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Abstract. In this short note we prove that, in dimension three, flat metrics are the only
complete metrics with non-negative scalar curvature which are critical for the σ2-curvature
functional.
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1. Introduction

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 3. To fix the notation, we recall
the decomposition of the Riemann curvature tensor of a metric g into the Weyl, Ricci and
scalar curvature component

Rm = W +
1

n− 2
Ric©∧ g − 1

(n− 1)(n− 2)
Rg©∧ g ,

where ©∧ denotes the Kulkarni-Nomizu product. It is well known [11] that Einstein metrics
are critical points for the Einstein-Hilbert functional

H =

∫
RdV

on the space of unit volume metrics M1(M
n). From this perspective, it is natural to study

canonical metrics which arise as solutions of the Euler-Lagrange equations for more general
curvature functionals. In [3], Berger commenced the study of Riemannian functionals which
are quadratic in the curvature (see [4, Chapter 4] and [14] for surveys). A basis for the space
of quadratic curvature functionals is given by

W =

∫
|W |2dV ρ =

∫
|Ric|2dV S =

∫
R2dV .

All such functionals, which also naturally arise as total actions in certain gravitational field
theories in physics, have been deeply studied in the last years by many authors, in particular
on compact Riemannian manifolds with normalized volume (for instance, see [3, 4, 12, 13, 1,
7, 8, 9, 6] and references therein).

On the other hand, the study of critical metrics for quadratic curvature functionals also
has a lot of interest in the non-compact setting. For instance, Anderson in [2] proved that
every complete three-dimensional critical metric for the Ricci functional ρ with non-negative
scalar curvature is flat, whereas in [5] the first author showed a characterization of complete
critical metrics for S with non-negative scalar curvature in every dimension.
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In this paper we focus our attention on the three dimensional case and consider the σ2-
curvature functional

F2 =

∫
σ2(A) dV ,

where σ2(A) denotes the second elementary symmetric function of the eigenvalues of the
Schouten tensor A = Ric − 1

4Rg. This functional was first considered by Gursky and Via-
clovsky in the compact three dimensional case. In [7] they proved a beautiful characteriza-
tion theorem of space forms as critical metrics for F2 on M1(M

3) with non-negative energy
F2 ≥ 0.

The main result of this paper is the following variational characterization of three dimen-
sional flat spaces.

Theorem 1.1. Let (M3, g) be a complete critical metric for F2 with non-negative scalar
curvature. Then (M3, g) is flat.

We remark the fact that the non-negativity condition on the scalar curvature cannot be
removed. This is clear from the example in [7] where the authors exhibit an explicit family
of critical metrics for F2 on R3. For instance, the metric given in standard coordinates by

g = dx2 + dy2 +
(
1 + x2 + y2

)2
dz2

is complete, critical and has strictly negative scalar curvature R = − 8
1+x2+y2

.

2. The Euler-Lagrange equation for Ft

In this section we will compute the Euler-Lagrange equation satisfied by critical metrics
for F2. To begin, we observe that, in dimension n ≥ 3, the second elementary symmetric
function of the eigenvalues of the Schouten tensor

A =
1

n− 2

(
Ric− 1

2(n− 1)
Rg
)

can be written as

σ2(A) = − 1

2(n− 2)2
|Ric|2 +

n

8(n− 1)(n− 2)2
R2 .

In particular, the functional F2 is proportional to a general quadratic functional of the form

Ft =

∫
|Ric|2dV + t

∫
R2dV ,

with the choice t = − n
4(n−1) (see also [8, 6]). The gradients of the functionals ρ and S,

computed using compactly supported variations, are given by (see [4, Proposition 4.66])

(∇ρ)ij = −∆Rij − 2RikjlRkl +∇2
ijR−

1

2
(∆R)gij +

1

2
|Ric|2gij ,

(∇S)ij = 2∇2
ijR− 2(∆R)gij − 2RRij +

1

2
R2gij .

Hence, the gradient of Ft reads

(∇Ft)ij = −∆Rij +(1+2t)∇2
ijR−

1 + 4t

2
(∆R)gij +

1

2

(
|Ric|2+ tR2

)
gij−2RikjlRkl−2tRRij .
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Tracing the equation (∇Ft) = 0, we obtain(
n+ 4(n− 1)t

)
∆R = (n− 4)

(
|Ric|2 + tR2

)
.

Defining the tensor E to be the trace-less Ricci tensor, Eij = Rij − 1
nRgij , we obtain the

Euler-Lagrange equation of critical metrics for Ft.

Proposition 2.1. Let Mn be a complete manifold of dimension n ≥ 3. A metric g is critical
for Ft if and only if it satisfies the following equations

∆Eij = (1 + 2t)∇2
ijR−

n+ 2 + 4nt

2n
(∆R)gij − 2RikjlEkl −

2 + 2nt

n
REij

+
1

2

(
|Ric|2 − 4− n(n− 4)t

n2
R2
)
gij ,

(
n+ 4(n− 1)t

)
∆R = (n− 4)

(
|Ric|2 + tR2

)
.

In dimension three we recall the decomposition of the Riemann curvature tensor

Rikjl = Eijgkl − Eilgjk + Eklgij − Ekjgil +
1

6
R (gijgkl − gilgjk) .

In particular, one has

RikjlEkl = −2EipEjp −
1

6
REij + |E|2gij .

Hence, if n = 3 and t = −n/4(n− 1) = −3/8, one has

F2 = −1

2
F−3/8 ,

and the following formulas hold.

Proposition 2.2. Let M3 be a complete manifold of dimension three. A metric g is critical
for F2 if and only if it satisfies the following equations

∆Eij =
1

4
∇2

ijR−
1

12
(∆R)gij + 4EipEjp +

5

12
REij −

1

2

(
3|E|2 − 1

72
R2
)
gij , (2.1)

− 2σ2(A) = |Ric|2 − 3

8
R2 = |E|2 − 1

24
R2 = 0 . (2.2)

Now, contracting equation (2.1) with E we obtain the following Weitzenböck formula.

Corollary 2.3. Let M3 be a complete manifold of dimension three. If g is a critical metric
for F2, then the following formula holds

1

2
∆|E|2 = |∇E|2 +

1

4
Eij∇2

ijR+ 4EipEjpEij +
5

12
R|E|2 . (2.3)
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3. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. We assume that (M3, g) is a critical metric for
F2 with non-negative scalar curvature R ≥ 0. In particular, g has zero σ2-curvature, i.e.
|E|2 = 1

24R
2 and we obtain

1

2
∆|E|2 =

1

48
∆R2 =

1

24
R∆R+

1

24
|∇R|2 .

Putting together this equation with (2.3), we obtain that the scalar curvature R satisfies the
following PDE

1

24

(
Rgij − 6Eij

)
∇2

ijR = |∇E|2 − 1

24
|∇R|2 + 4EipEjpEij +

5

12
R|E|2 . (3.1)

To begin, we need the following purely algebraic lemmas.

Lemma 3.1. Let (M3, g) be a Riemannian manifold with R ≥ 0 and σ2(A) ≥ 0. Then,

Rgij ≥ 6Eij

and g has non-negative sectional curvature.

Proof. Let λ1 ≤ λ2 ≤ λ3 be the eigenvalues of the Schouten tensor A = E + 1
12Rg at some

point. Then, by assumptions, we have

4R = tr(A) = λ1 + λ2 + λ3 ≥ 0 and σ2(A) = λ1λ2 + λ1λ3 + λ2λ3 ≥ 0 .

We want to show that E ≤ 1
6Rg or, equivalently, that

A ≤ 1

4
Rg = tr(A)g .

Hence, it is sufficient to prove that λ3 ≤ tr(A) = λ1 + λ2 + λ3, i.e. λ1 + λ2 ≥ 0. But this
follows by

0 ≤ λ1λ2 + λ1λ3 + λ2λ3 = (λ1 + λ2)tr(A)− (λ21 + λ22 + λ1λ2) ≤ (λ1 + λ2)tr(A) .

The fact that g has non-negative sectional curvature follows from the decomposition of the
Riemann tensor in dimension three and the curvature condition Ric ≤ 1

2Rg (for instance
see [10, Corollary 8.2]). �

Lemma 3.2. Let (M3, g) be a Riemannian manifold with R ≥ 0 and σ2(A) = const ≥ 0.
Then,

|∇E|2 ≥ 1

24
|∇R|2 .

Proof. We will follow the proof in [7, Lemma 4.1]. Let p be a point in M3. If R(p) = 0,
then ∇R = 0 and the lemma follows. So we can assume that R(p) > 0. Since −2σ2(A) =
|E|2 − 1

24R
2 = const, one has

|E|2|∇|E||2 =
1

576
R2|∇R|2 . (3.2)

By Kato’s inequality |∇|E||2 ≤ |∇E|2 and the fact that |E|2 ≤ 1
24R

2, we obtain

|E|2|∇E|2 ≥ 1

576
R2|∇R|2 ≥ 1

24
|E|2|∇R|2 .

Dividing by |E|2(p) 6= 0 the result follows, otherwise, if |E|(p) = 0, (∇R)(p) = 0 from
equation (3.2), and we conclude. �
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Lemma 3.3. Let (M3, g) be a Riemannian manifold. Then,

EipEjpEij ≥ −
1√
6
|E|3 .

Proof. For a proof of this lemma, for instance, see [7, Lemma 4.2]. �

Corollary 3.4. Let (M3, g) be a complete critical metric for F2 with non-negative scalar
curvature. Then, Rgij ≥ 6Eij, g has non-negative sectional curvature and the scalar curvature
satisfies the following differential inequality(

Rgij − 6Eij

)
∇2

ijR ≥
1

12
R3 .

Proof. From equation (3.1), combining lemmas 3.1 3.2 and 3.3, we obtain

1

24

(
Rgij − 6Eij

)
∇2

ijR ≥
5

12
R|E|2 − 4√

6
|E|3 = |E|2

( 5

12
R− 4√

6
|E|
)

=
1

288
R3 ,

where in the last equality we have used the fact that |E|2 = 1
24R

2. �

Now we can prove Theorem 1.1. Clearly, if M3 is compact, from Corollary 3.4, at a
maximum point of R we obtain R ≤ 0. Hence, R ≡ 0 on M3 and from equation (2.2),
Ric ≡ 0 and the metric is flat. So, from now on, we will assume the manifold M3 to be
non-compact.

Choose now φ = φ(r) be a function of the distance r to a fixed point O ∈ M3 and let
Bs(O) be a geodesic ball of radius s > 0. We denote by CO the cut locus at the point O and
we choose φ satisfying the following properties: φ = 1 on Bs(O), φ = 0 on M3 \B2s(O) and

−c
s
φ3/4 ≤ φ′ ≤ 0 and |φ′′| ≤ c

s2
φ1/2

on B2s(O) \ Bs(O) for some positive constant c > 0. In particular, φ is C3 in M3 \ CO. Let

u := Rφ and aij :=
(
Rgij − 6Eij

)
. From Corollary 3.4, we know that aij ≥ 0 and we obtain

aij∇2
iju = aij

(
φ∇2

ijR+R∇2
ijφ+ 2∇iR∇jφ

)
(3.3)

≥ 1

12
R3φ+Rφ′aij∇2

ijr +Rφ′′a(∇r,∇r) + 2a(∇R,∇φ) .

Now, let p0 be a maximum point of u and assume that p0 /∈ CO. If φ(p0) = 0, then u ≡ 0
and then R ≡ 0 on B2s(O). Hence, from now on we will assume φ(p0) > 0. Then, at p0, we
have ∇u(p0) = 0 and ∇2

iju(p0) ≤ 0. In particular, at p0, one has

∇R(p0) = −R(p0)

φ(p0)
∇φ(p0) .

Moreover, since aij ≥ 0, for every vector field X, one has a(X,X) ≤ tr(a)|X|2 = 3R|X|2. On
the other hand, from standard Hessian comparison theorem, since g has non-negative sectional
curvature, we know that on M3 \CO, one has ∇2

ijr ≤ 1
rgij . Thus, from equation (3.3), at p0,
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we get

0 ≥ 1

12
R3φ+Rφ′aij∇2

ijr +Rφ′′a(∇r,∇r)− 2
R

φ
a(∇φ,∇φ)

≥ 1

12
R3φ−

( |φ′|
r

+ |φ′′|+ 2
(φ′)2

φ

)
R tr(a)

≥ 1

12
R3φ− 3

( |φ′|
s

+ |φ′′|+ 2
(φ′)2

φ

)
R2 ,

where, in the last inequality, we have used the fact that r ≥ s on B2s(O) \Bs(O), i.e. where
φ′ 6= 0. From the assumptions on the cut-off function φ, we obtain, at the maximum point p0

0 ≥ 1

12
R2φ1/2

(
Rφ1/2 − c′

s2

)
for some positive constant c′ > 0. Thus, we have proved that, if p0 /∈ CO, then for every
p ∈ B2s(O)

u(p) ≤ u(p0) = R(p0)φ(p0) ≤
c′

s2
.

If p0 ∈ CO we argue as follows (this trick is usually referred to Calabi). Let γ : [0, L]→M3,
where L = d(p0, O), be a minimal geodesic joining O to p0, the maximum point of u. Let
pε = γ(ε) for some ε > 0. Define now

uε(x) = R(x)φ
(
d(x, pε) + ε

)
.

Since d(x, pε) + ε ≥ d(x,O) and d(p0, pε) + ε = d(p0, O), it is easy to see that uε(p0) = u(p0)
and

uε(x) ≤ u(x) for all x ∈M3 ,

since φ′ ≤ 0. Hence p0 is also a maximum point for uε. Moreover, p0 /∈ Cpε , so the function
d(x, pε) is smooth in a neighborhood of p0 and we can apply the maximum principle argument
as before to obtain an estimate for uε(p0) which depends on ε. Taking the limit as ε→ 0, we
obtain the desired estimate on u.

By letting s→ +∞ we obtain u ≡ 0, so R ≡ 0. From equation (2.2) we have E ≡ 0 and so
Ric ≡ 0 and Theorem 1.1 follows.

This concludes the proof of Theorem 1.1.
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Saldini 50, 20133 Milano, Italy
E-mail address: paolo.mastrolia@unimi.it

(Dario D. Monticelli) Dipartimento di Matematica, Università degli Studi di Milano, Via Cesare
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