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Abstract. We give a short axiomatic introduction to Carnot groups and their subRie-
mannian and subFinsler geometry. We explain how such spaces can be metrically described
as exactly those proper geodesic spaces that admit dilations and are isometrically homo-
geneous.

1. Introduction

Carnot groups are special objects that play important roles in several mathematical fields.
For example, they appear in Algebra and Geometric Group Theory; in particular, in the
theory of nilpotent groups, and in Geometric Analysis and PDE, as models for subelliptic
operators.

Briefly speaking, a Carnot group, or better a subFinsler Carnot group, is a nilpotent
stratified Lie group equipped with a left-invariant subFinsler distance with the first stratum
as horizontal distribution. The purpose of this short paper is to give a more axiomatic
presentation of Carnot groups from the view point of Metric Geometry. In fact, we shall
see that Carnot groups are the only locally compact and geodesic metric spaces that are
isometrically homogeneous and self-similar. Such a result follows the spirit of Gromov’s
approach of ‘seeing Carnot-Carathéodory spaces from within’, [Gro96].

Let us recall and make explicit the above definitions. A topological space X is called
locally compact if every point of the space has a compact neighborhood. A metric space
is geodesic if, for all p, q ∈ X, there exists an isometric embedding ι : [0, T ] → X with
T ≥ 0 such that ι(0) = p and ι(T ) = q. We say that a metric space X is isometrically
homogeneous if its group of isometries acts on the space transitively. Explicitly, this means
that, for all p, q ∈ X, there exists a distance-preserving homeomorphism f : X → X
such that f(p) = q. In this paper, we say that a metric space X is self-similar if it
admits a dilation, i.e., there exists λ > 1 and a homeomorphism f : X → X such that
d(f(p), f(q)) = λd(p, q), for all p, q ∈ X.

Date: April 28, 2013.
2010 Mathematics Subject Classification. 53C17, 53C60, 22E25, 58D19.
Key words and phrases. Carnot groups, subRiemannian geometry.
The author thanks IPAM and all of the people involved in the program ‘Interactions Between Analysis

and Geometry’, during which there was the opportunity of discussing these results.

1



2 ENRICO LE DONNE

Theorem 1.1. The subFinsler Carnot groups are the only metric spaces that are

(1) locally compact,
(2) geodesic,
(3) isometrically homogeneous, and
(4) self-similar (i.e., admitting a dilation).

Theorem 1.1 provides a new equivalent definition of Carnot groups. Obviously, (1) can
be slightly strengthened assuming that the space is boundedly compact (the term proper is
also used), i.e., closed balls are compact. Let us now recall what is the traditional definition
of a Carnot group.

Definition 1.2 (SubFinsler Carnot groups). Let G be a connected and simply-connected
Lie group. Denote by Lie(G) the Lie algebra of G, seen as the set of tangent vectors at
the identity element with the bracket operation induced by the Lie bracket of left-invariant
vector fields. The group G is said to be a stratified group if there exist subspaces Vj ⊆ Lie(G)
such that

(1.3) Lie(G) = V1 ⊕ · · · ⊕ Vs, with [Vj , V1] = Vj+1, for 1 ≤ j ≤ s,
where Vs+1 = {0}. If Vs 6= {0}, we say that (1.3) is a stratification of step s. Note that such
a group G is nilpotent and that the first stratum V1 generates the whole Lie algebra.

The space V1 defines a left-invariant subbundle ∆ of the tangent bundle of G, which is
named horizontal distribution. Namely,

∆p := (Lp)∗V1,

where Lp is the left-multiplication by p ∈ G and F∗ denotes the differential of a diffeomor-
phism F . Given a norm ‖·‖ on V1, we can extend it left-invariantly on ∆ as

‖v‖ :=
∥∥∥(L−1p )∗v

∥∥∥ , ∀v ∈ ∆p.

For an absolutely continuous curve γ : [0, 1]→ G that has the property that almost every-
where γ̇ ∈ ∆, which is called a horizontal curve, we set

Length‖·‖(γ) :=

∫ 1

0
‖γ̇(t)‖ dt.

The associated subFinsler (or Finsler-Carnot-Carathéodory) distance between two points
p, q ∈ G is defined1 as

(1.4) d(p, q) := inf{Length‖·‖(γ) | γ ∈ C∞([0, 1];G), γ(0) = p, γ(1) = q, γ̇ ∈ ∆}.
We call the metric space (G, d) a subFinsler Carnot group.

If the chosen norm comes from a scalar product, then the associated distance is called
Carnot-Carathéodory or subRiemannian. If this is the case, we call (G, d) a subRiemannian
Carnot group. The term Carnot group is often used in the literature. This ambiguous
terminology, which will also be used here, might denote either a subRiemannian or, more
generally, a subFinsler Carnot group. Some other authors use the term Carnot group even
as a synonym for stratified group.

1As shown in [LD11a, Theorem 1.2], in (1.4) one can replace the smoothness condition on γ with just
horizontality.
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The topology of the metric space (G, d) is the same of the one of G as manifold. This
last fact is shown using the fact that V1 generates the Lie algebra, and it holds more
generally; see Chow-Rashevsky Theorem [Mon02]. Hence, since a Carnot group is locally
compact, complete, and the distance is defined as a length distance, it is a geodesic space.
Obviously, a Carnot group is isometrically homogeneous: since the whole construction of the
distance is left-invariant, left translations are isometries (and act transitively). Regarding
self-similarity, Carnot groups admit dilations for any factor λ, as we now recall. This
property will be a consequence of the fact that the group is stratified (and simply connected).

At the Lie algebra level, for each λ ∈ R, the dilation δ̃λ is defined linearly by setting
δ̃λ(X) := λjX, for every X ∈ Vj and every j = 1, . . . , s. For all λ 6= 0, the map δ̃λ is a Lie
algebra isomorphism. From the theory of simply connected Lie groups, we have that the
dilation induces a unique isomorphism of the group, which we denote by δλ. Namely, there
exists a map δλ : G → G such that (δλ)∗ = δ̃λ. Hence, the map δλ stretches the length of
horizontal curves exactly by λ. Therefore, it dilates the distance by λ. Observe that, since
G is nilpotent and simply connected, the exponential map is a diffeomorphism; thus the
dilations δλ can be equivalently defined as δλ(p) = exp ◦ δ̃λ ◦ exp−1(p), for all λ ∈ R and
p ∈ G.

We would like to remark a few things. Note that a Carnot group admits dilations for
all factors λ. Nonetheless, we claim that having the existence of one dilation is enough,
together with the other assumptions, to conclude the existence of dilations of any factor.

We point out that each of the four conditions in Theorem 1.1 is necessary for the validity
of the result. Indeed, let us mention examples of spaces that satisfy three out of the four
conditions but are not Carnot groups: any infinite dimensional Banach space; any snowflake

of a Carnot group, e.g., (R,
»
‖·‖); many cones such as the usual Euclidean cone of cone

angle in (0, 2π) or the union of two spaces such as {(x, y) ∈ R2 : xy ≥ 0}; any compact
homogeneous space such as S1.

This paper is not the first one focusing on metric characterizations of Carnot groups.
Other papers in this context are [LD11b], [Bul11], [Fre12] (which is based on [LD11a]), and
[BS12].

Examples of Carnot groups. Here are very basic samples of Carnot groups.

1. The first examples are the Euclidean spaces and the finite dimensional Banach spaces.
Here the group structure is Abelian, hence the stratification has step one, i.e., there is only
one stratum, which coincides with the whole Lie algebra.

2. The next very popular Carnot group is the Heisenberg group, which we denote by H.
The space H is R3 equipped with a distance as follows. Fix a norm ‖·‖ on R2. Then define
a distance between two points p and q of R3 as

d(p, q) := inf

®∫ 1

0
‖(γ̇1(t), γ̇2(t))‖ dt

∣∣∣∣∣ γ ∈ C∞([0, 1];R3),
γ(0) = p,
γ(1) = q,

γ̇3 =
1

2
(γ1γ̇2 − γ2γ̇1)

´
.

The group structure, for which this distance is left-invariant, is given by

(x̄, ȳ, z̄) · (x, y, z) :=

Å
x̄+ x, ȳ + y, z̄ + z +

1

2
(x̄y − ȳx)

ã
.
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A dilation by factor λ is given by the map (x, y, z) 7−→ (λx, λy, λ2z). For this group we
have the step-two stratification

V1 := span

ß
∂1 −

y

2
∂3, ∂2 +

x

2
∂3

™
and V2 := span{∂3}.

2. Proof of the characterization

The proof of Theorem 1.1 is an easy consequence of three hard theorems. We present
now these theorems, before giving the proof.

The first theorem is well-known in the theory of locally compact groups. It is a conse-
quence of a deep result of Dean Montgomery and Leo Zippin, [MZ74, Corollary on page
243, Section 6.3], together with the work [Gle52] of Andrew Gleason. An explicit proof can
be found in Cornelia Drutu and Michael Kapovich’s lecture notes, [DK11, Chapter 14].

Theorem 2.1 (Gleason-Montgomery-Zippin). Let X be a metric space that is connected,
locally connected, locally compact and has finite topological dimension. Assume that the
isometry group Isom(X) of X acts transitively on X. Then Isom(X) has the structure of a
Lie group with finitely many connected components, and X has the structure of an analytic
manifold.

Notice that an isometrically homogeneous space that is locally compact is complete.

Successively, Berestovskii’s work [Ber88, Theorem 2] clarified what the possible isometri-
cally homogeneous distances on manifolds that are also geodesic are. They are subFinsler
metrics.

Theorem 2.2 (Berestovskii). Under the same assumptions of Theorem 2.1, if in addition
the distance is geodesic, then the distance is a subFinsler metric, i.e., the metric space X
is a homogeneous Lie space G/H and there is a G-invariant subbundle ∆ on the manifold
G/H and a G-invariant norm on ∆ such that the distance is given by the same formula
(1.4).

Tangents, in the Gromov-Hausdorff sense, of subFinsler manifolds have been studied.
In particular, recall that a bundle is equiregular if the spaces of iterated brackets form
subbundles as well. For more detailed terminology and for the proof of the next result we
refer to [Bel96, MM95, MM00].

Theorem 2.3 (Mitchell). The metric tangents of an equiregular subFinsler manifold are
subFinsler Carnot groups.

Proof of Theorem 1.1. Let us verify that we can use Theorem 2.1. A geodesic metric
space is obviously connected and locally connected. Regarding finite dimensionality, we
claim that a locally compact, self-similar, isometrically homogeneous space X is doubling.
Namely, there exists a constant C > 0 such that any ball of radius r > 0 in X can be
covered with less than C balls of radius r/2. Since X is locally compact, there exists a
ball B(x0, r0) that is compact. Let λ > 1 be the factor of the dilation. Hence, the balls
B(x0, sr0) with s ∈ [1, λ] form a compact family of compact balls. Hence, there exists a
constant C > 1 such that each ball B(x0, sr0) can be covered with less than C balls of
radius sr0/2. By self-similarity and homogeneity, any other ball can be covered with less
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than C balls of half radius. Doubling metric spaces have finite Hausdorff dimension and
hence finite topological dimension. Therefore, by Theorem 2.1 the isometry group G is a
Lie group.

Since the distance is geodesic, Theorem 2.2 implies that our metric space is a subFinsler
homogeneous manifold G/H. Since the subFinsler structure is G invariant, in particular it
is equiregular. Hence, on the one hand, because of Theorem 2.3 the tangents of our metric
space are subFinsler Carnot groups. On the other hand, the space admits a dilation; hence,
iterating the dilation, we have that there exists a metric tangent of the metric space that
is isometric to our original space. Then the space is a subFinsler Carnot group. �

After completion of this manuscript, Valerii Berestovskii has informed the author that a
statement similar to Theorem 1.1 can be found in his work [Ber04].
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