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Abstract. We present a variational model for the quasi-static crack growth in hydraulic

fracture in the framework of the energy formulation of rate-independent processes. The

cracks are assumed to lie on a prescribed plane and to satisfy a very weak regularity
assumption.

Keywords: variational models, energy minimization, free-discontinuity problems, crack propaga-
tion, quasi-static evolution, brittle fractures, hydraulic fractures.

2010 Mathematics Subject Classification: 74R10, 49Q10, 35J20, 74F10.

1. Introduction

Hydraulic fracture studies the process of crack growth in rocks driven by the injection of
high pressure fluids. The main use of hydraulic fracturing is the extraction of natural gas or
oil. In these cases, a fluid at high pressure is pumped into a pre-existing fracture through a
wellbore, causing the enlargement of the crack.

In the study of hydraulic fracture, all thermal and chemical effects are usually neglected
and the fracturing stimulation is performed only by hydraulic forces, not by explosives, thus
the inertial effects are negligible. This justifies the use of quasi-static models.

Numerical simulations for this kind of problems have been presented in various papers,
coupling the fluid equation, typically Reynolds’ equation, and the elasticity system for the
rock, see for instance [8, 10, 11]. Particular attention has been given to the tip behaviour
of a fluid driven crack, see [5, 7]. Some models, see, e.g., [3, 14, 15], are based on a varia-
tional approach introduced by Francfort and Marigo [6] for the quasi-static growth of brittle
fractures.

While the results of [3, 14, 15] are based on a phase field approximation of the crack
introduced by Ambrosio and Tortorelli [1], the model presented in this paper is instead built
on the sharp-interface version originally developed in [6].

We assume that the rock fills the whole space R3 and has an initial crack, lying on a
plane Σ passing through the origin. The rock is modelled as a linearly elastic, impermeable
material and we allow the crack to grow only within Σ. The fluid is pumped through the
origin into the region between the crack lips. It is assumed to be an incompressible fluid.

Since our model is quasi-static, at each time t the fluid and the rock are in equilibrium.
This implies that the pressure is uniform in the region occupied by the fluid and exerts a
force on the rock through the crack lips. We prove also that the fluid occupies the whole
region between the crack lips (see Remarks 3.1 and 4.2). In particular, there is no dry region
near the crack edge.

We assume that at every time we know the total volume V (t) of the fluid that has been
pumped into the crack up to time t . The mathematical problem is to show that given the
function t 7→ V (t), we can determine at each time the shape and size of the crack, as well
as the fluid pressure p(t).
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In Section 3 we discuss a simplified version of our model, where we suppose that the rock
is homogeneous and isotropic. This justifies the assumption that the time dependent cracks
are circular (penny-shaped cracks, see, e.g., [2, 18, 19]). The main result of this section is the
existence of a unique irreversible quasi-static evolution (see Theorem 3.9) satisfying a global
stability condition at each time as well as an energy-dissipation balance, which involves the
stored elastic energy, the energy dissipated by the crack, and the power of the pressure forces
exerted by the fluid. Moreover, in this simplified setting the solution can be explicitly given
as a function of the volume V (·). The uniqueness follows from a careful analysis of the
regularity properties satisfied by the solution.

Finally, in Section 4 we discuss a more general model. In this case, the rock is not
necessarily homogeneous or isotropic, so we allow the elasticity tensor C to be a function
of the space variable x ∈ R3 . Because of the lack of homogeneity and isotropy, we do not
expect any symmetry for the crack, so we need to define a new class of admissible cracks,
which extends the previous one (see Definition 4.1), keeping some regularity properties of the
boundary. Also in this case we prove the existence of an irreversible quasi-static evolution
(see Theorem 4.4) based on a global stability condition and an energy-dissipation balance.
The proof relies on a time discretization procedure introduced in [6] and frequently used in
the study of rate-independent processes, see [13].

2. Notation and preliminaries

Let us first give some notation and recall some well known results.
Throughout the paper H2 denotes the 2-dimensional Hausdorff measure in R3 and K

denotes the set of all compact sets of R3 .
Given K1,K2 ∈ K , the Hausdorff distance dH(K1,K2) between K1 and K2 is defined by

dH(K1,K2) := max

{
max
x∈K1

d(x,K2), max
x∈K2

d(x,K1)

}
.

We say that Kh → K in the Hausdorff metric if dH(Kh,K)→ 0. The following compactness
theorem is well known, see, e.g., [17, Blaschke’s Selection Theorem].

Theorem 2.1. Let Kh be a sequence in K . Assume that there exists H ∈ K such that
Kh ⊆ H for every h ∈ N . Then there exist a subsequence Khj and K ∈ K such that
Khj

→ K in the Hausdorff metric.

We say that a set function K : [0, T ] → K is increasing if K(s) ⊆ K(t) for every
0 ≤ s ≤ t ≤ T . The following two results about increasing set functions can be found for
instance in [4].

Theorem 2.2. Let H ∈ K and let K : [0, T ] → K be an increasing set function such that
K(t) ⊆ H for every t ∈ [0, T ] . Let K− : (0, T ]→ K and K+ : [0, T )→ K be the functions
defined by

K−(t) :=
⋃
s<tK(s) for 0 < t ≤ T,

K+(t) :=
⋂
s>tK(s) for 0 ≤ t < T.

Then
K−(t) ⊆ K(t) ⊆ K+(t) for 0 < t < T.

Let Θ be the set of points t ∈ (0, T ) such that K+(t) = K−(t) . Then [0, T ] \Θ is at most
countable and K(th)→ K(t) in the Hausdorff metric for every t ∈ Θ and every sequence th
in [0, T ] converging to t .

Theorem 2.3. Let Kh be a sequence of increasing set functions from [0, T ] in K . Assume
that there exists H ∈ K such that Kh(t) ⊆ H for every t ∈ [0, T ] and every h ∈ N . Then
there exist a subsequence, still denoted by Kh , and an increasing set function K : [0, T ]→ K
such that Kh(t)→ K(t) in the Hausdorff metric for every t ∈ [0, T ] .
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For every open set Ω ⊆ R3 we define, as in [12], the space

W1
2,6(Ω; R3) := {u ∈ L6(Ω; R3) : ∇u ∈ L2(Ω; M3)}

equipped with the norm

(2.1) ‖u‖W1
2,6(Ω;R3) := ‖u‖L6(Ω;R3) + ‖∇u‖L2(Ω;M3),

where M3 is the space of square matrices of order three with real coefficients. The choice
of the exponent 6 is due to the fact that in dimension 3 the exponent 2∗ in the Sobolev
embedding theorem is equal to 6.

We denote by Eu the symmetric part of the gradient of u , i.e., Eu = 1
2 (∇u+∇uT ).

Proposition 2.4. Let Σ be a plane in R3 and let Ω = R3 or Ω = R3\Σ . Then W1
2,6(Ω; R3)

is a Banach space and the norms ‖∇u‖L2(Ω;M3) and ‖Eu‖L2(Ω;M3) are equivalent to the
norm (2.1), thus W1

2,6(Ω; R3) is a Hilbert space.

Proof. When Ω = R3 these results are proved in [12, Chapter 1.4], except for the equivalence
of the norm (2.1) with ‖Eu‖L2(R3;M3) , which is a consequence of Korn’s inequality.

To prove the results for Ω = R3 \ Σ, assume for simplicity that Σ is the plane x3 = 0.
Fix u ∈W1

2,6(R3 \Σ; R3). We have u|R3
+
∈W1

2,6(R3
+; R3), where R3

+ := {x ∈ R3 : x3 > 0} .
Extending u by reflection with respect to Σ we obtain a function ũ ∈W1

2,6(R3; R3). Hence,
by the previous step,

‖u‖W1
2,6(R3

+;R3) ≤ ‖ũ‖W1
2,6(R3;R3) ≤ C‖∇ũ‖L2(R3;M3) = 2C‖∇u‖L2(R3

+;M3)

By the same argument we obtain this estimate also for u|R3
−

.
The statement on ‖Eu‖L2(R3\Σ;M3) can be obtained by Korn’s inequality in a half-space.

�

From now on we denote by W1
2,6(R3 \ Σ) the space W1

2,6(R3 \ Σ; R3).

3. Penny-shaped crack

Let us start with the simpler model, the case of penny-shaped cracks. The body is
supposed to be unbounded, filling R3 for simplicity. We prescribe a priori the crack path:
the admissible cracks lie on the horizontal plane Σ passing through the origin.

In this first model we assume that the initial crack is a circle centered at the origin
and contained in Σ, and that the body outside the crack is isotropic, homogeneous, and
impermeable. Due to the symmetry conditions, we also assume that the crack is circular at
every time.

Moreover, the evolution is governed by linearized elasticity: the material is characterized
by its Lamé coefficients λ, µ ∈ R , so that the stored elastic energy is∫

R3\Σ

(λ
2

(div(u))2 + µ|Eu|2
)
dx,

where u ∈ W1
2,6(R3 \ Σ) is the displacement and the Lamé coefficients satisfy the usual

hypotheses

(3.1) µ > 0 , 2µ+ 3λ > 0 .

To present the results in a way that can be used also for our second model, where the
material will be inhomogeneous and anisotropic, it is convenient to introduce the space Ms

3

of symmetric matrices and the linear map C : Ms
3 →Ms

3 defined by

CF := λ tr(F)I + 2µF,

so that the stored elastic energy becomes
1
2

∫
R3\Σ

CEu ·Eu dx ,
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where the dot denotes the scalar product between matrices:

F ·G := tr(FGT ) ∀F, G ∈M3.

Conditions (3.1) on the Lamé coefficients make C positive definite in the sense that there
exist two constants 0 < α < β < +∞ such that

(3.2) α|F|2 ≤ CF ·F ≤ β|F|2 for every F ∈Ms
3.

We now describe the equilibrium condition for the elastic body when the crack is a circle
of radius R in Σ centered at the origin, assuming that the region between the crack lips in
the deformed configuration is partially filled by a prescribed volume V of an incompressible
fluid. In the spirit of linearized elasticity, in order to simplify the mathematical formulation
of the problem, for the volume of the cavity determined by the crack we use the approximate
formula ∫

Σ

[u] · νΣ dH2

where νΣ is the unit normal vector to Σ and [u] denotes the jump of u through Σ, i.e.,
[u] := u+ − u− , with u+ and u− indicating the traces of u on the two faces Σ+ and Σ−

of Σ, according to the orientation of νΣ . Here we assume that [u] · νΣ ≥ 0 so that the
non-interpenetration condition is satisfied.

We define the total energy of the body:

(3.3) E(u,R) =
1
2

∫
R3\Σ

CEu ·Eu dx+ κπR2,

where κ is a positive constant related to the fracture toughness. The energy E(u,R) is the
sum of the stored elastic energy and of a surface energy proportional to the area of the crack.
In the framework of Griffith’s theory [9], the latter is interpreted as the energy dissipated
in the process of crack production.

According to the variational principles of linear elasticity, the body is in equilibrium with
a prescribed crack of radius R if the displacement u is the solution of the minimum problem

(3.4) min
u∈A∗(R,V )

E(u,R),

where

A∗(R, V ) :=
{
u ∈W1

2,6(R3 \ Σ) : {[u] 6= 0} ⊆ BR, [u] · νΣ ≥ 0,
∫

BR

[u] · νΣ dH2 ≥ V
}
.

The choice of the function space W1
2,6(R3 \ Σ) implies, in a suitable weak sense, that the

displacement is zero at infinity. The inclusion in the previous formula reflects the fact that
the crack is contained in BR . The former inequality, which is assumed to be satisfied H2 -a.e.
on Σ, takes into account the non-interpenetration condition. The latter inequality means
that we allow for the presence of a gap between the fluid front and the crack tip, the so
called fluid lag.

The existence of a solution of (3.4) can be obtained by the direct method of the calculus
of variations, taking into account Proposition 2.4. The uniqueness follows from the strict
convexity of the functional and the convexity of the constraints.

Remark 3.1. The minimum point of (3.4) satisfies the volume constraint with an equality.
Indeed, if V = 0, then u = 0 is the minimizer. If V > 0, assume by contradiction that the
minimizer satisfies

∫
BR

[u] · νΣ dH2 > V . Then there exists λ ∈ (0, 1) such that∫
BR

[λu] · νΣ dH2 ≥ V.
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Since u 6= 0 because of the volume constraint, we have E(λu,R) < E(u,R), which contra-
dicts the minimality of u . This implies that (3.4) is equivalent to the minimum problem

(3.5) min
u∈A(R,V )

E(u,R),

where

A(R, V ) :=
{
u ∈W1

2,6(R3 \ Σ) : {[u] 6= 0} ⊆ BR, [u] · νΣ ≥ 0,
∫

BR

[u] · νΣ dH2 = V
}
.

Proposition 3.2. Let u be the solution of (3.5) with V ≥ 0 and R > 0 . Then for every
v ∈W1

2,6(R3 \ Σ) such that {[v] 6= 0} ⊆ BR and [v] · νΣ = 0 on Σ it holds

(3.6)
∫

R3\Σ
CEu ·Ev dx = 0.

Moreover, there exists p ≥ 0 such that for every ϕ ∈ C1(R3) with supp(∇ϕ) ⊂⊂ R3

(3.7)
∫

R3\Σ
CEu ·E(ϕu) dx = p

∫
BR

ϕ[u] · νΣ dH2.

Proof. When V = 0, we have u = 0 and we can take p = 0.
Assume now V > 0. Let v ∈W1

2,6(R3 \Σ) be such that {[v] 6= 0} ⊆ BR and [v] · νΣ = 0
on Σ. For every ε ∈ R it holds u+ εv ∈ A(R, V ), hence

E(u,R) ≤ E(u+ εv,R),

which implies∫
R3\Σ

CEu ·Eu dx ≤
∫

R3\Σ
CE(u+ εv) ·E(u+ εv) dx =

∫
R3\Σ

CEu ·Eu dx+

+2ε
∫

R3\Σ
CEu ·Ev dx+ ε2

∫
R3\Σ

CEv ·Ev dx.

By the arbitrariness of ε we get (3.6).
Let us now prove (3.7). We define two linear functionals L, M on the space of functions

ϕ ∈ C1(R3) with supp(∇ϕ) ⊂⊂ R3 :

L(ϕ) :=
∫

R3\Σ
CEu ·E(ϕu) dx,

M(ϕ) :=
∫

BR

ϕ[u] · νΣ dH2.

For every ϕ ∈ C1(R3) with supp(∇ϕ) ⊂⊂ R3 such that M(ϕ) = 0, we consider (1 + εϕ)u
with ε ∈ R . For |ε| small enough we have (1 + εϕ)u ∈ A(R, V ), hence, arguing as before,
we get ∫

R3\Σ
CEu ·E(ϕu) dx = 0.

Therefore, M(ϕ) = 0 implies L(ϕ) = 0, which, by linearity, implies that there exists a
constant p ∈ R such that L = pM , i.e., (3.7) holds. Taking ϕ = 1 and recalling that
V > 0, we get p > 0. �

Remark 3.3. Equation (3.6) has two important consequences. Indeed, it means that the
function u solution of (3.5) is a weak solution of div(CEu) = 0 in R3 \Σ. Moreover, given
v, w ∈ W1

2,6(R3 \ Σ) such that [v] = [w] on Σ \ BR and [v] · νΣ = [w] · νΣ on Σ, we have
that v − w is an admissible test-function for problem (3.6), hence

(3.8)
∫

R3\Σ
CEu ·Ev dx =

∫
R3\Σ

CEu ·Ew dx.
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Remark 3.4. When V > 0, equality (3.7) implies, taking ϕ = 1,

p =
1
V

∫
R3\Σ

CEu ·Eu dx.

Remark 3.5. Let us now explain why the constant p defined in Proposition 3.2 can be
interpreted as the fluid pressure. It is clear that, if u is the solution of (3.5) without the
non-interpenetration condition, then p is simply a Lagrange multiplier, hence we have

(3.9)
∫

R3\Σ
CEu ·Ev dx = p

∫
BR

[v] · νΣ dH2

for every v ∈ W1
2,6(R3 \ Σ) such that {[v] 6= 0} ⊆ BR , thus u satisfies the boundary

condition (CEu)νΣ = −pνΣ on Σ+ . This means that the force exerted by the fluid on
the upper part of the cavity has intensity p and is directed along the normal νΣ , so we
are allowed to consider p as the fluid pressure. Strictly speaking, according to the formula
of the boundary condition, the pressure p is acting along the normal to the crack in the
reference configuration rather than in the deformed configuration. This does not affect our
interpretation, since we are dealing with a linearized model.

To justify the same interpretation of p when the non-interpenetration constraint is con-
sidered, we have to prove that (3.9) holds for a sufficiently large class of functions in
W1

2,6(R3 \ Σ).

Proposition 3.6. Let u be the solution of (3.5) with V ≥ 0 and R > 0 . Then (3.9) holds
for every v ∈ W1

2,6(R3 \ Σ) such that {[v] 6= 0} ⊆ BR and |[v] · νΣ| ≤ C[u] · νΣ for some
constant C ≥ 0 .

Proof. When V = 0 we have u = 0 and the statement is trivial with p = 0.
Assume now V > 0. Let v be as in the statement of the Proposition. In view of (3.8),

we can modify the functions u and v , provided we keep the same values for [u] · νΣ and
[v] · νΣ . We fix a function û ∈ W1

2,6(R3 \ Σ) with compact support, of the form (0, 0, û3),
such that û = 0 for x3 < 0 and (û3)+ = [û] · νΣ = [u] · νΣ on Σ. Similarly, we fix
v̂ ∈W1

2,6(R3 \ Σ) with compact support of the form (0, 0, v̂3) such that v̂ = 0 for x3 < 0,
(v̂3)+ = [v̂] · νΣ = [v] · νΣ on Σ, and

(3.10) |v̂3| ≤ Cû3 a.e. on R3 \ Σ.

We now need to approximate û and v̂ by truncations. Let Tk : R→ R be the truncation
function defined by Tk(s) = −k if s ≤ −k , Tk(s) = s if −k ≤ s ≤ k , and Tk(s) = k if
s ≥ k . We shall also use the function Sk : R → R defined by Sk(s) := s − Tk(s). We
use the same symbols for the maps Tk, Sk : R3 → R3 defined componentwise by Tk(s) :=
(Tk(s1), Tk(s2), Tk(s3)) and Sk(s) := (Sk(s1), Sk(s2), Sk(s3)).

It follows from (3.10) that for every k ∈ N

|S1/k(Tk(v̂3))| ≤ CTk(û3) a.e. on R3 \ Σ.

In particular S1/k(Tk(v̂3)) = 0 where û3 < 1/(kC).
By the properties of û , for every k ∈ N we have

0 ≤ [Tk(û)] · νΣ = Tk([û]) · νΣ ≤ [u] · νΣ on Σ.

Repeating the argument used to prove Proposition 3.2, we deduce that there exists pk ∈ R
such that, for every ϕ ∈ C1(R3) with supp(∇ϕ) ⊂⊂ R3 ,

(3.11)
∫

R3\Σ
CEu ·E(ϕTk(û)) dx = pk

∫
BR

ϕ[Tk(û)] · νΣ dH2.

Since Tk(û)→ û in W1
2,6(R3 \Σ), passing to the limit as k → +∞ in (3.11), and using (3.7)

and (3.8), we get pk → p .
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We define the functions

wk3 (x) :=


S1/k(Tk(v̂3(x)))
Tk(û3(x))

if û3(x) 6= 0,

0 if û3(x) = 0,
and wk(x) := (0, 0, wk3 (x)).

Then wk ∈ W1
2,6(R3 \ Σ) ∩ L∞(R3 \ Σ) and supp(wk) ⊆ supp(v̂). In particular, wk = 0

for x3 < 0 and wk3 ∈ W1
2,6(R3

+) ∩ L∞(R3
+). Hence, for every k there exists a sequence

(ϕkj )j in C∞c (R3) such that ‖ϕkj ‖L∞(R3) ≤ ‖wk3‖L∞(R3) and ϕkj → wk3 strongly in W1
2,6(R3

+)
as j → +∞ .

We consider now the sequence ϕkjTk(û) in W1
2,6(R3 \ Σ). By the dominated conver-

gence theorem, we get ϕkjTk(û) → S1/k(Tk(v̂)) strongly in W1
2,6(R3 \ Σ) as j → +∞ .

Since S1/k(Tk(v̂)) → v̂ strongly in W1
2,6(R3 \ Σ) as k → +∞ , by a diagonal argument

we find a sequence ϕk in C∞c (R3) such that ϕkTk(û) → v̂ in W1
2,6(R3 \ Σ). Since (3.8)

and (3.11) hold, using the equalities [û] · νΣ = [u] · νΣ and [v̂] · νΣ = [v] · νΣ on Σ, we get∫
R3\Σ

CEu ·Ev dx =
∫

R3\Σ
CEu ·Ev̂ dx = lim

k

∫
R3\Σ

CEu ·E(ϕkTk(û)) dx =

= lim
k
pk

∫
BR

ϕk[Tk(û)] · νΣH2 = p

∫
BR

[v] · νΣ dH2,

and this concludes the proof. �

Remark 3.7. Integrating by parts, thanks to Proposition 3.6 we get that the solution u
of (3.5) satisfies the boundary condition (CEu)νΣ = −pνΣ on {[u] · νΣ 6= 0} , which is the
part of the crack occupied by the fluid. Therefore we can repeat the argument of Remark 3.5
on the set {[u] · νΣ 6= 0} and we conclude that p can be interpreted as the fluid pressure.

Let us now consider the quasi-static evolution problem. Let T > 0 be fixed and for every
t ∈ [0, T ] let V (t) be the volume of the fluid present in the crack at time t . It is natural to
assume that this quantity can be controlled during the process, so we consider it as a datum
of the problem. For technical reasons, we assume that V ∈ AC([0, T ]; [0,+∞)), the space
of absolutely continuous functions on [0, T ] with values in [0,+∞).

To describe the quasi-static evolution it is convenient to introduce the reduced energy
Emin(R, V ) defined for every R ≥ 0 and every V ≥ 0 by

(3.12) Emin(R, V ) := min
u∈A(R,V )

E(u,R) = min
u∈A(R,V )

1
2

∫
R3\Σ

CEu ·Eu dx+ κπR2.

In order to make explicit the dependence of Emin(R, V ) on R and V , let us denote by
uR the solution to the minimum problem defining Emin(R, 1). It is then easy to see that
V uR is the solution of (3.12) and

Emin(R, V ) =
V 2

2

∫
R3\Σ

CEuR ·EuR dx+ κπR2 .

Moreover, by the uniqueness of the solution to (3.12) it follows that

(3.13) uR(x) =
1
R2

u1

( x
R

)
and

∫
R3\Σ

CEuR ·EuR dx =
1
R3

∫
R3\Σ

CEu1 ·Eu1 dx .

Therefore

(3.14) Emin(R, V ) = K
V 2

R3
+ κπR2 ,

where K :=
1
2

∫
R3\Σ

CEu1 ·Eu1 dx . Since

(3.15)
d

dR
Emin(R, V ) = −3K

V 2

R4
+ 2κπR ,
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we note that the unique minimum point of R 7→ Emin(R, V ) is R =
(

3KV 2

2κπ

)1/5

.

Hence, if we fix R̂ > 0, the unique solution to the minimum problem

min
R≥R̂

Emin(R, V )

is given by

R∗ = max
{
R̂,
(

3KV 2

2κπ

)1/5 }
.

In this simplified setting, since the function R 7→ Emin(R, V ) is convex, Griffith’s stability
condition expressed by the inequality

(3.16)
d

dR
Emin(R(t), V (t)) ≥ 0 for every t ∈ [0, T ]

is equivalent to the global minimality condition: for every t ∈ [0, T ]

(3.17) Emin(R(t), V (t)) ≤ Emin(R, V (t)) for every R ≥ R(t) ,

which in this case reduces to

(3.18) R(t) ≥
(

3KV 2(t)
2κπ

)1/5

for every t ∈ [0, T ] .

The use of (3.17) instead of (3.16) allows us to state the problem in a “derivative-free”
setting, in the framework of rate-independent evolution processes considered in [13]. This
will be useful in the next section where we deal with more general crack shapes.

Since the fracture process is irreversible, we require that R(·) is increasing. Finally, we
impose an energy-dissipation balance: the rate of change of the total energy (stored elastic
energy plus energy dissipated by the crack) along a solution equals the power of the pressure
forces exerted by the fluid.

This leads to the following definition.

Definition 3.8. Let T > 0 and V ∈ AC([0, T ]; [0,+∞)). We say that a function R :
[0, T ]→ (0,+∞) is an irreversible quasi-static evolution of the penny-shaped hydraulic crack
problem if it satisfies the following conditions:

(a) irreversibility : R is increasing, i.e., R(s) ≤ R(t) for every 0 ≤ s ≤ t ≤ T ;
(b) global stability : for every t ∈ [0, T ] ,

Emin(R(t), V (t)) ≤ Emin(R, V (t)) for every R ≥ R(t);

(c) energy-dissipation balance: the function t 7→ Emin(R(t), V (t)) is absolutely contin-
uous on the interval [0, T ] and

d

dt
Emin(R(t), V (t)) = p(t)V̇ (t)

for almost every t ∈ [0, T ] , where p(t) is the pressure introduced in Proposition 3.2.

While in the tecnological applications to hydraulic fracture it is natural to suppose that
V is increasing, the problem makes sense even without this assumption. For instance, if in
a time interval V is decreasing, which means that some liquid is removed from the cavity,
by the irreversibility assumption we expect that R remains constant in that interval and
that the crack opening decreases to accommodate to the volume constraint. This is a direct
consequence of the formula (3.20) proved in the next theorem.

We are now ready to state the main result of this section.

Theorem 3.9. Let V ∈ AC([0, T ]; [0,+∞)) and R0 > 0 . Assume that (stability at time
t = 0)

(3.19) Emin(R0, V (0)) ≤ Emin(R, V (0))
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for every R ≥ R0 . Then the unique irreversible quasi-static evolution R∗ : [0, T ]→ (0,+∞)
of the penny-shaped hydraulic crack problem, with R(0) = R0 , is given by

(3.20) R∗(t) = max
{
R0,

(
3K
2κπ

)1/5
V

2/5
∗ (t)

}
,

where V∗(t) is the smallest monotone increasing function which is greater than or equal to
V (t) , i.e., V∗(t) = max

0≤s≤t
V (s) .

When V is increasing we recover the explicit solution considered, e.g., in [3], see also [?].

Remark 3.10. In view of (3.18) condition (3.19) amounts to

R0 ≥
(

3KV 2(0)
2κπ

)1/5

.

To prove Theorem 3.9 we need the following lemmas. In the first one we prove the
absolute continuity of the function V∗ .

Lemma 3.11. Let V ∈ AC([0, T ]; [0,+∞)) and for every t ∈ [0, T ] set V∗(t) = max
0≤s≤t

V (s) .

Then V∗ ∈ AC([0, T ]; [0,+∞)) and

(3.21) V̇∗(t) = V̇ (t)1{V=V∗}(t) for a.e. t ∈ [0, T ] .

Proof. As V ∈ AC([0, T ]; [0,+∞)), there exist two increasing absolutely continuous func-
tions V1, V2 : [0, T ]→ [0,+∞) such that V = V1 − V2 . Note that

(3.22) V∗(t2)− V∗(t1) ≤ V1(t2)− V1(t1) for every 0 ≤ t1 ≤ t2 ≤ T .

Indeed, for every t1 ≤ s ≤ t2

V (s)− V∗(t1) ≤ V (s)− V (t1) = V1(s)− V2(s)− V1(t1) + V2(t1)
≤ V1(t2)− V1(t1)− (V2(s)− V2(t1)) ≤ V1(t2)− V1(t1) ,

and by the definition of V∗ this implies (3.22). As V1 is absolutely continuous, from (3.22)
we deduce the absolute continuity of V∗ .

Since the function V∗ is locally constant on the open set {t ∈ [0, T ] : V∗(t) > V (t)} ,
we have V̇∗ = 0 on this set, while V̇∗(t̄ ) = V̇ (t̄ ) for a.e. t̄ ∈ {t ∈ [0, T ] : V∗(t) = V (t)} .
Therefore (3.21) holds. �

Lemma 3.12. Let V ∈ AC([0, T ]; [0,+∞)) and R0 > 0 . Assume that R0 satisfies (3.19).
Then R∗ : [0, T ]→ (0,+∞) given by (3.20) is the smallest increasing function which satisfies
the global stability condition (b), with R(0) = R0 .

Proof. Let R(t) be an increasing function with R(0) = R0 that satisfies the global stability

condition (b). In view of (3.18) we have R(t) ≥
(

3KV 2(t)
2κπ

)1/5

for every t ∈ [0, T ] . Since
R(t) ≥ R(s) for every s, t ∈ [0, T ] with s ≤ t , we get

R(t) ≥ max
0≤s≤t

(
3KV 2(s)

2κπ

)1/5

=
(

3KV 2
∗ (t)

2κπ

)1/5

,

which implies R(t) ≥ R∗(t).
As R∗(t) satisfies (3.18) for every t ∈ [0, T ] , the function t 7→ R∗(t) satisfies the global

stability condition (b). �

We now prove that R∗ : [0, T ]→ (0,+∞) defined by (3.20) is an irreversible quasi-static
evolution of the penny-shaped hydraulic crack problem.
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Proof of Theorem 3.9 (existence). It remains to prove the energy-dissipation balance (c).
Let us set

α0 =
(

2κπ
3K

)1/2

R
5/2
0 .

By (3.20), if V∗(t) ≤ α0 then R∗(t) = R0 . Assume there exists t ∈ [0, T ] such that
V (t) ≥ α0 and let t := inf{t ∈ [0, T ] : V (t) ≥ α0} . Then R∗(t) = R0 for t ∈ [0, t ] , while

R∗(t) =
(

3KV 2
∗ (t)

2κπ

)1/5

and V∗(t) ∈ [α0,+∞) for t ∈ [ t, T ] .

By Lemma 3.11 and the Lipschitz continuity of the function a 7→ a2/5 on [α0,+∞) we
deduce that R∗(·) is absolutely continuous on [0, T ] . Then, as

Emin(R∗(t), V (t)) = K
V 2(t)
R3
∗(t)

+ κπR2
∗(t) for every t ∈ [0, T ] ,

it follows that Emin(R∗(·), V (·)) is absolutely continuous on [0, T ] and

d

dt
Emin(R∗(t), V (t)) = 2K

V (t)V̇ (t)
R3
∗(t)

+ Ṙ∗(t)
(

2κπR∗(t)− 3K
V 2(t)
R4
∗(t)

)
for a.e. t ∈ [0, T ] .

Since, by Remark 3.4 and (3.14), p(t) = 2K V (t)
R3
∗(t)

for every t ∈ [0, T ] , while by (3.20) and

Lemma 3.11 the product Ṙ∗(t)
(

2κπR∗(t)− 3K V 2(t)
R4
∗(t)

)
is equal to 0, we get

d

dt
Emin(R∗(t), V (t)) = p(t)V̇ (t) ,

and this concludes the proof of the existence of an irreversible quasi-static evolution for the
penny-shaped hydraulic crack problem. �

The next result establishes some regularity properties of a solution that will be used to
prove the uniqueness.

Lemma 3.13. Let V ∈ AC([0, T ]; [0,+∞)) and let R : [0, T ]→ (0,+∞) be an irreversible
quasi-static evolution of the penny-shaped hydraulic crack problem with R(0) = R0 . Then
R(·) is continuous on [0, T ] and is absolutely continuous on every compact set contained in

I := {t ∈ [0, T ] : R(t) > R∗(t) and V (t) > 0}.

Proof. Let R : [0, T ]→ (0,+∞) be an irreversible quasi-static evolution of the penny-shaped
hydraulic crack problem with R(0) = R0 . By condition (c) of Definition 3.8 the function
t 7→ Emin(R(t), V (t)) is absolutely continuous and by Lemma 3.12 R(t) ≥ R∗(t). Let us
show by contradiction that R is continuous. Assume t̃ ∈ [0, T ] is a discontinuity point.
Since t 7→ R(t) is increasing and, by (3.14), the function R 7→ Emin(R, V (t)) is strictly
increasing for R ≥ R∗(t), we have

lim
s↗t̃
Emin(R(s), V (s)) = Emin(R(t̃−), V (t̃)) < Emin(R(t̃+), V (t̃)) = lim

s↘t̃
Emin(R(s), V (s))

which contradicts the continuity of t 7→ Emin(R(t), V (t)).
Let us define the function eR : [0, T ]→ R as

(3.23) eR(t) := K
V 2(0)
R3

0

+ κπR2
0 +

∫ t

0

pR(s)V̇ (s) ds,

where pR(t) is the pressure function introduced in Proposition 3.2 in the case R = R(t)
and V = V (t). By Remark 3.4 and (3.13) we get

eR(t) = K
V 2(0)
R3

0

+ κπR2
0 + 2K

∫ t

0

V (s)V̇ (s)
R3(s)

ds.



QUASI-STATIC CRACK GROWTH IN HYDRAULIC FRACTURE 11

Since R(t) ≥ R0 on [0, T ] and V ∈ AC([0, T ]; [0,+∞)), it follows that eR ∈ AC([0, T ]; R).
By the energy-dissipation balance condition (c) of Definition 3.8 and by (3.14)

(3.24) Emin(R(t), V (t)) = K
V 2(t)
R3(t)

+ κπR2(t) = eR(t) for every t ∈ [0, T ] .

Let F (B) := K
B3 + κπB2 for every B ∈ (0,+∞). It is easy to see that F belongs

to C∞((0,+∞)), it is strictly increasing and strictly convex on J :=
((

3K
2κπ

)1/5

,+∞
)

.

Therefore, F |J is invertible and F−1 , the inverse of F |J , is C1 .
For every t ∈ I let B(t) := R(t)

V 2/5(t)
. Thus, by (3.24)

F (B(t)) =
K

B3(t)
+ κπB2(t) =

eR(t)
V 4/5(t)

.

Since t ∈ I we have B(t) > R∗(t)
V 2/5(t)

≥
(

3K
2κπ

)1/5
, hence

(3.25) B(t) = F−1
( eR(t)
V 4/5(t)

)
for every t ∈ I.

Since eR(·)
V 4/5(·) is bounded and absolutely continuous on every compact set contained in I ,

we deduce that B(·) is absolutely continuous on the same sets and so is R(·). �

To prove the uniqueness of the quasi-static evolution, we need the following lemma on
absolutely continuous functions.

Lemma 3.14. Let f, g : [a, b] → R be two functions satisfying the following properties: f
is absolutely continuous on [a, b] , g is continuous on [a, b] , and there exists an open set
A ⊂ (a, b) such that f = g on (a, b) \ A , and g is constant on each connected component
of A . Then g is absolutely continuous on [a, b] .

Proof. Let us fix ε > 0 and choose δ > 0 such that for every finite family of pairwise disjoint
intervals {(si, ti)}i∈I , with si, ti ∈ (a, b) and Σi∈I(ti−si) < δ , we have Σi∈I |f(ti)−f(si)| <
ε .

If the interval (si, ti) is contained in a connected component of A then, by our hypotheses
on g , we have g(ti) = g(si). Let I ′ := {i ∈ I : (si, ti) 6⊂ A} and let i ∈ I ′ . Then there exist
s′i, t

′
i ∈ (a, b) \ A such that si ≤ s′i ≤ t′i ≤ ti and (si, s′i), (t

′
i, ti) ⊂ A . Indeed, if si /∈ A we

take s′i = si . In the opposite case si belongs to a connected component (αi, βi) of A and
we take s′i = βi .

It follows that g is constant on (si, s′i) and, by continuity, g(si) = g(s′i) = f(s′i), where
the last equality holds since s′i ∈ (a, b)\A . Analogously we get g(ti) = g(t′i) = f(t′i). Hence
Σi∈I |g(ti)−g(si)| = Σi∈I′ |g(ti)−g(si)| = Σi∈I′ |f(t′i)−f(s′i)| < ε , which shows the absolute
continuity of the function g on (a, b), and, by continuity, on [a, b] . �

We are now ready to prove that R∗ defined by (3.20) is the unique irreversible quasi-static
evolution of the penny-shaped hydraulic crack problem with R∗(0) = R0 .

Proof of Theorem 3.9 (uniqueness). Let R : [0, T ]→ (0,+∞) be an irreversible quasi-static
evolution of the penny-shaped hydraulic crack problem with R(0) = R0 . By Lemma 3.12
R(t) ≥ R∗(t) for every t ∈ [0, T ] and by Lemma 3.13, R is continuous on [0, T ] .

Let us assume by contradiction that R 6= R∗ . Then there exists an interval (a, b) ⊂ [0, T ]
such that R(a) = R∗(a) and R(t) > R∗(t) for every t ∈ (a, b). Let

(3.26) A := {t ∈ (a, b) : V (t) > 0} .
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By Lemma 3.13, the function R is absolutely continuous on every compact set contained
in A , hence it is almost everywhere differentiable on A . Recalling (3.14) and the energy-
dissipation balance condition (c) of Definition 3.8, we get

d

dt
Emin(R(t), V (t)) = pR(t)V̇ (t) + Ṙ(t)

(
2κπR(t)− 3K

V 2(t)
R4(t)

)
= pR(t)V̇ (t)

for a.e. t ∈ A , hence

(3.27) Ṙ(t)
(

2κπR(t)− 3K
V 2(t)
R4(t)

)
= 0 for a.e. t ∈ A.

Since R(t) > R∗(t) for every t ∈ (a, b), by the definition of R∗ we have

2κπR(t)− 3K
V 2(t)
R4(t)

=
d

dR
Emin(R(t), V (t)) > 0 on A .

The previous inequality and (3.27) imply that Ṙ(t) = 0 for a.e. t ∈ A , thus R is constant
on each connected component of A .

Moreover, by (3.24), we have κπR2(t) = eR(t) for every t ∈ (a, b) \ A . Hence applying
Lemma 3.14 with

f =
eR
κπ
, g = R2, and the set A defined in (3.26) ,

we obtain that R2 is absolutely continuous on [a, b] .
By (3.23), for every t ∈ (a, b) \A we have

R2(t) =
eR(t)
κπ

=
1
κπ

(
K
V 2(0)
R3

0

+ κπR2
0 +

∫ t

0

pR(s)V̇ (s) ds
)
.

Since V ∈ AC([0, T ], [0,+∞)) and V (t) = 0 for every t ∈ (a, b) \A , we obtain

(3.28)
d

dt
R2(t) =

1
κπ

pR(t)V̇ (t) = 0 for a.e. t ∈ (a, b) \A.

As Ṙ(t) = 0 for a.e. t ∈ A , we deduce that Ṙ(t) = 0 for a.e. t ∈ (a, b), and therefore,
being continuous, the function R(·) has to be constant on [a, b] . As a consequence, for every
t ∈ (a, b) we have

R(a) = R(t) > R∗(t) ≥ R∗(a) = R(a),

which is a contradiction. Therefore, R = R∗ and the proof of uniqueness is concluded. �

4. A more general model

In this Section we present a more general model, where the admissible cracks are not
supposed to be circular. As in the previous case, the body is linearly elastic, impermeable,
unbounded, for simplicity filling all of R3 , and the crack path is prescribed a priori: the
admissible cracks lie on the horizontal plane Σ passing through the origin. We now drop
the assumption that the body is isotropic and homogeneous outside the crack, thus we do
not expect any symmetry of the fracture. This requires a new class of admissible cracks. For
technical reasons, we still need some regularity of the relative boundary of the crack in Σ.
This is provided by the interior ball property (see condition (c) below).

Definition 4.1. Fix r > 0. We say that Γ ∈ Admr(Σ) if it satisfies:

(a) Γ is a compact and connected subset of Σ;
(b) 0 ∈ Γ;
(c) for every x ∈ ∂Γ there exists y ∈ Γ̊ such that x ∈ ∂Br(y) and Br(y) ⊆ Γ.
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Here and henceforth, all topological notions (boundary, interior part, balls, etc.) are
considered with respect to the relative topology of Σ.

In [16] it is shown that condition (c) implies the existence of a radius 0 < r′ < r such that
every Γ ∈ Admr(Σ) can be written as the closure of a union of balls of radius r′ . In partic-
ular, r′ can be taken equal to r/2. By the Lindelöff’s theorem, this union can be assumed
to be countable. This fact will be useful in the proof of the continuity of the Hausdorff
measure H2 with respect to the Hausdorff metric in Admr(Σ) (see Proposition 4.6).

The body outside the crack is supposed to be linearly elastic, with elasticity tensor C .
Because of the lack of homogeneity, the elasticity tensor is a function of the space variable,
which will be assumed to be measurable. As usual, for almost every x ∈ R3 the function
C(x) : Ms

3 →Ms
3 is linear, symmetric, and positive definite. We assume that there exist two

constants 0 < α < β < +∞ such that for almost every x ∈ R3

(4.1) α|F|2 ≤ C(x)F ·F ≤ β|F|2 for every F ∈Ms
3.

In this new setting the total energy of the body is given by

E(u,Γ) :=
1
2

∫
R3\Σ

CEu ·Eu dx+ κH2(Γ),

where κ is a positive constant (see the comments following (3.3) for the physical meaning
of these terms).

As in Section 3, we assume that the region between the crack lips in the deformed con-
figuration is partially filled by a prescribed volume V of an incompressible fluid. The
equilibrium of the elastic body with a crack Γ ∈ Admr(Σ) is achieved if the displacement u
is the solution of the minimum problem

(4.2) min
u∈A∗(Γ,V )

E(u,Γ),

where

A∗(Γ, V ) :=
{
u ∈W1

2,6(R3 \ Σ) : {[u] 6= 0} ⊆ Γ, [u] · νΣ ≥ 0,
∫

Γ

[u] · νΣ dH2 ≥ V
}
.

The existence of a solution of (4.2) can be obtained by the direct method of the calculus of
variations, while the uniqueness follows from the strict convexity of the functional and the
convexity of the constraints.

Remark 4.2. As in Remark 3.1, the minimum problem (4.2) is equivalent to

(4.3) min
u∈A(Γ,V )

E(u,Γ),

where

A(Γ, V ) :=
{
u ∈W1

2,6(R3 \ Σ) : {[u] 6= 0} ⊆ Γ, [u] · νΣ ≥ 0,
∫

Γ

[u] · νΣ dH2 = V
}
.

As in Proposition 3.2, if u is the solution of (4.3) with Γ ∈ Admr(Σ) and V ≥ 0, then, for
every v ∈W1

2,6(R3 \ Σ) such that {[v] 6= 0} ⊆ Γ and [v] · νΣ = 0 on Σ, we have∫
R3\Σ

CEu ·Ev dx = 0.

Moreover, there exists a constant p ≥ 0 such that∫
R3\Σ

CEu ·E(ϕu) dx = p

∫
Γ

ϕ[u] · νΣ dH2

for every ϕ ∈ C1(R3) with supp(∇ϕ) ⊂⊂ R3 . In particular, for ϕ = 1 we get

(4.4) p =
1
V

∫
R3\Σ

CEu ·Eu dx .
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We also have ∫
R3\Σ

CEu ·Ev dx = p

∫
Γ

[v] · νΣ dH2

for every v ∈W1
2,6(R3 \Σ) such that {[v] 6= 0} ⊆ Γ and |[v] ·νΣ| ≤ C[u] ·νΣ for some C > 0.

We set p := 0 when V = 0. As in Remark 3.7, this constant p ≥ 0 is interpreted as the
fluid pressure.

Let us now describe the quasi-static evolution of hydraulic cracks in this setting. Fixed
T > 0, for every t ∈ [0, T ] we denote by V (t) the volume of the fluid present in the crack
at time t . We assume V ∈ AC([0, T ]; [0,+∞)).

It is convenient to introduce the reduced energy Emin(Γ, V ) which is defined for every
Γ ∈ Admr(Σ) and V ≥ 0 by

Emin(Γ, V ) := min
u∈A(Γ,V )

E(u,Γ).

The global stability condition is now expressed by

Emin(Γ(t), V (t)) ≤ Emin(Γ, V (t)) for every Γ ∈ Admr(Σ), Γ ⊇ Γ(t).

Since the process is irreversible, we require that Γ(·) is increasing. Finally, we impose an
energy-dissipation balance: the rate of change of the total energy along a solution equals
the power of the pressure forces exerted by the fluid.

This leads to the following definition.

Definition 4.3. Let T > 0 and V ∈ AC([0, T ], [0,+∞)). We say that a set function
Γ : [0, T ]→ Admr(Σ) is an irreversible quasi-static evolution of the hydraulic crack problem
if it satisfies the following conditions:

(a) irreversibility : Γ is increasing, i.e., Γ(s) ⊆ Γ(t) for every 0 ≤ s ≤ t ≤ T ;
(b) global stability : for every t ∈ [0, T ] ,

Emin(Γ(t), V (t)) ≤ Emin(Γ, V (t)) for every Γ ∈ Admr(Σ) with Γ ⊇ Γ(t);

(c) energy-dissipation balance: the function t 7→ Emin(Γ(t), V (t)) is absolutely continu-
ous on the interval [0, T ] and

d

dt
Emin(Γ(t), V (t)) = p(t)V̇ (t)

for almost every t ∈ [0, T ] , where p(t) is the pressure introduced in Remark 4.2.

We are now in a position to state the main theorem of this paper.

Theorem 4.4. Let V ∈ AC([0, T ], [0,+∞)) and Γ0 ∈ Admr(Σ) . Assume that (stability at
time t = 0)

(4.5) Emin(Γ0, V (0)) ≤ Emin(Γ, V (0))

for every Γ ∈ Admr(Σ) such that Γ ⊇ Γ0 . Then there exists an irreversible quasi-static
evolution Γ of the hydraulic crack problem, with Γ(0) = Γ0 .

Let us first establish some properties of the admissible cracks.

Proposition 4.5. The following facts hold:

(a) Γ = Γ̊ for every Γ ∈ Admr(Σ) ;
(b) Γ1,Γ2 ∈ Admr(Σ) =⇒ Γ1 ∪ Γ2 ∈ Admr(Σ) .

Proof. Property (a) follows immediately from the definition.
Let us prove property (b). Given Γ1,Γ2 ∈ Admr(Σ), the set Γ1 ∪ Γ2 contains 0 and

is closed and connected. Since for every x ∈ ∂(Γ1 ∪ Γ2), there exists i = 1, 2 such that
x ∈ ∂Γi , by Definition 4.1, there exists yx ∈ Γ̊i such that Br(yx) ⊆ Γi ⊆ Γ1 ∪ Γ2 and
x ∈ ∂Br(yx). Hence Γ1 ∪ Γ2 ∈ Admr(Σ). �
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Proposition 4.6. Let Γn be a sequence in Admr(Σ) and let K,Γ be compact subsets
of Σ such that Γ,Γn ⊆ K for every n ∈ N and Γn → Γ in the Hausdorff metric. Then
Γ ∈ Admr(Σ) and H2(Γn)→ H2(Γ) .

Proof. Let us first prove that, if Γn → Γ in the Hausdorff metric, then

(4.6) lim
n

sup
y∈∂Γ

d(y, ∂Γn) = 0.

By contradiction, suppose that (4.6) is false, then there exist ε > 0 and a subsequence, still
denoted by Γn , such that supy∈∂Γ d(y, ∂Γn) > 2ε for every n ∈ N . We can choose yn ∈ ∂Γ
such that d(yn, ∂Γn) > 2ε . Up to another subsequence, we can suppose yn → y ∈ ∂Γ. By
the triangle inequality, we can easily prove that d(y, ∂Γn) > ε for n large enough, hence

(4.7) Bε(y) ∩ ∂Γn = Ø.

To show that this is a contradiction, let us fix z ∈ Bε(y) \ Γ. Since Γn → Γ in the
Hausdorff metric, we have z /∈ Γn for n large enough. On the other hand, since y ∈ Γ,
there exists a sequence yn → y with yn ∈ Γn . For n large enough, yn ∈ Bε(y). Since
z /∈ Γn , in the segment between yn and z there exists a point of ∂Γn for n large enough.
This contradicts (4.7) and proves (4.6).

It is easy to see that Γ contains 0 and is closed and connected. By (4.6), for every
y ∈ ∂Γ, there exists a sequence yn ∈ ∂Γn such that yn → y . For every n ∈ N , by
Definition 4.1 we can find xn ∈ Γ̊n such that Br(xn) ⊆ Γn and yn ∈ ∂Br(xn). Up to a
subsequence, xn → x ∈ Γ and Br(xn)→ Br(x) in the Hausdorff metric. Hence y ∈ ∂Br(x)
and Br(x) ⊆ Γ, which gives Γ ∈ Admr(Σ).

It remains to prove that H2(Γn) → H2(Γ). The measure is upper semicontinuous with
respect to the Hausdorff metric, so we have only to prove

H2(Γ) ≤ lim inf
n
H2(Γn).

Thanks to [16], we have

(4.8) Γn =
⋃
k∈N

B r
2
(znk ),

for some znk ∈ Γn .
Consider {xk} ⊆ Γ̊ a countable dense set in Γ. By the Hausdorff convergence, for every

k ∈ N there exists a sequence xnk ∈ Γn such that xnk → xk . Using (4.8) we deduce that
there exists a sequence ynk such that ynk ∈ Γn , B r

2
(ynk ) ⊆ Γn , and xnk ∈ B r

2
(ynk ). Up to a

subsequence, we can assume that ynk → yk ∈ Γ for every k ∈ N , so that B r
2
(ynk )→ B r

2
(yk)

in the Hausdorff metric and xk ∈ B r
2
(yk) ⊆ Γ. Therefore

Γ =
⋃
k∈N

B r
2
(yk) =

⋃
k∈N

B r
2
(yk).

Let us consider the sets ΓN :=
⋃N
k=0 B r

2
(yk), ΓNn :=

⋃N
k=0 B r

2
(ynk ) and the functions

ϕN :=
N∑
k=0

1B r
2

(yk), ϕNn :=
N∑
k=0

1B r
2

(yn
k ).

By the dominated convergence theorem

H2(ΓN ) =
N∑
k=0

∫
B r

2
(yk)

1
ϕN (x)

dH2(x) = lim
n

N∑
k=0

∫
B r

2
(yn

k )

1
ϕNn (x)

dH2(x) =

= lim
n
H2(ΓNn ) ≤ lim inf

n
H2(Γn).
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If we pass to the limit as N → +∞ , we get H2(ΓN )→ H2
(⋃

k∈N B r
2
(yk)

)
, so we are led to

prove that

(4.9) H2
(

Γ \
⋃
k∈N

B r
2
(yk)

)
= 0.

Assume, by contradiction, that (4.9) is false. Then there exists x ∈ Γ\
⋃
k∈N B r

2
(yk) such

that

(4.10) lim
ρ→0+

H2
(
Bρ(x) ∩ Γ \

⋃
k∈N B r

2
(yk)

)
H2(Bρ(x))

= 1.

We can find a ball B r
2
(y) ⊆

⋃
k∈N B r

2
(yk) such that x ∈ B r

2
(y), hence

Bρ(x) ∩ Γ \
⋃
k∈N

B r
2
(yk) ⊆ Bρ(x) \ B r

2
(y),

so we get

lim
ρ→0+

H2
(
Bρ(x) ∩ Γ \

⋃
k∈N B r

2
(yk)

)
H2(Bρ(x))

≤ lim
ρ→0+

H2(Bρ(x) \ B r
2
(y))

H2(Bρ(x))
=

1
2
,

which contradicts (4.10). �

Remark 4.7. In this way we get also 1Γn
→ 1Γ in L1(Σ). Indeed, since

H2
(

Γ \
⋃
k∈N

B r
2
(yk)

)
= 0,

we have that 1Γn
(x)→ 1Γ(x) for a.e. x ∈ Σ and, by the dominated convergence theorem,

we obtain the convergence in L1(Σ).

Proposition 4.8. Let Γ ∈ Admr(Σ) . Then diam(Γ) ≤ 8
πrH

2(Γ) + r .

Proof. First we prove that Γ ∈ Admr(Σ) is path-connected. Indeed we can follow the
standard proof for open sets and show by contradiction that for every two points x, y ∈ Γ,
there exists a chain of balls joining them, i.e., there exist B r

2
(ξ1), . . . ,B r

2
(ξk) ⊆ Γ such that

x ∈ B r
2
(ξ0), y ∈ B r

2
(ξk) and B r

2
(ξi) ∩ B r

2
(ξi+1) 6= Ø for every i = 0, . . . , k − 1. Assume

that this is not true, then there are two points x, y ∈ Γ for which there is no chain. We
define

Γ1 := {z ∈ Γ : there exists a chain joining z, y},
Γ2 := {z ∈ Γ : there is no chain joining z, y}.

Of course Γ = Γ1 ∪Γ2 and Γ1 ∩Γ2 = Ø. The set Γ1 is nonempty, since y ∈ Γ1 , and closed.
Indeed, given zh in Γ1 such that zh → z , then z ∈ Γ and there exists a sequence ξh in Γ
such that zh ∈ B r

2
(ξh) ⊆ Γ. We can assume ξh → ξ , ξ ∈ Γ, hence B r

2
(ξh) → B r

2
(ξ) in

the Hausdorff metric. This implies z ∈ B r
2
(ξ), so z ∈ Γ1 . Also the set Γ2 is nonempty,

since x ∈ Γ2 , and closed. Let zh be a sequence in Γ2 such that zh → z . We have z ∈ Γ.
By contradiction, assume that z /∈ Γ2 , then z ∈ Γ1 , which implies the existence of a chain
joining z and y . For every h ∈ N we can find ξh ∈ Γ such that zh ∈ B r

2
(ξh) ⊆ Γ and

ξh → ξ . Then B r
2
(ξh) → B r

2
(ξ) in the Hausdorff metric and z ∈ B r

2
(ξ) ⊆ Γ. We deduce

that zh ∈ Γ1 ∩ Γ2 for h large enough. Hence Γ2 is closed and Γ is the union of two
closed, disjoint and nonempty subset of Γ, which is in contradiction with the fact that Γ is
connected. Therefore Γ is path-connected.

Given x, y ∈ Γ, we have to estimate the distance l := d(x, y) in term of H2(Γ). Let
γ : [0, 1] → Γ be a continuous curve such that γ(0) = x and γ(1) = y . We take the lines
perpendicular to the segment [x, y] at distance from x a multiple of r and intersecting
[x, y] . They intersect the segment [x, y] in x = x0, x1, . . . , xn . Let us define the segments
Ik := [xk−1, xk] for k = 1, . . . , n . For h ∈ [0, (n+1)/2]∩N , let ξ2h+1 be the middle point of
the segment I2h+1 and let s2h+1 be the line perpendicular to [x, y] passing through ξ2h+1 .
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These lines intersect the curve γ in ζ2h+1 . For every h , there exists a ball B r
2
(y2h+1) ⊆ Γ

such that ζ2h+1 ∈ B r
2
(y2h+1). These balls are mutually disjoint, hence we have

l

8
πr − π

8
r2 ≤

[
l

2r
+

1
2

]
π

4
r2 ≤ H2(Γ),

which implies

l ≤ 8
πr
H2(Γ) + r,

and the proof is thus concluded. �

Let us now comment on the initial condition of Theorem 4.4.

Remark 4.9. If the set Γ0 ∈ Admr(Σ) does not satisfy the stability condition (4.5), we
define Γ∗0 to be a solution of (4.5). In particular, Γ∗0 minimizes Emin(Γ, V (0)) among all
Γ ∈ Admr(Σ) with Γ ⊇ Γ∗0 .

Therefore we can solve the problem considered in Theorem 4.4 with initial condition
Γ(0) = Γ∗0 . A solution of (4.5) can be obtained by the direct method of the calculus
of variations. Indeed, a minimizing sequence Γk is bounded by Proposition 4.6, so, by
Theorem 2.1, we can assume Γk → Γ in the Hausdorff metric. For every k ∈ N there
exists a unique uk ∈ A(Γk, V (0)) solution of (4.3). Since uk is bounded in W1

2,6(R3 \ Σ)
by Proposition 2.4, we have uk ⇀ v weakly in W1

2,6(R3 \ Σ), hence v ∈ A(Γ, V (0)) and

Emin(Γ, V (0)) ≤ E(v,Γ) ≤ lim inf
k
Emin(Γk, V (0)),

which shows that Γ is a minimizer.

To prove Theorem 4.4 we need the following lemma.

Lemma 4.10. Let Γ0,Γk,Γ∞ ∈ Admr(Σ) be such that Γ0 ⊆ Γk and Γk → Γ∞ in the
Hausdorff metric. Let Vk, V∞ ≥ 0 with Vk → V∞ . Assume that

Emin(Γk, Vk) ≤ Emin(Γ, Vk) for every Γ ∈ Admr(Σ) with Γ ⊇ Γk.

Then

(4.11) Emin(Γ∞, V∞) ≤ Emin(Γ, V∞) for every Γ ∈ Admr(Σ) with Γ ⊇ Γ∞.

Let uk, u∞ be the solutions of (4.3) corresponding to Γk, Vk and Γ∞, V∞ and let pk, p∞
be the corresponding pressures according to Remark 4.2. Then uk → u∞ in W1

2,6(R3 \ Σ) ,
pk → p∞ , and Emin(Γk, Vk)→ Emin(Γ∞, V∞) .

Proof. Let us fix w0 ∈ A(Γ0, 1).
For every Γ ∈ Admr(Σ) such that Γ ⊇ Γ∞ , let vΓ ∈ A(Γ, V∞) be the solution of (4.3).

For every k we define Γ̂k := Γ ∪ Γk and

vk :=

{
vΓ + (Vk − V∞)

vΓ

V∞
if V∞ > 0,

Vkw0 if V∞ = 0.

Then Γ̂k ∈ Admr(Σ) by Proposition 4.5, Γk ⊆ Γ̂k , Γ̂k → Γ in the Hausdorff metric, and,
by Proposition 4.6, H2(Γ̂k) → H2(Γ), vk ∈ A(Γ̂k, Vk) and vk → vΓ in W1

2,6(R3 \ Σ). By
hypothesis we have

(4.12) Emin(Γk, Vk) ≤ Emin(Γ̂k, Vk) ≤ E(vk, Γ̂k).

By Proposition 2.4, this implies that uk is bounded in W1
2,6(R3 \ Σ), hence, up to a sub-

sequence, uk ⇀ u weakly in W1
2,6(R3 \ Σ) and u ∈ A(Γ∞, V∞). By lower semicontinuity,
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taking also into account (4.12), we have

Emin(Γ∞, V∞) ≤ E(u,Γ∞) ≤ lim inf
k
Emin(Γk, Vk) ≤(4.13)

≤ lim sup
k

Emin(Γk, Vk) ≤ lim sup
k

E(vk, Γ̂k) = E(vΓ,Γ) = Emin(Γ, V∞),

which proves (4.11). In particular, taking Γ = Γ∞ , (4.13) shows that u satisfies

E(u,Γ∞) = Emin(Γ∞, V∞) = lim
k
Emin(Γk, Vk) = lim

k
E(uk,Γk).

By the uniqueness of the solution of (4.3), the whole sequence uk converges to u∞ strongly
in W1

2,6(R3 \ Σ). From this convergence and Remark 4.2, it follows that pk → p∞ , when
V∞ > 0.

It remains to prove that pk → 0 if V∞ = 0. It is not restrictive to assume that Vk > 0.
Since Γ0 ⊆ Γk , we have Vkw0 ∈ A(Γk, Vk). By the definition of uk we have∫

R3\Σ
CEuk ·Euk dx ≤ V 2

k

∫
R3\Σ

CEw0 ·Ew0 dx,

hence (4.4) gives

(4.14) pk ≤ Vk
∫

R3\Σ
CEw0 ·Ew0 dx.

Since Vk → V∞ = 0, this implies that pk → 0. �

Remark 4.11. By the same argument we can show that the function V 7→ Emin(Γ, V ) is
continuous for every Γ ∈ Admr(Σ).

Proof of Theorem 4.4. The proof is based on a time discretization process, see [6]. We
choose a subdivision of the interval [0, T ] of the form tki := iT

k for i = 0, . . . , k . For every
k we define Γki recursively with respect to i : we set Γk0 := Γ0 and, for i > 0, Γki to be a
solution of

(4.15) min{Emin(Γ, V (tki )) : Γ ∈ Admr(Σ), with Γ ⊇ Γki−1},

whose existence can be proved as in Remark 4.9. We denote by uki the solution of (4.3) for
Γ = Γki and V = V (tki ).

As in the proof of Lemma 4.10, we get that uki are uniformly bounded in W1
2,6(R3 \ Σ).

Moreover, the pressure pki associated to uki according to Remark 4.2 is bounded.
We define the step functions

uk(t) := uki , Γk(t) := Γki , pk(t) := pki , for tki ≤ t < tki+1 .

We now prove a discrete energy inequality. By (4.15) we have

(4.16) Emin(Γki , V (tki )) ≤ Emin(Γki−1, V (tki )).

To estimate the right-hand side of the previous inequality, we fix w0 ∈ A(Γ0, 1) and intro-
duce the functions

wki :=


uki

V (tki )
if V (tki ) > 0,

w0 if V (tki ) = 0 .

Notice that wki ∈ A(Γki , 1), and, by (4.14),

‖Ewki ‖L2(R3\Σ;M3) ≤M,

where M ≥ ‖Ew0‖L2(R3\Σ;M3) .
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Since uki−1 + (V (tki )− V (tki−1))wki−1 ∈ A(Γki−1, V (tki )), by (4.16) we get

Emin
(
Γki , V (tki )

)
≤ E

(
uki−1 + (V (tki )− V (tki−1))wki−1,Γ

k
i−1

)
=

= Emin
(
Γki−1, V (tki−1)

)
+

(V (tki )− V (tki−1))2

2

∫
R3\Σ

CEwki−1 ·Ewki−1 dx+

+(V (tki )− V (tki−1))
∫

R3\Σ
CEuki−1 ·Ewki−1 dx ≤

≤ Emin
(
Γki−1, V (tki−1)

)
+ βM2Vk

∫ tki

tki−1

|V̇ (s)| ds+ pki−1

∫ tki

tki−1

V̇ (s) ds,

where β > 0 is the constant defined in (4.1) and

(4.17) Vk :=
1
2

max
j=1,...,k

|V (tkj )− V (tkj−1)|.

Iterating the previous inequality we get

(4.18) Emin
(
Γk(t), V (tki )

)
≤ Emin

(
Γ0, V (0)

)
+ βM2Vk

∫ T

0

|V̇ (s)| ds+
∫ tki

0

pk(s)V̇ (s) ds.

In particular, (4.18) implies that H2(Γk(t)) is uniformly bounded in time, hence, by Propo-
sition 4.8, Γk(t) is uniformly bounded.

By Theorem 2.3 and Proposition 4.6, up to a subsequence we have Γk(t) → Γ(t) in the
Hausdorff metric for every t ∈ [0, T ] and the set function Γ : [0, T ]→ Admr(Σ) is bounded
and increasing. Let u(t) be the solution of (4.3) and p(t) be the corresponding pressure.
By Lemma 4.10, Γ satisfies the global stability condition (b) and, in addition, uk(t)→ u(t)
strongly in W1

2,6(R3 \ Σ) and pk(t)→ p(t) for every t ∈ [0, T ] .
To prove the energy-dissipation balance, we first pass to the limit in (4.18) as k → +∞ .

The second term in the right-hand side of (4.18) tends to zero as k → +∞ because V is
absolutely continuous. Since pk is bounded in L∞([0, T ]) and converges pointwise to p , we
have pkV̇ → pV̇ in L1([0, T ]) and we obtain

Emin(Γ(t), V (t)) ≤ Emin(Γ0, V (0)) +
∫ t

0

p(s)V̇ (s) ds.

For the opposite inequality, for every t ∈ [0, T ] we consider a subdivision of the interval
[0, t] of the form τkh := ht

k defined for every k, h ∈ N , k 6= 0, such that h ≤ k . For every
h = 0, . . . , k we set

vkh :=


u(τkh )
V (τkh )

if V (τkh ) > 0,

w0 if V (τkh ) = 0.

Therefore ‖Evkh‖L2(R3\Σ;M3) ≤M and u(τkh+1)+(V (τkh )−V (τkh+1))vkh+1 ∈ A(Γ(τkh+1), V (τkh )).
Since

Emin(Γ(τkh ), V (τkh )) ≤ Emin(Γ(τkh+1), V (τkh )),
we have

Emin
(
Γ(τkh ), V (τkh )

)
≤ E

(
u(τkh+1) + (V (τkh )− V (τkh+1))vkh+1,Γ(τkh+1)

)
=

= Emin
(
Γ(τkh+1), V (τkh+1)

)
+

(V (τkh )− V (τkh+1))2

2

∫
R3\Σ

CEvkh+1 ·Evkh+1 dx+

+(V (τkh )− V (τkh+1))
∫

R3\Σ
CEu(τkh+1) ·Evkh+1 dx ≤

≤ Emin
(
Γ(τkh+1), V (τkh+1)

)
+ βM2Vk

∫ τk
h+1

τk
h

|V̇ (s)| ds−
∫ τk

h+1

τk
h

p(τkh+1)V̇ (s) ds,
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where Vk has been defined in (4.17). Iterating the previous inequality and defining pk(s) :=
p(τkh+1) for τkh < s ≤ τkh+1 , we get

(4.19) Emin(Γ0, V (0)) ≤ Emin(Γ(t), V (t)) + βM2Vk

∫ T

0

|V̇ (s)| ds−
∫ t

0

pk(s)V̇ (s) ds.

Since Γ(·) is an increasing function, by Theorem 2.2 there exists Θ ⊆ [0, T ] such that
[0, T ] \Θ is at most countable and Γ(·) is continuous at every point of Θ. By Lemma 4.10
we have that s 7→ u(s) is strongly continuous on W1

2,6(R3 \ Σ) at every point of Θ and
s 7→ p(s) is continuous at the same points. This implies that pk(s)→ p(s) for every s ∈ Θ.
By the dominated convergence theorem we get pkV̇ → pV̇ in L1([0, t]) and, passing to the
limit in (4.19), we obtain

Emin(Γ0, V (0)) ≤ Emin(Γ(t), V (t))−
∫ t

0

p(s)V̇ (s) ds.

This concludes the proof of the energy-dissipation balance (c). �

Let Γ : [0, T ] → Admr(Σ) satisfy Theorem 4.4. For every t ∈ (0, T ] we consider Γ−(t)
defined, as in Theorem 2.2, by

(4.20) Γ−(t) :=
⋃
s<t

Γ(s) .

We have Γ(t) = Γ−(t) and Emin(Γ−(t), V (t)) = Emin(Γ(t), V (t)) for every t ∈ (0, T ] out of
a countable set.

Proposition 4.12. Let Γ : [0, T ] → Admr(Σ) satisfy Theorem 4.4 and let Γ−(t) be given
by (4.20) for every t ∈ (0, T ] . Then

(4.21) Emin(Γ−(t), V (t)) = Emin(Γ(t), V (t)) for every t ∈ (0, T ] .

Moreover,

Emin(Γ(t), V (t)) ≤ Emin(Γ, V (t)) for every Γ ∈ Admr(Σ) with Γ ⊇ Γ−(t) .

Proof. Since Γ(s)→ Γ−(t) in the Hausdorff metric as s↗ t , by Lemma 4.10 we get

Emin(Γ−(t), V (t)) = lim
s↗t
Emin(Γ(s), V (s)).

By the continuity of s 7→ Emin(Γ(s), V (s)) we obtain (4.21).
Fixed Γ ∈ Admr(Σ) with Γ−(t) ⊆ Γ, we have Γ(s) ⊆ Γ for every 0 ≤ s < t , hence

(4.22) Emin(Γ(s), V (s)) ≤ Emin(Γ, V (s)).

and passing to the limit as s↗ t we get the thesis. �

Remark 4.13. Thanks to Proposition 4.12 we have that if Γ : [0, T ] → Admr(Σ) satisfies
Theorem 4.4, the same is true for the function

t 7→
{

Γ(0) for t = 0,
Γ−(t) for 0 < t ≤ T,

where Γ−(t) is defined in (4.20). We notice that in the energy-dissipation balance we
have to replace p(t) with p−(t) which satisfies Proposition 3.2, extending it at t = 0 by
p−(0) := p(0). Then the quasi-static hydraulic crack problem has a left-continuous solution.

Remark 4.14. Repeating the same steps, for every t ∈ [0, T ) we define Γ+(t) as in Theo-
rem 2.2. As in Proposition 4.12 we obtain Emin(Γ(t), V (t)) = Emin(Γ+(t), V (t)) for every
t ∈ [0, T ) and finally, as in Remark 4.13, we define the function

t 7→
{

Γ+(t) for 0 ≤ t < T,
Γ(T ) for t = T,
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which satisfies properties (a), (b), and (c) of Definition 4.3. Therefore, we get a right-
continuous solution of the problem. Note however that the right-continuous solution does
not necessarily satisfy the initial condition.
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