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Abstract

We study global regularity properties of invariant measures associated with second order
differential operators in RN . Under suitable conditions, we prove global boundedness of the
density, Sobolev regularity, a Harnack inequality and pointwise upper and lower bounds.
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1 Introduction.

In this paper we study global regularity properties of invariant measures associated with second-
order elliptic partial differential operators in RN

A =

N∑
i,j=1

Di(aijDj) +

N∑
i=1

FiDi = A0 + F ·D. (1.1)

We assume that there exists a Borel probability measure µ on RN such that∫
RN

Aφdµ = 0 (1.2)

for every φ ∈ C∞c (RN ). If the operator A, endowed with a certain domain D(A), generates a
semigroup (T (t))t≥0 in a suitable function space X, then (1.2) holds for every φ ∈ D(A) if and
only if ∫

RN

T (t)f dµ =

∫
RN

f dµ (1.3)

for every f ∈ X and t ≥ 0 and this means that the measure µ is an invariant distribution for the
Markov process described by (A,D(A)). For this reason a probability measure µ satisfying (1.2) is
called invariant, even though no semigroup explicitly appears. We refer the reader to [9, Chapter
4] for a general background on invariant measures of Markov processes and to [15], see also [8], for
the investigation of the problem of existence of a semigroup satisfying (1.3).
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Many local regularity properties are known for invariant measures, even under very weak con-
ditions on the coefficients, see e.g. [5]. On the other hand, to our knowledge the only available
results dealing with global regularity are [6], [3], which have been the starting point of our investi-
gation, and the very recent [13] where W 2,p(RN ) regularity of the invariant measure is established
assuming that the diffusion coefficients aij belong to C1

b (RN ) and that the drift F is slightly less
than globally Lipschitz continuous.

In order to describe the main results of this paper, let us state precisely our assumptions on
the coefficients of A which will be kept in the whole paper without further mentioning.

(H0) aij = aji, Fi : RN → R, with aij ∈W 1,p
loc (RN ), Fi ∈ Lploc(µ) for some p > N and

N∑
i,j=1

aij(x)ξiξj ≥ λ|ξ|2

for every x, ξ ∈ RN and a suitable λ > 0.

(H1) For every i, j = 1, . . . , N , (1 + |x|2)−1aij ∈ L1(µ) and (1 + |x|)−1Diaij ∈ L1(µ).

(H2) F ∈ L1(µ).

Notice that neither the matrix (aij) nor the drift F = (F1, . . . , FN ) are assumed to be bounded in
RN . Note also that (H1) is always satisfied if the aij grow at most quadratically and their gradients
at most linearly at infinity. As regards the local regularity of the coefficients, we recall that (H0)
guarantees that µ is given by a density ρ ∈ W 1,p

loc (RN ), see [5, Corollary 2.10]; in particular, ρ is
a continuous function. If F ∈ Lploc(RN ), i.e. it is locally integrable with respect to the Lebesgue
measure and not with respect to µ (which implies F ∈ Lploc((µ)), then ρ is positive, see [5, Corollary
2.11]. The comments following [5, Corollary 2.10] motivate why, in some situations, is also more
natural to require the integrability of F with respect to µ and not to the Lebesgue measure.

The plan of the paper is the following.
In Section 2 we recall some known facts on local regularity of µ and show how the integrability of

certain unbounded functions with respect to µ can be obtained via Lyapunov functions techniques.
Moreover, these results allow us to give some growth conditions on the coefficients aij , F in order
that the integrability properties with respect to µ contained in (H1), (H2) hold true, see Remark
2.6.

In Section 3 we show global boundedness of the density ρ, a first global regularity result which
will be crucial in the developments of the subsequent sections. In Theorem 3.1 we prove that

√
ρ

belongs to W 1,2(RN ), provided that F belongs to L2(µ), thus extending a result from [3], where,
in addition, aij ∈ C1

b (RN ) was assumed. Observe, however, that the condition F ∈ Lploc(µ) is not
needed in [3]. Then we show that, if F ∈ Lk(µ) for some k > N or F,divF ∈ Lk(µ) for k > N/2,
k ≥ 2, the density ρ is bounded in RN . The proof relies upon Moser’s iteration technique, whose
starting point is Theorem 3.1. The cases 2 ≤ k < N are also examined. The local regularity
of ρ which follows from (H0) is crucial to perform the needed integration by parts. In fact, in
our approach, global regularity is deduced from local regularity and this, in turn, holds since the
diffusion matrix (aij) is locally uniformly elliptic. However, the assumption F ∈ Lploc(µ) for some
p > N , though a weak one, looks too strong when the global integrability condition F ∈ Lk(µ) is
required only for k ≤ N and it is possible that further investigation will remove it in these cases.
Results in this direction have been obtained in [3] using an approximation procedure that leads
directly to global regularity.
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In Section 4 we prove Sobolev regularity assuming that aij ∈ C1
b (RN ). Moreover, we also

consider the case F ∈ Lk(µ) with 1 ≤ k < 2, excluded in the previous section. We prove both
W 1,p and W 2,p regularity; in the second case, however, we need also assumptions on the divergence
of the drift F . We point out that the results on global boundedness and W 1,p regularity are
precise as regards the exponents involved: in fact, they reduce to the Sobolev embeddings when
A = ∆ −DΦ ·D, so that ρ = e−Φ, see Remarks 3.11, 4.5. On the other hand, those concerning
W 2,p regularity are not optimal. This depends upon the fact that we can prove that

√
ρ belongs

to W 1,2(RN ) when F ∈ L2(µ), whereas the conjecture ρ1/k ∈W 1,k(RN ) when F ∈ Lk(µ), needed
to improve our conditions, remains open.

In Section 5 we prove a Harnack-type inequality for ρ finding explicit bounds on its logarithmic
derivative. These bounds are used later to obtain sufficient conditions under which Dρ/ρ belongs
to Lp(µ) for 1 ≤ p < ∞. We point out that, in contrast with the case p = 2 which was already
known, see [3], the general case is obtained requiring more regularity on the coefficients and using
a different approach.

In Section 6 we prove both upper and lower bounds on ρ assuming that certain exponentials
are integrable with respect to µ. Basically we show that if exp{δ|x|β} belongs to L1(µ) for some
δ, β > 0, then ρ(x) ≤ c1 exp{−c2|x|β} for related constants c1, c2 > 0. Explicit conditions for the
integrability of the above exponentials are given in Section 2. Lower bounds for ρ are deduced
from the Harnack inequality of Section 5 assuming growth conditions of polynomial type on the
coefficients. Combining upper and lower bounds, the precise decay of ρ is given for a class of
operators.

Notation Ckb (RN ) is the space of all k times continuously differentiable functions in RN , bounded
together their derivatives up to the order k, C0(RN ) is the space of continuous functions on RN

vanishing as |x| → ∞ and C∞c (RN ) is the space of test functions. For 1 ≤ p ≤ ∞, k ∈ N,
W k,p(RN ) denotes the classical Sobolev space of all Lp-functions having weak derivatives in Lp

up to the order k. Its norm is denoted by ‖ · ‖k,p and by ‖ · ‖p when k = 0. All integrals where the
underlying measure is not explicitly indicated are understood with respect to the Lebesgue measure
dx. Accordingly, we write Lp(RN ) when the Lebesgue measure is understood. The Lp-space with
respect to a measure µ is denoted by Lp(µ).

If G : RN → Rm is a C1-function, then |DG|2 =
∑
i,j |DiGj |2 and |D2G|2 =

∑
i,j,h |DijGh|2.

We define
λ = inf

x∈RN
λ(x) Λ = sup

x∈RN

Λ(x), (1.4)

where λ(x) and Λ(x) are the minimum and the maximum eigenvalue of the matrix (aij(x)), re-
spectively. Observe that λ is the same as in (H0) and it is supposed to be positive. On the other
hand, we do not assume that Λ is finite.

We write a(ξ, η) for
∑
i,j aij(·)ξiηj , ξ, η ∈ RN .

2 Existence, uniqueness and integrability properties

In this section we briefly recall some results on invariant measures.
First, µ is absolutely continuous with respect to Lebesgue measure: we write dµ = ρdx, and

state a result concerning the local regularity of ρ which allows us to perform some integrations by
parts. We refer to [5, Corollaries 2.10, 2.11] for the proof (see also [9, Chapter 4] for the absolute
continuity of µ and the positivity of its density ρ).
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Theorem 2.1 Assume that µ is an invariant measure for A. Then dµ = ρdx with ρ ∈W 1,p
loc (RN ),

where p > N is the summability exponent in (H0). Moreover, if F ∈ Lploc(RN ) then (the continuous
representative of) ρ is positive.

Throughout the paper we always identify ρ with its continuous representative.

As regards existence and uniqueness of invariant measures we quote the following improvement
of Hasminskii’s criterion proved in [7], see also [8, Corollary 3.3] for the uniqueness part. A function
V as in the following theorem is often named a Lyapunov function.

Theorem 2.2 Assume F ∈ Lploc(RN ) and that there exists a C2-function V : RN → R such that
V (x)→∞, AV (x)→ −∞ as |x| → ∞. Then A has a unique invariant measure µ.

It is a consequence of the proof of [7, Theorem 1.1] that AV belongs to L1(µ). Since this fact
will be useful later and for reader’s convenience we extract from [7, Lemma 1.1] a short proof.

Proposition 2.3 Assume that there exists a C2-function V : RN → R such that V (x) → ∞ as
|x| → ∞ and AV (x) ≤ 0 for large |x|. Then AV belongs to L1(µ).

Proof. A simple approximation argument shows that (1.2) is satisfied for every φ ∈ C2(RN )
with compact support. Therefore, since A1 = 0, it holds for every φ ∈ C2(RN ) constant outside
of a large ball. For every n, we consider ψn ∈ C∞(R) such that ψn(t) = t for t ≤ n, ψn is constant
in [n+ 1,∞[, ψ′n ≥ 0, ψ′′n ≤ 0. Then (1.2) holds for ψn ◦ V . Let B be a ball such that AV (x) ≤ 0
if x 6∈ B. Then

A(ψn ◦ V ) = (ψ′n ◦ V )AV + (ψ′′n ◦ V )

N∑
i,j=1

aijDiV DjV ≤ 0

outside B. Then, for large n∫
RN\B

|A(ψn ◦ V )| dµ = −
∫
RN\B

A(ψn ◦ V ) dµ =

∫
B

AV dµ ≤ C

and the statement follows letting n→∞ and using Fatou’s lemma.

The integrability of certain exponential functions will be important in Section 6 to derive upper
bounds on ρ. A sufficient condition to this aim is given in the following proposition.

Proposition 2.4 Let Λ(x) be the maximum eigenvalue of (aij(x)). Assume that

lim sup
|x|→∞

(
cΛ(x) + |x|1−βG(x) · x

|x|

)
< 0 (2.1)

for some c > 0, β > 0, where G = (g1, . . . , gN ) and gi = Fi +
∑
j Djaji. Then V (x) = exp{δ|x|β}

for |x| ≥ 1 is a Lyapunov function for δ < β−1c. Moreover, exp{δ|x|β} is integrable with respect
to µ, for δ < β−1c .

Proof. Let V (x) = exp{δ|x|β} for |x| ≥ 1. We obtain, by a straightforward computation,

AV (x) = δβ|x|β−1eδ|x|
β

∑i aii(x)

|x|
+
β − 2

|x|3
N∑

i,j=1

aij(x)xixj

+δβ|x|β−3
N∑

i,j=1

aij(x)xixj +G · x
|x|

 .
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Since the quadratic form |
∑
i,j aij(x)xixj | can be estimated by Λ(x)|x|2, the first statement can

be checked by elementary arguments. As regards the second, observe that |AV | is integrable with
respect to µ, by Proposition 2.3, and that either |AV | is bigger than V (when β ≥ 1) or |AV | is
bigger than V 1−ε for every ε > 0 (when 0 < β < 1) for large |x|.

Similar computations prove the following result which will be useful in Section 6. Observe that,
since β > 1 and aij ∈ C1

b (RN ), it is no longer necessary to introduce the function G of the above
proposition.

Corollary 2.5 Assume that aij ∈ C1
b (RN ) and that

lim sup
|x|→∞

|x|1−βF (x) · x
|x|

= −c, (2.2)

0 < c ≤ ∞, for some β > 1. Then V (x) = exp{δ|x|β} for |x| ≥ 1 is a Lyapunov function for
δ < (βΛ)−1c. Moreover, exp{δ|x|β} is integrable with respect to µ for δ < (βΛ)−1c.

Remark 2.6 Proposition 2.4 and Corollary 2.5 can be used to check assumptions (H1) and (H2).
In fact, under the hypotheses of those statements, if the functions (1+|x|2)−1|aij |, (1+|x|)−1|Diaij |
and |F | grow at infinity not faster than exp{|x|γ} for some γ < β then (H1) and (H2) are satisfied.

Remark 2.7 Equation (2.2) is a radial assumption on F and, if 0 < c < ∞, it says that the
inward radial component of F has a prescribed polynomial behaviour. Of course, changing x/|x|
to (x − x0)/|x − x0| leads to a new condition that, though not equivalent to (2.2), yields similar
conclusions.

Remark 2.8 Assume that µ is the invariant measure of a Feller semigroup (T (t))t≥0. The in-
tegrability of the exponential functions exp{δ|x|2}, hence the validity of (2.2) with β = 2, is
strongly connected with hypercontractivity and supercontractivity properties of the semigroup in
Lp-spaces with respect to µ, see [14]. We also remark that if β > 2 is allowed in (2.2), then T (t))t≥0

is ultracontractive, see [14, Corollary 2.5] and compact in Cb(R
N ), see [12, Corollary 3.11].

3 Global boundedness

First we state and prove a global regularity result which generalises to our setting [3, Thereom 1.1]
and [6, Theorem 3.1]. We do not assume that the diffusion matrix (aij) is bounded and globally
Lipschitz continuous. However we suppose that F ∈ Lploc(µ) and this is not needed in [6], [3]. In
the sequel, we use the convention that |Dρ|2/ρs = 0 on the set {ρ = 0}, for any s > 0.

Theorem 3.1 Assume that dµ = ρ dx is an invariant measure for A and that F ∈ L2(µ). Then√
ρ ∈W 1,2(RN ). Moreover ∫

RN

|Dρ|2

ρ
≤ 1

λ2

∫
RN

|F |2dµ. (3.1)

Proof. From Theorem 2.1 we know that ρ ∈ W 1,p
loc (RN ) where p > N is the exponent in (H0).

The invariance of µ then implies ∫
RN

a(Dρ,Dφ) =

∫
RN

F ·Dφρ (3.2)
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for every φ ∈ C∞c (RN ). Since ρ is continuous, then Fρ ∈ L2
loc(R

N ) and, by density, equality (3.2)
holds if φ belongs to W 1,2(RN ) and has a compact support. Let us take η ∈ C∞c (RN ) such that
η(x) = 1 for |x| ≤ 1 and η(x) = 0 for |x| ≥ 2, ηn(x) = η(x/n) and observe that for every ε, k
such that 0 < ε < k, the function log((ρ ∨ ε) ∧ k) belongs to W 1,p

loc (RN ) ∩ L∞(RN ), p > N ≥ 2.
Plugging φ = η2

n log((ρ ∨ ε) ∧ k) in (3.2), since

D log((ρ ∨ ε) ∧ k) =
Dρ

ρ
χ{ε<ρ<k}

we obtain ∫
RN

η2
nχ{ε<ρ<k}

a(Dρ,Dρ)

ρ
= −2

∫
RN

ηn log((ρ ∨ ε) ∧ k)a(Dρ,Dηn)

+

∫
RN

η2
nF ·Dρχ{ε<ρ<k}

+2

∫
RN

ηnρ log((ρ ∨ ε) ∧ k)F ·Dηn.

The above equality yields∫
RN

η2
nχ{ε<ρ<k}

a(Dρ,Dρ)

ρ
≤

(∫
RN

η2
nχ{ε<ρ<k}

|Dρ|2

ρ

)1/2(∫
RN

|F |2ρ
)1/2

+
C(ε, k)

n

∫
RN

|F |ρ+ In,

(3.3)

where

In = −2

∫
RN

ηn log((ρ ∨ ε) ∧ k)a(Dρ,Dηn).

Integrating by parts we obtain

In = 2

∫
{n≤|x|≤2n}

ρ

log((ρ ∨ ε) ∧ k)a(Dηn, Dηn) + ηn log((ρ ∨ ε) ∧ k)

N∑
i,j=1

aijDijηn

+ ηn log((ρ ∨ ε) ∧ k)

N∑
i,j=1

DiaijDjηn + ηnχ{ε<ρ<k}
a(Dρ,Dηn)

ρ

 .

Since |Dηn| ≤ C(1 + |x|)−1, |D2ηn| ≤ C(1 + |x|2)−1 in {n ≤ |x| ≤ 2n}, with C independent of n,
assumption (H1) implies that, for a suitable ω(ε, k, n) which goes to 0 as n→∞ for fixed ε, k, we
have

|In| ≤ ω(ε, k, n) + 2

∫
{n≤|x|≤2n}

ηnχ{ε<ρ<k}a(Dρ,Dηn)

≤ ω(ε, k, n) + 2

(∫
RN

η2
nχ{ε<ρ<k}

a(Dρ,Dρ)

ρ

)1/2
(∫
{n≤|x|≤2n}

a(Dηn, Dηn)ρ

)1/2

≤ ω(ε, k, n)(1 + δ−1) + δ

∫
RN

η2
nχ{ε<ρ<k}

a(Dρ,Dρ)

ρ
,
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for every δ > 0. From (3.3) we now get, using Young’s inequality,

(1− δ)
∫
RN

η2
nχ{ε<ρ<k}

a(Dρ,Dρ)

ρ
≤ ω(ε, k, n) + Cδ−1

∫
RN

|F |2ρ

+
δ

λ

∫
RN

η2
nχ{ε<ρ<k}

a(Dρ,Dρ)

ρ

and, fixing a sufficiently small δ,∫
RN

η2
nχ{ε<ρ<k}

a(Dρ,Dρ)

ρ
≤ ω(ε, k, n) + C

∫
RN

|F |2ρ.

Letting n→∞ and then ε→ 0, k →∞ we obtain∫
RN

a(Dρ,Dρ)

ρ
≤ C

∫
RN

|F |2ρ <∞.

At this point the previous estimates show that In → 0 as n → ∞. Therefore, letting n → ∞ and
then ε→ 0, k →∞ in (3.3) we obtain∫

RN

a(Dρ,Dρ)

ρ
≤

(∫
RN

|Dρ|2

ρ

)1/2(∫
RN

|F |2ρ
)1/2

≤ 1√
λ

(∫
RN

a(Dρ,Dρ)

ρ

)1/2(∫
RN

|F |2ρ
)1/2

and the statement follows.

Corollary 3.2 If F ∈ L2(µ) then ρ ∈ W 1,1(RN ). Moreover ρ ∈ LN/(N−2)(RN ) if N > 2 and
ρ ∈ Lp(RN ) for every p <∞ if N = 2.

Proof. Since
√
ρ ∈ W 1,2(RN ), the Sobolev embedding theorem gives ρ ∈ LN/(N−2)(RN ) for

N > 2 and ρ ∈ Lp(RN ) for every p < ∞ if N = 2. The integrability of Dρ follows from Hölder’s
inequality and (3.1).

We now prove that, assuming F ∈ Lk(µ) for some k > N , the density ρ belongs to L∞(RN ).
The proof relies upon Moser’s iteration technique whose starting point is inequality (3.4) proved
in the following lemma.

Lemma 3.3 Assume that F ∈ Lk(µ) for some k > 2 and fix β > 0. If ρ ∈ Lβ
k
k−2 +1(RN ), then

λ2

∫
RN

ρβ−1|Dρ|2 ≤
∫
RN

|F |2ρβ+1 <∞. (3.4)

Proof. First we observe that∫
RN

|F |2ρβ+1 =

∫
RN

|F |2ρ2/kρβ+1−2/k

≤
(∫

RN

|F |kρ
)2/k (∫

RN

ρβ
k
k−2 +1

)1−2/k

<∞. (3.5)
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We use the same strategy and the same notation as in the proof of Theorem 3.1. Inserting
φ = η2

n((ρ ∨ ε) ∧ k)β in (3.2) and observing that D((ρ ∨ ε) ∧ k)β = βρβ−1Dρχ{ε<ρ<k}, we obtain

β

∫
RN

η2
nρ

β−1χ{ε<ρ<k}a(Dρ,Dρ) = −2

∫
RN

ηn((ρ ∨ ε) ∧ k)βa(Dρ,Dηn)

+β

∫
RN

η2
nρ

βχ{ε<ρ<k}F ·Dρ (3.6)

+2

∫
RN

ηnρ((ρ ∨ ε) ∧ k)βF ·Dηn

= In + Jn +Kn. (3.7)

Let us first estimate Jn,Kn. We have, with C = ‖Dη‖∞,

|Jn| ≤ β

∫
RN

η2
nρ

(β−1)/2χ{ε<ρ<k}ρ
(β+1)/2|F ||Dρ|

≤ β

(∫
RN

η2
nρ

β−1χ{ε<ρ<k}|Dρ|2
)1/2(∫

RN

|F |2ρβ+1

)1/2

.

|Kn| ≤
Ckβ

n

∫
RN

|F |ρ.

Observe that Kn → 0 as n → ∞, since F ∈ L1(µ). The term In is treated as in Theorem 3.1.
Integrating by parts we have

In = 2

∫
{n≤|x|≤2n}

ρ

((ρ ∨ ε) ∧ k)βa(Dηn, Dηn) + ηn((ρ ∨ ε) ∧ k)β
N∑

i,j=1

aijDijηn

+ ((ρ ∨ ε) ∧ k)βηn

N∑
i,j=1

DiaijDjηn + βηnρ
β−1χ{ε<ρ<k}a(Dρ,Dηn)

 .

Since |Dηn| ≤ C(1 + |x|)−1, |D2ηn| ≤ C(1 + |x|2)−1 in {n ≤ |x| ≤ 2n}, and C is independent of n,
for a suitable ω(ε, k, n) which goes to 0 as n→∞ for fixed ε, k, we have

|In| ≤ ω(ε, k, n)

+ β

(∫
RN

η2
nρ

β−1χ{ε<ρ<k}a(Dρ,Dρ)

)1/2
(∫
{n≤|x|≤2n}

ρβ+1χ{ε<ρ<k}a(Dηn, Dηn)

)1/2

≤ ω(ε, k, n)(1 + δ−1) + δ

∫
RN

η2
nρ

β−1χ{ε<ρ<k}a(Dρ,Dρ)

for every δ > 0. We have thus obtained

β

∫
RN

η2
nρ

β−1χ{ε<ρ<k}a(Dρ,Dρ) ≤ β

(∫
RN

η2
nρ

β−1χ{ε<ρ<k}|Dρ|2
)1/2(∫

RN

|F |2ρβ+1

)1/2

+Kn

+ ω(ε, k, n)(1 + δ−1) + δ

∫
RN

η2
nρ

β−1χ{ε<ρ<k}a(Dρ,Dρ),

for every δ > 0. Using the ellipticity of the matrix (aij) and arguing as in Theorem 3.1 we obtain∫
RN

ρβ−1a(Dρ,Dρ) <∞.
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Therefore In → 0 as n→∞ hence, letting n→∞ in (3.6), we have∫
RN

ρβ−1χ{ε<ρ<k}a(Dρ,Dρ) ≤
(∫

RN

ρβ−1χ{ε<ρ<k}|Dρ|2
)1/2(∫

RN

|F |2ρβ+1

)1/2

.

Letting ε→ 0, k →∞ one concludes

λ

∫
RN

ρβ−1|Dρ|2 ≤
∫
RN

ρβ−1a(Dρ,Dρ) ≤
(∫

RN

ρβ−1|Dρ|2
)1/2(∫

RN

|F |2ρβ+1

)1/2

.

Corollary 3.4 Assume that F ∈ Lk(µ) for some k > 2 and fix β > 0. If ρ ∈ Lβ
k
k−2 +1(RN ), then

ρ(β+1)/2 ∈W 1,2(RN ) and∫
RN

|Dρ(β+1)/2|2 ≤
(
β + 1

2λ

)2(∫
RN

|F |kρ
)2/k (∫

RN

ρβ
k
k−2 +1

)1−2/k

(3.8)

Proof. Observe that ρ(β+1)/2 ∈ L2(RN ), since 1 < β + 1 < (βk)/(k − 2) + 1. Estimate (3.8) is
immediate from (3.4) and (3.5).

Theorem 3.5 If F ∈ Lk(µ) for some k > N , then ρ ∈ L∞(RN ).

Proof. Assume that N ≥ 3; the case N = 2 will be treated separately. Let us first show
that the above estimates imply an improvement of the integrability of ρ. To this aim, assume

that ρ ∈ Lβ
k
k−2 +1 for some β > 0. Using Corollary 3.4 and the Sobolev embedding we obtain

ρ(β+1)/2 ∈ L2N/(N−2)(RN ) and(∫
RN

ρ(β+1) N
N−2

)1/2−1/N

≤ C‖Dρ(β+1)/2‖2

≤ C‖F‖Lk(µ)

β + 1

2λ

(∫
RN

ρ(βk)/(k−2)+1

)1/2−1/k

,

(3.9)

where C depends only upon N . Setting

γ = β
k

k − 2
+ 1 and θ =

N

N − 2

k − 2

k
,

we have θ > 1 since k > N , and the improved integrability exponent can be written θ
(
γ+ 2

k−2

)
. We

now iterate the above estimate in order to show that the norms ‖ρ‖Lp are all uniformly bounded.
Let us define {

γn+1 = θ
(
γn + 2

k−2

)
γ0 = N

N−2

(3.10)

and observe that ρ ∈ Lγ0(RN ), by Corollary 3.2. Then γn = βn
k
k−2 + 1 for some βn > 0 and

βn + 1 =
N − 2

N
γn+1 =

k − 2

k

(
γn +

2

k − 2

)

9



Setting C1 = C‖F‖Lk(µ)/2λ, inequality (3.9) says that

‖ρ‖n+1 ≤
(
C1
N − 2

N
γn+1

) 2N
N−2

1
γn+1 ‖ρ‖

γn

γn+ 2
k−2

n , (3.11)

where ‖ρ‖n denotes the norm of ρ in Lγn(RN ). Observe that γn+1 ≥ θn+1γ0 and that for αn =
log ‖ρ‖n we have

αn+1 ≤
2N

N − 2

1

γn+1
log(C2γn+1) +

γn

γn + 2
k−2

αn,

C2 = (1−2/N)C1. These inequalities imply that log ‖ρ‖∞ = limn→∞ αn <∞. In fact, if αn →∞,
then αn ≥ 0 for large n and

αn+1 − αn ≤
2N

N − 2

1

γn+1
log(C2γn+1) ≤ C3

1

γ1−ε
n+1

for some C3 > 0 and any 0 < ε < 1. Since the series on the right hand side converges, (αn) cannot
be divergent. This concludes the proof for N ≥ 3.

Consider now the case N = 2, with variables (x, y). Introduce the operator B in R3, with
variables (x, y, z)

B = A+Dzz − zDz,

and notice that exp{−z2/2} dz is (up to a normalisation constant) the invariant measure of the
one-dimensional operator Dzz − zDz. Let dµ = ρ(x, y) dx dy be the invariant measure of A, and
check that dν = ρ(x, y) exp{−z2/2} dx dy dz is invariant for B. In fact, for every φ ∈ C∞c (R3),
using the Fubini theorem and differentiating under the integral sign we have∫

R3

Bφdν =

∫
R

exp{−z2/2}
(∫

R2

(Aφ+ φzz − zφz)ρ(x, y) dx dy

)
dz

=

∫
R

exp{−z2/2}(Dzz − zDz)

(∫
R2

φ ρ(x, y) dx dy

)
dz = 0

because the function z 7→
∫
R2 φ ρ(x, y) dx dy belongs to C∞c (R). As a consequence of the first part

of the proof, the density of ν is bounded in R3, and taking z = 0 this implies that ρ is bounded in
R2.

In the case k = N we obtain that ρ ∈ Lp(RN ) for every p <∞.

Proposition 3.6 If F ∈ LN (µ), then ρ ∈ Lp(RN ) for every p <∞.

Proof. Assume that N ≥ 3. Proceeding as in the proof of Theorem 3.5 we obtain that
ρ ∈ Lγn(RN ) for every n, where {

γn+1 =
(
γn + 2

N−2

)
γ0 = N

N−2

Since γn →∞ we obtain the statement. The case N = 2 is already covered by Corollary 3.2.

Finally, let us examine the case 2 < k < N . Observe that the case k = 2 is covered by Corollary
3.2.

Proposition 3.7 If F ∈ Lk(µ) with 2 < k < N then ρ ∈ Lp(RN ) for every p ≤ N/(N − k).

10



Proof. We define (γn) as in (3.10). It is easily checked that (γn) is increasing and convergent to
N/(N − k) and we have only to show that the limit of the sequence (‖ρ‖n) is finite, where, as in
the proof of Theorem 3.5, ‖ρ‖n denotes the norm of ρ in Lγn(RN ). Suppose, by contradiction,
that ‖ρ‖n →∞. Since N/(N −2) ≤ γn ≤ N/(N −k) and γn

γn+2/(k−2) ≤ θ < 1 from equation (3.11)

we obtain
‖ρ‖n+1 ≤ C‖ρ‖θn

for large n and a suitable C. However, this easily implies that the sequence (‖ρ‖n) is convergent.

Corollary 3.8 If F ∈ Lk(µ) for k ≥ (N + 2)/2, k > 2, then ρ ∈W 1,2(RN ).

Proof. We may assume that k = (N + 2)/2. If N ≥ 3, Proposition 3.7 gives ρ ∈ Lp(RN )
with p = (2N)/(N − 2) = (2k − 2)/(k − 2) for k = (N + 2)/2. The same is true for N = 2 since
ρ ∈ Lp(RN ) for every p <∞, by Corollary 3.2. We may therefore apply Corollary 3.4 with β = 1
to conclude the proof.

If we assume further regularity on F , as we shall do in the next section dealing with W 2,p

regularity, we can prove global boundedness of ρ assuming that F and divF belong to Lk(µ) for
some k > N/2. For simplicity we assume that F ∈W 1,∞

loc (RN ) even though less local regularity of
F suffices to perform the needed integration by parts.

Theorem 3.9 Assume that F ∈W 1,∞
loc (RN ) and that F,divF ∈ Lk(µ) for some k > N/2, k ≥ 2.

Then ρ ∈ L∞(RN ).

Proof. The proof is similar to that of Theorem 3.5, using Lemma 3.10 below instead of Lemma
3.3.

Lemma 3.10 Assume that F ∈W 1,∞
loc (RN ) and that F,divF ∈ Lk(µ) for some k > 1. Fix β > 0

and suppose that ρ ∈ Lβ
k
k−1 +1(RN ). Then

λ(β + 1)

∫
RN

ρβ−1|Dρ|2 ≤ −
∫
RN

ρβ+1divF <∞. (3.12)

Proof. We keep the notation of the proof of Lemma 3.3. Multiplying the (distributional) identity
A0ρ = div (ρF ) by η2

n((ρ∨ ε)∧k)β we obtain again (3.6). The estimates for In and Kn are similar,
whereas Jn is treated as follows.

Jn =
β

β + 1

∫
RN

η2
nF ·D((ρ ∨ ε) ∧ k)β+1

= − β

β + 1

∫
RN

((ρ ∨ ε) ∧ k)β+1
(
F ·D(η2

n) + η2
ndivF

)
.

Using Hölder’s inequality, it is easily seen that ρβ+1F, ρβ+1divF ∈ L1(RN ) and this implies that

Jn → −
β

β + 1

∫
RN

((ρ ∨ ε) ∧ k)β+1divF as n→ +∞.

From this point on, the proof is similar to that of Lemma 3.3.

Remark 3.11 Assume that A = ∆ + F ·D where F = −DΦ (which is clearly the case, e.g., if F
is radial) and Φ ∈ C1(RN ) satisfies e−Φ ∈ L1(RN ). Then ρ = e−Φ and the assumption F ∈ Lk(µ)
(F = −DΦ) is equivalent to e−Φ/k ∈W 1,k(RN ). The integrability statements of Theorem 3.5 and
Propositions 3.6, 3.7 are exactly those given by the Sobolev embeddings.
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4 Sobolev regularity

In this section we obtain Sobolev regularity results for ρ under the additional hypothesis that
aij ∈ C1

b (RN ). Moreover, we can also deal with the case F ∈ Lk(µ) for 1 ≤ k < 2, excluded in the
previous section. For further reference, let us state a classical Lp-regularity result for uniformly
elliptic operaors (see [1]).

Theorem 4.1 Let 1 < p <∞, aij ∈ C1
b (RN ), F ∈W 1,∞

loc (RN ) and set

A =

N∑
i,j=1

Di(aijDj) +

N∑
i=1

FiDi = A0 + F ·D.

(i) Let u ∈ Lp(RN ) be such that ∣∣∣ ∫
RN

uA0φ
∣∣∣ ≤ C‖φ‖W 1,p′ (RN )

for every φ ∈ C∞c (RN ). Then u ∈W 1,p(RN ).

(ii) Let f, u ∈ Lploc(RN ) be such that ∫
RN

uAφ =

∫
RN

fφ

for every φ ∈ C∞c (RN ). Then u ∈W 2,p
loc (RN ).

Let us improve the conclusions of Theorem 3.5 and Propositions 3.6, 3.7.

Theorem 4.2 Assume that aij ∈ C1
b (RN ).

(i) If F ∈ Lk(µ) for some k > N , then ρ ∈W 1,p(RN ) for every 1 ≤ p ≤ k.

(ii) If F ∈ LN (µ), then ρ ∈W 1,p(RN ) for every 1 ≤ p < N .

(iii) If F ∈ Lk(µ), for 2 ≤ k < N then ρ ∈W 1,p(RN ) for every 1 ≤ p ≤ N/(N − k + 1).

Proof. (i) The invariance of µ yields, for φ ∈ C∞c (RN ),∫
RN

(A0φ)ρ = −
∫
RN

(F ·Dφ)ρ,

where A0 is defined in (1.1). Since ρ ∈ L1(RN ) ∩ L∞(RN ) by Theorem 3.5 and F ∈ Lk(µ) it
follows that Fρ ∈ Lk(RN ). Then∣∣∣ ∫

RN

(A0φ)ρ
∣∣∣ ≤ C‖φ‖W 1,k′ (RN )

for every φ ∈ C∞c (RN ) and ρ ∈ W 1,k(RN ), from Theorem 4.1(i). Since ρ ∈ W 1,1(RN ), by
Corollary 3.2, the first statement follows.
(ii) The proof proceeds as in (i). In fact, ρ ∈ Lq(RN ) for every q < ∞, see Proposition 3.6, and
therefore F ∈ LN (µ) implies that ρF ∈ Lp(RN ) for every p < N .
(iii) By Proposition 3.7 we know that ρ ∈ LN/(N−k)(RN ) and then ρF ∈ Lp(RN ) with p =
N/(N − k + 1). The same argument as in (i) yields ρ ∈W 1,p(RN ).
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Observe that we have obtained ρ ∈ W 1,N/(N−1) when F ∈ L2(µ), whereas Theorem 3.1 yields
only ρ ∈W 1,1(RN ).

We consider now the case 1 ≤ k < 2 where we obtain, however, less precise results. We start by
showing that under very weak conditions the function ρ belongs to Lp(RN ) for p < N/(N−1). We
refer the reader to [4] for local versions of the following theorem. We point out that the hypothesis
F ∈ Lploc(µ) is not needed in Theorem 4.3 and in Proposition 4.4.

Theorem 4.3 If aij ∈ C1
b (RN ) and F ∈ L1(µ), then dµ = ρ dx with ρ ∈ Lp(RN ) for every

p < N/(N − 1).

Proof. The invariance of µ yields for φ ∈ C∞c (RN )∫
RN

(φ−A0φ) dµ =

∫
RN

(φ+ F ·Dφ) dµ

hence, since F ∈ L1(µ), ∣∣∣∣∫
RN

(φ−A0φ) dµ

∣∣∣∣ ≤ C‖φ‖1,∞. (4.1)

Fix 1 < p < N/(N − 1) and let q = p/(p − 1) be the conjugate exponent to p. Clearly q > N .
Given ψ ∈ C∞c (RN ), let w ∈ W 2,q(RN ) be such that w − A0w = ψ. Then ‖w‖2,q ≤ C1‖ψ‖q
with C1 independent of ψ. Moreover, by the Sobolev embedding, w,Dw ∈ C0(RN ) and ‖w‖1,∞ ≤
C2‖w‖2,q.

In order to show that we can insert w in (4.1) we use an approximation procedure. Let
ηn = η(x/n) where η ∈ C∞c (RN ) satisfies η(x) = 1 for |x| ≤ 1 and η(x) = 0 for |x| ≥ 2. Then
ηnw → w in W 2,q(RN ) and A0(ηnw)→ A0w in C0(RN ). Fix now n and consider v = ηnw. Setting
vε = v ∗ ξε, where ξ is a standard mollifier with compact support, vε ∈ C∞c (RN ) and vε → v in
W 2,q(RN ). Moreover,

A0vε = (A0v) ∗ ξε +

N∑
i,j=1

∫
RN

(aij(x)− aij(x− y))Dijv(x− y)ξε(y) dy

+

N∑
i=1

∫
RN

(bi(x)− bi(x− y))Div(x− y)ξε(y) dy

where bi =
∑
j Djaij . Clearly (A0v) ∗ ξε → A0v uniformly, since A0v ∈ C0(RN ). The term

containing the bi converges to zero uniformly since the bi are uniformly continuous and Dv ∈
C0(RN ). Since |aij(x)− aij(x− y)| ≤ L|y|, a simple computation using Hölder’s inequality (since
q > N) shows that also the remaining term goes to zero uniformly. Then A0vε → A0v uniformly.
Summing up, there exists a sequence (wn) ⊂ C∞c (RN ) such that wn → w in W 2,q(RN ) and
A0wn → A0w uniformly.

Then, passing to the limit, we may insert φ = w in (4.1) to get∣∣∣∣∫
RN

ψdµ

∣∣∣∣ =

∣∣∣∣∫
RN

(w −A0w) dµ

∣∣∣∣ ≤ C‖w‖1,∞ ≤ C3‖ψ‖q.

Therefore dµ = ρ dx with ρ ∈ Lp(RN ).

Local versions of the following proposition are contained in [5], where regularity results in
fractional Sobolev spaces are also obtained for aij = δij .
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Proposition 4.4 If aij ∈ C1
b (RN ) and F ∈ Lk(µ) for some 1 < k < 2, then ρ ∈ W 1,p(RN ) for

every 1 < p < N/(N − k + 1).

Proof. The invariance of µ yields, for φ ∈ C∞c (RN ),∫
RN

(A0φ)ρ = −
∫
RN

(F ·Dφ)ρ.

Assume that ρ ∈ Lqn(RN ) for some qn > 1. Writing ρF = ρ1/kρ1−1/kF , Hölder’s inequality yields
ρF ∈ Lrn(RN ) for

1

rn
=

1

k
+

(
1− 1

k

)
1

qn
, (4.2)

hence ∣∣∣∣∫
RN

(A0φ)ρ

∣∣∣∣ ≤ C‖φ‖1,r′n .
Since 1 < rn < qn, Theorem 4.1(i) yields ρ ∈ W 1,rn(RN ) hence, by the Sobolev embedding,
ρ ∈ Lqn+1(RN ) with

1

qn+1
=

1

rn
− 1

N
=

1

k
− 1

N
+

(
1− 1

k

)
1

qn

(observe that rn < 2 ≤ N). We may start an iteration by choosing any 1 < q0 < N/(N − 1), by
Theorem 4.3, and then it is easily checked that (qn) in increasing and convergent to N/(N − k).
This proves that ρ ∈ Lq(RN ) for every 1 ≤ q < N/(N − k) and then, by (4.2), ρ ∈ W 1,p(RN ) for
every 1 < p < N/(N − k + 1).

Remark 4.5 Consider again, as in Remark 3.11, the operator A = ∆−DΦ ·D, so that F ∈ Lk(µ)
is equivalent to ψ = e−Φ/k ∈ W 1,k(RN ). Since ρ = ψk it is easily seen that Theorem 4.2 gives
precise results. However, if 1 ≤ k < 2, the limiting cases p = N/(N −1) in Theorem 4.3 and p = 1,
p = (NK)/(N − k+ 1) in Proposition 4.4 are excluded. We do not know whether for these values
the same results hold.

In order to deal with W 2,p-regularity of ρ, we observe that Theorem 4.1(ii) yields ρ ∈W 2,p
loc (RN )

for every p <∞ if F ∈W 1,∞
loc (RN ).

Lemma 4.6 Assume that aij ∈ C1
b (RN ), F ∈ W 1,∞

loc (RN ) and that F,divF ∈ Lk(µ) for some
k > N/2, k ≥ 2. If Dρ ∈ Lq(RN ) for some 1 < q < ∞, then ρ ∈ W 2,r(RN ) for every 1 < r ≤ p,
where

1

p
=
(

1− 2

k

)1

q
+

2

k
. (4.3)

Proof. Since ρ ∈ W 2,r
loc (RN ) for every r < ∞, it satisfies the equation A0ρ = F · Dρ + ρdivF .

Moreover, since ρ ∈ L∞(RN ) by Theorem 3.9, it follows that ρdivF ∈ Lp(RN ) for every p ≤ k.
Let us deal with the term F ·Dρ. By Hölder’s inequality we have∫

RN

|F |p|Dρ|p =

∫
RN

|F |p|Dρ|p− 2
r |Dρ|2/rρ−1/rρ1/r

≤
(∫

RN

|Dρ|2

ρ

)1/r(∫
RN

|F |prρ
)1/r(∫

RN

|Dρ|(p− 2
r )s
)1/s (4.4)
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whenever r, s > 0 and 2/r + 1/s = 1. From (3.1) it follows that the right hand side of (4.4) is
finite if pr = k and (p− 2/r)s = q. These conditions easily yield (4.3). Since A0ρ ∈ Lp(RN ), the
Calderón-Zygmund estimates imply that ρ ∈W 2,p(RN ). This proves the statement with r = p. If
1 < r < p, then r−1 = (1−2/k)q−1

1 +2/k for some 1 < q1 < q and Dρ belongs to L1(RN )∩Lq(RN ),
hence to Lq1(RN ). By the first part of the proof, ρ ∈W 2,r(RN ).

Proposition 4.7 Assume that aij ∈ C1
b (RN ), F ∈W 1,∞

loc (RN ) and F,divF ∈ Lk(µ), k ≥ 2.

(i) If k > N , then ρ ∈W 2,r(RN ) for every 1 < r ≤ k2

3k−2 .

(ii) If k = N then ρ ∈W 2,r(RN ) for every 1 < r < N2

3N−2 .

(iii) If N/2 < k < N , then ρ ∈W 2,r(RN ) for every 1 < r ≤ kN
kN−k2+3k−2 .

Proof. Theorem 4.2 allows us to put q = k, q < N arbitrary, and q = N/(N−k+1), respectively,
in Lemma 4.6, and all the statements follow.

The above proposition yields, roughly speaking, ρ ∈ W 2,k/3 whenever F and divF belong to
Lk(µ) for some k > N . If k ≥ 2N we can improve k/3 to k/2 iterating the procedure of Lemma
4.6.

Theorem 4.8 Assume that F ∈ W 1,∞
loc (RN ) and that F,divF ∈ Lk(µ) for some k ≥ 2N . Then

ρ ∈W 2,p(RN ) for every 1 < p < k/2. Moreover, if k > 2N , then ρ ∈W 2, k2 (RN ).

Proof. First we show that Dρ ∈ Lq(RN ) for every q < ∞ if k ≥ 2N and that Dρ ∈ L∞(RN ) if
k > 2N . Using Lemma 4.6 and setting for every n ∈ N

1

pn+1
=
(

1− 2

k

) 1

qn
+

2

k
and

1

qn+1
=

1

pn+1
− 1

N
,

we deduce that if Dρ ∈ Lqn(RN ), then ρ ∈ W 2,pn+1(RN ). We may take q0 = k, by Theorem
4.2. If pn ≥ N for some n, then Dρ ∈ Lq(RN ) for every q < ∞. Assume now that pn < N
for every n ∈ N. Then, by the Sobolev embedding, Dρ ∈ Lqn+1(RN ). Since k ≥ 2N it is
easily seen that the sequence (qn) is increasing, hence it is convergent to some ` ≥ 0 such that
`−1 = (1− 2/k)`−1 + 2/k − 1/N , whence ` =∞ and thus Dρ ∈ Lq(RN ), for every q <∞, again.

In the case k > 2N , arguing as above, the assumption pn ≤ N for every n leads to ` < 0, which
is impossible. Hence pn > N for some n and Dρ ∈ L∞(RN ).

To show that ρ ∈ W 2,p(RN ) for 1 < p < k/2 we use the identity A0ρ = F ·Dρ + ρ divF and
observe that ρdivF ∈ Lp(RN ). Moreover∫

RN

|F |p|Dρ|p =

∫
RN

|F |p|Dρ|p(1−2/k)|Dρ|2p/kρ−p/kρp/k

≤
(∫

RN

|Dρ|tp(1−2/k)

)1/t(∫
RN

|Dρ|2

ρ

)p/k (∫
RN

|F |kρ
)p/k

<∞,

where 2p/k + 1/t = 1. This shows that A0ρ ∈ Lp(RN ), hence ρ ∈W 2,p(RN ).
If k > 2N then Dρ ∈ L∞(RN ) and thus∫

RN

|F |k/2|Dρ|k/2 =

∫
RN

|F |k/2|Dρ|k/2−1|Dρ|ρ−1/2ρ1/2

≤ ‖Dρ‖k/2−1
∞

(∫
RN

|Dρ|2

ρ

)1/2(∫
RN

|F |kρ
)1/2

<∞

so that A0ρ ∈ Lk/2(RN ) and ρ ∈W 2, k2 (RN ).
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5 A Harnack inequality

In this section we prove pointwise bounds for log ρ and Dρ/ρ in terms of F and its derivatives up
to the second order. In particular we obtain a quantitative Harnack inequality for ρ. We use these
bounds to find conditions under which |D log ρ| belongs to Lp(µ) for 1 ≤ p <∞.

The following lemma is the main step to the results of this section. Its proof is based on the
Bernstein method which requires more regularity on the coefficients in order to differentiate the
equation solved by ρ. We refer the reader to [10, Section 7.1.4.b] where similar computations are
performed in the parabolic case.

Lemma 5.1 Assume that v ∈ C3(RN ) solves the equation

Bv + a(Dv,Dv)−H ·Dv = G (5.1)

where B =
∑
i,j aijDij and aij ∈ C2

b (RN ), Hi ∈ C2(RN ), G ∈ C1(RN ) and set

Φ(x) = 1 + |H(x)|+ |DH(x)|+ |D2H(x)|+ |G(x)|+ |DG(x)|
Ψ(x) = sup

|y−x|≤1

Φ(y).

Then |Dv| ≤ CΨ, where C depends only on the ellipticity constant λ and ‖aij‖C2
b
(RN ).

Proof. Let w = a(Dv,Dv)−H ·Dv = G−Bv. Then

Dhw = 2
∑
i,j

aijDihvDjv +
∑
i,j

DhaijDivDjv −
∑
j

HjDhjv −
∑
j

DhHjDjv

= DhG−
∑
i,j

aijDhijv −
∑
i,j

DhaijDijv

and

Bw = 2
∑
i,j,h,k

ahkaijDihvDjkv +
∑
j

(
2
∑
i

aijDiv −Hj

)∑
h,k

ahkDhkjv

+4
∑
i,j,h,k

ahkDhaijDikvDjv +
∑
i,j,h,k

ahkDhkaijDivDjv

−2
∑
j,h,k

ahkDkHjDhjv −
∑
j,h,k

ahkDhkHjDjv.

Using the identity ∑
h,k

ahkDjhkv = DjG−Djw −
∑
h,k

DjahkDhkv,

the ellipticity of the matrix (aij) and setting bj = 2
∑
i aijDiv −Hj , b = (b1, . . . , bN ), we obtain

−w +Bw + b ·Dw ≥ −a(Dv,Dv) +H ·Dv + 2λ2|D2v|2 + b ·DG−
∑
j,h,k

bjDjahkDhkv

+4
∑
i,j,h,k

ahkDhaijDikvDjv +
∑
i,j,h,k

ahkDhkaijDivDjv

−2
∑
j,h,k

ahkDkHjDhjv −
∑
j,h,k

ahkDhkHjDjv.
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We fix x0 ∈ RN and η ∈ C∞c (RN ) such that η = 1 in B(x0, 1/2), η = 0 outside B(x0, 1), 0 ≤ η ≤ 1
and |Dη|, |D2η| ≤ L, with L independent of x0. For z = η4w we obtain

−z+Bz+b·Dz = η4(−w+Bw+b·Dw)+8η3a(Dη,Dw)+4η3wBη+12η2wa(Dη,Dη)+4η3wb·Dη.

Next observe that, denoting by M a generic constant which depends only upon ‖aij‖C2
b
(RN ) but

may change from line to line, the following estimates hold:

(i) |Dv| ≤M(|D2v|1/2 + |H|+ |G|1/2)

(ii) |w| ≤M(|D2v|+ |G|)

(iii) |b| ≤M(|Dv|+ |H|) ≤M(|D2v|1/2 + |H|+ |G|1/2)

(iv) |Dw| ≤M(|Dv||D2v|+ |Dv|2 + |H||D2v|+ |DH||Dv|)

Using repeatedly these estimates it follows that for every ε > 0

−w +Bw + b ·Dw ≥ −M |Dv|2 − |H|
2

2
− |Dv|

2

2
+ 2λ2|D2v|2 − |b|

2

2

−|DG|
2

2
− M

ε
|b|2 −Mε|D2v|2 − M

ε
|Dv|2 −Mε|D2v|2

−M |Dv|2 − M

ε
|DH|2 −Mε|D2v|2 − M

2
|D2H|2 −M |Dv|

2

2

≥ (2λ2 − 3Mε)|D2v|2 − M

ε

(
|D2v|+ |D2v|1/2 + Φ2

)
.

Moreover,

η3|Dη||Dw| ≤ Mη3(|Dv||D2v|+ |Dv|2 + |H||D2v|+ |DH||Dv|)

≤ Mη3
(
|D2v|(|D2v|1/2 + |H|+ |G|1/2) + (|D2v|1/2 + |H|+ |G|1/2)2

+|H||D2v|+ |DH|(|D2v|1/2 + |H|+ |G|1/2)
)

≤ M

(
η3|D2v|3/2 + η2|D2v|+ εη4|D2v|2 +

1

ε
Φ2

)
and also

η3|w||Bη|+ 4η2|w|a(Dη,Dη) ≤M(η2|D2v|+ Φ)

and

η3|w||b||Dη| ≤ Mη3(|D2v|+ |G|)(|D2v|1/2 + |H|+ |G|1/2)

≤ Mη3(|D2v|3/2 + Φ|D2v|+ Φ|D2v|1/2 + Φ2)

≤ M

(
η3|D2v|3/2 + η2|D2v|+ εη4|D2v|2 +

1

ε
Φ2

)
.

Fixing a sufficiently small ε we get for x ∈ B(x0, 1)

−z +Bz + b ·Dz ≥ λ2η4|D2v|2 − c1(η3|D2v|3/2 + η2|D2v|)− c2Φ2

≥ −K − c2Ψ2(x0)
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where c1, c2 depend only upon ‖aij‖C2
b
(Rn), λ and −K is the minimum of the function λt2 −

c1t
3/2 − c1t over [0,∞[. Since z = 0 at the boundary of B(x0, 1), the maximum principle yields

w(x0) = z(x0) ≤ K + c2Ψ2(x0) ≤ c3Ψ2(x0). Then

λ|Dv(x0)|2 ≤ a(Dv(x0), Dv(x0)) = w(x0) +H(x0) ·Dv(x0) ≤ c4Ψ2(x0) +
λ

2
|Dv(x0)|2

and the proof is complete.

We can now estimate D log ρ in terms of F . Observe that we need the assumption aij ∈ C3
b (RN )

only since the operator A is written in divergence form.

Theorem 5.2 Assume that aij ∈ C3
b (RN ) and that F ∈ C2(RN ) and set

Γ(x) = sup
{|y−x|≤1}

(
1 + |F (y)|+ |DF (y)|+ |D2F (y)|

)
. (5.2)

Then there exists C depending only on λ and ‖aij‖C3
b
(RN ) such that∣∣∣∣Dρρ

∣∣∣∣ ≤ CΓ.

Proof. By local elliptic regularity, ρ ∈ C3(RN ). Set v = log ρ. It is immediately checked that
v ∈ C3(RN ) satisfies the equation∑

i,j

aijDijv + a(Dv,Dv)−H · v = div F

with Hj = Fj −
∑
iDiaij . The statement then follows from Lemma 5.1.

The estimate of the logarithmic derivative of ρ in terms of F leads immediately to a quanti-
tative Harnack inequality. We state it in the next proposition in the simple case where F and its
derivatives up to the second order have polynomial growth.

Proposition 5.3 Assume that aij ∈ C3
b (RN ) and that F ∈ C2(RN ) satisfies |F (x)|+ |DF (x)|+

|D2F (x)| ≤ C1(1 + |x|β−1) for some β > 1. Then

ρ(y)

ρ(x)
≤ exp

{
K|x− y|

(
1 + (|x|+ |y|)β−1

)}
,

where K depends only on C1, λ and ‖aij‖C3
b
(RN ).

Proof. Setting v = log ρ, we have from Theorem 5.2

|Dv(x)| ≤ CΓ(x) ≤ C2(1 + |x|β−1).

This yields |v(y)− v(x)| ≤ C3|x− y|
(
1 + (|x|+ |y|)β−1

)
and the proof is complete.
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6 Pointwise bounds and weighted Sobolev regularity of log ρ

In this section we prove (pointwise) upper and lower bounds on the density ρ. As regards the
upper bound, we assume that V (x) = exp{δ|x|β} is integrable with respect to µ for some δ, β > 0
and we recall that explicit estimates of δ, β follow from Proposition 2.4 or Corollary 2.5 under
assumptions (2.1), (2.2), respectively. We keep the condition aij ∈ C1

b (RN ) but need the extra
assumption that F does not grow more than some exponential, at infinity, in order to integrate
|F |k with respect to µ for every k. Under these assumptions we show that ρ decays exponentially.
For the lower bound we need more regularity on aij and F in order to apply the results of Section
5 and we confine ourselves to the case where F and its derivatives up to the second order have
a polynomial growth. Finally, we combine the upper bound on ρ with the Harnack inequality to
derive sufficient conditions ensuring that log ρ ∈W 2,p(µ).

Theorem 6.1 Assume that aij ∈ C1
b (RN ) and that V (x) = exp{δ|x|β} is integrable with respect

to µ for some β, δ > 0. Assume moreover that |F (x)| ≤ C exp{|x|γ} for some C > 0 and γ < β.
Then there exist c1, c2 > 0 such that ρ(x) ≤ c1 exp{−c2|x|β}.

Proof. Since |F (x)| ≤ C exp{|x|γ} for some C > 0 and γ < β, then F ∈ Lk(µ) for every k <∞.
The invariance of µ yields ∫

RN

(A0φ)ρ = −
∫
RN

(F ·Dφ)ρ

for every φ ∈ C∞c (RN ). Taking φ = wψ with ψ ∈ C∞c (RN ), 0 < w ∈ C∞(RN ), w(x) =
exp{c2|x|β} for |x| ≥ 1, we obtain∫

RN

(A0ψ)ρw = −
∫
RN

(
ψA0w + 2

N∑
i,j=1

aijDiψDjw + wF ·Dψ + ψF ·Dw
)
ρ. (6.1)

Let us fix q > p > N and choose c2 < δ/q. It is easily seen that w,Dw,A0w belong to Lq(µ).
Moreover, since 1/p = 1/q+1/k for some k > 1 and F ∈ Lk(µ), it follows that wF, |Dw||F | ∈ Lp(µ).
Since ρ ∈ L∞, by Theorem 3.5, we deduce that all the functions ρDw, ρA0w, ρwF belong to
Lp(RN ). Then (6.1) yields ∣∣∣ ∫

RN

(A0ψ)ρw
∣∣∣ ≤ L‖ψ‖W 1,p′ (RN )

for a suitable L independent of ψ. Since also ρw ∈ Lp(RN ) from Theorem 4.1(i) we infer that ρw
belongs to W 1,p(RN ), hence to L∞(RN ), since p > N , and the proof is concluded.

The following result is analogous, but relies upon Theorem 4.8 rather than Theorem 3.5.

Theorem 6.2 Assume that aij ∈ C1
b (RN ) and that V (x) = exp{δ|x|β} is integrable with respect

to µ for some β, δ > 0. Assume moreover that F ∈ W 1,∞
loc (RN ) and that |F (x)| ≤ C exp{|x|γ},

|divF (x)| ≤ C exp{|x|γ} for some C > 0 and γ < β. Then there exist c1, c2 > 0 such that
|Dρ(x)| ≤ c1 exp{−c2|x|β}.

Proof. We modify the proof of Theorem 6.1, keeping the notation introduced there. From The-
orem 4.8 we obtain that ρ ∈ W 2,p(RN ) for every p < ∞. Since A0ρ = F · Dρ + ρdivF we
have

A0(ρw) = wρdivF + wF ·Dρ+ ρ(A0w) + 2

N∑
i,j=1

aijDiwDjρ.
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As in the proof of Theorem 6.1 one sees that wρ (divF ), ρ(A0w) ∈ Lp(RN ), where p > N is fixed.
To treat the terms containing Dρ we proceed as in Theorem 4.8∫

RN

wp|F |p|Dρ|p =

∫
RN

wp|F |p|Dρ|p−1|Dρ|ρ−1/2ρ1/2

≤ ‖Dρ‖p−1
∞

(∫
RN

|Dρ|2

ρ

)1/2(∫
RN

w2p|F |2pρ
)1/2

.

If c2 is small enough, this last integral is finite. Similarly, one estimates the term |Dw||Dρ|. Then
A0(ρw) ∈ Lp(RN ), hence wρ ∈W 2,p(RN ) and then D(wρ) ∈ L∞(RN ). Since we know that ρDw
is bounded, by Theorem 6.1, perhaps taking a smaller c2, the proof is complete.

We obtain lower bounds on ρ using the Harnack inequality from Section 5.

Theorem 6.3 Assume that aij ∈ C3
b (RN ) and that F ∈ C2(RN ) satisfies |F (x)| + |DF (x)| +

|D2F (x)| ≤ C1(1 + |x|β−1) for some β > 1. Then

ρ(x) ≥ exp{−c3(1 + |x|β)},

where c3 depends only on C1, λ and ‖aij‖C3
b
(RN ).

Proof. Let v = log ρ. As in the proof of Corollary 5.3 we obtain

|Dv(x)| ≤ CΓ(x) ≤ C2(1 + |x|β−1)

for v = log ρ. Therefore |v(x)| ≤ c3(1 + |x|β) and the statement follows.

Let us combine the upper and the lower bound to select a class of operators for which the exact
decay of ρ can be established.

Corollary 6.4 Assume that aij ∈ C3
b (RN ) and that F ∈ C2(RN ) satisfies |F (x)| + |DF (x)| +

|D2F (x)| ≤ C1(1 + |x|β−1) for some β > 1. Assume moreover that (2.2) holds, i.e.,

lim sup
|x|→∞

|x|1−βF (x) · x
|x|

= −c,

0 < c <∞. Then
exp{−c3(1 + |x|β)} ≤ ρ(x) ≤ c1 exp{−c2(1 + |x|β)}

for suitable c1, c2, c3 > 0.

Proof. It is sufficient to use Corollary 2.5 and Theorems 6.1, 6.3.

The above corollary e.g. applies to A = ∆ + F ·D where F (x) = −|x|β−2x + G(x) for β > 1
and |x| ≥ 1 and |G| + |DG| + |D2G| ≤ c(1 + |x|β−1). Observe that, if G = 0, then ρ is given by
ρ(x) = C exp{−|x|β/β}.

We end this section proving weighted Sobolev regularity results for log ρ. We set

W k,p(µ) = {u ∈W k,p
loc (RN ) : Dαu ∈ Lp(µ) for |α| ≤ k}

and note that, under the hypotheses below, ρ decays exponentially and hence log ρ belongs to
Lp(µ).

In the next proposition we show a sufficient condition under which log ρ belongs to W 1,p(µ).
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Proposition 6.5 Assume that aij ∈ C3
b (RN ) and that V (x) = exp{δ|x|β} is integrable with respect

to µ for some β, δ > 0. Assume moreover that |F (x)| + |DF (x)| + |D2F (x)| ≤ C exp{|x|γ} for
some C > 0 and γ < β. Then Dρ/ρ ∈ Lp(µ) for every 1 ≤ p <∞.

Proof. We keep the notation of Section 5 and recall that Γ is defined in (5.2). Since Γ(x) ≤
c1 exp{|x|γ+ε} ≤ c2V (x) for γ + ε < β the assertion follows from Theorem 5.2.

Under polynomial growth conditions on F we can prove that log ρ ∈W 2,p(µ).

Theorem 6.6 Assume that aij ∈ C3
b (RN ) and that V (x) = exp{δ|x|β1} is integrable with respect

to µ for some β1, δ > 0. Assume moreover that |F (x)|+ |DF (x)|+ |D2F (x)| ≤ C1(1 + |x|β−1) for
some C > 0 and β > 1 satisfying β − 1 < β1. Then log ρ ∈W 2,p(µ) for every 1 ≤ p <∞.

Proof. Using Proposition 6.5 we infer that log ρ ∈ W 1,p(µ) for every 1 ≤ p < ∞. Setting
v = log ρ, then Dijv = Dijρ/ρ − (DiρDjρ)/ρ2 and the last term belongs to Lp(µ) since Dρ/ρ is
in L2p(µ). Thus, we have to show that Dijρ/ρ ∈ Lp(µ) and, since µ is a finite measure, we may
assume that p > 1. Using the identity A0ρ = F ·Dρ + ρ divF we deduce from Theorem 5.2 the
pointwise estimate |A0ρ| ≤ C(1 + Γ2)ρ for a suitable C > 0.

Let Q(x, r) be a cube of side r centred at x. By the interior estimates for uniformly elliptic
operators, see e.g. [11, Theorem 9.11], we obtain∫

Q(x,1)

|Dijρ(y)|p dy ≤ C1

∫
Q(x,2)

(|A0ρ(y)|p + |ρ(y)|p) dy ≤ C2

∫
Q(x,2)

(1 + Γ2(y))pρp(y) dy

with C2 independent of x. We use Proposition 5.3 twice and Theorem 6.1 to get∫
Q(x,1)

|Dijρ(y)|p

ρ(y)p−1
dy ≤ C3

exp{K1|x|β−1}
ρ(x)p−1

∫
Q(x,2)

(1 + Γ2(y))pρp(y) dy

≤ C4 exp{K2|x|β−1}(1 + |x|2p(β−1))ρ(x)

≤ C5(1 + |x|2p(β−1)) exp{K2|x|β−1 −K3|x|β1}

where all the constants are independent of x. At this point we cover RN with a sequence of unit
cubes Q(xn, 1) whose interiors do not overlap, write the above estimates for each cube Q(xn, 1)
and sum over n to conclude the proof.

Remark 6.7 It is easily seen that Theorem 6.6 holds under the hypotheses of Corollary 6.4. In
this case one can take β1 = β.
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