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Abstract

We introduce a notion of fractional perimeter in an abstract Wiener space, and we show that
halfspaces are the only volume-constrained minimisers.

1 Introduction

The purpose of this paper is introducing a notion of fractional perimeter in an abstract Wiener
space, following the approach developed in the seminal work [4], and studying the symmetry prop-
erties of minimisers for this functional. More precisely, our main result is to prove that halfspaces
are the unique isoperimetric sets for the fractional perimeter, as it happens for the usual perimeter
(see [6], [13], [1, Remark 4.7]). Owing to the well-known relation between the isoperimetric problem
and the Allen-Cahn energy [14] (see also [12] for an extension of the result to Wiener spaces, and
[15] for a nonlocal version in finite dimensions), we also prove the one-dimensional symmetry of
minimisers of the corresponding nonlocal Allen-Cahn energy (see Theorem 3.6). We now state the
main result of this paper (see Section 2 for the precise definitions). In the whole paper s ∈ (0, 1).

Theorem 1.1. For any s ∈ (0, 1) and m ∈ (0, 1) there exists a set Em ⊂ X which solves the
isoperimetric problem

min
{
Pγ,s(E) : E ⊂ X, γ(E) = m

}
. (1.1)

Moreover, the set Em is necessarily a half-space, i.e., E = {ĥ < c} for some h ∈ H and c ∈ R.

The proof of Theorem 1.1 is based on the extension technique introduced in [5]. Indeed, the
fractional perimeter, and more generally the fractional Sobolev seminorm defined in (2.6), can be
obtained via the minimisation of a Dirichlet energy after adding an extra variable that lies on a
half-line endowed with a degenerate measure. As a consequence, the isoperimetric problem can be
tackled by studying this minimisation problem. To this aim, we split the Dirichlet functional in
two contributions J1 and J2 in a natural way and show that both are decreasing under Ehrhard
symmetrisation defined in (3.1). These results are proved in Lemmas 3.1 (which seems to be new
even in the finite dimensional case) and 3.3, respectively. In the first proof we adapt a technique in
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[3], in the second we use cylindrical approximations to extend the result from the finite dimensional
to the infinite dimensional setting, see Lemma 3.2. These symmetrisation results we believe to be
interesting on their own.

Partial symmetrisations in product spaces are also used in [11], with the aim of studying isoperi-
metric problems with respect to product measures. Also in this case, it is shown that the advantage
of symmetrising with respect to a set of variables is not affected by the others.

2 Notation and preliminary definitions

We collect here the definitions and the preliminaries results needed in the sequel. The first two
subsections are devoted to the structure of the Wiener space; for all this results we refer to the
book [2]. In the third subsection we introduce the fractional perimeters and Sobolev seminorms
and use the extension technique in [5, 16] to show some further preliminary results.

2.1 The Wiener space

An abstract Wiener space is a triple (X, γ,H) where X is a separable Banach space, endowed with
the norm ‖ · ‖X , γ is a nondegenerate centred Gaussian measure, and H is the Cameron-Martin
space associated with the measure γ, that is, H is a separable Hilbert space densely embedded in
X, endowed with the inner product [·, ·]H and with the norm | · |H . The requirement that γ is a
centred Gaussian measure means that for any x∗ ∈ X∗, the measure x∗#γ is a centred Gaussian
measure on the real line R, that is, the Fourier transform of γ is given by

γ̂(x∗) =
∫
X
e−i〈x,x

∗〉 dγ(x) = exp
(
−〈Qx

∗, x∗〉
2

)
, ∀x∗ ∈ X∗;

here the operator Q ∈ L(X∗, X) is the covariance operator and it is uniquely determined by the
formula

〈Qx∗, y∗〉 =
∫
X
〈x, x∗〉〈x, y∗〉dγ(x), ∀x∗, y∗ ∈ X∗.

The nondegeneracy of γ implies that Q is positive definite: the boundedness of Q follows by
Fernique’s Theorem (see [2, Theorem 2.8.5]), asserting that there exists a positive number β > 0
such that∫

X
eβ‖x‖

2
Xdγ(x) < +∞.

This implies also that the maps x 7→ 〈x, x∗〉 belong to Lpγ(X) for any x∗ ∈ X∗ and p ∈ [1,+∞),
where Lpγ(X) denotes the space of all γ-measurable functions f : X → R such that∫

X
|f(x)|pdγ(x) < +∞.

In particular, any element x∗ ∈ X∗ can be seen as a map x∗ ∈ L2
γ(X), and we denote by R∗ :

X∗ → H the identification map R∗x∗(x) := 〈x, x∗〉. The space H given by the closure of R∗X∗ in
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L2
γ(X) is usually called reproducing kernel. By considering the map R : H → X defined through

the Bochner integral

Rĥ :=
∫
X
ĥ(x)x dγ(x),

we obtain that R is an injective γ–Radonifying operator, which is Hilbert–Schmidt when X is
Hilbert. We also have Q = RR∗ : X∗ → X. The space H := RH, equipped with the inner product
[·, ·]H and norm | · |H induced by H via R, is the Cameron-Martin space and is a dense subspace of
X. The continuity of R implies that the embedding of H in X is continuous, that is, there exists
c > 0 such that

‖h‖X ≤ c|h|H , ∀h ∈ H.

We have also that the measure γ is absolutely continuous with respect to translation along Cameron-
Martin directions; in fact, for h ∈ H, h = Qx∗, the measure γh(B) = γ(B − h) is absolutely
continuous with respect to γ with density given by

dγh(x) = exp
(
〈x, x∗〉 − 1

2
|h|2H

)
dγ(x).

2.2 Cylindrical functions and differential operators

For j ∈ N we choose x∗j ∈ X∗ in such a way that ĥj := R∗x∗j , or equivalently hj := Rĥj = Qx∗j ,
form an orthonormal basis of H. We order the vectors x∗j in such a way that the numbers λj :=
‖x∗j‖

−2
X∗ form a non-increasing sequence. Given m ∈ N, we also let Hm := 〈h1, . . . , hm〉 ⊆ H, and

Πm : X → Hm be the closure of the orthogonal projection from H to Hm

Πm(x) :=
m∑
j=1

〈
x, x∗j

〉
hj x ∈ X.

The map Πm induces the decomposition X ' Hm ⊕X⊥m, with X⊥m := ker(Πm), and γ = γm ⊗ γ⊥m,
with γm and γ⊥m Gaussian measures on Hm and X⊥m respectively, having Hm and H⊥m as Cameron-
Martin spaces. When no confusion is possible we identify Hm with Rm; with this identification
the measure γm = Πm#γ is the standard Gaussian measure on Rm. Given x ∈ X, we denote by
xm ∈ Hm the projection Πm(x), and by xm ∈ X⊥m the infinite dimensional component of x, so that
x = xm + xm. When we identify Hm with Rm we rather write x = (xm, xm) ∈ Rm ⊕X⊥m.

We say that u : X → R is a cylindrical function if u(x) = v(Πm(x)) for some m ∈ N and
v : Rm → R. We denote by FCkb (X), k ∈ N, the space of all Ckb cylindrical functions, that is,
functions of the form v(Πm(x)) with v ∈ Ckb (Rm), with continuous and bounded derivatives up to
the order k. We denote by FCkb (X,H) the space generated by all functions of the form uh, with
u ∈ FCkb (X) and h ∈ H.

Given u ∈ L2(X, γ), we consider the canonical cylindrical approximation operators Em given
by

Emu(x) =
∫
X⊥m

u(Πm(x), y) dγ⊥m(y). (2.1)
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Notice that Emu depends only on the first m variables and Emu converges to u in Lpγ(X) for all
1 ≤ p <∞. We let

∇γu :=
∑
j∈N

∂juhj for u ∈ FC1
b(X)

divγϕ :=
∑
j≥1

∂∗j [ϕ, hj ]H for ϕ ∈ FC1
b(X,H)

∆γu := divγ∇γu for u ∈ FC2
b(X)

where ∂j := ∂hj and ∂∗j := ∂j − ĥj is the adjoint operator of ∂j . With this notation, the following
integration by parts formula holds:∫

X
u divγϕdγ = −

∫
X

[∇γu, ϕ]H dγ ∀ϕ ∈ FC1
b(X,H). (2.2)

In particular, thanks to (2.2), the operator ∇γ is closable in Lpγ(X), and we denote by W 1,p
γ (X) the

domain of its closure. The Sobolev spaces W k,p
γ (X), with k ∈ N and p ∈ [1,+∞], can be defined

analogously, and FCkb (X) is dense in W j,p
γ (X), for all p < +∞ and k, j ∈ N with k ≥ j. Given

a vector field ϕ ∈ Lpγ(X;H), p ∈ (1,∞], using (2.2) we can define divγ ϕ in the distributional
sense, taking test functions u in W 1,q

γ (X) with 1
p + 1

q = 1. We say that divγ ϕ ∈ Lpγ(X) if this
linear functional can be extended to all test functions u ∈ Lqγ(X). This is true in particular if
ϕ ∈W 1,p

γ (X;H).
Let u ∈W 2,2

γ (X), ψ ∈ FC1
b(X) and i, j ∈ N. From (2.2), with u = ∂ju and ϕ = ψhi, we get∫

X
∂ju ∂iψ dγ =

∫
X
−∂i(∂ju)ψ + ∂juψ〈x∗i , x〉dγ (2.3)

Let now ϕ ∈ FC1
b(X,H). If we apply (2.3) with ψ = [ϕ, hj ] =: ϕj , we obtain∫

X
∂ju ∂iϕ

j dγ =
∫
X
−∂j(∂iu)ϕj + ∂juϕ

j〈x∗i , x〉dγ

which, summing up in j, gives∫
X

[∇γu, ∂iϕ] dγ =
∫
X
−[∇γ(∂iu), ϕ] + [∇γu, ϕ]〈x∗i , x〉dγ

for all ϕ ∈ FC1
b(X,H).

The operator ∆γ : W 2,p
γ (X)→ Lpγ(X) is usually called the Ornstein-Uhlenbeck operator on X.

Notice that, if u is a cylindrical function, that is u(x) = v(y) with y = Πm(x) ∈ Rm and m ∈ N,
then

∆γu =
m∑
j=1

∂jju− 〈x∗j , x〉∂ju = ∆v − 〈y,∇v〉Rm .
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2.3 Fractional Sobolev spaces and fractional perimeters

Since the operator −∆γ is positive and self-adjoint in L2
γ(X), one can define its fractional powers

by means of the standard formula in spectral theory

(−∆γ)s =
1

Γ(−s)

∫ ∞
0

(
et∆γ − Id

) dt

t1+s
,

where s ∈ (0, 1) and et∆γ denotes the Ornstein-Uhlenbeck semigroup on X.
For non local PDEs involving the fractional laplacian it is by now classical to use the so-called

Caffarelli-Silvestre extension (see [5]). Here we use a general formulation of it, due to Stinga and
Torrea [16], which can be easily adapted to our infinite dimensional setting. More precisely, a
consequence of their main result is the following:

Theorem 2.1. Let u ∈ dom((−∆γ)s). A solution of the extension problem
∆γv +

1− 2s
y

∂yv + ∂2
yv = 0 on X × (0,+∞)

v(x, 0) = u on X,

(2.4)

is given by

v(x, y) =
1

Γ(s)

∫ ∞
0

et∆γ ((−∆γ)su)(x)e−y
2/4t dt

t1−s

and furthermore, one has in L2
γ(X)

− lim
y→0+

y1−2s∂yv(x, y) =
2sΓ(−s)
4sΓ(s)

(−∆γ)su(x). (2.5)

After defining the fractional laplacian, let us introduce the fractional Sobolev space

Hs
γ(X) =

{
u ∈ L2

γ(X) : [u]Hs
γ
<∞

}
where

[u]2Hs
γ

= inf
{∫

X×R+

(
|∇γv|2H + |∂yv|2

)
y1−2sdγ(x)dy : v ∈ H1

loc(X ×R+), v(·, 0) = u(·)
}
. (2.6)

The space Hs
γ is endowed with the Hilbert norm

‖u‖2Hs
γ

= ‖u‖2L2
γ

+ [u]2Hs
γ
.

Remark 2.2. Let us define the space

H1(X×R+, γ⊗y1−2sdy) =
{
v ∈ H1

loc(X×R+) :
∫
X×R+

(
|v|2 + |∇γv|2H + |∂yv|2

)
y1−2sdγ(x)dy <∞

}
.

A function u ∈ L2
γ(X) belongs to Hs

γ if and only if there is vu ∈ H1(X × R+, γ ⊗ y1−2sdy) such
that the infimum in (2.6) is attained by vu. We may therefore define the inner product

〈u,w〉Ḣs
γ

=
∫
X×R+

(
[∇γvu,∇γvw]H + ∂yvu ∂yvw

)
y1−2sdγ(x)dy, u, w ∈ Hs

γ(X).
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We relate in the next lemma the fractional laplacian with the spaces described above.

Lemma 2.3. for every u,w ∈ Hs
γ with u ∈ dom((−∆γ)s) the following equality holds:

〈u,w〉Ḣs
γ

= cs

∫
X

(−∆γ)suw dγ,

where cs is the constant in (2.5).

Proof. For u,w ∈ Hs
γ(X), let vu be as above. It easily follows from the minimality and elliptic

regularity that vu is a solution of problem (2.4). Indeed, let us consider the test function ϕ(x)ψ(y)
with ϕ ∈ FC∞b (X) and ψ ∈ C∞c (R); we have

〈u, ϕψ〉Ḣs
γ

=
∫
X×R+

[
[∇γvu,∇γϕ(x)]Hψ(y) + ϕ(x)∂yvuψ′(y)

]
y1−2sdγ(x)dy

=
∫
X×R+

(
−∆γvu − ∂2

yvu −
1− 2s
y

∂yvu
)
ϕ(x)ψ(y)y1−2sdγ(x)dy

−
∫
X

lim
y→0+

(y1−2s∂yvu(x, y)ψ(y))ϕ(x) dγ(x).

Since vu(·, 0) = u(·), from (2.5) and the density of the test functions in Hs
γ we obtain the thesis.

We are now ready to define the fractional perimeter of a set in X.

Definition 2.4. For every measurable set E ⊂ X ans 0 < s < 1 we define the fractional s-perimeter
by setting

Pγ,s(E) =
1
2

[χE ]2
H
s/2
γ

according to (2.6), i.e.,

Pγ,s(E) =
1
2

inf
{∫

X×R+

(
|∇γv|2H + |∂yv|2

)
y1−sdγ(x)dy : v ∈ H1

loc(X ×R+), v(·, 0) = χE(·)
}
.

We say that E has finite s-perimeter in X if Pγ,s(E) <∞.

Let us show that a form of the coarea formula holds in this framework as well (see [17]).

Proposition 2.5. Setting for u ∈ L1
γ(X)

Vs(u) =
∫

R
Pγ,s({u > t}) dt,

Vs is convex and lower semicontinuous on L1
γ(X). Moreover, if un = En[u] are the canonical

cylindrical approximation of u then Vs(u) ≤ Vs(un).

Proof. The convexity of Vs has been proved in [8, Proposition 3.4], while the lower semicontinuity
easily follows from the lower semicontinuity of perimeters. The last inequality follows immediately
from Jensen’s inequality.
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3 The fractional isoperimetric problem

In order to discuss the isoperimetric properties of half-spaces, following [9] we introduce a suitable
notion of symmetrisation. For h ∈ H with |h|H = 1, we consider the projection x′ = πhx = x−ĥ(x)h
and write x = x′ + th with t ∈ R. Therefore, for fixed h ∈ H and for any I ⊂ R we set

I∗ = (−∞, φ−1(γ1(I)), where φ(t) =
∫ t

−∞
e−τ

2/2dτ. (3.1)

In the same vein, for every measurable function u : X → R we define the symmetrised function

u∗h(x′ + th) = sup
{
c ∈ R : t ∈ {u(x′, ·) > c}∗

}
. (3.2)

Since symmetrisation preserves characteristic functions, we may define the set E∗h through the
equality

χE∗h = (χE)∗h.

The proof of Theorem 1.1 relies on the following lemma.

Lemma 3.1. Let v ∈ H1(X × R+, γ ⊗ y1−2sdy) and let h ∈ X∗ with |h|H = 1. Let v∗h be as in
(3.2) and let

J1(v) :=
∫
X×R+

|∂yv|2 y1−2sdγ(x)dy.

Then we have the inequality J1(v∗h) ≤ J1(v).

Proof. The proof follows that of Theorem 1 in [3] with minor modifications, we repeat it for the
reader’s convenience. There are some differences: Brock’s result is in finite dimensions, the un-
derlying measure is the Lebesgue one and he uses the Steiner symmetrisation, whereas we work in
X ×R+ with the product measure γ ⊗ y1−2sdy and we are concerned with the Ehrhard symmetri-
sation. On the other hand, the functionals considered by Brock are much more general than ours.
In order to simplify the notation, suppose that h = h1, write as before x = x′+th1 splitX = H1⊕X⊥1
and decompose the gaussian measure as γ = γ1⊗ γ⊥1 . Since for every v ∈ H1(X ×R+, γ⊗ y1−2sdy)
we have

J1(v) =
∫
X⊥1

(∫
R

∫
R+

|∂yv(x′, t, y)|2y1−2sdγ1(t)dy
)
dγ⊥1 (x′),

we may limit ourselves to the inner double integral, for fixed x′. Moreover, following the reduction
explained in [3], we may deal only with the dense class of nice functions, i.e., piecewise affine
functions v : R × R+ → R such that for every c > inf v the equation v(t, y) = c has for every
y ∈ R+ a finite (even) number of solutions t1, . . . , t2m. Once the result is proved for nice functions,
the general case follows as in [3]. For v nice, set Ω = {v > 0} and decompose the vertical set
{(y, z) ∈ R+ × R+ : ∃ (t, y) ∈ Ω such that v(t, y) = z} into N disjoint domains Gj such that
for any (y, z) ∈ Gj the equation v(t, y) = z has exactly 2m (with m depending on j) solutions
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t = tjk, k = 1, . . . , 2m(j). Thus v can be represented in each Gj by the inverse functions t = tjk(y, v).
In each domain Gj the following identities hold:

∂tv(tjk, y) =
(∂tjk
∂v

)−1
{
> 0 if k is odd
< 0 if k is even

∂yv(tjk, y) = −
∂tjk
∂y

(∂tjk
∂v

)−1
.

Since v is nice, all the derivatives of tjk are constant in Gj and therefore the rearranged function v∗ is
nice, too. Moreover the symmetrisation procedure reduces the solutions of the equation v∗(t, y) = z
to only one, i.e., the following

T j = φ−1
(2m(j)∑
k=1

(−1)k−1φ(tjk)
)

(where φ is introduced in (3.1)) in each Gj , for every y ∈ R+. Differentiating we get

γ1(T j)
∂T j

∂y
=

2m(j)∑
k=1

(−1)k−1γ(tjk)
∂tjk
∂y

γ1(T j)
∂T j

∂z
=

2m(j)∑
k=1

γ(tjk)
∣∣∣∂tjk
∂y

∣∣∣.
It follows (with x′ ∈ X⊥1 fixed)

∫
R

∫
R+

|∂yv(x′, t, y)|2y1−2sγ1(t)dydt =
N∑
j=1

∫
Gj

m(j)∑
k=1

∣∣∣∂tjk
∂y

∣∣∣2 ∣∣∣∂tjk
∂z

∣∣∣−1
γ1(tjk)dydz

∫
R

∫
R+

|∂yv∗(x′, t, y)|2y1−2sγ1(t)dydt =
N∑
j=1

∫
Gj

∣∣∣∂T j
∂y

∣∣∣2 ∣∣∣∂T j
∂z

∣∣∣−1
γ1(T j)dydz

=
N∑
j=1

∫
Gj

∣∣∣∣∣∑2m(j)
k=1 (−1)k−1γ(tjk)

∂tjk
∂y

∣∣∣∣∣
2

∣∣∣∣∑2m(j)
k=1 γ(tjk)

∣∣∣∂tjk∂y ∣∣∣ ∣∣∣∣ dydz.

Setting

cjk = γ1(tjk)
∂tjk
∂y

, bjk = γ1(tjk)
∣∣∣∂tjk
∂z

∣∣∣,
we have the following equivalence:∫

R

∫
R+

|∂yv(x′, t, y)|2y1−2sγ1(t)dydt ≥
∫

R

∫
R+

|∂yv∗(x′, t, y)|2y1−2sγ1(t)dydt
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⇐⇒
2m(j)∑
k=1

(cjk)
2

bjk
≥
(2m(j)∑
k=1

(−1)k−1cjk

)2∣∣∣2m(j)∑
j=1

bjk

∣∣∣−1
∀ j = 1, . . . , N.

But, the last inequality is nothing but the Cauchy-Schwarz inequality:

(2m(j)∑
k=1

(−1)k−1ck

)2
=
(2m(j)∑
k=1

(−1)k−1 ck√
bk

√
bk

)2
≤

2m(j)∑
k=1

c2
k

bk

2m(j)∑
k=1

bk

and the thesis follows.

Let us show that the L2
γ(X) norm of the gradient is also decreasing under Ehrhard rearrange-

ment.

Lemma 3.2. Let u ∈ H1
γ(X), and let h ∈ X∗ with |h|H = 1. Then u∗h ∈ H1

γ(X) and∫
X
|∇γu∗h|2Hdγ ≤

∫
X
|∇γu|2Hdγ . (3.3)

Proof. In [10, Th. 3.1] the inequality (3.3) is proven for Lipschitz functions in finite dimensions.
We extend it by approximation to Sobolev functions in H1

γ(X).
We let un ∈ FC1

b(X) be the canonical cylindrical approximation of u defined in (2.1). Since
un → u in H1

γ(X), we have (un)∗h → u∗h in L2
γ(X), so that by the lower semicontinuity of the H1

γ

norm we obtain∫
X
|∇γu∗h|2Hdγ ≤ lim inf

n→∞

∫
X
|∇γ(un)∗h|2Hdγ ≤ lim inf

n→∞

∫
X
|∇γun|2Hdγ =

∫
X
|∇γu|2Hdγ .

From Lemma 3.2 we immediately get the following result.

Lemma 3.3. Let v ∈ H1(X ×R+, γ ⊗ y1−2sdy) and let h ∈ X∗ with |h|H = 1. Letting v∗h be as in
(3.2) and

J2(v) =
∫
X×R+

|∇γv|2H y1−2sdγ(x)dy,

we have the inequality J2(v∗h) ≤ J2(v).

From (2.6), Lemma 3.1 and Lemma 3.3 we immediately get the following result:

Corollary 3.4. If u ∈ Hs
γ(X) then for every h ∈ H we have u∗h ∈ Hs

γ(X) and

[u∗h]Hs
γ
≤ [u]Hs

γ
.

Given u ∈ L2
γ(X), let Su : R→ R be the decreasing function defined through its inverse by the

equality

S−1
u (t) = φ−1(γ({u > t}),

for φ as in (3.1), so that γ({u > t}) = γ({Su > t}).
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Theorem 3.5. Let u ∈ Hs
γ. Then

[Su]Hs
γ1
≤ [u]Hs

γ
, (3.4)

with equality if and only if u is one-dimensional, that is, u(x) = Su(ĥ(x)) for some h ∈ H with
|h| = 1.

Proof. We first show the inequality (3.4). Let (un) be the canonical cylindrical approximation of
u defined in (2.1), let (hk) be a sequence dense in {h ∈ Hn : |h|H = 1} and let un,k be iteratively
defined by un,0 = un and un,k = (un,k−1)∗hk as in (3.2). Then, ‖un,k‖L2

γ(X) = ‖un‖L2
γ(X) for every k

and by the preceding lemmas, we have that [un,k]Hs
γ
≤ [un]Hs

γ
, hence (up to a subsequence that we

don’t relabel) the sequence (un,k) converges to a function ũn in L2
γ(X) with [ũn]Hs

γ
≤ [un]Hs

γ
. Since

ũn is symmetric with respect to all the directions in Hn, it can be written as ũn(x) = Sun(ĥ(x))
for some h ∈ Hn. From Lemma 3.1 and Lemma 3.3 it follows that

[Sun ]Hs
γ1

= [Sun ◦ ĥ]Hs
γ
≤ [un]Hs

γ
≤ [u]Hs

γ
.

Passing to the limit as n→∞ and noting that Sun → Su in L2
γ1(R), we get the inequality (3.4).

Assume now that the equality holds in (3.4). Again by Lemma 3.1 and Lemma 3.3, this implies
that ∫

X×R+

|∂yvSu |2y1−2s γ(x) dy =
∫
X×R+

|∂yvu|2y1−2s γ(x) dy

and ∫
R+

‖∇γvSu(·, t)‖2L2
γ(X)y

1−2s dy =
∫

R+

‖∇γvu(·, t)‖2L2
γ(X)y

1−2s dy ,

where vSu , vu are the corresponding minimisers of the right-hand side of (2.6). Hence, for a.e. t > 0
we have

‖∇γvSu(·, t)‖L2
γ(X) = ‖∇γvu(·, t)‖L2

γ(X) .

Thanks to [12, Prop. 3.12], it follows that vu is one-dimensional for a.e. t > 0, which implies that
u is also one-dimensional, and concludes the proof.

A direct consequence of Theorem 3.5 is the following symmetry result:

Theorem 3.6. Let m > 0 and F : R→ R be lower semicontinuous, and assume that the problem

min
{

[w]Hs
γ1

+
∫

R
F (w) dγ1 :

∫
R
w dγ1 = m

}
(3.5)

admits a minimiser. Then the unique minimisers of the problem

min
{

[u]Hs
γ

+
∫
X
F (u) dγ :

∫
X
u dγ = m

}
(3.6)

are given by u(x) = ϕ(ĥ(x)) for some minimiser ϕ of problem (3.5) and for some h ∈ H.

We can conclude with the proof of Theorem 1.1.

Proof of Theorem 1.1. Theorem 1.1 follows from Theorem 3.5 with s/2 in place of s, by taking
u = χE to be the characteristic function of E.

10



Acknowledgements

D.P. has been partially supported by the PRIN 2010 MIUR project “Problemi differenziali di
evoluzione: approcci deterministici e stocastici e loro interazioni”. Y.S. has been partially supported
by the ERC grant ε “Elliptic Pde’s and Symmetry of Interfaces and Layers for Odd Nonlinearities”,
and the ANR project ”HAB”. M.N. and D.P. are members of the italian CNR-GNAMPA.

References

[1] L. Ambrosio, S. Maniglia, M. Miranda, D. Pallara: BV functions in abstract Wiener
spaces. J. Funct. Anal., 258:785-813, 2010.

[2] V. I. Bogachev: Gaussian Measures. American Mathematical Society, 1998.

[3] F. Brock: Weighted Dirichlet-type inequalities for Steiner symmetrization. Calc. Var. Partial
Differential Equations, 8:15-25, 1999.

[4] L. Caffarelli, J.M. Roquejoffre, O. Savin: Nonlocal minimal surfaces. Comm. Pure
Appl. Math., 63:1111-1144, 2010.

[5] L. Caffarelli, L. Silvestre: An extension problem related to the fractional Laplacian.
Comm. Partial Differential Equations, 32:1245-1260 ,2007.

[6] E.A. Carlen, C. Kerce: On the cases of equality in Bobkov’s inequality and Gaussian
rearrangement. Calc. Var. Partial Differential Equations, 13:1-18, 2001.

[7] V. Caselles, A. Lunardi, M. Miranda, M. Novaga: Perimeter of sublevel sets in infinite
dimensional spaces. Adv. Calc. Var., 5(1):59-76, 2012.

[8] A. Chambolle, A. Giacomini, L. Lussardi: Continuous limits of discrete perimeters.
ESAIM Math. Model Numer. Anal., 44:207-230, 2010.

[9] A. Ehrhard: Symétrisation sans l’espace de Gauss. Math. Scand. 53:281-301, 1983.
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