum
is taken over a class that is nonempty, η has to be smaller than the width of R (that we denote
by η0). By construction we have that

|xsi − xsj | ≥
η

ms
if i 6= j and (xsi , s) ∈ R for every i. (5.17)

Moreover, from the minimality it follows that

d1(ν̂s, νs) ≤ η. (5.18)

We now define the measure ν ∈ P(Ω) as

ν(x, y) :=
∑
s∈S

ms

n
δs(y)νs(x).

From (5.17) it follows immediately that ν satisfies (a), (c), and (d). As for property (b), we have

d(ν̂, ν) =
∑
s∈S

ms

n
d1(ν̂s, νs) ≤ η,

where the last inequality follows from (5.18). �

We are now ready for the proof of Theorem 5.5. Roughly speaking, given µ ∈ P∞γ,c(Ω), a
competitor ν with (π2)#µ = (π2)#ν, and µn ∈ Yn(γ, c) for every n with µn ⇀ µ narrowly,
Lemmas 5.6 and 5.7 will provide a joint recovery sequence νn by moving the horizontal coordinates
of the points in the support of µn so that the modified sequence converges to the given measure ν.

Proof of Theorem 5.5. Let ν ∈ P(Ω) be such that (π2)#µ = (π2)#ν and F(ν) < +∞. We consider
the cases γ ∈ (− 1

2 ,
1
2 ) and γ = 1

2 separately.

Let γ ∈ (− 1
2 ,

1
2 ). We apply Lemma 5.6 to the sequence (µn) and to the measure ν and construct

a sequence (ν̂n). Then we apply Lemma 5.7 to each measure ν̂n with η = n−
1
2 +γ . In this way we
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obtain a new sequence (νn) such that supp νn ⊂ R, (π2)#νn = (π2)#µn for every n, νn converges
to ν narrowly (in view of Part 1 of Lemma 4.1 and (b) of Lemma 5.7), and

lim sup
n→∞

d(µn, νn) ≤ d(µ, ν).

We shall now prove that (νn) is the required joint recovery sequence. Taking into account that
(π2)#νn = (π2)#µn, by property (d) of Lemma 5.7 and by our choice of η we have that for every
zni , z

n
j ∈ supp νn, with i 6= j,

|zni − znj | ≥ cn−1 ∧ cn− 1
2 +γ ≥ cn−1

(1.1)
� rn. (5.19)

Therefore, νn ∈ Xn. Since µn ∈ Yn(γ, c) and (π2)#νn = (π2)#µn, we conclude that νn ∈ Yn(γ, c).
In what follows we set c = 1 for notational simplicity.

To complete the proof of the theorem we show that

lim sup
n→∞

Fn(νn) ≤ F(ν). (5.20)

Applying the preliminary estimates (3.13)–(3.15) in the proof of Theorem 3.3 and the decompo-
sition (2.13), inequality (5.20) is proved if we show that

lim sup
n→∞

1

2

∫∫
Ω×Ω

V (y, z) d(νn � νn)(y, z) ≤ 1

2

∫∫
Ω×Ω

V (y, z) dν(y) dν(z). (5.21)

To prove (5.21) we proceed similarly to the proof of the limsup inequality of Theorem 3.3. Let
M > 0 be fixed, and set VM := V ∧M . By definition of νn we have

1

2

∫∫
Ω×Ω

V (y, z) d(νn � νn)(y, z) =
1

2n2

n∑
i,j=1
i 6=j

VM (zni , z
n
j ) +

1

2n2

n∑
i,j=1
i 6=j

(V − VM )(zni , z
n
j )

≤ 1

2n2

n∑
i,j=1
i 6=j

VM (zni , z
n
j ) +

1

2n2

n∑
i=1

∑
j 6=i

|zni −z
n
j |<RM

V (zni , z
n
j ), (5.22)

where RM → 0 as M → ∞. Since the truncated function VM is continuous and bounded on an
open set containing R×R, for the first term in the right-hand side of (5.22) we have that

lim
n→∞

1

2n2

n∑
i,j=1
i 6=j

VM (zni , z
n
j ) =

1

2

∫∫
Ω×Ω

VM (y, z) dν(y) dν(z).

Since VM ≤ V , claim (5.21) follows if we prove that for every i = 1, . . . , n

lim
M→∞

lim sup
n→∞

1

n2

n∑
i=1

∑
j 6=i

|zni −z
n
j |<RM

|V (zni , z
n
j )| = 0. (5.23)

Let QRM (z) denote the open square centred at z with side length 2RM . Clearly BRM (zni ) ⊂
QRM (zni ) for every i; therefore, if we prove

lim
M→∞

lim sup
n→∞

1

n2

n∑
i=1

∑
j 6=i

znj ∈QRM (zni )

|V (zni , z
n
j )| = 0, (5.24)

then (5.23) will follow. First of all, by (3.2), we have the bound
n∑
i=1

∑
j 6=i

znj ∈QRM (zni )

|V (zni , z
n
j )| ≤ C

n∑
i=1

∑
j 6=i

znj ∈QRM (zni )

(
1− log

|zni − znj |
L

)
. (5.25)

Since the right-hand side of (5.25) is a decreasing function of the distances between the dislocation
locations, the energy of any dislocation arrangement can be estimated from above in terms of
the energy of the most densely packed configuration. More precisely, taking into account that
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νn ∈ Yn(γ, 1) and (5.19) holds, an upper bound in (5.25) is generated by the arrangement where

the slip planes are all at the minimum distance n−
1
2 +γ from each other, and are packed with

dislocations located at the minimum distance 1/n from one another. Without loss of generality
we therefore limit our analysis to this special arrangement, and we denote by z̃nj the corresponding
dislocation positions. Since replacing {zni } with {z̃ni } increases the right-hand side of (5.25), we
have

1

n2

n∑
i=1

∑
j 6=i

znj ∈QRM (zni )

|V (zni , z
n
j )| ≤ C

n2

n∑
i=1

∑
j 6=i

z̃nj ∈QRM (z̃ni )

(
1− log

|z̃ni − z̃nj |
L

)
. (5.26)

Let i = 1, . . . , n be fixed. To estimate the right-hand side of (5.26), we first consider the region
Ani ⊂ QRM (z̃ni ) defined as the following union of concentric square annuli:

Ani :=

Pn1⋃
p=2

Q p
n

(z̃ni ) \Q p−1
n

(z̃ni ), Pn1 := bn 1
2 +γc.

We note that each annulus in the set Ani intersects only the slip plane containing z̃ni , since the
largest annulus of the family has outer side length 2Pn1 /n, which by definition is smaller than

2n−
1
2 +γ . Since, by assumption, two active consecutive slip planes are at a distance n−

1
2 +γ , every

annulus in the set Ani only contains dislocations in the same slip plane as z̃ni . Moreover, there are
at most two dislocations in each annulus since, by assumption, the distance between dislocations
is 1/n, which is exactly the width of each annulus.

By these arguments, for p = 2, . . . , Pn1 we have

|z̃ni − z̃nj | =
p− 1

n
, ∀ z̃nj ∈ Q p

n
(z̃ni ) \Q p−1

n
(z̃ni ). (5.27)

Therefore we can estimate the energy contribution in the sets Ani by using (5.27), and we obtain

1

n2

n∑
i=1

∑
znj ∈Ani

(
1− log

|z̃ni − z̃nj |
L

)
≤ 2

n

Pn1∑
p=2

(
1− log

p− 1

nL

)
≤ 2

n

(
Pn1 − log(Pn1 !) + Pn1 log(nL)

)
. (5.28)

Since Pn1 →∞, as n→∞, we use the Stirling approximation

log(P !) = P logP − P +O(logP ) as P →∞.

For the last term in (5.28) we have

2

n

(
Pn1 − log(Pn1 !) + Pn1 log(nL)

)
=

2Pn1
n

(
2− log

Pn1
nL

)
+O

( logPn1
n

)
. (5.29)

Since Pn1 ' n
1
2 +γ , Pn1 /n ' n−

1
2 +γ → 0 as n→∞. Therefore, the right-hand side of (5.29) tends

to zero, and by (5.28) we deduce that the energy contribution in Ani is negligible as n→∞.
It remains now to estimate the energy contribution in the complement of the sets Ani , i.e., in

Bni := QRM (z̃ni ) \Ani .

Note that Bni contains only dislocations located on different slip planes than z̃ni . This is because

the horizontal length of the region containing dislocations is less than n−
1
2 +γ , while the outer side

of the largest annulus in Ani is 2bn 1
2 +γc/n, which is larger that n−

1
2 +γ for n large enough.

We now write the region Bni as the union of horizontal strips of height n−
1
2 +γ , as

Bni =

Pn2⋃
p=1

Si,np , Si,np :=
{
x ∈ Bni : pn−

1
2 +γ ≤ |π2(x− z̃ni )| < (p+ 1)n−

1
2 +γ

}
,
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where Pn2 := bRMn
1
2−γc. Then we have

1

n2

n∑
i=1

∑
znj ∈Bni

(
1− log

|z̃ni − z̃nj |
L

)
≤ 1

n2

n∑
i=1

Pn2∑
p=1

∑
z̃nj ∈S

i,n
p

(
1− log

|z̃ni − z̃nj |
L

)
.

Since the maximum number of dislocations per slip plane is n
1
2 +γ ,

1

n2

n∑
i=1

Pn2∑
p=1

∑
z̃nj ∈S

i,n
p

(
1− log

|z̃ni − z̃nj |
L

)
≤ 1

n

Pn2∑
p=1

n
1
2 +γ

(
1− log

pn−
1
2 +γ

L

)
. (5.30)

Now, the right-hand side of (5.30) can be estimated as follows:

1

n

Pn2∑
p=1

n
1
2 +γ

(
1− log

pn−
1
2 +γ

L

)
≤ C

∫ RM/L

0

(1− log x) dx ≤ CRM (1− logRM );

thus, it tends to zero, as M →∞. This concludes the estimate of the energy contribution in the
sets Bni . In view of (5.26), claim (5.24) is proved.

We now consider the case γ = 1
2 . For simplicity we assume that there is only one active slip

plane and c = 1; moreover, we assume that supp [(π2)#µn] = supp [(π2)#µ] = supp [(π2)#ν] = {s}.
In this case the problem becomes one-dimensional and we can construct the recovery sequence by
hand, using the same ideas as in the proof of Theorem 3.3. More precisely, following the steps of
the limsup inequality in Theorem 3.3 we first approximate the measure ν by means of a sequence
(νh) supported on a subset of hI × {s}, where

I :=
⋃
m∈Z

Im, Im := [2m, 2m+ 1].

Up to a further approximation, we can assume that nνh(hIm) ∈ N0 for every h, n, and m. This
can be done without increasing the interaction energy. Moreover, since supp (π2)#ν

h = {s} and
νh ⇀ ν narrowly, as h → 0, we have d(νh, ν) → 0, as h → 0. In other words, it is enough to
construct a joint recovery sequence for the measures νh.

Let h > 0 be fixed. The recovery sequence νhn is obtained by arranging nνh(hIm) equispaced
dislocations {zni } in every interval hIm. We observe that νhn ∈ Yn( 1

2 , 1) and (π2)#ν
h
n = (π2)#µn

for every n; in particular, for every i 6= j we have

|zni − znj | ≥
C(h)

n
≥ rn. (5.31)

Moreover, by construction, νhn ⇀ νh narrowly. Since supp (π2)#ν
h
n = {s}, this implies that

d(µn, ν
h
n)→ d(µ, νh).

To prove that νhn is a recovery sequence it remains to show (5.20) and, as for the case γ 6= 1
2 ,

this reduces to proving (5.23). By (3.2) we have that

1

n2

n∑
i=1

∑
j 6=i

|zni −z
n
j |≤RM

|V (zni , z
n
j )| ≤ C

n2

n∑
i=1

∑
j 6=i

|zni −z
n
j |≤RM

(
1− log

|zni − znj |
L

)

≤ C

n

bnRM/C(h)c∑
p=1

(
1− log

C(h)p

nL

)
, (5.32)

where the last inequality follows by estimating the energy of the distribution of dislocations of νhn
with the most densely packed configuration, from (5.31). By taking the limit as n→∞ in (5.32)
we have

lim
n→∞

1

n2

n∑
i=1

∑
j 6=i

|zni −z
n
j |≤RM

|V (zni , z
n
j )| ≤ C

∫ RM/L

0

(1− log x) dx,

and the right-hand side converges to zero, as M →∞. Therefore (5.23) is proved also for γ = 1
2 .
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This concludes the proof of the theorem. �

5.1. Convergence of the evolutions. In this section we prove the convergence of the quasi-
static evolution for the renormalized energy defined as in (4.8) and (4.9).

Theorem 5.8. Assume (1.1). Let f ∈ W 1,1(0, T ;C(Ω)) and let − 1
2 < γ ≤ 1

2 and c > 0. Let

µ0 ∈ P(Ω) with F(µ0) < +∞ and let (µ0
n) be such that µ0

n ⇀ µ0 narrowly, and

Fn(µ0
n)→ F(µ0), (5.33)

as n→∞. For every n ∈ N assume also that µ0
n ∈ Yn(γ, c) and µ0

n satisfies the stability condition:

Fn(µ0
n)−

∫
Ω

f(0) dµ0
n ≤ Fn(ν) + d(ν, µ0

n)−
∫

Ω

f(0) dν (5.34)

for every ν ∈ Xn. For every n ∈ N let t 7→ µn(t) be a quasi-static evolution on [0, T ] with initial
value µ0

n and potential force f , according to Theorem 4.4. Then

(1) Compactness: There exists a subsequence µn (without change in notation) and a limit
curve µ : [0, T ]→ P∞γ,c(Ω) such that µn(t) ⇀ µ(t) for all t ∈ [0, T ];

(2) Convergence: The curve µ is a quasi-static evolution with initial value µ0 and force f
for the limit energy F and the dissipation D. More precisely, the following two conditions
are satisfied:

(qs1)∞ global stability: for every t ∈ [0, T ] and for every ν ∈ P(Ω),

F(µ(t))−
∫

Ω

f(t) dµ(t) ≤ F(ν) + d(ν, µ(t))−
∫

Ω

f(t) dν; (5.35)

(qs2)∞ energy balance: the map t 7→
∫

Ω
ḟ(t) dµ(t) is integrable on [0, T ] and for every t ∈

[0, T ]

F(µ(t)) + D(µ, [0, t]) −
∫

Ω

f(t) dµ(t) = F(µ0) −
∫

Ω

f(0) dµ(0) −
∫ t

0

∫
Ω

ḟ(s) dµ(s) ds. (5.36)

Remark 5.9. The existence of an admissible sequence of initial data satisfying all the assumptions
of Theorem 5.8 is guaranteed by Theorems 3.3 and 5.5. It can be constructed as follows. Let
µ̂0 ∈ P∞γ,c(Ω) be such that F(µ̂0) < +∞. By definition of P∞γ,c(Ω) there exist µ̂0

n ⇀ µ̂0 narrowly,

as n → ∞, such that µ̂0
n ∈ Yn(γ, c) for every n. By applying Theorem 5.5 to µ = ν = µ̂0 and

µn = µ̂0
n we can replace the sequence (µ̂0

n) with a new sequence on which the renormalized energies
Fn converge to F(µ̂0). In other words, up to replacing (µ̂0

n) with this new sequence, we can assume
that Fn(µ̂0

n) ≤ C for every n. By Lemma 4.3 the minimum problems

min
µ∈Xn

{
Fn(µ) + d(µ, µ̂0

n)−
∫

Ω

f(0) dµ

}
have a solution µ0

n with finite energy. In particular, d(µ0
n, µ̂

0
n) < ∞ for every n, which implies

(π2)#µ
0
n = (π2)#µ̂

0
n for every n. Thus, µ0

n ∈ Yn(γ, c) for every n. By the triangle inequality µ0
n

satisfies the stability condition (5.34). Moreover, up to subsequences, there exists µ0 ∈ P(Ω) such
that µ0

n ⇀ µ0 narrowly, as n→∞. From the minimality we also deduce that

Fn(µ0
n) + d(µ0

n, µ̂
0
n)−

∫
Ω

f(0) dµ0
n ≤ Fn(µ̂0

n)−
∫

Ω

f(0) dµ̂0
n,

hence Fn(µ0
n) ≤ C for every n and from the liminf inequality of Theorem 3.3 we deduce that

F(µ0) < +∞. It remains to show (5.33). By Theorem 5.5 there exists a sequence (ν0
n) such that

ν0
n ∈ Xn for every n, ν0

n ⇀ µ0 narrowly, as n→∞, and

lim
n→∞

d(µ0
n, ν

0
n) = 0, lim sup

n→∞
Fn(ν0

n) ≤ F(µ0). (5.37)

From the stability condition (5.34) we have

Fn(µ0
n)−

∫
Ω

f(0) dµ0
n ≤ Fn(ν0

n) + d
(
ν0
n, µ

0
n

)
−
∫

Ω

f(0) dν0
n.
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Owing to the liminf inequality of Theorem 3.3 and to (5.37), we can pass to the limit in the above
expression and get (5.33).

Remark 5.10. Note that if t 7→ µ(t) is a quasi-static evolution, then

(π2)#µ(t) = (π2)#µ(0) for every t ∈ [0, T ]. (5.38)

Indeed, owing to the regularity assumptions on f and to (3.42), condition (qs2)∞ implies that
D(µ, [0, T ]) < +∞, which in turn gives (5.38) by the definition of the dissipation distance d.

Proof of Theorem 5.8. Compactness. Using the regularity assumption on f and assumption
(5.33) on the initial data, we infer from the energy balance (qs2)n

Fn(µn(t)) +D(µn, [0, t]) ≤ C (5.39)

for every n and every t ∈ [0, T ]. On the other hand, the energy estimates (3.13) and (3.14) in the
proof of Theorem 3.3 yield

Fn(µn(t)) =
1

2

∫∫
Ω×Ω

V (y, z) d(µn(t)� µn(t))(y, z)

+
1

2n

n∑
i=1

∫
∂Ω

CKn(x; zni (t))ν · uµn(t) dH1(x) + o(1),

where o(1) is a quantity tending to 0, as n→∞, uniformly in t. By Lemma 2.1 and Remark 3.2
we deduce that

Fn(µn(t)) ≥ −C
for every n and every t. Combining this inequality with (5.39), we obtain

D(µn, [0, T ]) ≤ C. (5.40)

In particular, this implies that d(µn(t), µ0
n) <∞ for every t ∈ [0, T ] and every n and, in turn, that

(π2)#µn(t) = (π2)#µ
0
n for every t ∈ [0, T ] and every n. Since µ0

n ∈ Yn(γ, c) by assumption, we
conclude that µn(t) ∈ Yn(γ, c) for every t ∈ [0, T ] and every n.

By Theorem 7.2 and (5.40) we can guarantee that there exists a map t 7→ µ(t) from [0, T ] into
P(Ω) such that, up to a subsequence,

µn(t) ⇀ µ(t) narrowly,

as n → ∞, for every t ∈ [0, T ]. By definition of P∞γ,c(Ω) we clearly have that µ(t) ∈ P∞γ,c(Ω) for
every t ∈ [0, T ]. Moreover, by (5.39) and Theorem 3.3 we have

F(µ(t)) ≤ lim inf
n→∞

Fn(µn(t)) ≤ C (5.41)

for every t ∈ [0, T ]; in other words, F(µ(t)) <∞ for every t ∈ [0, T ].

Convergence. We now prove condition (qs1)∞. Let us fix t ∈ [0, T ] and let ν ∈ P(Ω). Clearly,
it is enough to prove (5.35) for ν ∈ P(Ω) such that F(ν) < ∞ and d(ν, µ(t)) < ∞. This last
condition implies, in particular, that (π2)#ν = (π2)#µ(t). By Theorem 5.5 there exists a sequence
(νn) such that νn ∈ Yn(γ, c) for every n, νn ⇀ ν narrowly, as n→∞, and

lim sup
n→∞

d(νn, µn(t)) ≤ d(ν, µ(t)) and lim sup
n→∞

Fn(νn) ≤ F(ν). (5.42)

Since νn ∈ Xn for every n, the minimality condition (qs1)n implies

Fn(µn(t))−
∫

Ω

f(t) dµn(t) ≤ d
(
νn, µn(t)

)
+ Fn(νn)−

∫
Ω

f(t) dνn.

Combining (5.41) and (5.42), we can pass to the limit in this inequality and obtain (5.35).
By (5.41), the lower semicontinuity of the dissipation, and (5.33), we can now pass to the limit

in the energy balance (qs2)n and prove an energy inequality. The converse energy inequality can
be deduced from the global stability. �
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6. Strong formulation of the evolution problems

In this section we derive the strong formulation of the quasi-static evolution for the discrete
renormalised energy (1.6) and for the limit energy (1.7), under the assumption that they are
sufficiently regular for the various arguments to be valid.

6.1. Discrete energy. Our starting point is the formulation (4.8)–(4.9) of the quasi-static evo-
lution for the renormalised energy. For simplicity of notation, since µ(t) = 1

n

∑n
i=1 δzi(t) we write

Fn(µ(t)) =
1

n

∫
Ω

Wn(x, z1(t), . . . , zn(t)) dx.

We note that the force term reduces to∫
Ω

f(t) dµ(t) =
1

n

n∑
i=1

f(t, zi(t)).

We assume that supp µ(t) ⊂ intR and |zi(t) − zj(t)| > rn, i 6= j, for every t ∈ [0, T ]. Moreover,
we suppose that µ(t) varies smoothly with respect to time, so that

D(µ, [0, t]) =
1

n

n∑
i=1

∫ t

0

|żi(s) · e1| ds. (6.1)

Note also that by (4.10) we have

żi(t) · e2 = 0 (6.2)

for every i = 1, . . . , n. We also assume that the forcing term is regular enough, for instance
f ∈ W 1,1(0, T ;C1(Ω)), and Wn is continuously differentiable with respect to the points in the
support of µ (this latter condition depends on the regularity of the functions z 7→ Kz).

In (qs1)n we consider the measure 1
n

∑n
i=1 δzi(t)+ηie1 as a competitor of µ(t), with |ηi| small

enough, and we obtain

1

n

∫
Ω

Wn(x, z1(t), . . . , zn(t)) dx− 1

n

n∑
i=1

f(t, zi(t))

≤ 1

n

∫
Ω

Wn(x, z1(t) + η1e1, . . . , zn(t) + ηne1) dx+
1

n

n∑
i=1

|ηi| −
1

n

n∑
i=1

f(t, zi(t) + ηie1).

Choosing ηi > 0 and ηj = 0 for i 6= j, we can divide by ηi and pass to the limit as ηi → 0, and
obtain

−
∫

Ω

∇ziWn(x, z1(t), . . . , zn(t)) · e1 dx+ ∂x1
f(t, zi(t)) ≤ 1. (6.3)

Repeating the same argument for ηi < 0 we have

−
∫

Ω

∇ziWn(x, z1(t), . . . , zn(t)) · e1 dx+ ∂x1
f(t, zi(t)) ≥ −1.

Therefore, we deduce∣∣∣− ∫
Ω

∇ziWn(x, z1(t), . . . , zn(t)) · e1 dx+ ∂x1f(t, zi(t))
∣∣∣ ≤ 1 (6.4)

for every i = 1, . . . , n.
Differentiating (qs2)n with respect to time, we obtain

n∑
i=1

żi(t) ·
(
−
∫

Ω

∇ziWn(x, z1(t), . . . , zn(t)) dx+∇xf(t, zi(t))

)
=

n∑
i=1

|żi(t) · e1|.

In view of (6.4) and (6.2), this is equivalent to(
−
∫

Ω

∇ziWn(x, z1(t), . . . , zn(t)) · e1 dx+ ∂x1
f(t, zi(t))

)
(żi(t) · e1) = |żi(t) · e1| (6.5)

for every i = 1, . . . , n.
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The flow rule (6.5) is rate-independent. Moreover, together with (6.4), it implies that when
the inequality in (6.4) is strict for some i, then it must be żi · e1 = 0. When (6.4) holds with the
equality for some i, then żi · e1 may be different from zero and satisfies

żi(t) · e1 = λ

(
−
∫

Ω

∇ziWn(x, z1(t), . . . , zn(t)) · e1 dx+ ∂x1
f(t, zi(t))

)
for some λ ≥ 0.

6.2. Limiting energy. The limiting quasi-static evolution is in this case given by (5.35)–(5.36),
where we set

F̃(µ, t) := F(µ)−
∫

Ω

f(t) dµ.

We now follow the same arguments as in Section 6.1, but for the energy F̃ . We assume for
simplicity that supp µ(t) ⊂ intR for every t ∈ [0, T ]. We choose ϕ ∈ C∞c (Ω), and for η > 0 small
enough we define perturbations µη of µ(t) by (writing x = (x1, x2) for an element of Ω)

µη = T η#µ(t), T η(x) :=
(
x1 + ηϕ(x), x2

)
.

Note that if η is small enough, then T η is a smooth one-to-one map from Ω to Ω. Since the map
x 7→ T η(x) is an admissible transport map, we have

d(µη, µ(t)) ≤
∫

Ω

|x1 − (x1 + ηϕ(x))| dµ(t)(x) = η

∫
Ω

|ϕ(x)| dµ(t)(x).

To estimate the effect of this perturbation on F̃ , we note that ∂ηµ
η = −∂x1

(ϕµη) at η = 0, and
calculate

lim
η→0

1

η

[
F̃(µη, t)− F̃(µ(t), t)

]∣∣∣
η=0

=

∫
Ω

δF̃
δµ

(µ(t), t) ∂ηµ
η
∣∣
η=0

=

∫
Ω

ϕ ∂x1

δF̃
δµ

(µ(t), t) dµ(t), (6.6)

where

δF̃
δµ

(µ, t)(x) =

∫
Ω

V (x, y) dµ(y) +
1

2

∫
∂Ω

CK(x; y)ν(y) · vµ(y) dH1(y)− f(x, t). (6.7)

The second term follows from (1.7) using the general principle that if h(s) = infv g(v, s), with
unique minimizer vs depending smoothly on s, then h′(s) = (∂sg)(vs, s).

Now using µη in (qs1)∞, dividing by η and taking the limit η → 0, we find

−
∫

Ω

ϕ ∂x1

δF̃
δµ

(µ(t), t) dµ(t) ≤
∫

Ω

|ϕ| dµ(t),

which is the equivalent of (6.3). Since ϕ is arbitrary, we similarly deduce that∣∣∣∂x1

δF̃
δµ

(µ(t), t)(x)
∣∣∣ ≤ 1 for µ(t)-a.e. x ∈ Ω. (6.8)

Continuing the argument from the discrete case, we assume that µ is smooth in space and time,
and we write dµ(t) = µ(t, x) dx. By (4.5) there exists a Borel measurable φ satisfying the equation

∂tµ(t, x) + ∂x1
(φ(t, x)µ(t, x)) = 0 for all t and for µ(t)-a.e. x,

such that

D(µ, [0, t]) =

∫ t

0

∫
Ω

|φ(s, x)|µ(s, x) dx ds.

Differentiating (qs2)∞ in time and calculating as in (6.6) we find∫
Ω

φ(t, x) ∂x1

δF̃
δµ

(µ(t), t)µ(t, x) dx+

∫
Ω

|φ(t, x)|µ(t, x) dx = 0.

Again, in combination with (6.8), this implies

−φ(t, x) ∂x1

δF̃
δµ

(µ(t), t) = |φ(t, x)| for µ(t)-a.e. x,
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which is the counterpart of (6.5). At µ(t)-a.e. x, therefore, either φ(x, t) = 0, or the total force

satisfies −[∂x1
δF̃/δµ](µ(t), t)(x) = ±1; in the latter case, φ points in the direction of the force.

7. Appendix

In this appendix we state and prove an extension result (Theorem 7.1), and a Helly-type
theorem.

Theorem 7.1. Let Ω be an open set in R2. Let δ and let z1, . . . , zn, n ∈ N, be such that
|zj − zk| ≥ 4δ for every j 6= k and dist(zi, ∂Ω) ≥ 2δ for every i. Then there exists a positive
constant C, independent of δ, of the zi’s and of n, with the following property: for every u ∈
H1(Ω \ ∪ni=1Bδ(zi);R2) there exists an extension ũ ∈ H1(Ω;R2) of u such that

‖Eũ‖L2(Ω) ≤ C‖Eu‖L2(Ω\∪ni=1Bδ(zi))
. (7.1)

Proof. Let u ∈ H1(Ω\∪ni=1Bδ(zi);R2). By [OSY92, Lemma 4.1] for every i = 1, . . . , n there exists
a function ũi ∈ H1(B2δ(zi)) such that ũi = u on B2δ(zi) \Bδ(zi) and

‖Eũi‖L2(B2δ(zi)) ≤ C1‖Eu‖L2(B2δ(zi)\Bδ(zi)), (7.2)

where the constant C1 is independent of u. By a scaling argument it is easy to see that C1 is also
independent of δ and of zi.

It is now enough to define

ũ :=

{
ũi in Bδ(zi),

u otherwise.

Clearly ũ is an extension of u and ũ ∈ H1(Ω;R2). Moreover, (7.2) yields

‖Eũ‖2L2(Ω) = ‖Eu‖2
L2(Ω\∪ni=1Bδ(zi))

+

n∑
i=1

‖Eũi‖2L2(Bδ(zi))

≤ ‖Eu‖2
L2(Ω\∪ni=1Bδ(zi))

+ C2
1

n∑
i=1

‖Eu‖2
L2(B2δ(zi)\Bδ(zi))

≤ (1 + C2
1 )‖Eu‖2

L2(Ω\∪ni=1Bδ(zi))
,

which proves (7.1). �

Theorem 7.2. Let t 7→ µk(t) be a sequence of maps from [0, T ] into the space P(Ω). We assume
that there exist an open set Ω′ ⊂⊂ Ω and C > 0 such that

supp µk(t) ⊂ Ω′ (7.3)

for every t ∈ [0, T ] and every k, and

D(µk, [0, T ]) ≤ C (7.4)

for every k. Then there exists a subsequence (not relabelled) and a map t 7→ µ(t) from [0, T ] into
P(Ω), with D(µ, [0, T ]) ≤ C, such that

µk(t) ⇀ µ(t) narrowly (7.5)

for every t ∈ [0, T ].

Proof. Let Q be a countable and dense subset of [0, T ] containing 0. Using a diagonal argument,
assumption (7.3) implies the existence of a subsequence kj →∞ and a map t 7→ µ(t) from Q into
P(Ω) such that

µkj (t) ⇀ µ(t) narrowly

for every t ∈ Q. We now define
Dkj (t) := D(µkj , [0, t]).

The functions Dkj are non-decreasing with respect to time; moreover, Dkj (T ) ≤ C and Dkj (0) = 0
for every j. By Helly’s Theorem we deduce that, up to subsequences,

lim
j→∞

Dkj (t) = D(t) ∀ t ∈ [0, T ],
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and the limit function D(t) is also non decreasing in t and bounded by the same constant C. We
now define the set

Θ := {0} ∪
{
t ∈ (0, T ] : lim

s→t−
D(s) = D(t)

}
.

Note that, by definition, for every 0 ≤ s ≤ t ≤ T we have

d(µkj (t), µkj (s)) ≤ Dkj (t)−Dkj (s). (7.6)

Let t ∈ Θ. Then, for every ε > 0 there exists s ∈ Q such that s ≤ t and D(t)−D(s) < ε. Then,
by (7.6), for large enough j (note that j = j(t, s))

d(µkj (t), µkj (s)) < ε.

By Part 2 of Lemma 4.1 this implies that

d1(µkj (t), µkj (s)) < ε.

Then, for every i, j ∈ N we have the bound

d1(µki(t), µkj (t)) < 2ε+ d1(µki(s), µkj (s)),

entailing that (µkj (t)) is a Cauchy sequence in d1. Therefore, µkj (t) converges narrowly to some
limit measure µ(t) for t ∈ Θ. Since the complement of Θ in [0, T ] is at most countable, up to
extracting a further subsequence we have by a diagonal argument that µkj (t) converges narrowly
to a measure µ(t) for every t ∈ [0, T ]. �
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