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Abstract. We consider a beam whose cross-section is a tubular neighborhood

of a simple closed curve γ. We assume that the wall thickness, i.e., the size
of the neighborhood, scales with a parameter δε while the length of γ scales

with ε. We characterize a thin-walled beam by assuming that δε goes to zero

faster than ε. Starting from the three dimensional linear theory of elasticity,
by letting ε go to zero, we derive a one-dimensional Γ–limit problem for the

case in which the ratio between ε2 and δε is bounded. The limit model is

obtained for a fully anisotropic and inhomogeneous material, thus making the
theory applicable for composite thin-walled beams. Our approach recovers in

a systematic way, and gives account of, many features of the beam models in

the theory of Vlasov.

1. Introduction

The attention to thin-walled beams has been motivated by their peculiar tor-
sional behavior. The pioneering works by Prandtl (1903) and Timoshenko (1905),
see [10] and [11], on the flexural-torsional instability of beams opened the way to
an extensive study of the subject that has occupied a large part of the first half
of the last century. A fundamental contribution was given by Vlasov, whose work
became known in the west at the end of the ’50s after the English translation of
his monograph [12].

The high structural performances and the low weight make thin-walled structures
of great interest for applications, especially in advanced technological fields. An
account of the developments of the theory and of the problems arising in classical
structural contexts is found in [8]. Advanced applications are met, for instance, in
aeronautics and turbomachinery. In those fields dynamical and stability aspects
become crucial and have urged research to explore novel areas and problems. In
particular, it is common to use new and fiber reinforced materials, or to resort
to special structural arrangements, in order to influence or control the dynamical
behavior [9]. All this has contributed to the growth of an abundant literature and
to a multitude of models that are often hardly comparable [13].
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The various models are based on ad hoc kinematical assumptions. A different
approach is taken in [5, 6], where the authors deduce an asymptotic model for thin-
walled beams by starting from the three dimensional theory of elasticity and using
the general framework of Γ–convergence. These papers deal with homogeneous
isotropic elastic beams with rectangular cross-section. Namely, it is assumed that
the long side of the cross-section scales with a small parameter ε, while the other
with ε2. This different scaling leads to a compactness result in which the different
components of the displacement scale differently. It is also noticeable that the
kinematic restrictions on the limit displacement field, that are the starting point of
many direct models, here follow by compactness.

There is now a wide literature on thin-walled beams with open cross-section via
variational convergence. In particular, in [7] the authors consider the case of an
inhomogeneous anisotropic rectangular cross-section, and in [3, 4] the analysis has
been extended to the non linear context. Recently, Davoli [2] considered the case of
homogeneous anisotropic beams with curved open cross-section within the frame-
work of finite deformations. In that article, however, the analysis of Γ–convergence
is carried on in terms of strains rather than displacements, as it is usually done.
In [1] we have studied inhomogeneous anisotropic thin-walled beams with an open
curved cross-section within the framework of linear elasticity. In particular, when
applied to homogeneous and isotropic materials, our results validate Vlasov’s the-
ory.

Here we consider thin-walled beams with closed cross-section. As far as we know,
this is the first paper that deals with this case within the framework of variational
convergence.

The main difference between open and closed cross-sections is essentially due to
the different torsional rigidity. The mechanical reason is that the flux of the shear
stresses across the cords of a closed cross-section does not vanish, upraising by up
to two orders of magnitude the contribution of the De Saint Venant’s regime of
stresses to the global torsional rigidity, see [8]. This fact implies that the effects of
nonuniform torsion produced by loads applied to the ends of the beam die off much
faster than for an open cross-section. Or, in other words, that the importance of
“warping” is severely reduced.

In the present approach the difference between open and closed cross-sections
emerges at the kinematic level and is related to the multiple connection of the
cross-section. The requirement that the displacements fulfill periodicity conditions
yields that additional information can be obtained from the compactness theorem.
Accordingly, the kinematical analysis of [1] can be significantly enhanced. In par-
ticular, it is found that the twist used for an open cross-section, hereafter denoted
by ϑ, is identically equal to zero. This result essentially states that the sequence
that generates the twist in the case of open cross-sections is too rough and needs
to be refined in the case of closed cross-sections. Indeed, by introducing a further
rescaling it is possible to define a new quantity, Θε, that describes the twist angle of
the cross-section and that converges to a limit value Θ. It is worth saying that, by
definition, Θε and then Θ depend also on the shape of the cross section, reflecting
a well known technical feature of torsion.

The periodicity of the displacements plays a crucial role and leads to new integral
constraints on the potentials appearing in the limit strains. As a consequence, the
definition of the limit energy density is much more involved with respect to the
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case of an open cross-section. Within the framework of homogeneous and isotropic
materials, one of these integral constraints leads to a formula upon which Vlasov’s
theory of sectorial areas for closed cross-sections is based on, see Remark 4.7 and
equation (43).

The paper is organized as follows. In Sections 2 and 3 we introduce the problem
and recall some useful formulas from [1]. After recalling the compactness results,
in Section 4 we prove that the limit twist ϑ, as we defined it for the open cross-
sections, vanishes and introduce a new measure of twist Θε. We also update the
representation formulae for the limit strains and deduce the integral constraints of
the related potential functions. In Section 5 we compute a lower bound of the energy
by minimizing the strain energy functional in the class of strains characterized in
the previous sections. By this procedure we obtain a reduced form of the energy
that will define the energy density of the Γ-limit. In Section 6 we find the Γ–limit
through the usual sequential characterization and in the following section we prove
that the Γ–limit has a local form. Namely, we give an explicit representation of the
associated strain energy density.

We stress once more that our approach applies to generally inhomogeneous
anisotropic thin-walled beams. The availability of an explicit representation for-
mula for the strain energy density of the asymptotic model can be useful to discuss,
for instance, the optimal arrangement of anisotropies in specific problems, or to
suggest strategies for structural tailoring in advanced technological devices, see [9].
Finally, by the sake of exemplification, in the last section we calculate the Γ–limit
for a homogeneous isotropic elastic thin-walled beam.

Notation

We adopt the same notation used in [1], which we recall hereafter for convenience
of the reader. In the proofs, for brevity, we neglect to specify which identities hold
only “almost everywhere”, while we are explicit in the statements of the theorems.

Throughout the article, and unless otherwise stated, we index vector and tensor
components as follows: Greek indices α, β and γ take values in the set {1, 2}
and Latin indices i, j, k, l in the set {1, 2, 3}. With (e1, e2, e3) we shall denote
the canonical basis of R3. Lp(A;B) and Hs(A;B) are the standard Lebesgue and
Sobolev spaces of functions defined on the domain A and taking values in B. When
B = R, or when the target set B is clear from the context, we will simply write
Lp(A) or Hs(A); also in the norms we shall systematically drop the target set.
Convergence in the norm, that is the so-called strong convergence, will be denoted
by → while weak convergence is denoted with ⇀. With a little abuse of language,
and because this is a common practice and does not give rise to any confusion, we
use to call “sequences” even those families indicized by a continuous parameter ε
which, throughout the whole paper, will be assumed to belong to the interval (0, 1].
Throughout the paper, the constant C may change from expression to expression
and, in some case, even in the same line. The scalar product between vectors or
tensors is denoted by ·. R3×3

skw denotes the vector space of skew-symmetric 3 × 3
real matrices. For A = (aij) ∈ R3×3 we denote the Euclidean norm (with the

summation convention) by |A| =
√
A ·A =

√
tr(AAT ) =

√
aijaij . Whenever we

write a matrix by means of its columns we separate the columns with vertical bars
(·| · |·) ∈ R3×3. ∂i stands for the distributional derivative ∂

∂xi
. For every a, b ∈ R3

we denote by a � b := 1
2 (a ⊗ b + b ⊗ a) the symmetrized diadic product, where
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(a ⊗ b)ij = aibj . When a function of three variables is independent of one or
two of them we consider it as a function of the remaining variables only. This
means, for instance, that a function u ∈ H1((0, `) × (0, L);Rm) will be identified
with a corresponding u ∈ H1((0, `) × (−h/2, h/2) × (0, L);Rm) such that ∂2u = 0
and a function v ∈ H1((0, L);Rm) will be identified with a corresponding v ∈
H1((0, `) × (−h/2, h/2) × (0, L);Rm) such that ∂1v = ∂2v = 0. The notation da
stands for the area element dx1dx2. As usual,

∫
− denotes the integral mean value.

2. Statement of the problem

We consider a sequence of thin-walled beams with closed cross-section ω̂ε that
is an annular neighborhood of thickness δεh of a curve εγ. Precisely, let ` > 0 and
I = [0, `] ⊂ R be a closed interval and γ : I → R2 × {0} be a regular simple curve
of length ` in the plane x3 = 0. We shall assume that γ is of class W 3,∞ on the
torus [0, `]. Then, the cross-section ω̂ε consists of the set of points

(1) x̂ = εγ(x1) + δεx2n(x1), x1 ∈ I, x2 ∈ (−h
2
,
h

2
),

with h > 0. Here x1 is the arc length of γ and x2 measures the distance of point x̂
from the mean curve εγ along the normal n(x1). We denote by t := ∂1γ the unit
tangent to γ and by n = e3 ∧ t the unit normal. In particular, κ := ∂1t · n is the
curvature of γ, and we have that ∂1t = κn and ∂1n = −κt. Clearly, κ cannot be
identically equal to zero because the curve is closed.

As in [1], we assume that the cross-section is thin in the sense established by

(2) lim
ε→0

δε
ε

= 0.

Let Ω̂ε := ω̂ε × (0, L) denote the domain occupied by the beam in the reference
configuration. We indicate by

(3) Eû(x̂) := sym(∇û(x̂)) :=
∇û(x̂) +∇û(x̂)T

2
,

the strain corresponding to the displacement û : Ω̂ε → R3.
We consider thin-walled beams made of an inhomogeneous linear hyper-elastic

material characterized by an elasticity tensor Cε with components Cεijkl ∈ L∞(Ω̂ε)
and satisfying the major and minor symmetries, i.e., Cεijkl = Cεijlk = Cεklij . The
fourth order tensor Cε is assumed to be uniformly positive definite, that is: there
exists c > 0 such that

(4) Cε(x̂)E · E ≥ c|E|2

for almost every x̂, for all symmetric matrices E, and for every ε > 0.
We take the beam to be clamped at x3 = 0, and denote by

(5) H1
dn(Ω̂ε;R3) :=

{
û ∈ H1(Ω̂ε;R3) : û = 0 on ω̂ε × {0}

}
the function space of the displacement fields. Then, the energy functional of the

beam F̂ε : H1
dn(Ω̂ε;R3)→ R is given by

(6) F̂ε(û) :=
1

2

∫
Ω̂ε

CεEû · Eû dx̂− L̂ε(û),

where L̂ε(û) denotes the work done by the loads on the displacements û.
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We aim to find a variational limit of the functionals F̂ε, as ε → 0, in order
to get an asymptotic model for thin-walled beams with closed cross-section. The
analysis will be focused on the asymptotic behavior of the elastic energy only, and
the reader is referred back to the considerations made in [1], Remark 7.3, for what
concerns the work done by the loads.

3. Problem on a fixed domain

According to (1), let

(7) x̂ = χε(x) := εγ(x1) + δεx2n(x1) + x3e3.

be the function that maps the fixed domain [0, `]× (−h2 ,
h
2 )× (0, L) to the domain

Ω̂ε occupied by the beam in the reference configuration.
By means of χε it is possible to write the mechanical problem on a fixed domain

by defining

u := û ◦ χε.
The chain rule yields then

(8) ∇u = ∇û ◦ χε∇χε,

where ∇u =
(
∂1u
∣∣∂2u

∣∣∂3u
)
. From (7) it follows that

(9) ∇χε = (ε(1− δε
ε
x2κ)t(x1)

∣∣δεn(x1)
∣∣e3),

hence

(10) ∇û = ∇u(∇χε)−1 = ∇u
( 1

ε(1− δε
ε x2κ)

t(x1)
∣∣ 1

δε
n(x1)

∣∣e3

)T
.

It is convenient for the sequel to express the deformation gradient and the strain

tensor in a local frame. To this aim, at the points of Ω̂ε, or equivalently at the
corresponding points of [0, `]× (−h2 ,

h
2 )× (0, L), we introduce the basis

(11) gε1 = (1− δε
ε
x2κ)t, gε2 = n, gε3 = e3,

and its dual one

g1
ε =

t

1− δε
ε x2κ

, g2
ε = n, g3

ε = e3.

We write Hεu and Eεu respectively for the deformation gradient and the strain
tensor when they are regarded as fields over the fixed domain, that is

(12) Hεu := (
1

ε
∂1u|

1

δε
∂2u|∂3u)(g1

ε |g2
ε |g3

ε)T ,

whereas Eεu is given by

Eεu := symHεu.

We note that (12) implies that

(
1

ε
∂1u|

1

δε
∂2u|∂3u) = Hεu (gε1|gε2|gε3),

that is,

(13)
1

ε
∂1u = Hεu gε1,

1

δε
∂2u = Hεu gε2, ∂3u = Hεu gε3.
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We also notice that the components of Hεu in the local basis

(Hεu)ij := gεi ·Hεu gεj

are given by

(14)

(Hεu)11 =
1

ε
gε1 · ∂1u, (Hεu)12 =

1

δε
gε1 · ∂2u, (Hεu)13 = gε1 · ∂3u,

(Hεu)21 =
1

ε
gε2 · ∂1u, (Hεu)22 =

1

δε
gε2 · ∂2u, (Hεu)23 = gε2 · ∂3u,

(Hεu)31 =
1

ε
gε3 · ∂1u, (Hεu)32 =

1

δε
gε3 · ∂2u, (Hεu)33 = gε3 · ∂3u.

Likewise,

(15) (Eεu)ij := gεi · Eεu gεj =
(Hεu)ij + (Hεu)ji

2
.

By setting Lε(u) := L̂ε(û)/(εδε) and
√
gε := gε1 · gε2 × gε3 = 1− (δε/ε)x2κ, from

(6) we get

(16)
F̂ε(û)

εδε
=

1

2

∫
Ω

CEεu · Eεu
√
gε dx−Lε(u) =: Fε(u),

with Ω := (0, `) × (−h2 ,
h
2 ) × (0, L) and C := Cε ◦ χε. Hereafter we assume that

C = C(x) does not depend on ε. From (4) it follows that: there exists c > 0 with

(17) C(x)E · E ≥ c|E|2

for almost every x and for all symmetric matrices E.
Let

H1
dn(Ω;R3) :=

{
u ∈ H1(Ω;R3) : u = 0 on ω × {0}

}
with ω := (0, `) × (−h2 ,

h
2 ). Then, by taking the periodicity of γ into account, (5)

yields that the domain of the energy functional Fε is

H1
#dn(Ω;R3) :=

{
u ∈ H1

dn(Ω;R3) : u(0, ·, ·) = u(`, ·, ·)
}
.

4. Compactness results

Throughout the section we consider a sequence of functions uε ∈ H1
#dn(Ω;R3)

such that

(18) sup
ε

1

δε
‖Eεuε‖L2(Ω) < +∞.

Since H1
#dn(Ω;R3) ⊂ H1

dn(Ω;R3) it follows that the compactness results proved

in [1], for thin walled beams with open cross-sections, hold also in the present
context. The following theorem summarizes some results proved in Section 5 of [1].

Theorem 4.1. There exists a sequence W ε ∈ H1((0, `) × (0, L);R3×3
skw ) such that

W ε(0, ·) = W ε(`, ·) and

i) ‖Hεuε −W ε‖L2(Ω) ≤ Cδε,
ii) ‖W ε‖L2(Ω) + ‖∂3W

ε‖L2(Ω) ≤ C,
iii) ‖∂1W

ε‖L2(Ω) ≤ Cε,
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for a suitable C > 0 and every ε small enough. Moreover, there exist W ∈
H1
dn((0, L);R3×3

skw ) and B ∈ L2((0, `)× (0, L);R3×3
skw ) such that, up to a subsequence,

(19) W ε ⇀W in H1((0, `)× (0, L);R3×3),

(20)
∂1W

ε

ε
⇀ B in L2((0, `)× (0, L);R3×3),

and

uε ⇀ 0 in H1
dn(Ω;R3).

Since the limit of uε is equal to zero, the following rescaled components of uε

were considered in [1]:

(21) v̄ε :=
uε − uε3e3

δε/ε
, vε3 :=

uε3
δε
.

From (19) it follows that

(22) W ε
21 = gε2 ·W εgε1 ⇀ n ·Wt =: ϑ in H1((0, `)× (0, L)),

with ϑ ∈ H1
dn(0, L). In [1], for thin-walled beams with open cross-section, it was

shown that ϑ represents the rotation of the cross-section around the x3–axis. It
turns out that for closed cross-sections ϑ is equal to zero, see Theorem 4.4 below,
hence the sequence {W ε

21} is too ‘crude’ to capture the rotation of the cross-section
in the limit. A measure of the rotation suitable for closed cross-sections is instead
given by

(23) Θε :=
−1∫

−`
0
γ · ndx1

−
∫
ω

gε1 · uε

δε
da.

Since n = e3 ∧ t, the quantity
∫ `

0
γ · ndx1 is equal to minus twice the area inside

the curve γ, and hence it is different from zero. The quantities Θε are in fact
averages of the local rotations suitably rescaled at a finer scale, see Theorem 4.2
and Remark 4.3 below.

The following identity, which will be crucial in our analysis,

(24) −
∫
ω

2(Eεuε)13

δε
da = ∂3−

∫
ω

gε1 · uε

δε
da

can be deduced from

−
∫
ω

2(Eεuε)13

δε
da =

1

εδε
−
∫
ω

∂1u
ε
3 da+

1

δε
−
∫
ω

gε1 · ∂3u
ε da

after noticing that the first integral on the right-hand side vanishes in the case of a
closed cross-section.

Theorem 4.2. There exists Θ ∈ H1
dn(0, L) such that, up to a subsequence,

(25) Θε ⇀ Θ in H1(0, L)

and

(26)
ε

δε

1∫
−`

0
γ · ndx1

−
∫
ω

gε2 ·W εgε1 γ · nda→ Θ in L2(0, L).
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Proof. From (18), (24), and since uε ∈ H1
#dn(Ω;R3), we immediately deduce that

sup
ε

∥∥−∫
ω

gε1 · uε

δε
da
∥∥
H1(0,L)

< +∞

and hence supε ‖Θε‖H1(0,L) < +∞. Thus, statement (25) follows.
Since

−
∫
ω

gε1 · uε

δε
da =

1

δε
−
∫
ω

uε · ∂1(γ +
δε
ε
x2n) da = − 1

δε
−
∫
ω

∂1u
ε · (γ +

δε
ε
x2n) da,

by means of the identity, see (13),

1

ε
∂1u

ε = Hεuεgε1,

we find that

−
∫
ω

gε1 · uε

δε
da = − ε

δε
−
∫
ω

W εgε1 · (γ+
δε
ε
x2n) da− ε

δε
−
∫
ω

(Hεuε−W ε)gε1 · (γ+
δε
ε
x2n) da.

By using that γ + δε
ε x2n is orthogonal to e3 and that W εgε1 · gε1 = 0, since W ε is

skew symmetric, the above equation can be rewritten as

−
∫
ω

gε1 · uε

δε
da = − ε

δε
−
∫
ω

W εgε1 · gε2 (γ · n+
δε
ε
x2) da(27)

− ε

δε
−
∫
ω

(Hεuε −W ε)gε1 · (γ +
δε
ε
x2n) da.

Dividing (27) by −
∫
−`

0
γ · ndx1 and taking the limit, we get

Θε − ε

δε

1∫
−`

0
γ · ndx1

−
∫
ω

gε2 ·W εgε1γ · nda→ −
∫
ω

Wt · nx2 da L2(0, L)

where we have used i) of Theorem 4.1. Since Wt · n is independent of x2 it follows
that the limit above is equal to zero and hence (26) follows from (25). �

Remark 4.3. Theorem 4.2 illustrates the meaning of Θε. It follows from (26)
that the field Θ is the limit of a weighted average of the local infinitesimal rotations
around the axis x3, which is represented by W ε

21, scaled by ε/δε. In particular,
we notice that the definition of the sequence of rotations Θε does not involve the
displacement uε only, as in the case of open cross-sections, but also the shape of
the cross-section through the factor (γ + δε

ε x2n) which appears in the proof, see
(27). This is in accordance with the fact that the torsional rigidity of a closed
cross-section depends on its shape, a property which is well known to engineers.
For instance, a circular cross-section has a torsional rigidity much larger than an
ellipsoidal cross-section with the same length of γ but with a small ratio between
the lengths of the axes.

Theorem 4.4. Let ϑ be as in (22). Then, ϑ = 0 almost everywhere in (0, L).

Proof. By (22) we have that

−
∫
ω

W εgε1 · gε2 γ · nda ⇀ ϑ−
∫ `

0

γ · ndx1 in H1(0, L).
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But from (26) we also have that

−
∫
ω

W εgε1 · gε2 γ · nda→ 0 in L2(0, L)

and hence

ϑ−
∫ `

0

γ · ndx1 = 0.

Recalling that the quantity |
∫ `

0
γ ·ndx1| is equal to twice the area contained in the

simple closed curve γ, then we must have ϑ = 0. �

To characterize the limit of the sequence of rescaled displacements vε we need
to assume the slenderness parameter

s := lim
ε→0

ε2

δε

to be finite. More precisely, throughout the paper, we shall assume that

s ∈ {0, 1}.

Taking into account that ϑ = 0, we may rewrite Theorem 5.7 and Theorem 5.8
of [1] as follows.

Theorem 4.5. Let

γG := −
∫ `

0

γ(x1) dx1.

There exist

m̄ ∈ H2
dn(0, L;R3) := {z ∈ H2(0, L;R3) : z(0) = ∂3z(0) = 0}

and m3 ∈ H1
dn(0, L) such that, up to a subsequence, we have

i) v̄ε ⇀ m̄ in H1
dn(Ω;R3), with m̄3 = 0,

ii) vε3 ⇀ v3 := m3 − ∂3m̄ · (γ − γG) in H1
dn(Ω).

We conclude the section by studying the limit behaviour of the rescaled strains.
From (18) we deduce that there exists E ∈ L2(Ω;R3×3

sym) such that, up to a subse-
quence,

(28)
Eεuε

δε
⇀ E in L2(Ω;R3×3).

We recall from [1] that E13 := t · Ee3 satisfies

(29) ∂2E13 = 0

and

(30) E11 := t · Et = x2 η3 + η1,

where η1 ∈ L2(Ω), η3 = t ·Bn, and ∂2η1 = ∂2η3 = 0, with B defined in (20).
The next lemma integrates these results for closed cross-sections.

Lemma 4.6. The following representations hold:

i) E33 := e3 · Ee3 = ∂3v3,
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ii) there exists η2 ∈ L2(Ω) with

(31) ∂2η2 = 0 and

∫ `

0

η2 dx1 = 0 a.e. in (−h
2
,
h

2
)× (0, L)

such that

E13 = η2 −
1

2
∂3Θ γ · n,

iii) there exist η1 ∈ L2(Ω), η3 ∈ H1(Ω) with

(32)

∂2η1 = ∂2η3 = 0,∫ `

0

η3 dx1 = 0 a.e. in (−h
2
,
h

2
)× (0, L),∫ `

0

t

∫ s

0

η3 dx1 ds = 0 a.e. in (0, L),

such that

E11 = x2 η3 + η1.

Proof. i) follows by passing to the limit in

(Eεuε)33

δε
=
gε3 · ∂3u

ε

δε
= ∂3v

ε
3

and by applying ii) of Theorem 4.5.
As to point ii), from (23), (24), (28) and (25), we deduce that

(33) 2−
∫
ω

E13 dx1 = −∂3Θ−
∫ `

0

γ · ndx1.

Since, by (29), ∂2E13 = 0 we can write

(34) E13 = η2−
1

2
∂3Θ γ ·n, with η2 ∈ L2(Ω), ∂2η2 = 0 and

∫ `

0

η2 dx1 = 0,

which is ii).
We now prove iii). By (20) it follows that

(35) lim
ε→0

∫ L

0

∫ `

0

∂1W
ε

ε
· t⊗ nψ(x3) dx1 dx3 =

∫ L

0

∫ `

0

B · t⊗ nψ(x3) dx1 dx3

for all ψ ∈ L2(0, L). On the other hand, since W ε is skew symmetric, the following
identity holds

∂1W
ε · t⊗ n = ∂1(W ε · t⊗ n)

and hence

lim
ε→0

∫ L

0

∫ `

0

∂1W
ε

ε
· t⊗ nψ(x3) dx1 dx3

= lim
ε→0

∫ L

0

∫ `

0

∂1(W ε · t⊗ n)

ε
ψ(x3) dx1 dx3 = 0,

because W ε(0, ·) = W ε(`, ·). Thus, from (35) we have∫ L

0

ψ(x3)

∫ `

0

B · t⊗ n dx1 dx3 = 0,
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which implies ∫ `

0

B · t⊗ n dx1 = 0.

From this identity and (30) it follows that
∫ `

0
η3 dx1 = 0.

Finally, in order to prove that
∫ `

0
t
∫ s

0
η3 dx1 ds = 0, we set

W ε
tn := t ·W εn, (Hεuε)tn := t ·Hεuεn,

and remark that, as before, we have

∂1W
ε
tn = ∂1(t ·W εn) = t · (∂1W

ε)n

because W ε is skew-symmetric. Hence, by (20) and (30) we get

(36)
∂1W

ε
tn

ε
⇀ t ·Bn = η3

in L2(Ω). By a partial Poincaré inequality, see for instance [7] Theorem 4.1, there
exists a positive constant C such that∥∥W ε

tn

ε
−−
∫ `

0

W ε
tn

ε
dx1

∥∥
L2(Ω)

≤ C
∥∥∂1W

ε
tn

ε

∥∥
L2(Ω)

for any ε > 0. This, together with (36), implies

(37)
W ε
tn

ε
−−
∫ `

0

W ε
tn

ε
dx1 ⇀

∫ x1

0

η3 dx1 −−
∫ `

0

∫ s

0

η3 dx1 ds

in L2(Ω). By i) of Theorem 4.1 and using the fact that δε/ε → 0, we deduce that
(37) still holds true if W ε is replaced by Hεuε. Then, multiplying by gε2 = n on
both sides we have that

(Hεuε)tn
ε

gε2 −−
∫ `

0

(Hεuε)tn
ε

dx1 g
ε
2 ⇀ n

∫ x1

0

η3 dx1 − n−
∫ `

0

∫ s

0

η3 dx1 ds

in L2(Ω). By integrating with respect to x1 on the interval (0, `) and by taking into
account that ∫ `

0

gε2 dx1 =

∫ `

0

ndx1 = 0,

it follows that ∫ `

0

(Hεuε)tn
ε

gε2 dx1 ⇀

∫ `

0

n

∫ s

0

η3 dx1 ds

in L2((−h/2, h/2)× (0, L)). Therefore, from

(Hεuε)12 = gε1 ·Hεuεgε2 = (1− δε
ε
x2κ)t ·Hεuεn = (1− δε

ε
x2κ)(Hεuε)tn,

we get

(38)

∫ `

0

(Hεuε)12

ε
g2
ε dx1 ⇀

∫ `

0

n

∫ s

0

η3 dx1 ds

in L2((−h/2, h/2)× (0, L)).
Let us write uε in the following form

uε = εδεx2

∫ x1

0

η3 dx1 t+ εδεr
ε,

where the “remainder” rε is defined by the equality above and thus satisfies the
periodicity conditions: rε|x1=0 = rε|x1=` = 0.
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Since
(Eεuε)11

δε
=

1

δε
(gε1 ·

∂1u
ε

ε
) = x2η3(1− δε

ε
x2κ) + gε1 · ∂1r

ε,

by taking the limit as ε→ 0 and recalling that E11 = x2η3 + η1 we obtain

(39) gε1 · ∂1r
ε ⇀ η1

in L2(Ω). Furthermore, by observing that

δε
ε

2(Eεuε)12

δε
= (1− δε

ε
x2κ)

∫ x1

0

η3 dx1 + gε1 ·∂2r
ε+

δε
ε
κ x2

∫ x1

0

η3 dx1 +
δε
ε
gε2 ·∂1r

ε

and passing to the limit we get, thanks to (18), that

(40) gε1 · ∂2r
ε +

δε
ε
gε2 · ∂1r

ε → −
∫ x1

0

η3 dx1

in L2(Ω). Since

(Hεuε)12

ε
=

1

ε
gε1 ·

∂2u
ε

δε
= (1− δε

ε
x2κ)

∫ x1

0

η3 dx1 + ∂2r
ε · gε1,

if we multiply by g2
ε , integrate, pass to the limit, and recall (38), we obtain that

(41)

∫ `

0

gε1 · ∂2r
ε g2

ε dx1 ⇀ 0

in L2((−h/2, h/2)× (0, L)).
From the periodicity of rε the following identity holds

0 =
δε
ε

∫ `

0

∂1r
ε dx1.

By representing ∂1r
ε in components with respect to the basis (g1

ε , g
2
ε , e3) and adding

and subtracting the quantity (∂2r
ε · gε1) g2

ε , we get

(42)

0 =
δε
ε

∫ `

0

∂1r
ε · gε1 g1

ε dx1 +

∫ `

0

δε
ε
∂1r

ε · gε2 g2
ε + ∂2r

ε · gε1 g2
ε dx1

−
∫ `

0

∂2r
ε · gε1 g2

ε dx1 +
δε
ε

∫ `

0

∂1r
ε · e3 e3 dx1.

Only the second integral in the sum above has a non trivial limit. Indeed, the first
tends to zero because of (39) and the fact that δε/ε → 0, the third vanishes by
(41) and the last one is null by the periodicity conditions. Thus, taking the limit
as ε→ 0 and recalling (40), we obtain

0 =

∫ `

0

n

∫ s

0

η3 dx1 ds.

The claimed result follows by observing that n = e3 ∧ t. �

Remark 4.7. It is worth noticing that part ii) of Lemma 4.6 can be written in
an equivalent form. Let us set

ϕ := 2

∫ x1

0

η2 dx1 + c,

with c dependent on x3 only. Then, part ii) can be restated as
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ii) there exists ϕ ∈ H1((0, `);L2(0, L)), with ϕ(0, x3) = ϕ(`, x3), such that

(43) 2E13 = ∂1ϕ− ∂3Θ γ · n.
This equation evokes the classical formula for the warping function in Vlasov’s
theory, as better explained in Remark 8.1.

5. Reduced energy for closed cross-sections

Here we introduce two reduced energy densities that will be used to compute
the Γ-limit. The first of them is obtained by minimizing the energy with respect
to the strain components that have not been characterized by the analysis of Sec-
tion 4. The second, by a minimization with respect to the functions ηi introduced
in Lemma 4.6. While in the former case the analysis is algebraic and coincides with
that done in [1] for the open cross-sections, in the latter it is not simply algebraic
because of the integral constraints on ηi.

Let

f(x,M) :=
1

2
C(x)M ·M,

be the elastic energy density of the body, with M a symmetric 3× 3 matrix and C
the elasticity tensor introduced in Section 2. We define

f0(x,M11,M13,M33) := min
Dij

f
(
x ,M11t(x1)� t(x1) + 2D12t(x1)� n(x1)

+2M13t(x1)� e3 +D22n(x1)� n(x1)(44)

+2D23n(x1)� e3 +M33e3 � e3

)
,

the function obtained from f by keeping fixed the components that have been par-
tially characterized in Section 4 and by minimizing over the remaining components.

Let the space of symmetric tensors be decomposed in the direct sum of the
subspaces

S(x1) := span{t(x1)� n(x1), n(x1)� n(x1), n(x1)� e3}
and

S⊥(x1) := span{t(x1)� t(x1), t(x1)� e3, e3 � e3},
so that any tensor M ∈ R3×3

sym can be uniquely written as

M = MS +M⊥,

with

MS := 2(t ·Mn) t� n+ (n ·Mn)n� n+ 2(n ·Me3)n� e3 ∈ S
and

M⊥ := M11 t� t+ 2M13 t� e3 +M33 e3 � e3 ∈ S⊥,
where

M11 := t ·Mt, M13 := t ·Me3, M33 := e3 ·Me3.

The decomposition of E, as given by (28), is such that E⊥ contains the components
of E that have been partially characterized in Lemma 4.6, while ES contains the
remaining ones.

As shown in Section 6 of [1], the minimization problem (44) defines a map

E0 : S⊥ 7→ S ⊕ S⊥
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that sends every M⊥ ∈ S⊥ into the corresponding “full” strain (MS0 + M⊥) that
minimizes f :

(45) f0(x,M11,M13,M33) = f(x,E0M
⊥).

Hereafter, we find it convenient to use also the notation

f0(x,M⊥) := f0(x,M11,M13,M33),

so to have the more compact relation

f0(x,M⊥) = f(x,E0M
⊥).

Other properties of E0 are proved in Lemma 6.1 of [1]. In particular, it is shown
that M ∈ E0S⊥ if and only if

(46)
CM · t� n = 0,
CM · n� n = 0,
CM · n� e3 = 0.

It is easy to see that these conditions are equivalent to

(47) CM ·M⊥ = CM · E0M
⊥ ∀M⊥ ∈ S⊥.

It turns out that f0(x,M⊥) takes the form

f0(x,M11,M13,M33) =
1

2
ET0 CE0M

⊥ ·M⊥(48)

=
1

2

 c11(x) c12(x) c13(x)
c12(x) c22(x) c23(x)
c13(x) c23(x) c33(x)

 M11

M13

M33

 ·
 M11

M13

M33

 ,

where the reduced elasticity constants cij(x) can be computed in terms of the
original constants Cijhk(x), see equation (60) of [1].

Let us now consider the optimization with respect to the components of E⊥. For
any given pair of functions (∂3Θ, ∂3v3) with the features described by Theorems
4.2 and 4.5, let us consider the minimum problem

(49) min
η1,η2,η3

∫
Ω

f0(x, x2 η3 + η1, η2 −
1

2
∂3Θ γ · n, ∂3v3) dx,

where ηi are as in Lemma 4.6.
The minimization is no longer algebraic, as was the case for the open cross-

sections, but it turns out that a minimizing triad is uniquely determined and de-
pends linearly upon the pair (∂3Θ, ∂3v3). A constructive characterization of the
minimizing triad is provided in the next section.

Let E⊥ be the set of all tensor fields

(50) (x2 η3 + η1) t� t+ (2η2 − a γ · n) t� e3 + b e3 � e3,

with a ∈ L2(0, L); b and ηi ∈ L2((0, `) × (0, L)), i = 1, 2, 3; η2, η3 satisfying the
constraints

(51)

∫ `

0

η2 dx1 =

∫ `

0

η3 dx1 =

∫ `

0

t

∫ s

0

η3 dx1 ds = 0.

It can be checked that any tensor field in E⊥ admits a unique representation in
terms of a, b, η1, η2, η3.

Let also EK be the set of all tensor fields

(52) EK(a, b) := −γ · na t� e3 + b e3 � e3,
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with a ∈ L2(0, L) and b ∈ L2((0, `)× (0, L)).
Let E00 : EK → E⊥ be the map

(53) EK(a, b) 7→ (x2η
opt
3 + ηopt

1 ) t� t+ (2 ηopt
2 − γ · na) t� e3 + b e3 � e3

where (ηopt
1 , ηopt

2 , ηopt
3 ) denotes the triad that solves

(54) min
η1,η2,η3

∫
Ω

f0(x, x2 η3 + η1, η2 −
1

2
a γ · n, b) dx,

where ηi are as in Lemma 4.6. It is worth to notice that this minimization problem is
well posed since the integral functional is strictly convex, weakly coercive in L2, and
the constraints are linear. Furthermore, it follows from the analysis in Section 7 that
the ηopt

i are measurable, so that the function f0(x, x2 η
opt
3 + ηopt

1 , ηopt
2 − 1

2 a γ · n, b)
is also measurable, see also Remark 6.4 of [1].

The next lemma gives a characterization of the image of E00.

Lemma 5.1. M ∈ E⊥ is a solution of∫
Ω

CE0M · ((x2ϕ3 + ϕ1)t� t+ ϕ2t� e3) dx = 0

for all ϕi ∈ L2((0, `)× (0, L)), i = 1, 2, 3, with ϕ2, ϕ3 satisfying the constraints

(55)

∫ `

0

ϕ2 dx1 =

∫ `

0

ϕ3 dx1 =

∫ `

0

t

∫ s

0

ϕ3 dx1 ds = 0 a.e. in (0, L),

if and only if
M = E00E

K(a, b)

for some a ∈ L2(0, L) and b ∈ L2((0, `)× (0, L)).

Proof. Let M ∈ E⊥. Then, it admits the representation (50) for some appropriate

ηi, a, and b. It follows that ηi = ηopt
i , i.e., M = E00E

K(a, b), if and only if M is a
solution of the Euler-Lagrange equation for the minimization problem (54) which,
using (48), may be written as∫

Ω

ET0 CE0M · ((x2ϕ3 + ϕ1)t� t+ ϕ2t� e3) dx = 0

for all ϕi ∈ L2((0, `)×(0, L)), i = 1, 2, 3, with ϕ2, ϕ3 satisfying the constraints (55).
The ET0 appearing in the equation above can be neglected thanks to (47). �

By applying the lemma we deduce that

(56)

∫
Ω

CE0E00E
K(a, b) · EK(c, d) dx =

∫
Ω

CE0E00E
K(a, b) · E0E00E

K(c, d) dx

for every a, c ∈ L2(0, L) and b, d ∈ L2((0, `) × (0, L)). Indeed it suffices to notice
that ∫

Ω

CE0E00E
K(a, b) ·

(
EK(c, d)− E00E

K(c, d)
)
dx = 0

and use (47).
We set f00 : Ω× L2(0, L)× L2((0, `)× (0, L))→ L1(Ω) defined by

(57) f00(x, a, b) := f0(x,E00E
K(a, b)) = f(x,E0E00E

K(a, b)),

or, equivalently,

(58) f00(x, a, b) := f0(x, x2 η
opt
3 + ηopt

1 , ηopt
2 − 1

2
a γ · n, b).
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We close the section by noticing that by the definitions of f0 and f00 we have that

(59) f(x,M) ≥ f0(x,M⊥)

holds for every symmetric matrix M , while

(60)

∫
Ω

f0(x,M) dx ≥
∫

Ω

f00(x, a, b) dx

holds for every M ∈ E⊥ with the representation given in (50).

6. Γ-limit for closed cross-sections

Let Jε : H1(Ω;R3)→ R ∪ {+∞} be defined by

(61) Jε(u) =


1

2

∫
Ω

CEεu · Eεu
√
gε dx if u ∈ H1

#dn(Ω;R3),

+∞ if u ∈ H1(Ω;R3) \H1
#dn(Ω;R3).

In this section we characterize the Γ-limit of the sequence of functionals Jε/δ
2
ε

in an appropriate topology. In order to define the limit functional we set
(62)
A# := {(Θ, v) ∈ H1

dn(0, L)×H1(Ω;R3) : ∃ m̄ ∈ H2
dn(0, L;R3), ∃m3 ∈ H1

dn(0, L)
such that v = m̄+ v3e3 and v3 = m3 − ∂3m̄ · (γ − γG)}.

The Γ-limit will be the functional J#0 : H1(0, L)×H1(Ω;R3)→ R∪{+∞} defined
by

(63) J#0(Θ, v) =


∫

Ω

f00(x, ∂3Θ, ∂3v3) dx if (Θ, v) ∈ A#,

+∞ otherwise,

with f00 as in (57).
We start by proving the liminf inequality.

Theorem 6.1 (Liminf inequality). For every sequence {uε} ⊂ H1(Ω;R3) and every
(Θ, v) ∈ H1(0, L)×H1(Ω;R3) such that

v̄ε + vε3e3 ⇀ v in H1(Ω;R3)

and
−1∫

−`
0
γ · ndx1

−
∫
ω

gε1 · uε

δε
da ⇀ Θ in H1(0, L),

with v̄ε :=
uε−uε

3e3
δε/ε

and vε3 :=
uε
3

δε
, we have

lim inf
ε→0

Jε(u
ε)

δ2
ε

≥ J#0(Θ, v).

Proof. Without loss of generality we may assume that

lim inf
ε→0

Jε(u
ε)

δ2
ε

= lim
ε

Jε(u
ε)

δ2
ε

< +∞,

since otherwise the claim is trivially satisfied. By the coercivity assumption (17)
it follows that the sequence {uε} satisfies (18) and hence all theorems contained
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in Sections 4 hold true. In particular, by Theorems 4.2 and 4.5 we have that
(Θ, v) ∈ A#. From the fact that Eεuε

δε
⇀ E in L2 and the convexity of f we find

lim inf
ε→0

Jε(u
ε)

δ2
ε

= lim inf
ε→0

∫
Ω

f(x,
Eεuε

δε
)
√
gε dx ≥

∫
Ω

f(x,E) dx

≥
∫

Ω

f0(x,E11, E13, E33) dx

≥
∫

Ω

f00(x, ∂3Θ, ∂3v3) dx = J#0(Θ, v),

where the last two inequalities follow from (59), (60) and Lemma 4.6. �

We now prove the existence of a recovery sequence.

Theorem 6.2 (Recovery sequence). For every (Θ, v) ∈ H1(0, L)×H1(Ω;R3) there
exists a sequence {uε} ⊂ H1(Ω;R3) such that

v̄ε + vε3e3 ⇀ v in H1(Ω;R3),

−1∫
−`

0
γ · ndx1

−
∫
ω

gε1 · uε

δε
da ⇀ Θ in H1(0, L),

with v̄ε :=
uε−uε

3e3
δε/ε

and vε3 :=
uε
3

δε
, and

lim sup
ε→0

Jε(u
ε)

δ2
ε

≤ J#0(Θ, v).

Proof. If (Θ, v) /∈ A# there is nothing to prove. Let (Θ, v) ∈ A# and set

(64) Eopt := E0E00E
K(∂3Θ, ∂3v3)

be the optimal strain associated to the pair (Θ, v). Consider the functional

(65) Rε(u) :=

∫
Ω

C(x)

(
Eεu

δε
− Eopt

)
·
(
Eεu

δε
− Eopt

)√
gε dx,

and let uε be the minimizer, i.e.,

Rε(uε) = min
u∈H1

#dn(Ω;R3)
Rε(u)

Then, uε satisfies the following problem

(66)

∫
Ω

C(x)(
Eεuε

δε
− Eopt) · E

εψε

δε

√
gε dx = 0 ∀ψε ∈ H1

#dn(Ω;R3).

By taking ψε = uε into (66) and substituting the resulting equation into the
expression of Rε(uε) we find

Rε(uε) =

∫
Ω

C(x)Eopt · Eopt√gε dx−
∫

Ω

C(x)
Eεuε

δε
· E

εuε

δε

√
gε dx,

from which we deduce that

(67)

∫
Ω

C(x)Eopt · Eopt√gε dx ≥
∫

Ω

C(x)
Eεuε

δε
· E

εuε

δε

√
gε dx = 2

Jε(u
ε)

δ2
ε

.
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Since the term on the left hand side is bounded, then the sequence on the right
is also bounded. Therefore, by Theorems 4.2 and 4.5, we conclude that there is a
subsequence (not relabelled) of uε such that

v̄ε + vε3e3 ⇀ ṽ in H1(Ω;R3),(68)

−1∫
−`

0
γ · ndx1

−
∫
ω

gε1 · uε

δε
da ⇀ Θ̃ in H1(0, L),(69)

where the rescaled displacements vε are defined by means of (21) and (Θ̃, ṽ) ∈ A#.

Also, there exists Ẽ ∈ L2(Ω;R3×3
sym) such that, up to a subsequence,

Eεuε

δε
⇀ Ẽ in L2(Ω;R3×3),

with Ẽ related to (Θ̃, ṽ) as stated in Lemma 4.6.

We first prove that Ẽ ∈ E0S⊥.
Let us choose

ψε := δ2
ε

(∫ x2

−h/2
ϕ1(x1, ζ, x3) dζ t+

∫ x2

−h/2
ϕ2(x1, ζ, x3) dζ n+

∫ x2

−h/2
ϕ3(x1, ζ, x3) dζ e3

)
with ϕi ∈ C∞0 (Ω), for i = 1, 2, 3. Then, ψε ∈ H1

#dn(Ω;R3) and

Eεψε

δε
→ ϕ1t� n+ ϕ2n� n+ ϕ3e3 � n

uniformly. Thus, passing to the limit in (66), we get∫
Ω

C(x)(Ẽ − Eopt) · (ϕ1t� n+ ϕ2n� n+ ϕ3e3 � n) dx = 0 ∀ϕ ∈ C∞0 (Ω;R3).

It follows that

(70)

C(x)(Ẽ − Eopt) · t� n = 0,

C(x)(Ẽ − Eopt) · n� n = 0,

C(x)(Ẽ − Eopt) · n� e3 = 0.

Recalling (64) and using (46) twice we deduce that

(71) Ẽ ∈ E0S⊥, i.e., Ẽ = E0Ẽ
⊥

with Ẽ⊥ ∈ E⊥.
We now show that Ẽ = E0E00E

K(∂3Θ̃, ∂3ṽ3). For any ϕ1, ϕ2 ∈ C∞0 ((0, `)×(0, L))
such that

(72)

∫ `

0

ϕ2 dx1 = 0,

let

ψε(x1, x3) = δεε
[
(

∫ x1

0

ϕ1(s, x3) ds− x1−
∫ `

0

ϕ1(s, x3) ds)t(x1)

+−
∫ `

0

ϕ1(s, x3) ds γ(x1) +

∫ x1

0

ϕ2(s, x3) ds e3

]
,

Then, ψε ∈ H1
#dn(Ω;R3) and

Eεψε

δε
→
(∫ x1

0

ϕ1(s, x3) ds− x1−
∫ `

0

ϕ1(s, x3) ds
)
κ t� n+ ϕ1t� t+ ϕ2t� e3
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uniformly. Thence, if we take account of (70)1 and pass to the limit in (66), we
deduce that ∫

Ω

C(x)(Ẽ − Eopt) · (ϕ1t� t+ ϕ2t� e3) dx = 0

for all ϕ1, ϕ2 ∈ C∞0 ((0, `) × (0, L)) with ϕ2 satisfying the integral constraint (72).
Recalling (64) and using Lemma 5.1 we find that

(73)

∫
Ω

C(x)Ẽ · (ϕ1t� t+ ϕ2t� e3) dx = 0

holds, by density, for every ϕ1, ϕ2 ∈ L2((0, `)×(0, L)) with ϕ2 satisfying the integral
constraint (72).

Let us now take ϕ3 ∈ C∞0 ((0, `)× (0, L)) such that

(74)

∫ `

0

ϕ3 dx1 = 0 and

∫ `

0

n(x1)

∫ x1

0

ϕ3(s, ·) dsdx1 = 0

and set

φ(x1, x3) :=

∫ x1

0

ϕ3(s, x3) ds,

and

ψε := δεεx2φ t− ε2

∫ x1

0

φndx1.

Then ψε ∈ H1
#dn(Ω;R3) and we have

Eεψε

δε
→ x2 ∂1φ t� t− sn ·

∫ x1

0

∂3φndx1 n� e3

uniformly. By passing to the limit in (66) and using (70)3 we deduce that∫
Ω

x2C(x)(Ẽ − Eopt) · ϕ3 t� t dx = 0.

Again, recalling (64) and using Lemma 5.1 we find that

(75)

∫
Ω

x2C(x)Ẽ · ϕ3 t� t dx = 0

holds, by density, for every ϕ3 ∈ L2((0, `)× (0, L)) satisfying the constraints (74).
From (71), (73), (75), and Lemma 5.1 we deduce that

(76) Ẽ = E0E00E
K(∂3Θ̃, ∂3ṽ3).

From (64), (76) and the linearity of EK(·, ·) and of the operators E0 and E00 it
follows that

(77) Ẽ − Eopt = E0E00E
K(∂3(Θ̃−Θ), ∂3(ṽ3 − v3)).

Finally, we show that (Θ, v) = (Θ̃, ṽ).
Let ζ̄ ∈ H2

dn(0, L;R2 × {0}), ζ3 ∈ H1
dn(0, L) and φ ∈ H2

dn(0, L). Set

ψ̄ε :=
δε
ε
ζ̄ + δεφ e3 ∧ γ −

δ2
ε

ε
x2φ t

and

ψε3 := δεζ3 − δε ∂3ζ̄ · (γ +
δε
ε
x2n)− δ2

ε ∂3φx2 t · γ.
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Setting ψε := ψ̄ε + ψε3e3 ∈ H1
#dn(Ω;R3) we find that

Eεψε

δε
→ −n · γ ∂3φ t� e3 + ∂3(ζ3 − ∂3ζ̄ · γ) e3 � e3

uniformly. Therefore, by passing to the limit in (66) and taking (77) into account
we deduce that

(78)

∫
Ω

CE0E00E
K(∂3(Θ̃−Θ), ∂3(ṽ3−v3))·(−n·γ ∂3φ t�e3+∂3w3 e3�e3) dx = 0,

where
w3 := ζ3 − ∂3ζ̄ · γ and w := ζ̄ + w3e3.

Equation (78) holds true for every w as above and, by density, for every φ ∈
H1
dn(0, L), that is: it holds for every (φ,w) ∈ A#. Recalling the definition (52) of

EK , and using (56), we may rewrite (78) as∫
Ω

CE0E00E
K(∂3(Θ̃−Θ), ∂3(ṽ3 − v3)) · E0E00E

K(∂3φ, ∂3w3) dx = 0.

Taking φ = Θ̃−Θ and w3 = ṽ3 − v3 we find∫
Ω

CE0E00E
K(∂3(Θ̃−Θ), ∂3(ṽ3 − v3)) · E0E00E

K(∂3(Θ̃−Θ), ∂3(ṽ3 − v3)) dx = 0,

from which we deduce that

(79) E0E00E
K(∂3(Θ̃−Θ), ∂3(ṽ3 − v3)) = 0

since C is positive definite. Observing that

E0E00E
K(∂3(Θ̃−Θ), ∂3(ṽ3 − v3)) · e3 ⊗ e3 = ∂3(ṽ3 − v3),

from (79) it follows that ∂3(ṽ3 − v3) = 0. This, and the boundary condition ṽ3 =
v3 = 0 at x3 = 0, imply that ṽ3 = v3. By the definition (62) of A# we have also

(80) ṽ = v.

Indeed, by (62) the following relations hold true
v = m̄+ v3e3,
ṽ = ˜̄m+ ṽ3e3,
v3 = m3 − ∂3m̄ · (γ − γG),
ṽ3 = m̃3 − ∂3 ˜̄m · (γ − γG).

By integrating the last two in x1 ∈ [0, `] and using the fact that ṽ3 = v3 we obtain
m3 = m̃3, and hence

∂3m̄ · (γ − γG) = ∂3 ˜̄m · (γ − γG).

Since γ is not a segment, and using the boundary conditions, it follows that m̄ = ˜̄m,
and hence (80).

From (53) and (79) we find

0 = E0E00E
K(∂3(Θ̃−Θ), ∂3(ṽ3 − v3)) · t� e3 = ξ − 1

2
γ · n∂3(Θ̃−Θ),

where ξ ∈ L2((0, `)× (0, L)) is such that
∫ `

0
ξ dx1 = 0. Thus, integrating the above

equation over (0, `) we deduce that ∂3(Θ̃ − Θ) = 0 and, because of the boundary
condition, that

(81) Θ̃ = Θ.
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Since (Θ̃, ṽ) = (Θ, v) we have that the sequence of minimizers uε generates two
sequences, see (68) and (69), as in the statement of the theorem. Moreover from
(67) we find

lim sup
ε→0

Jε(u
ε)

δ2
ε

≤ lim sup
ε→0

1

2

∫
Ω

C(x)Eopt · Eopt√gε dx =

∫
Ω

f00(x, ∂3Θ, ∂3v3) dx,

where we used (64) and (57). �

7. The reduced energy density associated to f00

The aim of this section is to show that the Γ-limit functional admits a local
representation, that is, we shall give a pointwise characterization of the map f00

introduced in (57). This will be achieved by localizing the stationarity conditions
associated with the minimization problem (54).

Let a ∈ L2(0, L) and b ∈ L2((0, `)× (0, L)). From Lemma 5.1 with ϕ2 = ϕ3 = 0
we find

(82) 〈CE0E00E
K(a, b)〉 · t⊗ t = 0,

where, as in [1], we have denoted by

〈·〉 := −
∫ h/2

−h/2
· dx2

the integral average over the x2 variable. By means of (47), (48), and (53) we may
rewrite (82) as

(83) 〈c11〉ηopt
1 + 〈c12〉ηopt

2 + 〈x2c11〉ηopt
3 =

1

2
〈c12〉γ · na− 〈c13〉b.

Still from Lemma 5.1, by taking ϕ1 = ϕ3 = 0 we deduce that there exists a scalar
function q ∈ L2(0, L) such that

〈CE0E00E
K(a, b)〉 · t⊗ e3 = q,

or, in expanded form,

(84) 〈c12〉ηopt
1 + 〈c22〉ηopt

2 + 〈x2c12〉ηopt
3 =

1

2
〈c22〉 γ · na− 〈c23〉b+ q.

This equation is the consequence of a standard result recalled in the next lemma.

Lemma 7.1. Let F ∈ L2((0, `)× (0, L)) be such that∫
(0,`)×(0,L)

Fψ dx = 0

for every ψ ∈ L2((0, `) × (0, L)) with

∫ `

0

ψ(x1, x3) dx1 = 0 for a.e. x3 ∈ (0, L).

Then, ∂1F = 0 in the sense of distributions.

Proof. Let ϕ ∈ C∞0 ((0, `)×(0, L)) and ψ := ∂1ϕ. Then, ψ satisfies the constraint
stated in the lemma and, in the sense of distributions,

∂1F (ϕ) = −
∫

(0,`)×(0,L)

Fψ dx = 0.

The claim follows by the arbitrariness of ϕ. �
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To characterize the stationarity condition with respect to η3, we use a Lagrange
multipliers argument in order to handle the double constraint, see for instance [14],
Section 4.14.

Let F : L2((0, L);H1
0 (0, `)) → R and G : L2((0, L);H1

0 (0, `)) → L2((0, L);R2 ×
{0}) be defined by

F(Φ) :=

∫
Ω

f0(x, x2∂1Φ + ηopt
1 , ηopt

2 − 1

2
γ · na, b) dx,

and

G(Φ) :=

∫ `

0

Φt dx1.

We note that with η3 = ∂1Φ the constraints (51)2,3 hold if and only if G(Φ) = 0.
Let

Φopt(x1, x3) :=

∫ x1

0

ηopt
3 dx1.

Since G is continuous, differentiable and its Frechét derivative G′ = G is a surjective
map from L2((0, L);H1

0 (0, `)) onto L2((0, L);R2×{0}), as is shown in the Appendix,
it follows that there is a Lagrange multiplier y∗ in the dual of L2((0, L);R2 × {0})
such that at the stationarity point we have

F ′(Φopt)[δΦ] + y∗G′[δΦ] = 0 ∀ δΦ ∈ L2((0, L);H1
0 (0, `)).

By identifying the space L2((0, L);R2 × {0}) with its dual, this equation can be
written as∫ L

0

∫ `

0

〈 ∂f0

∂E11
x2〉 ∂1δΦ + y∗ · t δΦ dx1dx3 = 0 ∀ δΦ ∈ L2((0, L);H1

0 (0, `)),

where ∂f0
∂E11

is evaluated in (x, x2∂1Φopt + ηopt
1 , ηopt

2 − 1
2γ ·na, b). It follows that the

stationarity condition is

∂1〈
∂f0

∂E11
x2〉 − y∗ · t = 0.

Recalling that t = ∂1γ and y∗ does not depend upon x1, by integrating we arrive
at

(85) 〈 ∂f0

∂E11
x2〉 = y∗ · (γ − γG) + c

with y∗ ∈ L2((0, L);R2 × {0}) and c ∈ L2(0, L).
We may rewrite (83), (84), and (85) in expanded form as

(86) 〈c11〉 〈c12〉 〈x2c11〉
〈c12〉 〈c22〉 〈x2c12〉
〈x2c11〉 〈x2c12〉 〈x2

2c11〉




ηopt
1

ηopt
2

ηopt
3

 =


1
2 〈c12〉 γ · na−〈c13〉b
1
2 〈c22〉 γ · na−〈c23〉b+ q

1
2 〈x2c12〉 γ · na−〈x2c13〉b+ k

 ,

with

(87) k := y∗ · (γ − γG) + c.

The matrix of coefficients in (86) is invertible, in fact uniformly positive defi-
nite, by the argument following equation (61) in [1]. Thus, system (86) provides

(ηopt
1 , ηopt

2 , ηopt
3 ) in terms of (a, b, q, k). By imposing the constraints (51) we then

find q and k in terms of the pair (a, b). To see this, let

r0 := (〈c13〉, 〈c23〉, 〈x2c13〉)T , s0 := (〈c12〉, 〈c22〉, 〈x2c12〉)T
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and

A :=

 〈c11〉 〈c12〉 〈x2c11〉
〈c12〉 〈c22〉 〈x2c12〉
〈x2c11〉 〈x2c12〉 〈x2

2c11〉

−1

.

Then, (51)1 and (51)2 respectively require that∫ `

0

A22q +A23(c+ (γ − γG) · y∗) dx1 =

∫ `

0

(Ar0)2b−
1

2
(As0)2 γ · na dx1,

(88) ∫ `

0

A32q +A33(c+ (γ − γG) · y∗) dx1 =

∫ `

0

(Ar0)3b−
1

2
(As0)3 γ · na dx1.

As a matter of fact, (As0)2 = 1 and (As0)3 = 0, because s0 is the second column
of the matrix A−1. Thus, equations (88) take the form∫ `

0

A22q +A23(c+ (γ − γG) · y∗) dx1 =

∫ `

0

(Ar0)2b−
1

2
γ · na dx1,

(89) ∫ `

0

A32q +A33(c+ (γ − γG) · y∗) dx1 =

∫ `

0

(Ar0)3b dx1.

Moreover, from (86) we find

(90) ηopt
3 = −(Ar0)3 b+A32q +A33(c+ (γ − γG) · y∗).

Observing that t = ∂1(γ − γG), the constraint (51)3 can be written as∫ `

0

∂1(γ − γG)

∫ x1

0

ηopt
3 ds dx1 = 0.

Thus, after an integration by parts and taking account of (51)2 we get∫ `

0

ηopt
3 (γ − γG) dx1 = 0.

Thence, by implementing (90) we obtain

(91)

∫ `

0

A32(γ−γG)q+A33(γ−γG)(c+(γ−γG)·y∗) dx1 =

∫ `

0

(Ar0)3(γ−γG) b dx1.

Equations (89) and (91) can be rewritten as

(92) A(q, c, y∗1 , y
∗
2)T = F (a, b),

where
(93)
A :=

∫ `
0
A22 dx1

∫ `
0
A23 dx1

∫ `
0
A23(γ − γG)1 dx1

∫ `
0
A23(γ − γG)2 dx1∫ `

0
A33 dx1

∫ `
0
A33(γ − γG)1 dx1

∫ `
0
A33(γ − γG)2 dx1∫ `

0
A33(γ − γG)2

1 dx1

∫ `
0
A33(γ − γG)1(γ − γG)2 dx1

sym
∫ `

0
A33(γ − γG)2

2 dx1


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and

F (a, b) :=
( ∫ `

0

(Ar0)2b−
1

2
γ · na dx1,

∫ `

0

(Ar0)3b dx1,∫ `

0

(Ar0)3(γ − γG)1b dx1,

∫ `

0

(Ar0)3(γ − γG)2b dx1

)T
.

The matrix A is positive definite. Indeed, for z ∈ R4 we have

Az · z =

∫ `

0

(
A22 A23

A32 A33

)(
z1

z2 + (γ − γG) · z∗
)
·
(

z1

z2 + (γ − γG) · z∗
)
dx1,

where z∗ = (z3, z4). Since A is uniformly positive definite, there is a constant σ > 0
such that

Az · z ≥ σ

∫ `

0

∣∣∣∣( z1

z2 + (γ − γG) · z∗
)∣∣∣∣2 dx1

= σ

∫ `

0

z2
1 + z2

2 + |(γ − γG) · z∗|2 dx1

since
∫ `

0
(γ − γG) · z∗ dx1 = 0. Thus,

Az · z ≥ σ
(
`(z2

1 + z2
2) +

∫ `

0

(γ − γG)⊗ (γ − γG) dx1 z
∗ · z∗

)
≥ σ

(
`(z2

1 + z2
2) + Imin|z∗|2

)
,

where Imin denotes the minimum eigenvalue of the tensor of inertia of the midline
curve γ that appears in the first line.

From system (92) we deduce

(94) (q, c, y∗1 , y
∗
2)T = A−1F (a, b),

and hence, from system (86) we find

(95)

ηopt
1 = −(Ar0)1 b+A12

(
A−1F (a, b)

)
1

+A13k,

ηopt
2 = 1

2γ · na− (Ar0)2 b+A22

(
A−1F (a, b)

)
1

+A23k,

ηopt
3 = −(Ar0)3 b+A32

(
A−1F (a, b)

)
1

+A33k,

where

k =
(
A−1F (a, b)

)
2

+ (γ − γG) ·
((
A−1F (a, b)

)
3
, (A−1F (a, b)

)
4
, 0
)
.

These equations deliver the optimal η’s in terms of a ∈ L2(0, L) and b ∈ L2((0, `)×
(0, L)). It is possible to make these relations pointwise (local) by restricting b to
the subclass of functions of L2((0, `) × (0, L)) having the same structure of ∂3v3,
that is those of the form

(96) b = b0 − (γ − γG) · b∗, b∗ := (b1, b2, 0)

with b0, b1, b2 ∈ L2(0, L). Indeed, we can define a function

g : Ω× R4 → R3

such that, for b as in (96), we can write (95) as

(97) ηopt
i = gi(x, a, b0, b1, b2).
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By means of this function g we define the energy density f̄00 : Ω× R4 → R as

f̄00(x, z) := f0

(
x, x2 g3(x, z) + g1(x, z), g2(x, z)− 1

2
γ · n z1, z2 − (γ − γG) · z∗

)
,

with z∗ := (z3, z4, 0). Taking into account (58), we may rewrite the energy appear-
ing in the Γ-limit as

(98) f00(x, ∂3Θ, ∂3v3) = f̄00(x, ∂3Θ, ∂3m3, ∂
2
3m̄1, ∂

2
3m̄2),

with
v3 = m3 − (γ − γG) · ∂3m̄,

see (62).

8. The case of homogeneous isotropic material

We conclude with the computation of the strain energy functional of the asymp-
totic model for a thin-walled beam made of an isotropic and homogeneous elastic
material, that is

CẼ := 2µẼ + λ(Ẽ · I)I,

for every symmetric matrix Ẽ, where λ and µ are the Lamé constants. In this case,
from (44), the reduced elastic constants introduced in (48) can be computed as

(99) c11 = c33 = 4µ
λ+ µ

λ+ 2µ
, c22 = 4µ, c13 = c31 = 2

λµ

λ+ 2µ
,

all others being equal to zero. It follows that the matrix of coefficients in system
(86) is diagonal, its inverse A being given by

A =

 1/c11 0 0
0 1/c22 0
0 0 1/〈x2

2c11〉

 .
By choosing principal axes of inertia, also the matrix A defined in (93) is diagonal
and

A−1F (a, b) =
(
− 1

2
c22−
∫ `

0

γ · ndx1 a, 0, 0, 0
)T
.

From (95), by using this expression we may compute the optimal η’s, and then,
from (97), find

(100)

ηopt
1 = g1 = −ν

(
b0 − (γ − γG)1b1 − (γ − γG)2b2

)
,

ηopt
2 = g2 =

1

2
(γ · n−−

∫ `

0

γ · ndx1) a,

ηopt
3 = g3 = 0,

where

ν :=
λ

2(λ+ µ)

is the Poisson ratio. The reduced energy density turns out to be

f̄00(·, z) =
1

2
µ
(
−
∫ `

0

γ · ndx1

)2
z2

1 +
1

2
EY
(
z2 − (γ − γG) · (z3, z4, 0)

)2
where

EY :=
µ(2µ+ 3λ)

µ+ λ
is the Young modulus.
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Let (Θ, v) ∈ A#. Then ∂3v3 has the representation

∂3v3 = ∂3m3 − (γ − γG) · ∂2
3m̄,

and from (98) and (63) we deduce that

J#0(Θ, v) =
1

2
µ(−
∫ `

0

γ · ndx1)2

∫
Ω

(∂3Θ)2 dx+
1

2
EY

∫
Ω

(∂3v3)2 dx

=
1

2
µh`(−

∫ `

0

γ · ndx1)2

∫ L

0

(∂3Θ)2 dx3 +
1

2
EY h`

∫ L

0

(∂3m3)2 dx3

+
1

2
EY hJ2

∫ L

0

(∂2
3m̄1)2 dx3 +

1

2
EY hJ1

∫ L

0

(∂2
3m̄2)2 dx3,

where we set

J1 :=

∫ `

0

(γ − γG)2
2 dx1, J2 :=

∫ `

0

(γ − γG)2
1 dx1.

Remark 8.1. For the field (Θ, v) ∈ A# as above, let the optimal strain be
denoted by Eopt := E0E00E

K(∂3Θ, ∂3v3), see the proof of Theorem 6.2. Then,

ηopt
i = gi(x, ∂3Θ, ∂3m3, ∂

2
3m̄1, ∂

2
3m̄2), from (100) and (53),

(101)

Eopt
11 = −ν ∂3v3,

Eopt
13 = −1

2
−
∫ `

0

γ · ndx1 ∂3Θ,

Eopt
33 = ∂3v3.

We observe that component Eopt
11 of the strain is proportional to Eopt

33 (Poisson
effect). From (43) and (101)2 we find

∂1ϕ− γ · n∂3Θ = 2Eopt
13 = −−

∫ `

0

γ · ndx1 ∂3Θ

and, by integration, one obtains

ϕ = (

∫ x1

0

γ · ndx1 −
x1

`

∫ `

0

γ · ndx1) ∂3Θ.

The expression within the square brackets is the sectorial area formula for the
warping function in Vlasov’s theory, see [8].

In Section 7 we used the theory of Lagrange multipliers with the proviso that
the map G′ : L2((0, L);H1

0 (0, `))→ L2((0, L);R2 × {0}) defined by

G′(Φ) :=

∫ `

0

Φ t dx1

was surjective. Here we prove this statement.
It is possible to choose ϕ(1), ϕ(2) ∈ H1

0 (0, `) such that the vectors

v(1) =

∫ `

0

ϕ(1) t dx1 and v(2) =

∫ `

0

ϕ(2) t dx1

are linearly independent in R2 × {0}.
Let y ∈ L2((0, L);R2 × {0}). We look for a pair of functions aα = aα(x3), α =

1, 2, such that for
Φ = a1ϕ

(1) + a2ϕ
(2)
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we have that ∫ `

0

Φ t dx1 = y.

This is equivalent to require that a1 and a2 satisfy

a1 v
(1) + a2 v

(2) = y.

More explicitly, the above equation takes the form(
v

(1)
1 v

(2)
1

v
(1)
2 v

(2)
2

)(
a1

a2

)
=

(
y1

y2

)
.

Since the matrix of coefficients is invertible, we may write a1 and a2 as a linear
combination of y1 and y2. Thus aα ∈ L2(0, L) and hence Φ ∈ L2((0, L);H1

0 (0, `)).
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