Global Properties of Invariant Measures*

G. Metafune! D. Pallaraf A. Rhandif

Abstract

We study global regularity properties of invariant measures associated with second order
differential operators in RY. Under suitable conditions, we prove global boundedness of the
density, Sobolev regularity, a Harnack inequality and pointwise upper and lower bounds.
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1 Introduction.
In this paper we study global regularity properties of invariant measures associated with second-

order elliptic partial differential operators in R

N N
A= Z Dl(al]Dj)+ZFlDl :A0+F'D. (11)
i,7=1 i=1

We assume that there exists a Borel probability measure p on RY such that

/ Apdp =0 (1.2)
RN

for every ¢ € C°(RY). If the operator A, endowed with a certain domain D(A), generates a
semigroup (T'(t));>0 in a suitable function space X, then (1.2) holds for every ¢ € D(A) if and

only if
/ T()f dyu = / fdy (1.3)
RN RN

for every f € X and ¢t > 0 and this means that the measure y is an invariant distribution for the
Markov process described by (A, D(A)). For this reason a probability measure u satisfying (1.2) is
called invariant, even though no semigroup explicitly appears. We refer the reader to [9, Chapter
4] for a general background on invariant measures of Markov processes and to [15], see also [8], for
the investigation of the problem of existence of a semigroup satisfying (1.3).
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Many local regularity properties are known for invariant measures, even under very weak con-
ditions on the coefficients, see e.g. [5]. On the other hand, to our knowledge the only available
results dealing with global regularity are [6], [3], which have been the starting point of our investi-
gation, and the very recent [13] where W2P?(R") regularity of the invariant measure is established
assuming that the diffusion coefficients a;; belong to C} (RY) and that the drift F is slightly less
than globally Lipschitz continuous.

In order to describe the main results of this paper, let us state precisely our assumptions on
the coefficients of A which will be kept in the whole paper without further mentioning.

loc loc

(HO) aij = aji, F; : RN — R, with a;; € WLP(RN), F; € L (1) for some p > N and
N
D aij(@)6& > M
ij=1

for every x, & € RN and a suitable A > 0.
(H1) For every i,j =1,...,N, (1 + |z|*)"ta;; € L' (p) and (1 + |z|) "' D;a;; € L' (p).
(H2) F e L (u).

Notice that neither the matrix (a;;) nor the drift F' = (F},..., Fy) are assumed to be bounded in
RY. Note also that (H1) is always satisfied if the a;; grow at most quadratically and their gradients
at most linearly at infinity. As regards the local regularity of the coefficients, we recall that (HO)
guarantees that p is given by a density p € Wli’f (RY), see [5, Corollary 2.10]; in particular, p is
a continuous function. If F' € Lfoc(RN ), i.e. it is locally integrable with respect to the Lebesgue
measure and not with respect to p (which implies F' € L7 (()), then p is positive, see [5, Corollary
2.11]. The comments following [5, Corollary 2.10] motivate why, in some situations, is also more
natural to require the integrability of F' with respect to g and not to the Lebesgue measure.

The plan of the paper is the following.

In Section 2 we recall some known facts on local regularity of p and show how the integrability of
certain unbounded functions with respect to p can be obtained via Lyapunov functions techniques.
Moreover, these results allow us to give some growth conditions on the coefficients a;;, F' in order
that the integrability properties with respect to p contained in (H1), (H2) hold true, see Remark
2.6.

In Section 3 we show global boundedness of the density p, a first global regularity result which
will be crucial in the developments of the subsequent sections. In Theorem 3.1 we prove that /p
belongs to W12(RY), provided that F belongs to L?(i), thus extending a result from [3], where,
in addition, a;; € C}(RY) was assumed. Observe, however, that the condition F € LY (u) is not
needed in [3]. Then we show that, if F' € L*(u) for some k > N or F,div F € L¥(u) for k > N/2,
k > 2, the density p is bounded in R". The proof relies upon Moser’s iteration technique, whose
starting point is Theorem 3.1. The cases 2 < k < N are also examined. The local regularity
of p which follows from (HO) is crucial to perform the needed integration by parts. In fact, in
our approach, global regularity is deduced from local regularity and this, in turn, holds since the
diffusion matrix (a;;) is locally uniformly elliptic. However, the assumption F € L} (u) for some
p > N, though a weak one, looks too strong when the global integrability condition F € L*(u) is
required only for k¥ < N and it is possible that further investigation will remove it in these cases.
Results in this direction have been obtained in [3] using an approximation procedure that leads
directly to global regularity.



In Section 4 we prove Sobolev regularity assuming that a;; € Cé (RY). Moreover, we also
consider the case F' € Lk(u) with 1 < k < 2, excluded in the previous section. We prove both
WP and W2P regularity; in the second case, however, we need also assumptions on the divergence
of the drift F. We point out that the results on global boundedness and WP regularity are
precise as regards the exponents involved: in fact, they reduce to the Sobolev embeddings when
A=A—D®- D, sothat p = e~?, see Remarks 3.11, 4.5. On the other hand, those concerning
W?2P regularity are not optimal. This depends upon the fact that we can prove that \/p belongs
to WH2(RN) when F € L?(u), whereas the conjecture p'/* € WH*(RN) when F € L¥(u), needed
to improve our conditions, remains open.

In Section 5 we prove a Harnack-type inequality for p finding explicit bounds on its logarithmic
derivative. These bounds are used later to obtain sufficient conditions under which Dp/p belongs
to LP(u) for 1 < p < co. We point out that, in contrast with the case p = 2 which was already
known, see [3], the general case is obtained requiring more regularity on the coefficients and using
a different approach.

In Section 6 we prove both upper and lower bounds on p assuming that certain exponentials
are integrable with respect to u. Basically we show that if exp{d|x|®} belongs to L'(u) for some
5,8 >0, then p(z) < ¢; exp{—ca|z|?} for related constants c;,co > 0. Explicit conditions for the
integrability of the above exponentials are given in Section 2. Lower bounds for p are deduced
from the Harnack inequality of Section 5 assuming growth conditions of polynomial type on the
coefficients. Combining upper and lower bounds, the precise decay of p is given for a class of
operators.

Notation CF(RY) is the space of all k times continuously differentiable functions in R, bounded
together their derivatives up to the order k, Co(RY) is the space of continuous functions on R
vanishing as |z| — oo and C°(RY) is the space of test functions. For 1 < p < o0, k € N,
WHP(RN) denotes the classical Sobolev space of all LP-functions having weak derivatives in LP
up to the order k. Its norm is denoted by || - ||k, and by || - ||, when k& = 0. All integrals where the
underlying measure is not explicitly indicated are understood with respect to the Lebesgue measure
dx. Accordingly, we write LP(RY) when the Lebesgue measure is understood. The LP-space with
respect to a measure p is denoted by LP(u).

If G: RY — R™ is a C''-function, then |DG|? = D |D;G,|? and |D?*G|? =Y

We define

iin | DiGul*.

A= inf A(x) A= sup A(z), (1.4)
zeRN zeRN
where A(z) and A(z) are the minimum and the maximum eigenvalue of the matrix (a;;(x)), re-
spectively. Observe that X is the same as in (HO) and it is supposed to be positive. On the other
hand, we do not assume that A is finite.
We write a(§,n) for 37, ; ai;(-)&inj, & € RY.

2 Existence, uniqueness and integrability properties

In this section we briefly recall some results on invariant measures.

First, p is absolutely continuous with respect to Lebesgue measure: we write dy = pdx, and
state a result concerning the local regularity of p which allows us to perform some integrations by
parts. We refer to [5, Corollaries 2.10, 2.11] for the proof (see also [9, Chapter 4] for the absolute
continuity of p and the positivity of its density p).



Theorem 2.1 Assume that u is an invariant measure for A. Then dy = pdx with p € T/Vllo’f(RN),
where p > N is the summability exponent in (HO). Moreover, if F € L} (RN) then (the continuous
representative of ) p is positive.

Throughout the paper we always identify p with its continuous representative.

As regards existence and uniqueness of invariant measures we quote the following improvement
of Hasminskii’s criterion proved in [7], see also [8, Corollary 3.3] for the uniqueness part. A function
V' as in the following theorem is often named a Lyapunov function.

Theorem 2.2 Assume F € LY (RY) and that there exists a C?-function V : RN — R such that

V(z) = 00, AV(x) = —00 as |z| — co. Then A has a unique invariant measure fi.

It is a consequence of the proof of [7, Theorem 1.1] that AV belongs to L' (). Since this fact
will be useful later and for reader’s convenience we extract from [7, Lemma 1.1] a short proof.

Proposition 2.3 Assume that there exists a C%-function V : RN — R such that V(z) — oo as
|#| — oo and AV (z) <0 for large |x|. Then AV belongs to L*(u).

PROOF. A simple approximation argument shows that (1.2) is satisfied for every ¢ € C?(RY)
with compact support. Therefore, since A1 = 0, it holds for every ¢ € C?(R") constant outside
of a large ball. For every n, we consider ¢,, € C°°(R) such that ¢, (t) = ¢ for t < n, 1, is constant
in [n+1,00[, ¥, >0, ¥ <0. Then (1.2) holds for #,, o V. Let B be a ball such that AV (z) <0
if ¢ B. Then

N
At 0 V) = (47,0 V)AV + (¥ 0 V) Y aigDiVD;V <0
i,j=1
outside B. Then, for large n

/ IA(wnoV)ldu:—/ A(wnoV)duz/AVdugc
RN\B RN\B B

and the statement follows letting n — oo and using Fatou’s lemma. ]

The integrability of certain exponential functions will be important in Section 6 to derive upper
bounds on p. A sufficient condition to this aim is given in the following proposition.

Proposition 2.4 Let A(z) be the mazimum eigenvalue of (a;;(x)). Assume that

lim sup <cA(x) + |z|' PG (x) - x) <0 (2.1)

for some ¢ >0, 5> 0, where G = (g1,...,9n) and g; = F; + Zj Djaj;. Then V(z) = exp{d|z|’}
for |z| > 1 is a Lyapunov function for § < B~tc. Moreover, exp{6|z|®} is integrable with respect
to u, for 6 < B~ tc .

PROOF. Let V(z) = exp{d|z|®} for |z| > 1. We obtain, by a straightforward computation,

N

i 9
A _ porgilel [ Zail®) | P2
V(z) 0B|z|" e 7] + BE ijZIa”(x)xsz
al x
B-3 - oy L2
+48]|z| ”5:1 a;j(x)zx; + G 2]



Since the quadratic form |}, ; a;j(2)z;x;| can be estimated by A(x)|z|?, the first statement can
be checked by elementary arguments. As regards the second, observe that |AV] is integrable with
respect to u, by Proposition 2.3, and that either |AV] is bigger than V' (when 8 > 1) or |AV] is
bigger than V!¢ for every ¢ > 0 (when 0 < 3 < 1) for large |z|. O

Similar computations prove the following result which will be useful in Section 6. Observe that,
since 8 > 1 and a;; € C}(RY), it is no longer necessary to introduce the function G of the above
proposition.

Corollary 2.5 Assume that a;; € CH(RY) and that

lim sup |z|* P F(z) - =6 (2.2)

2|00 ||

0 < ¢ < oo, for some 3 > 1. Then V(z) = exp{§|z|’} for |x| > 1 is a Lyapunov function for
§ < (BA)~te. Moreover, exp{d|x|®} is integrable with respect to u for § < (BA)'c.

Remark 2.6 Proposition 2.4 and Corollary 2.5 can be used to check assumptions (H1) and (H2).
In fact, under the hypotheses of those statements, if the functions (1+|z|?)~*|ai;|, (1+|z])~!|D;asj]
and |F| grow at infinity not faster than exp{|z|”} for some v < 8 then (H1) and (H2) are satisfied.

Remark 2.7 Equation (2.2) is a radial assumption on F and, if 0 < ¢ < oo, it says that the
inward radial component of F' has a prescribed polynomial behaviour. Of course, changing x/|z|
to (x — xg)/|x — x| leads to a new condition that, though not equivalent to (2.2), yields similar
conclusions.

Remark 2.8 Assume that p is the invariant measure of a Feller semigroup (T'(t))i>0. The in-
tegrability of the exponential functions exp{d|z|?}, hence the validity of (2.2) with 8 = 2, is
strongly connected with hypercontractivity and supercontractivity properties of the semigroup in
LP-gpaces with respect to u, see [14]. We also remark that if 8 > 2 is allowed in (2.2), then T'(¢)):>0
is ultracontractive, see [14, Corollary 2.5] and compact in Cy(RY), see [12, Corollary 3.11].

3 Global boundedness

First we state and prove a global regularity result which generalises to our setting [3, Thereom 1.1]
and [6, Theorem 3.1]. We do not assume that the diffusion matrix (a;;) is bounded and globally
Lipschitz continuous. However we suppose that F € L (u) and this is not needed in [6], [3]. In

loc

the sequel, we use the convention that |Dp|?/p® = 0 on the set {p = 0}, for any s > 0.

Theorem 3.1 Assume that du = pdx is an invariant measure for A and that F € L*(u). Then

VP € WHE(RN). Moreover

Dpl? 1

/ 1Dol® < |F|?dp. (3.1)
RN P A RN

PROOF. From Theorem 2.1 we know that p € I/Vllo’f(RN) where p > N is the exponent in (HO).
The invariance of p then implies

| ooy = [ FDop (3:2)



for every ¢ € C°(RY). Since p is continuous, then Fp € L} (R") and, by density, equality (3.2)
holds if ¢ belongs to W12(R”) and has a compact support. Let us take n € C°(R”) such that
n(xz) = 1 for || < 1 and n(x) = 0 for |z| > 2, n,(x) = n(x/n) and observe that for every e,k
such that 0 < e < k, the function log((p V €) A k) belongs to Wll’p(RN) NL®RN),p> N > 2.

Plugging ¢ = n2 log((p Ve) A k) in (3.2), since ”

Dp
Dlog((pVe)Nk) = 7X{6<p<k}

we obtain
a(Dp, Dp
[ icieepeny P22 o [ 10s((p v ) A BY(Dp. D)
RN p RN
+/ M F - DpX(c<p<h)
RN
+2/ N Mnplog((pVe) ANk)E - Dy,
R
The above equality yields
1/2 1/2
a(Dp, Dp Dp|?
/ 7772LX{E<p<k}¥ < (/ 77721X{s<p<k}| | |F|2P
RN P RY P RN

(3.3)
C(e, k)

Ty
n RN

where
J— / nlog((pV ) A K)a(Dp, D).
RN

Integrating by parts we obtain

N
I, = 2/ p [ log((pVe) AKk)a(Dny, Dny) +nylog((pVe) A k) Z ai5 Dijnn
{n<|z|<2n} ii=1
al a(Dp, Drn)
+ nnlog((pVe)AE) Z Djai; Diny, + nnX{s<p<k},7n
ij=1

Since |Dn,| < C(1+ |z])7, |D?*n,] < C(1 + |2?)~t in {n < |z| < 2n}, with C independent of n,
assumption (H1) implies that, for a suitable w(e, k, n) which goes to 0 as n — oo for fixed ¢, k, we
have

IN

L] < wlekn)+2 / MnXte<perra(Dp, D)

{n<|z|<2n}

1/2
a(Dp,Dp)\"/?
w(e, k,n) +2 (/ 77721)({5<p<k}7( )) / a(Dny, D) p
RN p {n<|z|<2n}

_ a(Dp, D
< W(gvkvn)(1+5 1)+5ANnZX{6<p<k}(i)ma

IN



for every 6 > 0. From (3.3) we now get, using Young’s inequality,

a(Dp, D _
R T O Rl L
RN P RN
J a(Dp, Dp)
+X /RN 77721X{5<p<k}f
and, fixing a sufficiently small §,
a(Dp, D
/ 77721X{6<p<k}M < w(€7 k’ TL) + C/ |F|2p
RN p RN

Letting n — oo and then € — 0, k — oo we obtain

/ a(Dvap) SC/ |F|2p<OO.
RN P RN

At this point the previous estimates show that I,, — 0 as n — oco. Therefore, letting n — oo and
then € — 0, kK — oo in (3.3) we obtain

Lo s (L ()"
a 1/2 1/2
L2252 (o)

and the statement follows. O

Corollary 3.2 If F € L?(i) then p € WYY (RN). Moreover p € LN/ W=2(RN) if N > 2 and
p € LP(RN) for every p < oo if N = 2.

PROOF.  Since /p € WH2(RY), the Sobolev embedding theorem gives p € LN/ (V=2(RN) for
N > 2 and p € LP(RY) for every p < oo if N = 2. The integrability of Dp follows from Hélder’s
inequality and (3.1). ([

We now prove that, assuming F' € L*(u) for some k > N, the density p belongs to L>(R™N).
The proof relies upon Moser’s iteration technique whose starting point is inequality (3.4) proved
in the following lemma.

Lemma 3.3 Assume that F € L*(u) for some k> 2 and fix 3> 0. Ifp € L’B%‘H(RN), then

[ o ppP < [P <o, (3.4)
RN RN
PROOF. First we observe that

/ |F|2pﬁ+1 _ / |F|2p2/kp[3+1—2/k
RN RN

2/k . 1=2/k
(/ F’fp> (/ p5kz+1> < 0. (3.5)
RN RN

IN



We use the same strategy and the same notation as in the proof of Theorem 3.1. Inserting
¢=n2((pVe)Ak)P in (3.2) and observing that D((p Ve) Ak)? = Bp’~*Dpx(cc <k}, we obtain

B/ anB_lx{5<P<k}a(Dp’ Dp) = _2/ Un((ﬂ \ 6) A k)ﬁa(Dpv Dnn)
RN RN
48 [ o Xiepenr - D (3.6)
RN

2 [ nupllpve) nB)F Dy,
RN
= I+ J,+ K,. (3.7)
Let us first estimate J,,, K,,. We have, with C' = ||D7|| oo,

Tl < 8 [ a0 ey TR | D

2 1 2 1z 2 1 1z
< o ( [ e o) ([ et
CkP
|Kn| < — |F|p.
n RN

Observe that K, — 0 as n — oo, since F' € L*(u). The term I,, is treated as in Theorem 3.1.
Integrating by parts we have

N
I, = 2/{ o’ ((pVe) AR) a(Din, Dnn) +1a((pV ) AR)® Y aijDijn

1,j=1
N

+ ((pve)NEk)ny, Z D;aijDiny + Bnp® X (< p<iya(Dp, Dny,)
ij=1

Since |Dn,| < C(1+ |z)7L, |D?n,| < C(1+2]?)~t in {n < |z| < 2n}, and C is independent of n,
for a suitable w(e, k,n) which goes to 0 as n — oo for fixed ¢, k, we have

| < wle,k,n)

1/2 1/2
+ B </ 120" X (e<p<rya(Dp, Dp)> (/ PP X (c<perya( D, D%))
RN {n<|z|<2n}

IN

wie, k,n)(1+071) + 6/RN nfbpﬁflx{K,Kk}a(Dp,Dp)

for every § > 0. We have thus obtained

1/2 1/2
5/ 2P~ X(e<p<rya(Dp, Dp) < 5(/ nzpﬁ1X{e<p<k}|DPQ> </ FQPBH) +K,
RN RN RN

+ wie, k,n)(1+671 + (5/ nipﬁ_lx{5<p<k}a(Dp, Dp),
RN

for every § > 0. Using the ellipticity of the matrix (a;;) and arguing as in Theorem 3.1 we obtain

/ p’~'a(Dp, Dp) < .
RN



Therefore I,, — 0 as n — oo hence, letting n — oo in (3.6), we have

1/2 1/2
/ P° " X(e<p<rya(Dp, Dp) < (/ p5‘1X{a<p<k}|Dp2> (/ FZPB“) :
RN RN RN

Letting € — 0, k — oo one concludes

1/2
A/ pﬂ‘l\Dplzé/ pﬂ‘la(Dp,Dp)<</ p’“ID/ﬂ) (/ |F|2p5“)
RN RN RN RN

1/2

O]

Corollary 3.4 Assume that F' € LF(u) for some k > 2 and fir > 0. If p € Lﬁk%zﬂ(RN), then
pPHN/2 ¢ WL2(RN) and

B41 2 2/k N
/ |Dp<ﬁ+1>/”s(2A [oaree) ([ e (3.8)
RN RN RN

PROOF. Observe that p(#+1)/2 ¢ L2(RN), since 1 < B+ 1 < (Bk)/(k —2) + 1. Estimate (3.8) is
immediate from (3.4) and (3.5). ([

Theorem 3.5 If F € L*(u) for some k > N, then p € L= (RY).

PROOF. Assume that N > 3; the case N = 2 will be treated separately. Let us first show
that the above estimates imply an improvement of the integrability of p. To this aim, assume

that p € L” =211 for some B > 0. Using Corollary 3.4 and the Sobolev embedding we obtain
p(ﬁ+1)/2 e L2N/(N72)(RN) and

1/2-1/N
( / p<6+1)NN2>
RN

< C|Dp PV, 59
3.9
B+1 / (Bk)/ (k— Yk
< F [ /(k—2)+1
< ONFllrg 5 (7 ,

where C' depends only upon N. Setting

k N k-2
=B8—— 11 - T
v Bk—2+ and 0 N3 5
we have § > 1 since k > N, and the improved integrability exponent can be written 6 (7+ %) We

now iterate the above estimate in order to show that the norms ||p||z» are all uniformly bounded.
Let us define

{ Ynt1 =0 (’)’n + ﬁ) (3.10)
_ _N ’

70 =N=2

and observe that p € L7 (R"), by Corollary 3.2. Then 7, = 8,25 + 1 for some 3, > 0 and

G N-2 k-2 2
R Ve e PR N



Setting Cy = C||F| pr(u)/2), inequality (3.9) says that

In

N-2 s
7n+1>

T+ 52z
n

1
il

lolluss < (€

: (3.11)

where ||p||,, denotes the norm of p in L7 (RY). Observe that 7,1 > 0"lyy and that for a,, =

log ||p||» we have
2N 1 Yn

10 C n + A,
N 27 g(CoYnt1) 7n+%

Qp41 S

Cy = (1—2/N)Cy. These inequalities imply that log ||p]|cc = limy,— 0 an < 00. In fact, if o, — 00,
then «, > 0 for large n and
2N 1 1

Opy1 — 0y < ——= log(Covpt1) < C3——
n+ n N _9 Vi1 ( n+ ) 7lz+i

for some C3 > 0 and any 0 < € < 1. Since the series on the right hand side converges, («,) cannot
be divergent. This concludes the proof for N > 3.
Consider now the case N = 2, with variables (x,y). Introduce the operator B in R?, with
variables (z,y, z)
B=A+D,, —z2D,,

and notice that exp{—z?/2}dz is (up to a normalisation constant) the invariant measure of the
one-dimensional operator D,, — zD,. Let du = p(z,y) dx dy be the invariant measure of A, and
check that dv = p(z,y) exp{—22/2} dz dy d= is invariant for B. In fact, for every ¢ € C°(R3),
using the Fubini theorem and differentiating under the integral sign we have

/R3 Bédv = /RQXP{*Zz/Q} </R2 (AP + ¢rr — 202)p(x,y) da dy> dz

/R exp{—22/2}(D... — 2D.) ( /R Opla.y)de dy) dz =0

because the function z — fR2 ¢ p(x,y) dz dy belongs to C°(R). As a consequence of the first part
of the proof, the density of v is bounded in R?, and taking z = 0 this implies that p is bounded in
R2. L]

In the case k = N we obtain that p € LP(RY) for every p < oo.
Proposition 3.6 If F € LY (i), then p € LP(RY) for every p < oo.

PRrROOF. Assume that N > 3. Proceeding as in the proof of Theorem 3.5 we obtain that
p € L (RN) for every n, where
_ 2
{ TYn+1 = (’Yn =+ m)

Yo = ¥
Since 7,, — 0o we obtain the statement. The case N = 2 is already covered by Corollary 3.2. [

Finally, let us examine the case 2 < k < N. Observe that the case k = 2 is covered by Corollary
3.2.

Proposition 3.7 If F € L*(u) with 2 < k < N then p € LP(RY) for every p < N/(N — k).

10



PRrROOF. We define (v,) as in (3.10). It is easily checked that (7,) is increasing and convergent to
N/(N — k) and we have only to show that the limit of the sequence (||p||,,) is finite, where, as in
the proof of Theorem 3.5, ||p||, denotes the norm of p in L' (R”Y). Suppose, by contradiction,
that ||p||, — oo. Since N/(N —2) <+, < N/(N —k) and < 6 < 1 from equation (3.11)

we obtain

Yn
Yn+2/(k=2)

lplln+1 < Cliplln
for large n and a suitable C. However, this easily implies that the sequence (||p||,,) is convergent.

Corollary 3.8 If F € L*(u) for k> (N +2)/2, k > 2, then p € WH2(RN).

PROOF. We may assume that k = (N + 2)/2. If N > 3, Proposition 3.7 gives p € LP(R")
with p = (2N)/(N —2) = (2k — 2)/(k — 2) for k = (N + 2)/2. The same is true for N = 2 since
p € LP(RY) for every p < oo, by Corollary 3.2. We may therefore apply Corollary 3.4 with 8 =1
to conclude the proof. ]

If we assume further regularity on F, as we shall do in the next section dealing with W27
regularity, we can prove global boundedness of p assuming that F and div F belong to L¥(u) for
some k > N/2. For simplicity we assume that F € W,.°°(RY) even though less local regularity of
F suffices to perform the needed integration by parts.

Theorem 3.9 Assume that F' € I/Vllofo(RN) and that F,div F € L*(pu) for some k > N/2, k > 2.
Then p € L¥(RY).

PROOF. The proof is similar to that of Theorem 3.5, using Lemma 3.10 below instead of Lemma
3.3. ]

Lemma 3.10 Assume that F € Wllo’fo(RN) and that F,div F € L*(u) for some k > 1. Fiz 3 >0
and suppose that p € L5ﬁ+1(RN). Then

B + 1)/ P’ Dp* < —/ pPHdiv F < . (3.12)
RN RN

PROOF. We keep the notation of the proof of Lemma 3.3. Multiplying the (distributional) identity
Agp = div (pF) by n2((pVe) Ak)? we obtain again (3.6). The estimates for I,, and K, are similar,
whereas J,, is treated as follows.

5 e )
Jn = 41 RNn,LF D((pVe)Ak)PT!
- _% RN((”VE)A’C)BH (F-D(n2) + n2div F).

Using Holder’s inequality, it is easily seen that p+t1F, pf+ldiv F € L'(R") and this implies that

Jn%—i/ ((pVe)Ak)PTdivF as mn — 4oo.
B+1 Jrw

From this point on, the proof is similar to that of Lemma 3.3. ]
Remark 3.11 Assume that A=A + F' - D where F' = —D® (which is clearly the case, e.g., if I’
is radial) and ® € C1(RY) satisfies e™® € L'(R”Y). Then p = e~® and the assumption F € L*(u)

(F = —D®) is equivalent to e~ ®/* € W1 *(RY). The integrability statements of Theorem 3.5 and
Propositions 3.6, 3.7 are exactly those given by the Sobolev embeddings.
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4 Sobolev regularity

In this section we obtain Sobolev regularity results for p under the additional hypothesis that
a;; € CEH(RYN). Moreover, we can also deal with the case F' € L¥(yu) for 1 < k < 2, excluded in the
previous section. For further reference, let us state a classical LP-regularity result for uniformly
elliptic operaors (see [1]).

Theorem 4.1 Let 1 <p < o0, a;; € CHRYN), F e VVlf)COO(RN) and set

N N
A=Y Di(ai;D;)+ > FiD; = Ay+F - D.

i,j=1 i=1

(i) Let u € LP(RN) be such that

[ wod] < ol vy

for every ¢ € C*(RN). Then u € WHP(RYN).
(ii) Let f,u € LY (R™N) be such that

loc

/RNqub: [ 5o

for every ¢ € C*(RN). Then u € W2P(RN).

loc

Let us improve the conclusions of Theorem 3.5 and Propositions 3.6, 3.7.
Theorem 4.2 Assume that a;; € CL(RY).
(i) If F € L*¥(u) for some k > N, then p € WIP(RN) for every 1 < p < k.
(i) If F € LN (u), then p € WHP(RYN) for every 1 <p < N.
(iii) If F € Lk(u), for2 <k < N then p € WHP(RYN) for every 1 <p < N/(N — k +1).

PROOF. (i) The invariance of y yields, for ¢ € C=°(RY),

[ o=~ [ (Do,

where Ag is defined in (1.1). Since p € L'(RN) N L>*(R") by Theorem 3.5 and F € L*(p) it
follows that Fp € L*(RY). Then

[ (0000 <l

for every ¢ € C®(RYN) and p € WHF(RY), from Theorem 4.1(i). Since p € WHL(RY), by
Corollary 3.2, the first statement follows.

(ii) The proof proceeds as in (i). In fact, p € LI(RY) for every ¢ < oo, see Proposition 3.6, and
therefore F' € L™ () implies that pF € LP(RY) for every p < N.

(iii) By Proposition 3.7 we know that p € LN/(V=F)(RN) and then pF € LP(RN) with p =
N/(N — k +1). The same argument as in (i) yields p € WHP(RY). O

12



Observe that we have obtained p € WHN/(N=1) when F € L2 (1), whereas Theorem 3.1 yields
only p € WLL(RM).

We consider now the case 1 < k < 2 where we obtain, however, less precise results. We start by
showing that under very weak conditions the function p belongs to LP(R™) for p < N/(N —1). We
refer the reader to [4] for local versions of the following theorem. We point out that the hypothesis
F e L? (p) is not needed in Theorem 4.3 and in Proposition 4.4.

loc

Theorem 4.3 If a;; € CLRY) and F € L'(pn), then du = pdx with p € LP(RYN) for every
p < N/(N —1).

PROOF. The invariance of u yields for ¢ € C°(RY)

/(qb—Aoas)du:/ (64 F - Do) du
RN

RN
hence, since F' € L(u),
[ 6= A00) ] < Cllh. (@)

Fix 1 <p < N/(N —1) and let ¢ = p/(p — 1) be the conjugate exponent to p. Clearly ¢ > N.
Given ¢ € C(RY), let w € W24(RY) be such that w — Agw = . Then |w||2,, < C1¢]l,
with C; independent of ). Moreover, by the Sobolev embedding, w, Dw € Co(RY) and ||w]|1,00 <
Cafwll2,q-

In order to show that we can insert w in (4.1) we use an approximation procedure. Let
nn = n(x/n) where n € C°(RY) satisfies n(z) = 1 for |x| < 1 and n(z) = 0 for || > 2. Then
Nnw — win W24RN) and Ag(n,w) — Aow in Co(RY). Fix now n and consider v = n,w. Setting
ve = v * &, where ¢ is a standard mollifier with compact support, v. € C°(RY) and v. — v in
W24(RN). Moreover,

N
Apve = (Agv)* &+ Y /RN (aij(x) — aij(z — y))Dijv(z — y)&(y) dy

N i,7=1
! ; /RN (bi(w) = bi(z —y) Div(z — y)&-(y) dy

where b; = Zj Dja;j. Clearly (Agv) x & — Agv uniformly, since Agv € Co(RYM). The term
containing the b; converges to zero uniformly since the b; are uniformly continuous and Dv €
Co(RY). Since |a;;(z) — a;j(z — y)| < L|y|, a simple computation using Holder’s inequality (since
g > N) shows that also the remaining term goes to zero uniformly. Then Agv. — Agv uniformly.
Summing up, there exists a sequence (w,) C C(RY) such that w, — w in W24(R") and
Agw,, — Apw uniformly.

Then, passing to the limit, we may insert ¢ = w in (4.1) to get

‘/ wdu‘ _ \/ (w — Agu) du] < Cllu
RN RN

Therefore du = pdz with p € LP(RY). O

Loo < Ca[¢lg-

Local versions of the following proposition are contained in [5], where regularity results in
fractional Sobolev spaces are also obtained for a;; = d;;.
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Proposition 4.4 If a;; € CL(RY) and F € L*(u) for some 1 < k < 2, then p € WHP(RYN) for
every 1 <p < N/(N —k+1).

PROOF. The invariance of pu yields, for ¢ € C>°(RY),

/RN(Ao¢)p= —/RN(F-Dcﬁ)p-

Assume that p € L9 (R") for some ¢, > 1. Writing pF = pt/Epl=1/kF Holder’s inequality yields

pF € L™ (RN) for
1 1 1)\ 1
= 1—2 ) — 4.2
Tn k+( /f)qn’ (42)

\ / (Aoﬁb)P‘ < Cllélr,-
RN

Since 1 < 7, < gn, Theorem 4.1(i) yields p € W1 (RY) hence, by the Sobolev embedding,

p e Lin+1 (RN) with
r_t1t 1 1 1t /A 1)1
Qn-‘rl_rn N_k N k dn

(observe that r, < 2 < N). We may start an iteration by choosing any 1 < g9 < N/(N — 1), by
Theorem 4.3, and then it is easily checked that (g,) in increasing and convergent to N/(N — k).
This proves that p € LI(RY) for every 1 < ¢ < N/(N — k) and then, by (4.2), p € WLP(RY) for
every 1 <p < N/(N —k+1). O

hence

Remark 4.5 Consider again, as in Remark 3.11, the operator A = A — D®- D, so that F' € L*(p)
is equivalent to 1) = e~ ®/F ¢ WEE(RN). Since p = ¥* it is easily seen that Theorem 4.2 gives
precise results. However, if 1 < k < 2, the limiting cases p = N/(N —1) in Theorem 4.3 and p = 1,
p= (NK)/(N —k+1) in Proposition 4.4 are excluded. We do not know whether for these values
the same results hold.

In order to deal with W?2P-regularity of p, we observe that Theorem 4.1(ii) yields p € WZQO’CP (RN)
for every p < oo if F € W,2°(RN).

loc

Lemma 4.6 Assume that a;; € CLRN), F € WE2(RN) and that F,div F € L*(u) for some

loc

k> N/2, k>2. If Dp € LYRYN) for some 1 < q < oo, then p € W2"(RN) for every 1 < r < p,

where
1 2\1 2

5:(1—Z)a+%. (4.3)

PROOF. Since p € VVIQOZ(RN) for every r < oo, it satisfies the equation Agp = F - Dp + pdiv F.

Moreover, since p € L>(R”N) by Theorem 3.9, it follows that pdiv F' € LP(RY) for every p < k.
Let us deal with the term F' - Dp. By Holder’s inequality we have

-2 r —1/r r
[ AEPDor = [ Pl FDp g
R

R
(/RN wppp)l/r(/m |F|pr>1/r(/RN \Dp|<pf%>s)1/s

(4.4)

IN
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whenever 7,5 > 0 and 2/r +1/s = 1. From (3.1) it follows that the right hand side of (4.4) is
finite if pr = k and (p — 2/r)s = q. These conditions easily yield (4.3). Since Agp € LP(RY), the
Calderén-Zygmund estimates imply that p € W2P(R™). This proves the statement with » = p. If
1<r<p, thenr—! = (1-2/k)q; ' +2/k for some 1 < q; < q and Dp belongs to L*(RN)NLI(RY),
hence to L% (RY). By the first part of the proof, p € W2"(RY). O

Proposition 4.7 Assume that a;; € CLRN), F € WE2°(RN) and F,div F € LF(u), k > 2.

(i) Ifk > N, then p € W2T(RN) for every 1 <r < 3:—;
(ii) If k= N then p € W2"(RY) for every 1 <r < ?)JJ\,V%
(iii) If N/2 <k < N, then p € W2"(RY) for every 1 <r < WI_\L%_Q
PROOF. Theorem 4.2 allows us to put ¢ = k, ¢ < N arbitrary, and ¢ = N/(IN —k+1), respectively,
in Lemma 4.6, and all the statements follow. O

The above proposition yields, roughly speaking, p € W2*/3 whenever F' and div F belong to
L*(u) for some k > N. If k > 2N we can improve k/3 to k/2 iterating the procedure of Lemma
4.6.

Theorem 4.8 Assume that F € VVﬁ)COO(RN) and that F,div F € L*(u) for some k > 2N. Then
p € W2P(RN) for every 1 < p < k/2. Moreover, if k > 2N, then p € W23 (RN).

PROOF. First we show that Dp € LI(RY) for every ¢ < oo if K > 2N and that Dp € L=°(RY) if
k > 2N. Using Lemma 4.6 and setting for every n € N
1 (1 2) 1 n 2 q 1 1 1
e e an = - =,
Pn+1 k dn k dn+1 Pn+1 N
we deduce that if Dp € L (RY), then p € W2P»+1(RY). We may take gy = k, by Theorem
4.2. If p, > N for some n, then Dp € LI(R™) for every ¢ < co. Assume now that p, < N
for every n € N. Then, by the Sobolev embedding, Dp € L+ (RY). Since k& > 2N it is
easily seen that the sequence (g,,) is increasing, hence it is convergent to some ¢ > 0 such that
7' =(1-2/k)¢~1 +2/k —1/N, whence ¢ = co and thus Dp € LI(RY), for every ¢ < oo, again.
In the case k > 2N, arguing as above, the assumption p,, < N for every n leads to ¢ < 0, which
is impossible. Hence p,, > N for some n and Dp € L>=(R").
To show that p € W2P(RN) for 1 < p < k/2 we use the identity Agp = F - Dp + pdiv F and
observe that pdiv F' € LP(R"). Moreover

/RN |E|P|Dpl? /RN |F|P| Dp|PC=2/R)| D p|2P/k p=p/k pp/k

1/t 2\ p/k p/k
_o/k Dp
(/ |Dp|tp(1 2/k)) (/ ‘ | ) (/ ka> < o0,
RN RN P RN

where 2p/k + 1/t = 1. This shows that Agp € LP(RY), hence p € W2P(RY).
If k > 2N then Dp € L=°(RY) and thus

IN

J R A e e
RN RN
B Dp2 1/2 1/2
< oplr (PR () <o
RN P RN
so that Agp € L*/2(RY) and p € W25 (RY). O
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5 A Harnack inequality

In this section we prove pointwise bounds for log p and Dp/p in terms of F and its derivatives up
to the second order. In particular we obtain a quantitative Harnack inequality for p. We use these
bounds to find conditions under which | D log p| belongs to LP(u) for 1 < p < co.

The following lemma is the main step to the results of this section. Its proof is based on the
Bernstein method which requires more regularity on the coefficients in order to differentiate the
equation solved by p. We refer the reader to [10, Section 7.1.4.b] where similar computations are
performed in the parabolic case.

Lemma 5.1 Assume that v € C3(RY) solves the equation
Bv+ a(Dv,Dv) — H-Dv =G (5.1)
where B =3, -a;jD;; and a;; € CZRN), H; € C?*(RY), G € CYRY) and set

O(x) = 1+|[H(2)|+ |DH(x)| +|D*H(x)| + |G(x)] + | DG(x)]
U(r) = |EUI\)<1(I)(y).

Then |Dv| < CU, where C depends only on the ellipticity constant X and ||aij||cg(RN).

ProoF. Let w=a(Dv,Dv) — H-Dv =G — Bv. Then
Dybw = 2 Z aijDihuDjv + Z DhaijDiijv — Z Hthj’U — Z DthDj’U
(2% 0,J J J

DnG — Z a;jj Dpijv — Z DpaijDijv

1,7 2

and

Bw = 2 Z ank0ijDinvDjpv + Z <2Zaij-DiU — Hj) Zathhkjv
i h,k

3,5,h.k J
+4 Z athhaijDikajv—i— Z athhkaijDiijv

i.5,h.k ,,h,k
—2 E athkHthjv — E aththijv.
Jhk b,k

Using the identity

E athjhkv = DjG - Djw - E Djathhkv,
h.k h,k

the ellipticity of the matrix (a;;) and setting b; =2 a;;D;v — H;, b= (b1,...,bn), we obtain

—w+Bw+b-Dw > —a(Dv,Dv)+ H-Dv+2)*|D*v]* +b- DG — Z b;DjapkDpiv

J;h.k
+4 E angDpasjDigvDjv + E ank DrkaijDivDjv
ik ik
-2 E ank Dy H;Dpjv — E ankDniHjDjv.
J;h.k 7,h,k
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We fix 290 € RY and n € C2°(RY) such that = 1 in B(z¢,1/2), n = 0 outside B(x,1),0<n <1
and |Dn|,|D?n| < L, with L independent of z. For z = n*w we obtain

—24+Bz+b-Dz = n*(—w+ Bw+b- Dw) +8n>a(Dn, Dw)+41m>wBn+12n*wa(Dn, Dn)+4n>wb- D).

Next observe that, denoting by M a generic constant which depends only upon ||a;;||c2r~) but
may change from line to line, the following estimates hold:

(i) [Dv| < M(ID*0'/? + |H| +|G['/?)
(ii) [w] < M(|D>v| +|G])
(iii) [o] < M(IDv| +|H|) < M(ID*v['/? + |H| +|G|'/?)
(iv) [Dw| < M(|Dv||[D?v| +|Dv[? + |H||D?v| + |DH|| Dv])
Using repeatedly these estimates it follows that for every ¢ > 0

[H? _ |Dof?

2 2

b2
—w+Bw+b-Dw > —M|Dv|* - ol®

_IDGP
2

+ 2X?| D% —

M M
?|b|2 — Me|D*v]* — ?|Dv|2 — Me|D%v)?

| Dof?
2

M M
~M|Dv|* — —|DH|? — Me|D*v]* — 7|172H|2 -M
9

Y]

222 — 30e) D20l — 2L (12| + |D20] /2 + 32)
(

€
Moreover,

1’| Dyl Dw|

IN

Mn*(|Dv||D*v| + | Dvl* + |H||D?v| + [DH|| Dul)
Moy’ (IDQUI(IDQUII/2 + [H|+|G[V2) + (ID*|'? + [H| + |G| /?)?

IN

+H||D?o| + |DH|(|D*|'* + |H| + \Gll/z))

IN

1
M (773ID%|3/2 + 17| D] + en' | D0 + 5‘1’2)
and also
n*|w||Bn| + 4n*|w|a(Dn, Dn) < M(n*|D*v| + @)

and

n” [wl[b]| D] M’ (ID*o| +|GI)(|D*0['/2 + |H| + |GI'/?)

Mn?(|D?v]*/? + ®|D?0| + ®|D%v|'/? + &?)

IAIA

IN

1
M (773|D2v|3/2 +n?|D%v| + en?| D*v|* + Eq)z) .

Fixing a sufficiently small ¢ we get for € B(xzo, 1)

—z+Bz+b-Dz N4 D)2 — 1 (| D*0)*/2 + 12| D%0|) — ¢y ®?

>
Z —K — 62\112({17(])
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where ¢y, ¢z depend only upon |la;jl|c2(rn), A and —K is the minimum of the function A2 —

c1t3/? — ¢it over [0,00]. Since z = 0 at the boundary of B(zg,1), the maximum principle yields
w(zo) = 2(w0) < K + 292 (x0) < e3¥?(20). Then

A Dv(z0)|> < a(Dv(xg), Dv(xg)) = w(zo) + H(xo) - Dv(20) < ca¥? (o) + %|Dv(m0)|2

and the proof is complete. O

We can now estimate D log p in terms of F. Observe that we need the assumption a;; € C3(RY)
only since the operator A is written in divergence form.

Theorem 5.2 Assume that a;; € C3(RY) and that F € C*(RY) and set

I(z) = e (1+[F(y)l +DF(y)| + [D*F(y)]) - (5-2)

Then there exists C' depending only on A and ||as;||czra) such that
D
‘p < CT.
p

PROOF. By local elliptic regularity, p € C3(RY). Set v = log p. It is immediately checked that
v € C3(RN) satisfies the equation

ZaijDijv +a(Dv,Dv) — H-v=divF
%,J
with H; = F; — >, D;a;j. The statement then follows from Lemma 5.1. ]

The estimate of the logarithmic derivative of p in terms of F' leads immediately to a quanti-
tative Harnack inequality. We state it in the next proposition in the simple case where F' and its
derivatives up to the second order have polynomial growth.

Proposition 5.3 Assume that a;; € C3(RY) and that F € C*(RY) satisfies |F(z)| + |DF ()| +
|D2F(x)| < C1(1 + |z|?~Y) for some 3> 1. Then

PO) < o (Kl — ] (1 + (] + )P )}

p(x)
where K depends only on C1, A and ||| csr)-
PrROOF. Setting v = log p, we have from Theorem 5.2
|Dv(z)] < CT(2) < Ca(1 + |2]77).

This yields [v(y) — v(z)| < Cslz —y| (1 + (|z| + |y|)?~!) and the proof is complete. O

18



6 Pointwise bounds and weighted Sobolev regularity of log p

In this section we prove (pointwise) upper and lower bounds on the density p. As regards the
upper bound, we assume that V(z) = exp{§|z|?} is integrable with respect to u for some §, 3 > 0
and we recall that explicit estimates of §, 8 follow from Proposition 2.4 or Corollary 2.5 under
assumptions (2.1), (2.2), respectively. We keep the condition a;; € C{(RY) but need the extra
assumption that F' does not grow more than some exponential, at infinity, in order to integrate
|F|* with respect to u for every k. Under these assumptions we show that p decays exponentially.
For the lower bound we need more regularity on a;; and F' in order to apply the results of Section
5 and we confine ourselves to the case where F' and its derivatives up to the second order have
a polynomial growth. Finally, we combine the upper bound on p with the Harnack inequality to
derive sufficient conditions ensuring that log p € W2P(u).

Theorem 6.1 Assume that a;; € CL(RYN) and that V(z) = exp{d|z|?} is integrable with respect
to p for some 8,6 > 0. Assume moreover that |F(z)| < Cexp{|z|"} for some C > 0 and v < 3.
Then there exist c1,ca > 0 such that p(z) < c; exp{—ca|z|°}.

PROOF. Since |F(z)| < Cexp{|z|"} for some C' > 0 and v < 3, then F € L¥(u) for every k < oo.

The invariance of u yields
[ todo == [ (Do)
RN RN

for every ¢ € C®(RY). Taking ¢ = wy with v € C*(RY), 0 < w € C®(RY), w(z) =
exp{cza|z|?} for |z| > 1, we obtain

N
/RN (Aoth)pw = — /RN <¢A0w +2Y ayDipDyw + wF - Dip + yF - Dw)p. (6.1)

ij=1

Let us fix ¢ > p > N and choose ¢a < §/q. It is easily seen that w, Dw, Agw belong to L(u).
Moreover, since 1/p = 1/q+1/k for some k > 1 and F € L*(p), it follows that wF, | Dw||F| € LP(u).
Since p € L*°, by Theorem 3.5, we deduce that all the functions pDw, pAgqw, pwE belong to
LP(RY). Then (6.1) yields

[ o] < L1l

for a suitable L independent of ¢. Since also pw € LP(RY) from Theorem 4.1(i) we infer that pw
belongs to W1P(RY), hence to L>(R”), since p > N, and the proof is concluded. ]

The following result is analogous, but relies upon Theorem 4.8 rather than Theorem 3.5.

Theorem 6.2 Assume that a;; € CL(RY) and that V(z) = exp{d|z|?} is integrable with respect
to p for some 3,0 > 0. Assume moreover that F € Wli’fo(RN) and that |F(z)| < Cexp{|z|"},

|div F(z)] < Cexp{|z|"} for some C > 0 and v < (. Then there exist c1,co > 0 such that
|Dp(x)| < e1exp{—ca|z|7}.

PRrOOF. We modify the proof of Theorem 6.1, keeping the notation introduced there. From The-
orem 4.8 we obtain that p € W2P(RM) for every p < oco. Since Agp = F - Dp + pdivF we

have
N

Ao(pw) = wpdiv F +wF - Dp + p(Aow) + 2 Z a;; D;wD;p.
ig=1
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As in the proof of Theorem 6.1 one sees that wp (div F), p(Agw) € LP(RY), where p > N is fixed.
To treat the terms containing Dp we proceed as in Theorem 4.8

[ wnFPIDoP = [ wtFPDpP Dol 20
RN RN

Dol2\ /2 1/2
e s R (e
RN P RN

If ¢o is small enough, this last integral is finite. Similarly, one estimates the term |Dw||Dp|. Then
Ao(pw) € LP(RY), hence wp € WP(RY) and then D(wp) € L=°(RY). Since we know that pDw
is bounded, by Theorem 6.1, perhaps taking a smaller co, the proof is complete. ]

IN

We obtain lower bounds on p using the Harnack inequality from Section 5.

Theorem 6.3 Assume that a;; € C3(RYN) and that F € C?*(RY) satisfies |F(x)| + |[DF(z)| +
|D2F(x)| < C1(1 + |z|?~Y) for some 3> 1. Then

p(x) > exp{—cs(1 + [2|°)},
where c3 depends only on C1, A and ||ai;||cz @~y -
ProOOF. Let v =logp. As in the proof of Corollary 5.3 we obtain
|Do(z)| < CT(x) < Ca(1 + [277H)

for v = log p. Therefore |v(z)| < e3(1 + |z|?) and the statement follows. O
Let us combine the upper and the lower bound to select a class of operators for which the exact
decay of p can be established.
Corollary 6.4 Assume that a;; € C3(RY) and that F € C*(RN) satisfies |F(z)| + |DF(z)| +
|D2F(x)| < C1(1 + |z|P~Y) for some 3 > 1. Assume moreover that (2.2) holds, i.e.,
x

limsup |z|' P F(z) - — = —¢,
x

0<c<oo. Then
exp{—cs(1+ [z|")} < p(z) < c1 exp{—ca(1 + [2|%)}

for suitable c1,ca,c3 > 0.

PrOOF. It is sufficient to use Corollary 2.5 and Theorems 6.1, 6.3. ]

The above corollary e.g. applies to A = A + F - D where F(z) = —|2|?~22 4+ G(x) for B > 1
and |z| > 1 and |G| + |DG| + |D?G| < ¢(1 + |z|°~1). Observe that, if G = 0, then p is given by
p(z) = Cexp{—|z|°/B}.

We end this section proving weighted Sobolev regularity results for log p. We set

WHEP (1) = {u € WEP(RN) : D € LP(u) for |a| <k}

and note that, under the hypotheses below, p decays exponentially and hence log p belongs to
LP(p).
In the next proposition we show a sufficient condition under which log p belongs to WP (u).
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Proposition 6.5 Assume that a;j € C3(RY) and that V(x) = exp{d|x|°} is integrable with respect
to u for some 3,6 > 0. Assume moreover that |F(z)| + |DF(z)| + |D?*F(x)| < Cexp{|z|"} for
some C >0 and v < B. Then Dp/p € LP(u) for every 1 < p < co.

PrROOF. We keep the notation of Section 5 and recall that T' is defined in (5.2). Since I'(z) <
c1 exp{|z|"T¢} < V() for v + ¢ < B the assertion follows from Theorem 5.2. O

Under polynomial growth conditions on F' we can prove that logp € W2P(u).

Theorem 6.6 Assume that a;; € C3(RYN) and that V(x) = exp{§|z|"} is integrable with respect
to uu for some B1,8 > 0. Assume moreover that |F(z)| + |DF(x)| + |D?*F(z)| < C1(1 + |z|?~1) for
some C' >0 and B > 1 satisfying 8 — 1 < B1. Then logp € W2P(u) for every 1 < p < oo.

ProOF.  Using Proposition 6.5 we infer that logp € W1P(u) for every 1 < p < oo. Setting
v = logp, then D;;u = D;jp/p — (D;pD;p)/p* and the last term belongs to LP(u) since Dp/p is
in L?(p). Thus, we have to show that D;jp/p € LP(u) and, since p is a finite measure, we may
assume that p > 1. Using the identity Agp = F - Dp + pdiv F' we deduce from Theorem 5.2 the
pointwise estimate |Agp| < C(1 +I'?)p for a suitable C' > 0.

Let Q(x,r) be a cube of side r centred at x. By the interior estimates for uniformly elliptic
operators, see e.g. [11, Theorem 9.11], we obtain

/ Dyp(y)|? dy < Cy / (Aop@)P? + 1p(u)I?) dy < C / (14 T2(y)) " (y) dy
Q($71) Q(w’2) Q(1>2)

with C5 independent of x. We use Proposition 5.3 twice and Theorem 6.1 to get

|Di;p(y)l? exp{ K1 |z|?~1} ,
ZBIL gy < oy T 14 T2(y))? " (y) dy
/Q(z,l) p(y)p—1 3 p(z)r—1 Q(m,2)( )P r” ()
< Cyexp{Kylz|P~1}(1+ |x|2p(ﬂ71))p(x)
< Cs(1+ [22PP=D) exp{Ko|z|~ — Ks|z|P1}

where all the constants are independent of z. At this point we cover R with a sequence of unit
cubes Q(z,,1) whose interiors do not overlap, write the above estimates for each cube Q(z,,1)
and sum over n to conclude the proof.

Remark 6.7 It is easily seen that Theorem 6.6 holds under the hypotheses of Corollary 6.4. In
this case one can take 81 = .
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