GAUSSIAN ESTIMATES FOR ELLIPTIC OPERATORS WITH UNBOUNDED DRIFT

WOLFGANG ARENDT, GIORGIO METAFUNE, AND DIEGO PALLARA

Abstract. We consider a strictly elliptic operator

$$
\mathcal{A} u=\sum_{i j} D_{i}\left(a_{i j} D_{j} u\right)-b \cdot \nabla u+\operatorname{div}(c \cdot u)-V u
$$

where $0 \leq V \in L_{\mathrm{loc}}^{\infty}, a_{i j} \in C_{b}^{1}\left(\mathbb{R}^{N}\right), b, c \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$. If $\operatorname{div} b \leq$ $\beta V, \operatorname{div} c \leq \beta V, 0<\beta<1$, then a natural realization of \mathcal{A} generates a positive C_{0}-semigroup T in $L^{2}\left(\mathbb{R}^{N}\right)$. The semigroup satisfies pseudo-Gaussian estimates if

$$
|b| \leq k_{1} V^{\alpha}+k_{2}, \quad|c| \leq k_{1} V^{\alpha}+k_{2}
$$

where $\frac{1}{2} \leq \alpha<1$. If $\alpha=\frac{1}{2}$, then Gaussian estimates are valid. The constant $\alpha=\frac{1}{2}$ is optimal with respect to this property.

Introduction

We consider a strictly elliptic operator of the form

$$
\mathcal{A} u=\sum_{i, j=1}^{N} D_{i}\left(a_{i j} D_{j} u\right)-b \cdot \nabla u+\operatorname{div}(c u)-V u
$$

on $L^{2}\left(\mathbb{R}^{N}\right)$ where $a_{i j} \in C_{b}^{1}\left(\mathbb{R}^{N}\right), b, c \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$ and $V \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$ are real coefficients. If b, c, V are bounded, then this is a classical elliptic operator and semigroup properties have been studied extensively. In particular, it is known that the canonical realization of \mathcal{A} in $L^{2}\left(\mathbb{R}^{N}\right)$ generates a positive C_{0}-semigroup satisfying Gaussian estimates (see e.g. [AtE97], [Dan00], [Ouh05] and the survey [Are04]). Here we are interested in the case where the drift terms b and c are unbounded. Then one still obtains a semigroup satisfying various regularity properties if the potential V compensates the unbounded drift. We consider the assumption
$\left(H_{1}\right)$

$$
\operatorname{div} b \leq \beta V, \quad \operatorname{div} c \leq \beta V
$$

where $0<\beta<1$. Then we show that there is a natural unique realization A of the differential operator \mathcal{A} which generates a minimal
positive semigroup T on $L^{2}\left(\mathbb{R}^{N}\right)$. This semigroup as well as its adjoint are submarkovian. We say that T satisfies pseudo-Gaussian estimates of order $m \geq 2$ if $T(t)$ has a kernel k_{t} satisfying

$$
0 \leq k_{t}(x, y) \leq c_{1} e^{\omega t} t^{-N / 2} \exp \left\{-c_{2}\left(|x-y|^{m} / t\right)^{1 / m-1}\right\}
$$

for all $x, y \in \mathbb{R}^{N}, t>0$ and some constants $c_{1}, c_{2}>0, \omega \in \mathbb{R}$. In the case where $m=2$ we say that T satisfies Gaussian estimates. In order to obtain such pseudo-Gaussian estimates we impose an additional growth condition on the drift terms b and c, namely,

$$
\begin{equation*}
|b| \leq k_{1} V^{\alpha}+k_{2}, \quad|c| \leq k_{1} V^{\alpha}+k_{2} \tag{2}
\end{equation*}
$$

where $\frac{1}{2} \leq \alpha<1, k_{1}, k_{2} \geq 0$. If $\alpha=\frac{1}{2}$, then it was proved in [AMP06] that T has Gaussian estimates. The purpose of this paper is to show on one hand that $\alpha=\frac{1}{2}$ is optimal for this property (Section 3). On the other hand, if $\frac{1}{2}<\alpha<1$, then we show that T still satisfies pseudo-Gaussian estimates even though T need not be holomorphic in that case. Pseudo-Gaussian estimates of order $m>2$ are still of interest. For instance, they imply that the realizations A_{p} of A in $L^{p}\left(\mathbb{R}^{N}\right)$ have all the same spectrum, $1 \leq p \leq \infty$, at least if $m<\frac{2 N}{N-2}$. For elliptic operators with moderately growing drift terms but no compensating V such pseudo-Gaussian estimates had been obtained before by Karrmann [Kar01]. Here we do not study regularity properties of the operator A. For this we refer to [AMP06], [MPRS05]. We also mention the works by Liskevich, Sobol and Vogt [LSV02], [LS03], [SV02] where a different approximation is used and spectral properties are studied.

1. Elliptic operators with unbounded drift

In this section we define the realization of an elliptic operator with unbounded drift in $L^{2}\left(\mathbb{R}^{N}\right)$. The construction is similar to the one in [AMP06] but we ask for less regularity. Moreover, we establish an additional coerciveness property which is used later to prove quasi Gaussian estimates. We assume throughout this section that $a_{i j} \in$ $L^{\infty}(\mathbb{R})$ and

$$
\begin{equation*}
\sum_{i, j=1}^{N} a_{i j}(x) \xi_{i} \xi_{j} \geq \nu|\xi|^{2} \tag{1.1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{N}, \xi \in \mathbb{R}^{N}$, where $\nu>0$ is a fixed constant. Let $b=$ $\left(b_{1}, \ldots, b_{N}\right), c=\left(c_{1}, \ldots, c_{N}\right) \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$, and let $V \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$. We assume in this section that

$$
\begin{equation*}
\operatorname{div} b \leq V, \quad \operatorname{div} c \leq V \tag{0}
\end{equation*}
$$

Later in Section 2 we will replace $\left(H_{0}\right)$ by a stronger assumption $\left(H_{1}\right)$ and require more regularity on the diffusion coefficients $a_{i j}$ and positivity of the potential. Define the elliptic operator

$$
\begin{aligned}
\mathcal{A} & : \quad H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathcal{D}\left(\mathbb{R}^{N}\right)^{\prime} \\
\mathcal{A} u & =\sum_{i, j=1}^{N} D_{i}\left(a_{i j} D_{j} u\right)-b \cdot \nabla u+\operatorname{div}(c u)-V u
\end{aligned}
$$

i.e., for $u \in H_{\text {loc }}^{1}\left(\mathbb{R}^{N}\right)$ and $v \in \mathcal{D}\left(\mathbb{R}^{N}\right)$ we have

$$
\begin{aligned}
-\langle\mathcal{A} u, v\rangle= & \int_{\mathbb{R}^{N}} \sum_{i, j=1}^{N} a_{i j} D_{j} u D_{i} v d x \\
& +\int_{\mathbb{R}^{N}}\left\{\sum_{j=1}^{N}\left(b_{j} D_{j} u v+c_{j} u D_{j} v\right)+V u v\right\} d x .
\end{aligned}
$$

We define the maximal operator $A_{\text {max }}$ in $L^{2}\left(\mathbb{R}^{N}\right)$ by

$$
\begin{aligned}
D\left(A_{\max }\right) & :=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right) \cap H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right), \mathcal{A} u \in L^{2}\left(\mathbb{R}^{N}\right)\right\} \\
A_{\max } u & =\mathcal{A} u .
\end{aligned}
$$

Now we describe the minimal realization of \mathcal{A} in $L^{2}\left(\mathbb{R}^{N}\right)$ as follows.
Theorem 1.1. There exists a unique operator A on $L^{2}\left(\mathbb{R}^{N}\right)$ such that
(a) $A \subset A_{\max }$,
(b) A generates a positive C_{0}-semigroup T on $L^{2}\left(\mathbb{R}^{N}\right)$;
(c) if $B \subset A_{\max }$ generates a positive C_{0}-semigroup S, then $T(t) \leq$ $S(t)$ for all $t \geq 0$.
We call A the minimal realization of \mathcal{A} in $L^{2}\left(\mathbb{R}^{N}\right)$.
When giving the proof we also establish important properties of A and of T.

Proposition 1.2 (coerciveness). One has $D(A) \subset H^{1}\left(\mathbb{R}^{N}\right)$ and

$$
\begin{equation*}
-(A u \mid u) \geq \nu\|u\|_{H^{1}}^{2} \tag{1.2}
\end{equation*}
$$

for all $u \in D(A)$.
Proposition 1.3 (ultracontractivity). The semigroup T and its adjoint are submarkovian. Moreover T is ultracontractive, namely

$$
\begin{equation*}
\|T(t)\|_{\mathcal{L}\left(L^{1}, L^{\infty}\right)} \leq c_{\nu} t^{-N / 2} \quad(t>0) \tag{1.3}
\end{equation*}
$$

where $c_{\nu}>0$ depends only on the space dimension and the ellipticity constant ν.

Recall that a C_{0}-semigroup S on $L^{2}\left(\mathbb{R}^{N}\right)$ is called submarkovian if S is positive and

$$
\|S(t) f\|_{\infty} \leq\|f\|_{\infty} \quad(t>0)
$$

for all $f \in L^{\infty} \cap L^{2}$. If B is an operator on $L^{2}\left(\mathbb{R}^{N}\right)$ we let

$$
\|B\|_{\mathcal{L}\left(L^{p}, L^{q}\right)}:=\sup _{\substack{\|f\| \underline{p} \leq 1 \\ f \in L^{2}}}\|B f\|_{q}
$$

Since T and T^{*} are submarkovian, it follows from the Riesz-Thorin Theorem that

$$
\|T(t)\|_{\mathcal{L}\left(L^{p}\right)} \leq 1 \quad(t \geq 0)
$$

for all $1 \leq p \leq \infty$.
The remainder of this section is devoted to the proofs of Theorem 1.1 and Propositions 1.2, 1.3. As in [AMP06] we approximate the operator A by realizations of \mathcal{A} on balls whose radii go to ∞. However, here we do not study regularity properties of A and we restrict ourselves to the Hilbert space case $L^{2}\left(\mathbb{R}^{N}\right)$ (whereas $L^{p}\left(\mathbb{R}^{N}\right)$ was considered in [AMP06]). Our assumptions on V and $a_{i j}$ are more general than in [AMP06]. Denote by $B_{r}=\left\{x \in \mathbb{R}^{N}:|x|<r\right\}$ the ball of radius $r>0$. The bilinear form

$$
\begin{aligned}
a_{r}(u, v):= & \int_{B_{r}} \sum_{i, j=1}^{N} a_{i j} D_{j} u D_{i} v d x \\
& +\int_{B_{r}}\left\{\sum_{j=1}^{N}\left(b_{j} D_{j} u v+c_{j} u D_{j} v\right)+V u v\right\} d x
\end{aligned}
$$

is continuous on $H_{0}^{1}\left(B_{r}\right)$. We show that

$$
\begin{equation*}
a_{r}(u, u) \geq \nu \int_{B_{r}}|\nabla u|^{2} d x \tag{1.4}
\end{equation*}
$$

for all $u \in H_{0}^{1}\left(B_{r}\right)$. In fact, let $u \in H_{0}^{1}\left(B_{r}\right)$. Then

$$
\begin{aligned}
a_{r}(u, u) & \geq \nu \int_{B_{r}}|\nabla u|^{2} d x+\int_{B_{r}}\left\{\sum_{j=1}^{N}\left(b_{j}+c_{j}\right) \frac{1}{2} D_{j} u^{2}+V u^{2}\right\} d x \\
& =\nu \int_{B_{r}}|\nabla u|^{2} d x+\int_{B_{r}}\left(-\operatorname{div} \frac{b+c}{2}+V\right) u^{2} d x \geq \nu \int_{B_{r}}|\nabla u|^{2} d x .
\end{aligned}
$$

In view of Poincaré's inequality, (1.4) implies that a_{r} is coercive. Denote by $-A_{r}$ the associated operator on $L^{2}\left(B_{r}\right)$. Then A_{r} generates a C_{0}-semigroup T_{r} on $L^{2}\left(B_{r}\right)$. Since $u \in H_{0}^{1}\left(B_{r}\right)$ implies that $u^{+}, u^{-} \in$
$H_{0}^{1}\left(B_{r}\right)$ and $a\left(u^{+}, u^{-}\right)=0$ the semigroup T_{r} is positive by the first Beurling-Deny criterion on forms [Ouh05, Theorem 2.6]. Since a_{r} is coercive, T_{r} is contractive [Ouh05, Chapter 1]. Next we show that for $0<r_{1}<r_{2}$

$$
\begin{equation*}
T_{r_{1}}(t) \leq T_{r_{2}}(t), \tag{1.5}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
R\left(\lambda, A_{r_{1}}\right) \leq R\left(\lambda, A_{r_{2}}\right) \quad(\lambda>0) . \tag{1.6}
\end{equation*}
$$

Here we identify $L^{2}\left(B_{r}\right)$ with a subspace of $L^{2}\left(\mathbb{R}^{N}\right)$ and extend an operator B on $L^{2}\left(B_{r}\right)$ to $L^{2}\left(\mathbb{R}^{N}\right)$ by defining it as 0 on $L^{2}\left(B_{r}\right)^{\perp}=$ $\left\{u \in L^{2}\left(\mathbb{R}^{N}\right): u_{\left.\right|_{B_{r}}}=0\right\}$. Similarly, we may identify $H_{0}^{1}\left(B_{r_{1}}\right)$ with a subspace of $H_{0}^{1}\left(B_{r_{2}}\right)$, see [Bre83, Proposition IX.18].
Proof of (1.6). Let $0 \leq f \in L^{2}\left(\mathbb{R}^{N}\right), \lambda>0, u_{1}=R\left(\lambda, A_{r_{1}}\right) f, u_{2}=$ $R\left(\lambda, A_{r_{2}}\right) f$. We want to show that $u_{1} \leq u_{2}$. One has by definition of $A_{r_{1}}, A_{r_{2}}$,

$$
\begin{aligned}
\lambda \int_{B_{r_{1}}} u_{k} v & +\int_{B_{r_{1}}} \sum_{i, j=1}^{N} a_{i j} D_{i} u_{k} D_{j} v+\int_{B_{r_{1}}} \sum_{i=1}^{N} b_{i} D_{i} u_{k} v \\
& +\int_{B_{r_{1}}} \sum_{i=1}^{N} c_{i} D_{i} v u_{k}+\int_{B_{r_{1}}} V u_{k} v=\int_{B_{r_{1}}} f v
\end{aligned}
$$

for all $v \in H_{0}^{1}\left(B_{r_{1}}\right), k=1,2$. Since $u_{2} \geq 0$ one has $\left(u_{1}-u_{2}\right)^{+} \leq u_{1}$, hence $\left(u_{1}-u_{2}\right)^{+} \in H_{0}^{1}\left(B_{r_{1}}\right)$. Taking $v=\left(u_{1}-u_{2}\right)^{+}$and subtracting the two identities we obtain

$$
\begin{aligned}
\lambda \int_{B_{r_{1}}}\left(u_{1}-u_{2}\right)\left(u_{1}-u_{2}\right)^{+} & +\int_{B_{r_{1}}} \sum_{i, j=1}^{N} a_{i j} D_{i}\left(u_{1}-u_{2}\right) \cdot D_{j}\left(u_{1}-u_{2}\right)^{+} \\
& +\int_{B_{r_{1}}} \sum_{i=1}^{N} b_{i} D_{i}\left(u_{1}-u_{2}\right)\left(u_{1}-u_{2}\right)^{+} \\
& +\int_{B_{r_{1}}} \sum_{i=1}^{N} c_{i} D_{i}\left(u_{1}-u_{2}\right)^{+}\left(u_{1}-u_{2}\right) \\
& +\int_{B_{r_{1}}} V\left(u_{1}-u_{2}\right)\left(u_{1}-u_{2}\right)^{+}=0
\end{aligned}
$$

Since $D_{i}\left(u_{1}-u_{2}\right)\left(u_{1}-u_{2}\right)^{+}=D_{i}\left(u_{1}-u_{2}\right)^{+}\left(u_{1}-u_{2}\right)^{+}$this gives

$$
\begin{array}{r}
\lambda \int_{B_{r_{1}}}\left(u_{1}-u_{2}\right)^{+2}+\int_{B_{r_{1}}} \nu\left|\nabla\left(u_{1}-u_{2}\right)^{+}\right|^{2} d x \\
+\int_{B_{r_{1}}}\left\{\sum_{j=1}^{N} \frac{\left(b_{i}+c_{i}\right)}{2} D_{i}\left(u_{1}-u_{2}\right)^{+2}+V\left(u_{1}-u_{2}\right)^{+2}\right\} \leq 0
\end{array}
$$

The third term equals

$$
\int_{B_{r_{1}}}\left(-\operatorname{div} \frac{b+c}{2}+V\right)\left(u_{1}-u_{2}\right)^{+2} d x
$$

which is ≥ 0 by the hypothesis $\left(H_{0}\right)$. Thus $\left(u_{1}-u_{2}\right)^{+} \leq 0$, hence $u_{1} \leq u_{2}$ on $B_{r_{1}}$.

Next we show that

$$
\begin{equation*}
\lim _{r \uparrow \infty} T_{r}(t) f=: T(t) f \tag{1.7}
\end{equation*}
$$

exists in $L^{2}\left(\mathbb{R}^{N}\right)$ for all $f \in L^{2}\left(\mathbb{R}^{N}\right)$ and defines a positive contraction C_{0}-semigroup whose generator we denote by A.

Proof of (1.7). a) Let $0 \leq f \in L^{2}\left(\mathbb{R}^{N}\right)$. Since $T_{r_{1}}(t) f \leq T_{r_{2}}(t) f$ for $0<r_{1} \leq r_{2}$ and $\left\|T_{r}(t) f\right\|_{2} \leq\|f\|_{2}$, the limit in (1.7) exists in $L^{2}\left(\mathbb{R}^{N}\right)$. It follows that $T(t)$ is a positive contraction and $T(t+s)=T(t) T(s)$ for $s, t \geq 0$. In order to show that T is strongly continuous, let $0 \leq$ $f \in \mathcal{D}\left(\mathbb{R}^{N}\right)$. Let $t_{n} \downarrow 0, f_{n}=T\left(t_{n}\right) f$. We have to show that $f_{n} \rightarrow f$ in $L^{2}\left(\mathbb{R}^{N}\right)$ as $n \rightarrow \infty$. Let $r>0$ such that supp $f \subset B_{r}$. Observe that $0 \leq g_{n}:=T_{r}\left(t_{n}\right) f \leq f_{n}$. Since T_{r} is strongly continuous, $\lim _{n \rightarrow \infty} g_{n}=f$. Moreover, $\left\|f_{n}\right\|_{2} \leq\|f\|_{2}$. Hence $\underset{n \rightarrow \infty}{\limsup }\left\|g_{n}-f_{n}\right\|_{2}^{2}=\limsup _{n \rightarrow \infty}\left\{\left\|g_{n}\right\|_{2}^{2}+\right.$ $\left.\left\|f_{n}\right\|_{2}^{2}-2\left(g_{n} \mid f_{n}\right)_{2}\right\} \leq \limsup _{n \rightarrow \infty}\left\{2\|f\|_{2}^{2}-2\left(g_{n} \mid g_{n}\right)_{2}\right\}=0$.

We mention that, by dominated convergence as in [ABHN01, Section 3.6], property (1.7) implies that

$$
\begin{equation*}
R(\lambda, A) f=\lim _{r \uparrow \infty} R\left(\lambda, A_{r}\right) f \tag{1.8}
\end{equation*}
$$

for all $\lambda>0, f \in L^{2}\left(\mathbb{R}^{N}\right)$. Next we show that

$$
\begin{equation*}
D(A) \subset H^{1}\left(\mathbb{R}^{N}\right) \text { and } \nu \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x \leq(-A u \mid u) \tag{1.9}
\end{equation*}
$$

for all $u \in D(A)$. Moreover,

$$
\begin{equation*}
A \subset A_{\max } \tag{1.10}
\end{equation*}
$$

Proof. a) We prove (1.9). Let $f \in L^{2}\left(\mathbb{R}^{N}\right), u_{n}=R\left(1, A_{r_{n}}\right) f, u=$ $R(1, A) f$ where $r_{n} \uparrow \infty$. Then $u_{n} \rightarrow u$ in $L^{2}\left(\mathbb{R}^{N}\right)$ by (1.8). Since $u_{n}-A_{r_{n}} u_{n}=f$ and $u-A u=f$ in $L^{2}\left(B_{r_{n}}\right)$, it follows that

$$
A_{r_{n}} u_{n} \rightarrow A u \quad \text { in } \quad L^{2}\left(\mathbb{R}^{N}\right) .
$$

By (1.4) we have

$$
\nu \int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2} d x \leq-\left(A_{r_{n}} u_{n} \mid u_{n}\right) .
$$

Since $-\left(A_{r_{n}} u_{n} \mid u_{n}\right) \rightarrow(-A u \mid u)$ as $n \rightarrow \infty$, it follows that

$$
\begin{equation*}
\nu \limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2} d x \leq(-A u \mid u) . \tag{1.11}
\end{equation*}
$$

Thus $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $H^{1}\left(\mathbb{R}^{N}\right)$. Considering a subsequence, we may assume that $u_{n} \rightarrow u$ weakly in $H^{1}\left(\mathbb{R}^{N}\right)$. Let $h=\left(h_{1}, \ldots, h_{N}\right) \in$ $L^{2}\left(\mathbb{R}^{N}\right)^{N}$ such that $\|h\|_{2} \leq 1$. Then by (1.11),

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \nabla u \cdot h d x & =\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} \nabla u_{n} \cdot h d x \\
& \leq \overline{\lim }_{n \rightarrow \infty}\left(\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2}\right)^{1 / 2} \\
& \leq[-(A u \mid u) / \nu]^{1 / 2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x\right)^{1 / 2} & =\sup _{\substack{h \in L^{2}\left(\mathbb{R}^{N}\right)^{N} \\
\|h\|_{2} \leq 1}} \int_{\mathbb{R}^{N}} \nabla u \cdot h d x \\
& \leq[-(A u \mid u) / \nu]^{1 / 2} .
\end{aligned}
$$

Thus (1.9) is proved.
b) In order to prove (1.10) we keep the notations of a) and have to show that $u \in D\left(A_{\max }\right)$ and $A u=A_{\max } u$. Let $v \in \mathcal{D}\left(\mathbb{R}^{N}\right)$. Then

$$
\begin{aligned}
\left(-A_{r_{n}} u_{n} \mid v\right)= & \int_{\mathbb{R}^{N}} \sum_{i, j=1}^{N} a_{i j} D_{j} u_{n} D_{i} v d x \\
& +\int_{\mathbb{R}^{N}}\left\{\sum_{j=1}^{N}\left(b_{j} D_{j} u_{n} v+c_{j} u_{n} D_{j} v\right)+V u_{n} v\right\} d x .
\end{aligned}
$$

Since $u_{n} \rightarrow u$ weakly in $H^{1}\left(\mathbb{R}^{N}\right)$ and $A_{r_{n}} u_{n} \rightarrow A u$ in $L^{2}\left(\mathbb{R}^{N}\right)$, it follows that $(-A u \mid v)=(\mathcal{A} u \mid v)$.

Next we show the minimality property in Theorem 1.1. Assume that S is a positive semigroup whose generator B satisfies $B \subset A_{\max }$. Then

$$
\begin{equation*}
0 \leq T(t) \leq S(t), \quad(t \geq 0) \tag{1.12}
\end{equation*}
$$

Proof of (1.12). We have to show that

$$
\begin{equation*}
R(\lambda, A) \leq R(\lambda, B) \tag{1.13}
\end{equation*}
$$

for $\lambda>0$ sufficiently large. Let $r>0$; because of (1.8) it suffices to show that

$$
\begin{equation*}
R\left(\lambda, A_{r}\right) \leq R(\lambda, B) \tag{1.14}
\end{equation*}
$$

Let $f \in L^{2}\left(\mathbb{R}^{N}\right), f \geq 0, u_{1}=R\left(\lambda, A_{r}\right) f, u_{2}=R(\lambda, B) f$. Then $0 \leq u_{1} \in$ $H_{0}^{1}\left(B_{r}\right), 0 \leq u_{2} \in H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$. We have to show that $u_{1} \leq u_{2}$. Since $B \subset A_{\max }$ we have $\lambda u_{2}-\mathcal{A} u_{2}=f$ in $\mathcal{D}\left(B_{r}\right)^{\prime}$, and also $\lambda u_{1}-\mathcal{A} u_{1}=f$ in $\mathcal{D}\left(B_{r}\right)^{\prime}$ by the definition of A_{r}. Hence

$$
\begin{aligned}
\lambda \int_{B_{r}}\left(u_{1}-u_{2}\right) v d x & +\int_{B_{r}} \sum_{i, j=1}^{N} a_{i j} D_{j}\left(u_{1}-u_{2}\right) D_{i} v d x \\
+\int_{B_{r}} \sum_{j=1}^{N}\left(b_{j} D_{j}\left(u_{1}-u_{2}\right) v\right. & \left.+c_{j}\left(u_{1}-u_{2}\right) D_{j} v\right) d x \\
+\int_{B_{r}} V\left(u_{1}-u_{2}\right) v d x & =0
\end{aligned}
$$

for all $v \in \mathcal{D}\left(B_{r}\right)$. This identity remains true for $v \in H_{0}^{1}\left(B_{r}\right)$ by passing to the limit. Since $u_{2} \geq 0$ one has $\left(u_{1}-u_{2}\right)^{+} \leq u_{1}$, hence $\left(u_{1}-u_{2}\right)^{+} \in H_{0}^{1}\left(B_{r}\right)$. Choosing $v=\left(u_{1}-u_{2}\right)^{+}$in the identity above
we obtain

$$
\begin{aligned}
& \lambda \int_{B_{r}}\left(u_{1}-u_{2}\right)^{+2}+\int_{B_{r}} \sum_{i, j=1}^{N} a_{i j} D_{j}\left(u_{1}-u_{2}\right)^{+} D_{j}\left(u_{1}-u_{2}\right)^{+} d x \\
& +\int_{B_{r}} \sum_{j=1}^{N}\left(b_{j} D_{j}\left(u_{1}-u_{2}\right)^{+}\left(u_{1}-u_{2}\right)^{+}+c_{j} D_{j}\left(u_{1}-u_{2}\right)^{+}\left(u_{1}-u_{2}\right)^{+}\right) d x \\
& +\int_{B_{r}} V\left(u_{1}-u_{2}\right)^{+2} d x=0 .
\end{aligned}
$$

Consequently

$$
\begin{aligned}
& \lambda \int_{B_{r}}\left(u_{1}-u_{2}\right)^{+2} d x+\nu \int_{B_{r}}\left|\nabla\left(u_{1}-u_{2}\right)^{+}\right|^{2} d x \\
& \quad+\int_{B_{r}}\left(-\operatorname{div}\left(\frac{b+c}{2}\right)+V\right)\left(u_{1}-u_{1}\right)^{+2} d x \leq 0 .
\end{aligned}
$$

Since $-\operatorname{div}\left(\frac{b+c}{2}\right)+V \geq 0$ this implies that $\left(u_{1}-u_{2}\right)^{+}=0$; i.e., $u_{1} \leq u_{2}$.

The proofs of Theorem 1.1 and Proposition 1.2 are complete.
We now show that T is submarkovian. Because of (1.7), it suffices to show that T_{r} is submarkovian. By the second criterion of Beurling-Deny-Ouhabaz on forms (see [Ouh05]) this is equivalent to

$$
\begin{equation*}
a_{r}\left(u \wedge 1,(u-1)^{+}\right) \geq 0 \tag{1.15}
\end{equation*}
$$

for all $u \in H_{0}^{1}\left(B_{r}\right)$.

Proof of (1.15). Since $D_{j}(u \wedge 1)=D_{j} u 1_{\{u<1\}}, D_{j}\left((u-1)^{+}\right)=D_{j} u 1_{\{u>1\}}$ and $D_{j} u=0$ a.e. on $\{u=1\}$, one has

$$
\begin{aligned}
& a_{r}\left(u \wedge 1,(u-1)^{+}\right)= \\
& \int_{\mathbb{R}^{N}}\left\{\sum_{j=1}^{N} c_{j}(u \wedge 1) D_{j}(u-1)^{+}\right.\left.+V(u \wedge 1)(u-1)^{+}\right\} d x \\
&=\int_{\mathbb{R}^{N}}\left\{\sum_{j=1}^{N} c_{j} D_{j}(u-1)^{+}+V(u-1)^{+}\right\} d x \\
&=\int_{\mathbb{R}^{N}}(-\operatorname{div} c+V)(u-1)^{+} d x \geq 0
\end{aligned}
$$

in view of the hypothesis $\left(H_{1}\right)$.
Next we show that the adjoint semigroup $T^{*}=\left(T(t)^{*}\right)_{t \geq 0}$ is generated by the minimal realization of the adjoint differential operator \mathcal{A}^{*} which is defined by replacing $a_{i j}$ by $a_{j i}$ and by interchanging b and c, i.e.

$$
\begin{equation*}
\mathcal{A}^{*} u=\sum_{i, j=1}^{N} D_{i}\left(a_{j i} D_{j} u\right)+c \nabla u-\operatorname{div}(b u)-V u \quad\left(u \in H_{\mathrm{loc}}^{1}\right) . \tag{1.16}
\end{equation*}
$$

Lemma 1.4. The minimal realization in $L^{2}\left(\mathbb{R}^{N}\right)$ of \mathcal{A}^{*} is the adjoint A^{*} of A.

Proof. The adjoint $-A_{r}^{*}$ of $-A_{r}$ is associated with the form a_{r}^{*} defined on $H_{0}^{1}\left(B_{r}\right) \times H_{0}^{1}\left(B_{r}\right)$ by

$$
a_{r}^{*}(u, v)=a_{r}(v, u) .
$$

The semigroup generated by A_{r}^{*} is the adjoint T_{r}^{*} of T_{r}. Let B be the minimal realization of \mathcal{A}^{*} in $L^{2}\left(\mathbb{R}^{N}\right)$ and S the semigroup generated by B. Then

$$
S(t) f=\lim _{r \uparrow \infty} T_{r}(t)^{*} f=T(t)^{*} f
$$

for all $f \in L^{2}\left(\mathbb{R}^{N}\right)$.
As a consequence, we deduce that also T^{*} is submarkovian. Finally, we have to show ultracontractivity. We use the following criterion (cf. [Cou90], [VSC90], [Are04, Section 7], [Rob91]).
Proposition 1.5. For each $\delta>0$ there exists a constant $c_{\delta}>0$ such that the following holds. Let S be a C_{0}-semigroup on $L^{2}\left(\mathbb{R}^{N}\right)$ such that S and S^{*} are submarkovian. Assume that the generator B of S satisfies
(a) $D(B) \subset H^{1}\left(\mathbb{R}^{N}\right)$;
(b) $(-B u \mid u) \geq \delta\|u\|_{H^{1}}^{2} \quad(u \in D(B))$;
(c) $\left(-B^{*} u \mid u\right) \geq \delta\|u\|_{H^{1}}^{2} \quad\left(u \in D\left(B^{*}\right)\right)$.

Then

$$
\begin{equation*}
\|S(t)\|_{\mathcal{L}\left(L^{1}, L^{\infty}\right)} \leq c_{\delta} t^{-N / 2} \quad(t>0) \tag{1.17}
\end{equation*}
$$

The proof of Proposition 1.5 is based on Nash's inequality

$$
\begin{equation*}
\|u\|_{2}^{2+4 / N} \leq c_{N}\|u\|_{H^{1}}^{2}\|u\|_{1}^{4 / N} \tag{1.18}
\end{equation*}
$$

for all $u \in H^{1}\left(\mathbb{R}^{N}\right)$ and some constant $c_{N}>0$, and one may choose $c_{\delta}=\left(\frac{c_{N} \cdot N}{\delta}\right)^{N / 2}$.

Proof of Proposition 1.5. i) $D(B) \cap L^{1}$ is dense in $L^{1} \cap L^{2}$. In fact, the semigroup S extrapolates to a C_{0}-semigroup on L^{1} (see [Dav89], [Are04, Section 7.2]). Hence for $f \in L^{1} \cap L^{2}, \lambda R(\lambda, B) f \rightarrow f$ in L^{1} and in L^{2} as $\lambda \rightarrow \infty$. But $\lambda R(\lambda, B) f \in D(B)$.
ii) Now we modify the proof of [AtE97, Proposition 3.8] to show that

$$
\begin{equation*}
\|S(t) f\|_{2} \leq\left(\frac{N c_{N}}{4 \delta}\right)^{N / 4} t^{-N / 4}\|f\|_{1} \tag{1.19}
\end{equation*}
$$

for all $f \in D(B) \cap L^{1}$. Let $f \in D(B) \cap L^{1}$. Then, by (1.18)

$$
\begin{aligned}
\frac{d}{d t}\|S(t) f\|_{2}^{2} & =(B S(t) f \mid S(t) f)+\left(S(t) f \mid B^{*} S(t) f\right) \\
& \leq-2 \delta\|S(t) f\|_{H^{1}}^{2} \leq-\frac{2 \delta}{c_{N}} \frac{\|S(t) f\|_{2}^{2+4 / N}}{\|S(t) f\|_{1}^{4 / N}} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{d}{d t}\left(\|S(t) f\|_{2}^{2}\right)^{-2 / N} & =-\frac{2}{N}\|S(t) f\|_{2}^{2(-2 / N-1)} \frac{d}{d t}\|S(t) f\|_{2}^{2} \\
& \geq \frac{4 \delta}{N c_{N}} \frac{1}{\|S(t) f\|_{1}^{4 / N}} \geq \frac{4 \delta}{N c_{N}} \frac{1}{\|f\|_{1}^{4 / N}}
\end{aligned}
$$

Integrating, we obtain

$$
\left(\|S(t) f\|_{2}^{2}\right)^{-2 / N} \geq t \frac{4 \delta}{N c_{N}} \frac{1}{\|f\|_{1}^{4 / N}}
$$

which implies(1.19).
It follows from i) that (1.19) remains true for $f \in L^{1} \cap L^{2}$.
iii) Applying b) to S^{*} instead of S shows that

$$
\begin{equation*}
\left\|S^{*}(t) f\right\|_{2} \leq\left(\frac{N c_{N}}{4 \delta}\right)^{N / 4} t^{-N / 4}\|f\|_{1} \tag{1.20}
\end{equation*}
$$

$\left(f \in L^{1} \cap L^{2}\right)$. Hence

$$
\begin{equation*}
\|S(t) f\|_{\infty} \leq\left(\frac{N c_{N}}{4 \delta}\right)^{N / 4} t^{-N / 4}\|f\|_{2} \tag{1.21}
\end{equation*}
$$

$\left(f \in L^{2} \cap L^{\infty}\right)$. Concluding, for $f \in L^{1} \cap L^{2}$,

$$
\begin{array}{r}
\|S(t) f\|_{\infty}=\|S(t / 2) S(t / 2) f\|_{\infty} \leq\left(\frac{N c_{N}}{4 \delta}\right)^{N / 4}(t / 2)^{-N / 4}\|S(t / 2) f\|_{2} \\
\leq\left[\left(\frac{N c_{N}}{4 \delta}\right)^{N / 4}(t / 2)^{-N / 4}\right]^{2}\|f\|_{1}=c_{\delta} t^{-N / 2}\|f\|_{1}
\end{array}
$$

Proposition 1.5 implies the ultracontractivity property (1.3) with $c_{\nu}=\left(\frac{c_{N} \cdot N}{\nu}\right)^{N / 2}$ since by (1.9) and Lemma 1.4 the hypotheses (a), (b), (c) in Proposition 1.5 are satisfied for the operator $B=A$. Thus the proofs of Theorem 1.1 and Propositions 1.2, 1.3 are complete.

2. Pseudo-Gaussian Estimates

Let T be a positive C_{0}-semigroup on $L^{2}\left(\mathbb{R}^{N}\right)$. We say that T satisfies pseudo-Gaussian estimates of type $m \geq 2$ if there exist real constants $c_{1}>0, c_{2}>0, \omega \in \mathbb{R}$ and a measurable kernel $k_{t} \in L^{\infty}\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ satisfying

$$
\begin{equation*}
0 \leq k_{t}(x, y) \leq c_{1} e^{\omega t} t^{-N / 2} \exp \left(-c_{2}|x-y|^{m} / t\right)^{1 / m-1} \tag{2.1}
\end{equation*}
$$

x, y-a.e. for all $t>0$ such that

$$
\begin{equation*}
(T(t) f)(x)=\int_{\mathbb{R}^{N}} k_{t}(x, y) f(y) d y \tag{2.2}
\end{equation*}
$$

x-a.e. for all $t>0, f \in L^{2}\left(\mathbb{R}^{N}\right)$. If $m=2$, then we say that T satisfies Gaussian estimates.

In fact, the Gaussian semigroup satisfies such an estimate for $m=2$. It is the best case as the following monotonicity property shows.

Proposition 2.1. Let $b_{1}, b_{2}>0$ and let $m_{2}>m_{1} \geq 2$ be real constant. Then there exists $\omega \geq 0$ such that

$$
\begin{equation*}
\exp \left(-b_{1}\left(|z|^{m_{1}} / t\right)^{1 /\left(m_{1}-1\right)}\right) \leq \exp \left(-b_{2}\left(|z|^{m_{2}} / t\right)^{1 /\left(m_{2}-1\right)} e^{\omega t}\right. \tag{2.3}
\end{equation*}
$$

for all $z \in \mathbb{R}^{N}, t>0$.

Proof. We have to find a constant ω such that

$$
-b_{1}\left(|z|^{m_{1}} / t\right)^{1 /\left(m_{1}-1\right)} \leq-b_{2}\left(|z|^{m_{2}}\right) / t^{-1 /\left(m_{2}-1\right)}+\omega t .
$$

Let $f_{t}(x)=b_{2} x^{m_{2} /\left(m_{2}-1\right)} t^{-1 /\left(m_{2}-1\right)}-b_{1} x^{m_{1} /\left(m_{1}-1\right)} t^{-1 /\left(m_{1}-1\right)}, \quad(x \geq 0)$ where $t>0$. Since $\frac{m_{2}}{m_{2}-1}<\frac{m_{1}}{m_{1}-1}, f_{t}(\infty)=-\infty$. Moreover, $f_{t}(0) \leq$ 0 . Let $x \geq 0$ such that $f_{t}^{\prime}(x)=0$. Then $b_{2} \frac{m_{2}}{m_{2}-1} x^{\frac{1}{m_{2}-1}} t^{-\frac{1}{m_{2}-1}}=$ $b_{1} \frac{m_{1}}{m_{1}-1} x^{\frac{1}{m_{1}-1}} t^{-\frac{1}{m_{1}-1}}$. Hence $\alpha_{2}(x / t)^{\frac{1}{m_{2}-1}}=\alpha_{1}(x / t)^{\frac{1}{m_{1}-1}}$. Thus $\frac{\alpha_{2}}{\alpha_{1}}=$ $\left(\frac{x}{t}\right)^{\frac{1}{m_{2}-1}-\frac{1}{m_{1}-1}}$. This implies that $x=\beta t$ for some $\beta>0$ independent of $t>0$. Thus $\max _{y>0} f_{t}(y)=f_{t}(\beta t)=\widetilde{b_{2}} t-\widetilde{b_{1}} t$ where $\widetilde{b_{2}}, \widetilde{b_{1}} \in \mathbb{R}$ are constants. Choose $\omega \geq \widetilde{b_{2}}-\widetilde{b_{1}}$.

Pseudo-Gaussian Estimates can be established with the help of a version of Davies' trick which goes as follows. Let

$$
\begin{aligned}
\mathcal{W}:= & \left\{\psi \in C^{\infty}\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right):\right. \\
& \left.\left\|D_{j} \psi\right\|_{\infty} \leq 1,\left\|D_{i} D_{j} \psi\right\|_{\infty} \leq 1, i, j=1, \ldots N\right\} .
\end{aligned}
$$

Let S be a positive C_{0}-semigroup on $L^{2}\left(\mathbb{R}^{N}\right)$. For $\varrho \in \mathbb{R}, \psi \in \mathcal{W}$ we denote by S^{ϱ} the C_{0}-semigroup given by

$$
\begin{equation*}
S^{\varrho}(t) f=e^{-\varrho \psi} S(t)\left(e^{\varrho \psi} f\right) . \tag{2.4}
\end{equation*}
$$

We keep in mind that $S^{\varrho}(t)$ also depends on ψ, but the estimates should not. In fact, we have the following.

Proposition 2.2. Let $m \geq 2$ be a real constant. Assume that there exist $c>0, \omega \in \mathbb{R}$ such that

$$
\begin{equation*}
\left\|S^{\varrho}(t)\right\|_{\mathcal{L}\left(L^{1}, L^{\infty}\right)} \leq c t^{-N / 2} e^{\omega\left(1+e^{m}\right) t} \tag{2.5}
\end{equation*}
$$

for all $\varrho \in \mathbb{R}, \psi \in \mathcal{W}, t>0$. Then S satisfies pseudo-Gaussian estimates of order m.

We recall the Dunford-Pettis criterion which says that an operator B on $L^{2}\left(\mathbb{R}^{N}\right)$ is given by a measurable kernel $k \in L^{\infty}\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ if and only if $\|B\|_{\mathcal{L}\left(L^{1}, L^{\infty}\right)}<\infty$. In that case,

$$
\|k\|_{L^{\infty}\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)}=\|B\|_{\mathcal{L}\left(L^{1}, L^{\infty}\right)} .
$$

Proof of Proposition 2.2. This is a modification of [AtE97, Proposition 3.3]. It follows from the Dunford-Pettis criterion applied to the operator $S(t)$ that $S(t)$ is given by a measurable kernel k. Consequently, $S^{\varrho}(t)$ is given by the kernel

$$
k^{\varrho}(t, x, y)=k(t, x, y) e^{\varrho(\psi(y)-\psi(x))} .
$$

Since by the Dunford-Pettis criterion again one has

$$
k^{\varrho}(t, x, y) \leq c t^{-N / 2} e^{\omega\left(1+\varrho^{m}\right) t},
$$

it follows that

$$
k(t, x, y) \leq c t^{-N / 2} e^{\omega t} e^{\omega \varrho^{m} t \pm \varrho(\psi(y)-\psi(x))}
$$

for all $\varrho \in \mathbb{R}$. Now, $d(x, y)=\sup \{\psi(x)-\psi(y): \psi \in W\}$ defines a metric on \mathbb{R}^{N} wihic is equivalent to the given metric, see [Rob91, p.200-202]. Hence $d(x, y) \leq \beta|x-y|$ for all $x, y \in \mathbb{R}^{N}$ and some $\beta>0$. Thus

$$
k(t, x, y) \leq c t^{-N / 2} e^{\omega t} e^{\omega \varrho^{m} t-\varrho \beta|y-x|}
$$

a.e. Choosing

$$
\varrho=\left(\frac{\beta|x-y|}{t \omega m}\right)^{\frac{1}{m-1}}
$$

we obtain

$$
k(t, x, y) \leq c t^{-N / 2} e^{\omega t} \exp \left\{-c_{2}|y-x|^{m} / t\right\}^{\frac{1}{m-1}}
$$

where $c_{2}=\beta^{\frac{m}{m-1}}\left(m^{-\frac{1}{m-1}}-m^{-\frac{m}{m-1}}\right)$.
Now we have to consider a stronger hypothesis than $\left(H_{0}\right)$, namely
$\left(H_{1}\right) \quad \operatorname{div} b \leq \beta V, \quad \operatorname{div} c \leq \beta V$
for some constant $0<\beta<1$. We also need a condition on the growth of the drift terms b and c with respect to V (assumed nonnegative), namely
$\left(H_{2}\right) \quad V \geq 0, \quad|b| \leq k_{1} V^{\alpha}+k_{2}, \quad|c| \leq k_{1} V^{\alpha}+k_{2}$,
where $\frac{1}{2} \leq \alpha<1, k_{1}, k_{2} \geq 0$, as well as some more regularity on the diffusion coefficients:
(H_{3})

$$
a_{i j} \in C_{b}^{1}\left(\mathbb{R}^{N}\right)
$$

The following result extends [AMP06, Theorem 5.2] from the case $\alpha=$ $\frac{1}{2}$ (i.e., $m=2$) to $\frac{1}{2} \leq \alpha<1$. Note however, that in contrast to the situation when $\alpha=\frac{1}{2}$, if $\alpha>\frac{1}{2}$ then the operator $-A$ is not associated with a form and the semigroup T may not be holomorphic (see [AMP06, Section 6] and Section 3 below).

Theorem 2.3. Let A be the minimal realization of the elliptic operator whose coefficients satisfy (1.1), $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$. Let T be the semigroup generated by A. Then T satisfies a pseudo-Gaussian estimate of order $m=\frac{1}{1-\alpha}$.

Proof. Let $\varrho \in \mathbb{R}, \psi \in \mathcal{W}$. It is obvious that

$$
T^{\varrho}(t) f=\lim _{r \uparrow \infty} T_{r}^{\varrho}(t) f
$$

Thus the generator A^{ϱ} of T^{ϱ} is the minimal realization of the elliptic operator \mathcal{A}^{ϱ} with coefficients

$$
\begin{aligned}
a_{i j}^{\varrho} & =a_{i j} \\
b_{i}^{\varrho} & =b_{i}-\varrho \sum_{j=1}^{N} a_{i j} \psi_{j} \\
c_{i}^{\varrho} & =c_{i}+\varrho \sum_{i, j=1}^{N} a_{k i} \psi_{k} \\
V^{\varrho} & =V-\varrho^{2} \sum_{i, j=1}^{N} a_{i j} \psi_{i} \psi_{j}+\varrho \sum_{i=1}^{N} b_{i} \psi_{i}-\varrho \sum_{i=1}^{N} c_{i} \psi_{i}
\end{aligned}
$$

where $\psi_{i}=D_{i} \psi$, cf. [AtE97, Lemma 3.6]. We will find $\omega \in \mathbb{R}$ such that for

$$
W^{\varrho}=V^{\varrho}+\left(1+\varrho^{m}\right) \omega
$$

one has

$$
\begin{equation*}
\operatorname{div} b^{\varrho} \leq W^{\varrho}, \quad \operatorname{div} c^{\varrho} \leq W^{\varrho} \tag{2.6}
\end{equation*}
$$

where ω is independent of $\varrho \in \mathbb{R}$ and $\psi \in \mathcal{W}$. Then Proposition 1.3 applied to $A^{\varrho}-\left(1+\varrho^{m}\right) \omega$ implies that

$$
\begin{equation*}
\|T(t)\|_{\mathcal{L}\left(L^{1}, L^{\infty}\right)} \leq c_{\nu} t^{-N / 2} e^{\omega\left(1+\varrho^{m}\right) t} \quad(t>0) . \tag{2.7}
\end{equation*}
$$

Then Proposition 2.2 proves the claim. In order to prove (2.6) we proceed in several steps. We first show that

$$
\begin{equation*}
\varrho V^{\alpha} \leq \varepsilon^{1 / \alpha} \alpha V+(1-\alpha) \varepsilon^{-m} \varrho^{m} \tag{2.8}
\end{equation*}
$$

for all $\varepsilon>0$. In fact, let $q=\frac{1}{\alpha}, \frac{1}{p}=1-\frac{1}{q}$ and recall that $m=\frac{1}{1-\alpha}=p$. Then by Hölder's inequality

$$
\begin{aligned}
\varrho V^{\alpha} & =\frac{1}{\varepsilon} \varrho V^{\alpha} \varepsilon \\
& \leq \frac{1}{p} \frac{1}{\varepsilon^{p}} \varrho^{p}+\frac{1}{q} V^{\alpha q} \varepsilon^{q} \\
& =(1-\alpha) \varepsilon^{-m} \varrho^{m}+\alpha V \varepsilon^{1 / \alpha} .
\end{aligned}
$$

Next we show that there exists $\omega_{1} \in \mathbb{R}$ such that

$$
\begin{equation*}
\beta V \leq V^{\varrho}+\omega_{1}\left(1+\varrho^{m}\right) \tag{2.9}
\end{equation*}
$$

for all $\varrho \in \mathbb{R}, \psi \in \mathcal{W}$, where $\beta \in(0,1)$ is the constant in $\left(H_{1}\right)$. In fact, by $\left(H_{2}\right)$ and (2.8),

$$
\begin{aligned}
V^{\varrho} & \geq V-k_{3} \varrho^{2}-k_{3} \varrho V^{\alpha}-k_{4} \varrho \\
& \geq V-k_{3} \varrho^{2}-k_{3} \varepsilon^{1 / \alpha} \alpha V-k_{3}(1-\alpha) \varepsilon^{-m} \varrho^{m}-k_{4} \varrho \\
& \geq \beta V-\omega_{1}\left(1+\varrho^{m}\right)
\end{aligned}
$$

for suitable constants $k_{3}, k_{4} \omega_{1}$ where $\varepsilon>0$ is chosen such that $\beta=$ $1-k_{3} \varepsilon^{1 / \alpha} \alpha$. Now we show (2.6). One has by (2.9),

$$
\begin{aligned}
\operatorname{div} b^{\varrho} & =\operatorname{div} b-\varrho \sum_{i, j=1}^{N} D_{i}\left(a_{i j} \psi_{j}\right) \\
& \leq \beta V+k_{4} \varrho \\
& \leq V^{\varrho}+\omega_{1}\left(1+\varrho^{m}\right)+k_{5} \varrho \\
& \leq V^{\varrho}+\omega\left(1+\varrho^{m}\right)
\end{aligned}
$$

for all $\varrho \in \mathbb{R}, \psi \in \mathcal{W}$ where k_{5}, ω are suitable constants. The estimate for $\operatorname{div} c^{\varrho}$ is the same.

Remark 2.4. It is obvious from the definition that a semigroup S satisfies (pseudo-) Gaussian estimates if and only if $\left(e^{\omega t} S(t)\right)_{t \geq 0}$ does so for some $\omega \in \mathbb{R}$. Thus in Theorem 2.3 we may replace condition $\left(H_{1}\right)$ by the weaker condition
$\left(H_{1}^{\prime}\right)$

$$
\operatorname{div} b \leq \beta V+\beta^{\prime}, \quad \operatorname{div} c \leq \beta V+\beta^{\prime}
$$

where $0<\beta<1, \beta^{\prime} \in \mathbb{R}$ and the result remains valid.
As application we obtain a result on p-independence of the spectrum. Assume that assumptions (1.1) and (H_{1}) are satisfied. Let A be the minimal realization of the elliptic operator \mathcal{A}. Then A generates a C_{0}-semigroup T on $L^{2}\left(\mathbb{R}^{N}\right)$ and T as well as T^{*} are submarkovian. As a consequence there exists a consistent family $T_{p}=\left(T_{p}(t)\right)_{t \geq 0}$ of semigroups on $L^{p}\left(\mathbb{R}^{N}\right)$ such that $T_{2}=T$. Here T_{p} is a C_{0}-semigroup if $1 \leq p<\infty$ and T_{∞} is a dual C_{0}-semigroup. We denote by A_{p} the generator of $T_{p}, 1 \leq p \leq \infty$.

Corollary 2.5. Assume that (1.1), $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$ are satisfied. Assume that $\alpha<\frac{N+2}{2 N}$. Then $\sigma\left(A_{p}\right)=\sigma(A)$ for all $p \in[1, \infty]$. Here $\frac{1}{2} \leq \alpha<1$ is the constant occurring in hypothesis $\left(H_{2}\right)$.

Proof. This follows from a result of Karrmann [Kar01, Corollary 6.2] which in turn is a consequence of a result of Kunstmann [Kun00, Theorem 1.1].

The restriction

$$
\alpha<\frac{N+2}{2 N}
$$

is due to the fact that Karrmann proves spectral p-independence in the case of quasi-Gaussian estimates of order m if $m<\frac{2 N}{N-2}$. We do not know whether these conditions are optimal.

3. An Example

In order to show that Theorem 2.3 is optimal we consider the 1 dimensional example

$$
\mathcal{A} u=u^{\prime \prime}-x^{3} u^{\prime}+|x|^{\gamma} u
$$

where $\gamma>2$. Then condition $\left(H_{1}^{\prime}\right)$ is satisfied (see Remark 2.4). Let A be the minimal realization of \mathcal{A} in $L^{2}(\mathbb{R})$ and let T be the semigroup generated by A. If $\gamma \geq 6$, then it follows from Theorem 2.3 that T satisfies Gaussian estimates. If $6>\gamma>3$, then Theorem 2.3 says that T satisfies pseudo-Gaussian estimates of order $m=\frac{\gamma}{\gamma-3}$. We show that T does not satisfy Gaussian estimates in that case.

Proposition 3.1. Let $3<\gamma<6$. Then T does not satisfy Gaussian estimates.

Proof. Assume that $T(t)$ is given by a kernel k_{t} satisfying

$$
\begin{equation*}
0 \leq k_{t}(x, y) \leq c_{1} e^{\omega t} \frac{1}{\sqrt{t}} e^{-c_{2}|x-y|^{2} / t} \tag{3.1}
\end{equation*}
$$

Consider the operator $I_{n} \in \mathcal{L}\left(L^{2}\right)$ given by

$$
\left(I_{n} u\right)(x)=u\left(\frac{x-n}{\lambda_{n}}\right)
$$

where $\lambda_{n}=n^{3-\beta}, \gamma<\beta<6$. Then

$$
\left\|I_{n} u\right\|_{2}=\sqrt{\lambda_{n}}\|u\|_{2} \quad\left(u \in L^{2}(\mathbb{R})\right)
$$

and $\left(I_{n}^{-1} u\right)(x)=u\left(\lambda_{n} x+n\right)$. Define the semigroup T_{n} on $L^{2}(\mathbb{R})$ by

$$
T_{n}(t)=I_{n}^{-1} T\left(r_{n} t\right) I_{n}
$$

where $r_{n}=n^{-\beta}$. It follows from the Trotter-Kato Theorem that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{n}(t) f=S(t) f \tag{3.2}
\end{equation*}
$$

for all $f \in L^{2}(\mathbb{R})$ where S is the shift semigroup given by $(S(t) u)(x)=$ $u(x-t)$ (see [AMP06, Proposition 6.4]). One has for $f \in L^{2}(\mathbb{R})$

$$
\begin{aligned}
T_{n}(t) f(x) & =\left(T\left(r_{n} t\right)\left(I_{n} f\right)\left(n+\lambda_{n} x\right)\right. \\
& =\int_{\mathbb{R}} k_{r_{n} t}\left(n+\lambda_{n} x, y\right) f\left(\frac{y-n}{\lambda_{n}}\right) d y \\
& =\int_{\mathbb{R}} \lambda_{n} k_{r_{n} t}\left(n+\lambda_{n} x, n+\lambda_{n} y\right) f(y) d y \\
& =\int_{\mathbb{R}} k_{t}^{n}(x, y) f(y) d y
\end{aligned}
$$

where $k_{t}^{n}(x, y)=\lambda_{n} k_{r_{n} t}\left(n+\lambda_{n} x, n+\lambda_{n} y\right)$. By (3.1) we obtain

$$
\begin{aligned}
k_{t}^{n}(x, y) & \leq n^{3-\beta} c_{1} e^{\omega t r_{n}} \frac{1}{\sqrt{r_{n} t}} e^{-c_{2} \lambda_{n}^{2}|x-y|^{2} / n^{-\beta} t} \\
& =n^{3-\beta / 2} c_{1} e^{\omega t r_{n}} \frac{1}{\sqrt{t}} e^{-c_{2} n^{6-\beta}|x-y|^{2} / t}
\end{aligned}
$$

Denoting by $G=(G(t))_{t \geq 0}$ the Gaussian semigroup, this implies that for $0 \leq f \in L^{2}\left(\mathbb{R}^{N}\right)$,

$$
\left(T_{n}(t) f\right)(x) \leq c e^{\omega t r_{n}}\left(G\left(t / 4 c_{2} n^{6-\beta}\right) f\right)(x) .
$$

Thus

$$
\begin{aligned}
S(t) f & =\lim _{n \rightarrow \infty} T_{n}(t) f \\
& \leq \lim _{n \rightarrow \infty} c e^{\omega t r_{n}} G\left(t / 4 c_{2} n^{6-\beta}\right) f \\
& =c_{1} f .
\end{aligned}
$$

This is a contradiction.
Remark 3.2. It was shown in [AMP06, Proposition 6.4] that for $2 \leq$ $\gamma<6$, the semigroup T is not holomorphic. It seems not to be known whether Gaussian estimates for positive semigroups imply holomorphy. They do not without positivity assumption as Voigt's example

$$
A u=u^{\prime \prime}+i x
$$

on $L^{2}(\mathbb{R})$ shows (see Liskevich-Manavi [LM97] for more details).

References

[ABHN01] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander: Vector-valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics. Birkhäuser, Basel, 2001.
[AMP06] W. Arendt, G. Metafune, D. Pallara: Schrödinger operators with unbounded drift. J. Oper. Theory 55 (2006) 185-211.
[Are04] W. Arendt: Semigroups and evolution equations: Functional calculus, regularity and kernel estimates. In: Evolutionary Equations Vol. I. Handbook of Differential Equations. C.M. Dafermos, E. Feireisl eds., Elsevier, Amsterdam 2004 pp. 1-85.
[AtE97] W. Arendt, A.F.M. ter Elst: Gaussian estimates for second order elliptic operators with boundary conditions. J. Oper. Theory 38 (1997) 87-130.
[Bre83] H. Brézis: Analyse Fonctionelle. Masson, Paris 1983.
[Cou90] T. Coulhon: Dimension à l'infini d'un semi-groupe analytique. Bull. Sci. Math. 114 (1990) 485-500.
[Dan00] D. Daners: Heat kernel estimates for operators with boundary conditions. Math. Nachr. 217 (2000) 13-41.
[Dav89] E.B. Davies: Heat Kernels and Spectral Theory. Cambridge University Press 1989.
[Kar01] S. Karrmann: Gaussian estimates for second-order operators with unbounded coefficients. J. Math. Anal. Appl. 258 (2001) 320-348.
[Kun00] P.C. Kunstmann: Kernel estimates and L^{p}-spectral independence of differential and integral operators. $7^{\text {th }}$ OT Conference. Proceedings. THETA 2000.
[LM97] V. Liskevich, A. Manavi: Dominated semigroups with singular complex potentials. J. Funct. Anal. 151 (1997) 281-305.
[LS03] V. Liskevich, Z. Sobol: Estimates of integral kernels for semigroups associated with second-order elliptic operators with singular coefficients. Potential Analysis 18 (2003) 359-390.
[LSV02] V. Liskevich, Z. Sobol, H. Vogt: On the L^{p}-theory of C_{0}-semigroups associated with second-order elliptic operators II. J. Funct. Anal. 193 (2002) 55-76.
[MP04] G. Metafune, E. Priola: Some classes of nonanalytic Markov semigroups. J. Math. Anal. Appl. 294 (2004) 596-613.
[MPRS05] G. Metafune, J. Prüss, A. Rhandi, R. Schnaubelt: L ${ }^{p}$-regularity for elliptic operators with unbounded coefficents. Adv. Diff. Equ. 10 (2005) 1131-1164.
[Ouh05] E. Ouhabaz: Analysis of Heat Equations on Domains. Princeton University Press, Oxford 2005.
[Rob91] D.W. Robinson: Elliptic Operators on Lie Groups. Oxford University Press 1991.
[SV02] Z. Sobol, H. Vogt: L_{p}-theory of C_{0}-semigroups associated with second-order elliptic operators. J. Functional Anal. 193 (2002) 24-54.
[VSC90] N. Varopoulos, L. Saloff-Coste, T. Coulhon: Geometry and Analysis on Groups. Cambridge Univ. Press 1993.

Institute of Applied Analysis, University of Ulm, D-89069 Ulm, GerMANY

E-mail address: wolfgang.arendt@uni-ulm.de
Dipartimento di Matematica 'Ennio De Giorgi', Università del Salento, CP 193, I-73100 Lecce, Italy

E-mail address: giorgio.metafune@unile.it
Dipartimento di Matematica 'Ennio De Giorgi', Università del Salento, CP 193, I-73100 Lecce, Italy

E-mail address: diego.pallara@unile.it

